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Sketched and truncated Krylov subspace
methods for matrix equations

Davide Palitta∗

Dipartimento di Matematica, Università di Bologna

Sketching can be seen as a randomized dimensionality reduction technique able to
preserve the main features of the original problem with probabilistic confidence. This
kind of technique is emerging as one of the most promising tools to boost numerical
computations and it is quite well-known by theoretical computer scientists. Nowadays,
sketching is gaining popularity also in the numerical linear algebra community even
though its use and understanding are still limited.

In this talk we will present cutting-edge results about the use of sketching in numerical
linear algebra. In particular, we will focus on showing how sketching can be successfully
combined with Krylov subspace methods. We will specialize our results to the solution of
large-scale matrix equations but similar techniques can be applied to a variety of important
algebraic problems, including the solution of linear systems, eigenvalue problems, and
the numerical evaluation of matrix functions.
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A defect-correction algorithm for quadratic
matrix equations, with applications to

quasi-Toeplitz matrices
Dario Bini1 and Beatrice Meini∗,2

1,2Department of Mathematics, University of Pisa, Italy

We address the problem of solving a quadratic matrix equation A1X2 +A0X +A−1 = 0,
where the matrix coefficients Ai, i = −1, 0, 1, and the sought solution G, are infinite
matrices endowed with the quasi-Toeplitz structure (QT matrices).

Since the Toeplitz part of the solution G can be easily computed, we introduce a
method based on a defect correction formula, to exploit this information.

More specifically, assume that G̃ is an approximation of the sought solution G. Then,
by following the ideas of [2] and [3], we derive an equation for the defect H = G − G̃ and
express H in terms of an invariant subspace of a suitable pencil. This equation allows us
to introduce a modification of the Structure-preserving Doubling Algorithm (SDA), that
enables refining an initial approximation to the sought solution.

Numerical experiments confirm the effectiveness of the proposed method. More details
can be found in [1].

References
[1] D. A. Bini and B. Meini. “A defect-correction algorithm for quadratic matrix

equations, with applications to quasi-Toeplitz matrices”. In: Linear and Multilinear
Algebra 0.0 (2023), pp. 1–16. doi: 10.1080/03081087.2023.2221988.

[2] A. Bunse-Gerstner and V. Mehrmann. “A symplectic QR like algorithm for the
solution of the real algebraic Riccati equation”. In: IEEE Transactions on Automatic
Control 31.12 (1986), pp. 1104–1113. doi: 10.1109/TAC.1986.1104186.

[3] V. Mehrmann and E. Tan. “Defect correction method for the solution of algebraic
Riccati equations”. In: IEEE Transactions on Automatic Control 33.7 (1988), pp. 695–
698. doi: 10.1109/9.1282.

∗Corresponding author: e-mail beatrice.meini@unipi.it



Matrix Equations and Tensor Techniques X
Aachen, September 13–15, 2023

On the benefits of the LDLT factorization
for (large-scale) Riccati equations

Jens Saak∗,1 and Steffen W. R. Werner2

1Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of
Complex Technical Systems, Sandtorstr. 1, 39104 Magdeburg, Germany

2Department of Mathematics and Division of Computational Modeling and Data Analytics,
Academy of Data Science, Virginia Tech, Blacksburg, VA 24061, USA

Our object of interest is the general continuous-time symmetric algebraic Riccati
equation (ARE) of the form

ATXE + ETXA + CTQC − (ETXB + S)R−1(BTXE + ST) = 0, (1)

where A, E ∈ Rn×n, with E invertible, B, S ∈ Rn×m, C ∈ Rp×n, Q ∈ Rp×p symmetric,
and R ∈ Rm×m symmetric and invertible.

Equation (1) shows up in various system-theoretic contexts, in which it is of particular
interest to find—if it exists—the stabilizing symmetric solution X ∈ Rn×n of (1) such
that the matrix A − BR−1(BTXE + ST) is Hurwitz. The most well-known application
is the linear quadratic optimal control problem, where R is positive definite in addition.
However, the formulation above also allows to cover equations relevant, for example,
in model order reduction related to energy functions similar to balanced truncation.
In particular, for model order reduction of passive systems via positive-real balanced
truncation; see, e.g., [7]; Riccati equations with a positive sign in front of the quadratic
term are needed. This can be covered by (1) choosing R−1 to be negative definite.

While for the RADI [1] algorithm and Krylov subspace projection methods [5, 6, 3] the
benefit of using an LDLT-type factorization of the solution X of (1) is evident from the
procedures, in this contribution we are focusing on Newton-type approaches. For special
formulations of (1), there exist Newton-type solvers in the literature [4, 2]. However,
except for the standard LQR ARE; i.e., S = 0, Q symmetric positive semi-definite and R
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symmetric positive definite in (1); the Lyapunov equations solved in the Newton steps
have indefinite right-hand sides. When aiming for low-rank factored solutions, the authors
of [2] suggest splitting this into two Lyapunov equations with definite right-hand sides
and compute the solution by superposition. This approach roughly doubles the costs of
each Newton step. Moreover, this technique has been observed to be highly numerically
unstable in the context of Rosenbrock solvers for differential Riccati equations, leading to
the suggestion to use instead a factorization of the form X = LDLT, with D symmetric
but potentially indefinite.

In this contribution, we follow up on this idea and formulate a general Newton method
for (1) in terms of this type of factorization. This allows us to efficiently compute the
solution of (1) in the case of large-scale sparse coefficient matrices.
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An extension of the low-rank Lyapunov ADI
to non-zero initial values and its

applications
Martin Köhler, Jens Saak, and Jonas Schulze∗

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

We derive the Alternating-Direction Implicit (ADI) method based on a commuting
operator split following Schulze [6] and apply the results to the Lyapunov equation

AXET + EXAT = −GSGT (1)

with low-rank constant term and approximate solution X ≈ LDLT . Previously, it has
been mandatory to start the low-rank ADI with zero. The approach above generalizes the
iteration scheme of Li and White [5] and the residual formulation of Benner, Kürschner,
and Saak [2] to arbitrary initial values for the ADI method in a low-rank setting at the
expense of an indefinite residual.

We demonstrate the benefit of arbitrary initial values using two other algorithms. First,
we solve a differential Riccati equation with a first-order Rosenbrock method. Each time
step requires the solution of an algebraic Lyapunov equation; see e.g., Lang, Mena, and
Saak [4]. Due to the smoothness of the solution, the solution at the previous time step is
a natural candidate to start the ADI with.
Second, we solve an algebraic Riccati equation with the Newton-ADI method; see

e.g., Benner, Li, and Penzl [3]. Every Newton step requires the solution of a Lyapunov
equation. Thus, the solution of the previous Newton step is a natural candidate to start
the ADI with. We investigate whether such an ADI warm start makes the Newton-ADI
method competitive to the RADI method of Benner et al. [1].
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Inexact Low-rank Sylvester ADI
Patrick Kürschner∗

Center of mathematics and natural sciences, HTWK Leipzig, Gustav-Freytag-Str. 42a, 04277
Leipzig

We consider large-scale Sylvester equations

AX + XB + fgT = 0, A ∈ Rn×n, B ∈ Rm×m

with an inhomogeneity of low rank, f ∈ Rn×s, g ∈ Rm×s, s ≪ n, m.
The low-rank ADI iteration [2], [3] iteratively computes a low-rank solution approximation
X ≈ ZY T with Z ∈ Rn×r, Y ∈ Rm×r, r ≪ n, m. In every iteration step of this process
one has to solve two shifted linear systems

(A + βkIn)vk = sk−1 (B + αkIm)T wk = tk−1, k ≥ 1

for vk, wk. We investigate the situation when those inner linear systems are solved
inexactly by an iterative methods such as, e.g., preconditioned Krylov subspace methods.
For this we first review this situation in the easier case of Lyapunov equations and the
associated inexact Lyapunov low-rank ADI iteration investigated in [1] . Then we present
estimates for the required accuracies regarding the inner linear systems which dictate
when the employed inner Krylov subspace methods can be safely terminated. The goal is
to save some computational effort without endangering the functionality of the low-rank
Sylvester-ADI method. Ideally, the inexact ADI method mimics the convergence behavior
of the more expensive exact ADI method. For the pair of linear systems in every step
of the low-rank Sylvester-ADI iteration, there is also the interesting question if a low
solution accuracy for one linear system can be compensated by a higher solution accuracy
for the other linear system. If time permits, we will also show some possible applications
to more general linear matrix equations.
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Projected exponential methods for stiff
dynamical low-rank approximation problems

Bart Vandereycken and Benjamin Carrel∗

Department of Mathematics, University of Geneva, Switzerland

The numerical integration of stiff equations is a challenging problem that needs to
be approached by specialized numerical methods. Exponential integrators [2] form a
popular class of such methods since they are provably robust to stiffness and have been
successfully applied to a variety of problems. The dynamical low-rank approximation
[3] is a recent technique for solving high-dimensional differential equations by means
of low-rank approximations. However, the domain is lacking numerical methods for
stiff equations since existing methods [1, 4, 5] are either not robust-to-stiffness or have
unreasonably large hidden constants, see Figure 1.

In this talk, we focus on solving large-scale stiff matrix differential equations with a
Sylvester-like structure,

Ẋ(t) = AX(t) + X(t)B + G(t, X(t)), X0 = X(0),

that admit good low-rank approximations. We propose two new methods that have
good convergence properties, small memory footprint and that are fast to compute. The
theoretical analysis shows that the new methods have order one and two, respectively. We
also propose a practical implementation based on Krylov techniques. The approximation
error is analyzed, leading to a priori error bounds and, therefore, a mean for choosing
the size of the Krylov space. Numerical experiments are performed on several examples,
confirming the theory and showing good speedup in comparison to existing techniques.
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Figure 1: Relative error of existing techniques and the new method on a stiff problem
(heat equation) under mesh refinements.
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Tensorized block rational Krylov methods for
tensor Sylvester equations

Casulli Angelo Alberto∗,1

1Scuola Normale Superiore, P.za dei Cavalieri 7, Pisa, Italy

We introduce the definition of tensorized block rational Krylov subspaces and their
relation with multivariate rational functions, extending the formulation of tensorized
Krylov subspaces introduced in [2]. Moreover, we develop methods for the solution of
tensor Sylvester equations with low multilinear or Tensor Train rank, based on projection
onto a tensor block rational Krylov subspace. We provide a convergence analysis and
some strategies for poles selection based on the techniques developed in [1].
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Low-Rank Tensor-Product approximations
for Radiative Transfer in Slab Geometry

Matthias Schlottbom1, Riccardo Bardin∗,1, and Markus Bachmayr2

1Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
2Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Aachen, Germany

Let us consider the even-parity formulation of the stationary Radiative Transfer
Equation (RTE) in slab or plane-parallel geometry

−∂z

(
µ2

σt
∂zu

)
+ σtu = σs

∫ 1

0
u(·, µ′) dµ′ + q in Ω := (0, Z) × (0, 1), (1)

for the specific intensity u = u(z, µ), complemented with Robin boundary conditions
u + µ

σt
∂nu = g on the inflow boundary ∂Ω− := Γ0 ∪ ΓZ , where Γz := {z} × (0, 1). z

and µ are a spatial and angular variables, respectively. The normal derivative ∂nu(z, µ)
reads ∂nu(0, µ) = −∂zu(0, µ) and ∂nu(Z, µ) = ∂zu(Z, µ). In (1), the optical parameters
σa, σs and σt model absorption, scattering and transport properties, respectively. We
refer to [2] for a complete derivation and analysis of the even-parity formulation and its
equivalence with the standard form of the RTE. Classical numerical schemes to solve
the RTE approximate u by functions of the form ∑J

j=0
∑N

n=0 uj,nψj(z)Hn(µ), but this
representation is affected by the curse of dimensionality, which represents the exponential
scaling of the computational complexity with the dimension of the problem. With
this project, we aim to introduce a novel method to deal with the dimensionality issue
for stationary radiative transfer, by developing a low-rank tensor product framework.
Let us first introduce the matrix U = [uj,n]j,n ∈ R(J+1)×(N+1). Employing a weak
formulation of the even-parity equations as described in [2], allows to recast (1) as a linear
system AU = F, where the tensor A has the format A = ∑4

l=1 Al ⊗ Bl, with matrices
Al ∈ R(N+1)×(N+1) and Bl ∈ R(J+1)×(J+1). Choosing suitable basis functions, such as
the hat functions of standard finite elements in space (or multiwavelets for computational
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reasons) and the (shifted and scaled) Legendre polynomials in angle, the matrices Al

and Bl stemming from the angular and spatial part, respectively, are either sparse or
low-rank. Let us call AL and FL the differential operator and the right-hand side in
the aforementioned bases. Supposing now U in low-rank format U = ∑r

k=1 uk ⊗ vk,
for vectors uk ∈ RJ+1 and vk ∈ RN+1, 1 ≤ k ≤ r, the storage requirement for U is
O(r(J + N + 2)) and thus, if r is small, much smaller than the one for the standard
representation. The compatibility between the differential operator structure and the
low-rank format allows to never compute the Kronecker products, since the application
of AL to U writes as

ALU =
r∑

k=1

4∑

l=1
(Bluk) ⊗ (Alvk).

Thus, the result ALU has again storage requirement O(r(J + N + 2)). However, in
general, the rank has increased from r to 4r. In order to prevent uncontrolled growth of
the ranks in the iterative process, we will construct (i) a suitable preconditioner together
with (ii) a rank truncation technique. Let PL be a preconditioner for AL. We would like
to solve the system using a preconditioned Richardson iteration defined on the matrix
space, i.e. Uk+1 = Uk −P−1

L (ALUk − FL). In order to store and apply P−1
L efficiently, we

require for P−1
L a similar format as for A. For this reason, we replace PL with a spectrally

equivalent operator PJ , obtained through a change of basis coded in a matrix T, and
acting on a transformed differential operator AJ = T−TALT−1. The new Kronecker-sum
structure of PJ allows to use exponential sum approximations for the cheap application of
its inverse powers to vectors. Since we cannot associate to U a Hilbert-Schmidt operator,
established rank truncation methods, such as soft thresholding [1], applied to U do not
have a proper meaning in the energy space. To overcome this issue, we denote by P
the operator such that P−1/2 is the exponential sums approximation of P−1/2

J , and we
introduce a new variable W = P1/2TU. Since ∥U∥PL

= ∥W∥F, where ∥ · ∥F denotes the
Frobenius norm for matrices, rank truncation techniques that are based on the standard
singular value decomposition of W can be employed and their error analysis implies error
estimates in the energy norm for the original variable. Denoting Sδk

, being δk > 0 a
sequence of thresholding parameters, any operator that is non-expansive with respect to
∥ · ∥F (for us it will be a soft-thresholding operator), we define the next iterate by

Wk+1 = Sδk
(Wk − ω(AWk − F)),

where A = P−1/2AJP−1/2, F = P−1/2TFL and ω > 0 is an acceleration parameter
depending on the spectral properties of A and the exponential sums approximation of
P−1/2

J . We can establish upper and lower bounds, depending on the contraction rate, for
the distance between the true solution of the discretized equation and the fixed point
of the thresholded iteration. Moreover, optimal ranks bounds are obtained knowing a
priori the decay of the singular value of a manufactured exact solution. For all the other
cases, when the decay of the singular values is unknown, we provide an algorithm which
adjust the thresholding parameter a posteriori, based on the current iterate, retaining
quasi-optimal ranks throughout the process.
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Compositional Tensor Trains (Deep TTs)
Mathias Oster∗1 and Reinhold Schneider2

1Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben
55, Aachen

2Technical University of Berlin

Neural Network applications have shown a superior power of expressivity of composi-
tional structures in function regression. Inspired by the notion of compositional sparsity
as well as neural ODEs we want to find a class of functions that can be well approximated
by a composition of functional tensor trains. For the computation of the underlying
tensors, we can define an optimal control problem on the tensor train manifold.
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Gauss-Southwell type descent methods for
low-rank matrix optimization

Guillaume Olikier1, André Uschmajew∗,2, and Bart Vandereycken3

1Université Catholique de Louvain
2University of Augsburg

3University of Geneva

We consider gradient-related methods for low-rank matrix optimization with a smooth
strongly convex cost function. The methods operate on single factors and share aspects
of both alternating and Riemannian optimization. We compare two possible choices
for the search directions based on Gauss-Southwell type selection rules: one using the
gradient of a factorized non-convex formulation, the other using the Riemannian gradient.
Both methods provide convergence guarantees for the gradient that are analogous to the
unconstrained case.
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Iteratively Reweighted Least Squares
Recovery on Tensor Networks

Sebastian Krämer∗

IGPM, RWTH Aachen University, Templergraben 55, Aachen

One fundamental approach to matrix recovery, being a predecessor to tensor recovery,
traces back to the affine rank minimization problem. While there are various surrogate
approaches within that setting, we emphasize here that the asymptotic minimization of
the well-known, so called log-det objective functions always yields the desired, minimal
rank matrices within the given, affine set; whereas such may or may not recover an
a-priorly sought for ground truth. Concerning the commonly applied method of iteratively
reweighted least squares (IRLS-0), one thus remains with two concerns. How problematic
are local minima inherent to the log-det approach truly; and opposingly, how influential
instead is the numerical realization. With higher dimensions in mind, based on the
concept of matricization, affine sum-of-ranks minimization then generalizes the setting
from matrices to tensors. While convergence properties are directly transferable, we
demonstrate that in numerical experiments, the corresponding IRLS-0 method can
be exhausted in order to observe the theoretical phase transition for generic tensor
recoverability. In large-scale applications in turn, alternating, reweighted optimization
on tensor tree networks allows to avoid exponential computational complexity, without
substantial loss of approximation quality.
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Canonical Polyadic Decomposition and Sets
of Polynomial Equations

Nithin Govindarajan1, Raphaël Widdershoven1, Shivkumar
Chandrasekaran2, and Lieven De Lathauwer∗,1
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The task of solving systems of polynomial equations is important in engineering practice.
In this talk, we present a novel strategy to find all (approximate) common roots of an
overdetermined polynomial system corrupted by noise (e.g., caused by measurement
error). In comparison to earlier approaches that reduce the problem to the generalized
eigenvalue problem associated with a matrix pencil, we introduce a multi-pencil approach
that translates the problem into the computation of a canonical polyadic decomposition
(CPD) of a tensor (or a block term decomposition (BTD) in the case of coinciding
roots) [2, 3]. The tensor is obtained from the null space of a so-called Macaulay matrix.
For high polynomial degrees, the Macaulay matrix suffers from the curse of dimensionality.
However, its algebraic structure can be exploited for efficiency [1]. The benefits of this
approach, both from a conceptual and numerical standpoint, are analyzed. The technique
is illustrated with an application involving the localization of two transmitters from the
power received in arbitrary antenna configurations [4].
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In this talk we are going to explore the antisymmetric tensors, their CP decomposition
and the low-rank approximation algorithms. The idea of the CP decomposition is to
write a tensor as a sum of its rank-one components. This decomposition is closely related
to the tensor rank R, which is defined as the minimal number of rank-1 summands in the
exact CP decomposition. Contrary to the matrix case, the rank of a tensor can exceed
its dimension, and it can be different over R and over C. It is known that the problem of
finding the rank of a given tensor is NP-hard.

When computing the CP decomposition, the main question is the choice of the number
of rank-one components. Assuming the antisymmetric structure of our tensors, we
impose an additional constraint on the CP decomposition. This constraint assures that
the resulting tensor is, indeed, antisymmetric, and it gives a bound on the minimal
number of rank-one components. We focus on the tensors of order three. For a given
non-zero antisymmetric tensor A ∈ Rn×n×n our goal is to find its low-rank antisymmetric
approximation which is represented via only three vectors.

For three vectors x, y, z ∈ Rn we define an n × n × n antisymmetric tensor associated
with these vectors as

A6(x, y, z) := 1
6(x ◦ y ◦ z + y ◦ z ◦ x + z ◦ x ◦ y − x ◦ z ◦ y − y ◦ x ◦ z − z ◦ y ◦ x).

Then, we are looking for a tensor Ã = A6(x, y, z), i.e., vectors x, y, z ∈ Rn, such that

∥A − Ã∥2 → min .
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We propose an alternating least squares structure-preserving algorithm for solving this
problem. The algorithm is based on solving a minimization problem in each tensor mode.
Set

a =




x
y
z


 ∈ R3n.

Then, similarly to what was done in [1], we define the objective function f : R3n → R,

f(a) = 6∥A − A6(x, y, z)∥2,

and consider three partial minimization problems:

min
x

f(a), min
y

f(a), min
z

f(a).

We compare our algorithm with a “naive” idea which uses a posteriori antisymmetrization.
Moreover, we study the tensors with partial antisymmetry, that is, antisymmetry in

only two modes. Correspondingly to what we do for the tensors that are antisymmetric in
all modes, we first determine a suitable format of the CP decomposition, which is going
to be simpler for the partial antisymmetry. Based on this format, for a given non-zero
tensor C ∈ Rn×n×m antisymmetric in two modes, we are looking for its approximation C̃
of the same structure such that C̃ is represented by three vectors and rank(C̃) = 2.

We provide numerical examples for the comparison of the CP with a posteriori an-
tisymmetrization and the antisymmetry preserving CP. Additionally, for the sake of
completeness, we compare these algorithms with the CP-ALS algorithm that does not
preserve antisymmetry. All algorithms are implemented and tested in Julia programming
language

The talk is based on the preprint [2].
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Signal processing and data analysis applications often rely on rank-1 terms to extract
meaningful information from tensor data. By using the least-squares loss when computing
this canonical polyadic decomposition, one implicitly assumes normally distributed errors,
which might not be suitable for, e.g., count data. Therefore, we derive a generalized Gauss-
Newton-type algorithm for non-least-squares loss functions and discuss how exploiting
tensor structure and randomization lead to an efficient algorithm.

This work is based on [1] and [2]. Implementations of the algorithm and the experiments
can be found at tensorlabplus.net.
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We discuss the problem of determining the nonnegative, high-dimensional solution
x⋆ ∈ R≥0 to a linear system Ax = b. The solution x⋆ can represent, for example, a
probability distribution over a high-dimensional state space [1]. In order to deal with the
high dimensionality, we approximate the solution x⋆ using low-rank tensor formats. Since
the solution is nonnegative, we want the low-rank approximation to preserve this property
by constraining each of its factors to be nonnegative. Common alternating strategies for
nonnegative tensor factorization reduce the high-dimensional problem to a sequence of
low-dimensional subproblems, but often suffer from slow convergence and persistence
in local minima. In the setting without nonnegativity constraints, the factors of the
low-rank representation are typically orthogonalized as an intermediate step between
the alternating minimization steps. However, orthogonalization of the factors generally
violates the nonnegativity constraints and therefore cannot be used for nonnegative tensor
factorization.

Similar to [2] for nonnegative matrix factorization, we illustrate that nonnegative
updates (unlike classical low-rank ones) are not representation invariant. Therefore, our
goal is to increase the range of nonnegative factorization that can be discovered in the
next minimization step. We propose a quasi-orthogonalization as an intermediate step.
Numerical experiments suggest that this quasi-orthogonalization reduces the problematic
issues of common alternating strategies for factorizing nonnegative tensors.
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The Blind Source Separation (BSS) problem is a classical signal processing problem. We
want to retrieve the source signals from an observed mixture of signals. Mathematically
this problem translate into the factorization of the R × N observed signal matrix X into

X = MS⊤

where M is the mixing matrix and S is the source signal one. For some classes of BSS, e.g.,
sparsity [1], constant modulus [7], Vandermonde structure [6], or statistical independence
of non-Gaussian signals [2], the problem has a unique solution, under mild conditions.

In [5], the authors study the uniqueness of the structured rank-1 factorization for the
observed signal matrix X defined as

X =
R∑

r=1
mr(z)sr(z)T for z ∈ Ω (1)

where the mr(z) and sr(z) are vector-value functions defined on Ω, a subset of the vector
space FN . The fundamental contribution is checking-list criteria, which guarantee for a
class of deterministic methods the generic uniqueness of the factorization in (1) up to
trivial indeterminacy, as permutations or scaling.

These criteria, arising from the algebraic geometry framework, allow us to design an
algorithm to retrieve the unique decomposition in various more specific cases, including
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the blind source separation problem if the source signals can be modeled as rational
functions, and the canonical polyadic tensor decomposition. We assume that the matrix
X has full row rank and that the columns of S belong to an algebraic variety V, i.e.,

V = {z ∈ FN : p1(z) = · · · = pK(z) = 0}

where p1, . . . , pK are polynomials. Thanks to the results of [3, 4], we prove that the rows
of M−1 belong to the intersection of the vectorized symmetric tensor subspace and the
kernel of a matrix Q, obtained from the polynomials p1, . . . , pK defining the algebraic
variety V. Once the rows of M−1 are retrieved, we can easily obtain the wanted unique
factorization.

As a consequence, a key step in the algebraic algorithm is computing the matrix Q,
which has large dimensions. However, the highly structured nature of Q allows an efficient
computation on which we will particularly focus.
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Dynamical low-rank approximation (DLRA) has successfully been used for approxi-
mating the solution to nonlinear partial differential equations (PDEs) on low-rank matrix
manifolds. For many practical problems of interest, discretizing high-dimensional PDEs
results in massive matrix differential equations (MDEs) that are too expensive to solve
using conventional methods. While DLRA has the potential to significantly reduce this
computational burden, it still suffers from the following challenges: (i) inefficient for
general nonlinearities, (ii) intrusive implementation, (iii) ill-conditioned in the presence
of small singular values, and (iv) error accumulation due to fixed rank. To this end,
we present a scalable method for solving MDEs on low-rank matrix manifolds that is
computationally efficient, minimally intrusive, robust in the presence of small singular
values, rank-adaptive, and highly parallelizable. These favorable properties are achieved
via oblique projections that require evaluating the MDE at a small number of rows and
columns. The columns and rows are selected using the discrete empirical interpolation
method (DEIM), which yields near-optimal matrix low-rank approximations. We show
that the proposed algorithm is equivalent to a CUR matrix decomposition. Numerical
results demonstrate the accuracy, efficiency, and robustness of the new method for a
diverse set of problems [1].
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When measured in a unitarily invariant norm, the distance from a matrix X to the
set of low-rank matrices is determined by the singular values of X and is achieved at
its truncated singular value decomposition. However, this theory does not cover other
important norms such as the maximum norm ∥X∥max = maxi,j |X(i, j)|.

It was shown in [1] that for every X ∈ Rm×n with m ≥ n and every ε ∈ (0, 1) there exists
a matrix Y ∈ Rm×n of rank at most

⌈
72 log(2n + 1)/ε2⌉

such that ∥X − Y ∥max ≤ ε∥X∥2.
In other words, every sufficiently large matrix with bounded spectral norm is close to a
low-rank matrix in the maximum norm.

We propose to successively compute (quasi)optimal projections onto the set of fixed-
rank matrices and the maximum-norm ball centered at X to obtain such low-rank
approximations. In a series of numerical experiments with different classes of matrices we
study how well the theoretical estimate of [1] describes the approximation errors achieved
with the method of alternating projections.

This work was supported by the Austrian Science Fund (FWF) under the project F65.

References
[1] M. Udell and A. Townsend. “Why are big data matrices approximately low rank?”

In: SIAM Journal on Mathematics of Data Science 1.1 (2019), pp. 144–160.

∗Corresponding author: e-mail stanislav.budzinskiy@univie.ac.at



Matrix Equations and Tensor Techniques X
Aachen, September 13–15, 2023

Two relaxations of the best rank-1 tensor
approximation problem using different norms

Hassan Bozorgmanesh∗

Department of Mathematics and Mathematical Statistics, Umeå University, 901 87, Umeå,
Sweden

Tensors as the extension of vectors and matrices, provide the natural tool for represent-
ing high-dimensional data. Similar to the matrix case, in order to extract the important
patterns and discarding the redundant information, there is a need for dimensionality
reduction techniques. Decomposing tensors and using the low-rank forms is one of these
approaches. Using low-rank tensors is usual in applications like signal processing and
optimal control. Of particular interest is the use of rank-1 CP approximation due to its
simpler form and unlike the rank-r CP approximation (r > 1), it always exists [2].

In this work, first it is shown that the best rank-1 approximation of a real mth-order
tensor is equal to solving m 2-norm optimization problems that each corresponds to
a factor of the best rank-1 approximation. These problems are relaxed by using the
Frobenius and L1 norms instead of 2-norm. It is proved that the solution for the Frobenius
relaxation of optimization problems is the leading eigenvector of a positive semi-definite
matrix and the solution of the L1 relaxation can be obtained efficiently by summing over
all modes of the associated tensor but one. The numerical examples show that these
relaxations can be faster than the alternating least squares (ALS) method and they are
reasonably close to the solutions obtained by the ALS method.

For an m-th order tensor A in Rn1×n2×...×nm , the following problem is called the best
(CP) rank-1 approximation,
∥∥∥A − µa(1) ◦ a(2) ◦ . . . ◦ a(m)

∥∥∥
F

= min
c,∥x(1)∥2=...=∥x(m)∥2=1

∥∥∥A − cx(1) ◦ x(2) ◦ . . . ◦ x(m)
∥∥∥

F

(1)
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where µ and c are real scalars, a(i), x(i) ∈ Rni , 1 ≤ i ≤ m are real vectors, ◦ denotes the
vector outer product and µa(1) ◦ a(2) ◦ . . . ◦ a(m) is called the best rank-1 approximation
of A.

It is known that the problem of finding a best (CP) rank-one approximation is NP-
hard [1]. In this work, two relaxations for the best rank-one approximation of a real
tensor are defined in order to create cost-effective methods. The purpose of a relaxation
of an optimization problem is to approximate it by weakening the constraints or the
objective function in order to have an easier-to-solve problem that approximates the
optimal solution of original problem. The optimal solution of the relaxed maximization
(minimization) problem is a lower bound (upper bound) for the optimal solution of the
original problem.

Here, using relaxations leads to having simpler algorithms for calculating the best
rank-1 approximation of a tensor. In addition, these new algorithms are of complexity
class NC. Also, the output of one of relaxations (L1) can be used to initialize alternating
least squares (ALS) and create a faster and more accurate version of ALS than with
random initialization.
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The Nyström method [Nystrom1930] offers an effective way to obtain low-rank
approximation of SPD matrices, and has been recently extended and analyzed to nonsym-
metric matrices [Nakatsukasa2020] (leading to the randomized, single-pass, streamable,
cost-effective, and accurate alternative to the randomized SVD, and it facilitates the
computation of several matrix low-rank factorizations.

In this presentation, we take these advancements a step further by introducing a higher-
order variant of Nyström’s methodology tailored to approximating low-rank tensors in
the Tucker format: the multilinear Nyström technique. We show that, by introducing
appropriate small modifications in the formulation of the higher-order method, strong
stability properties can be obtained. This algorithm retains the key attributes of the
generalized Nyström method, positioning it as a viable substitute for the randomized
higher-order SVD algorithm [Cichoki2014] .
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Low-rank tensor formats such as tensor trains [4], which in physics are known as
matrix products states [5], are an important tool for representing wave functions in
quantum physics. However, their direct application to approximations of fermionic
wave functions in particle coordinates is problematic due to the antisymmetries under
coordinate exchange that such wave functions need to satisfy, which cannot readily be
treated using such hierarchical tensor formats [3].
An alternative is provided by a second-quantized representation, where the antisym-

metric wave functions are parameterized in terms of occupation numbers with respect to
a given set of single-particle basis functions, here called orbitals; for a brief overview, see,
e.g., [1]. An additional difficulty that arises in this approach, however, is that the number
of particles in the system is not a prior fixed and generally needs to be constrained to
the desired value in some manner.
Constraining the particle number (or other quantum numbers) in matrix product

states leads to a block-sparsity pattern in tensor components, as illustrated in 1. This is
exploited in many tensor network codes, in particular in density matrix renormalization
group algorithms. In this talk, based on the results in [2] we look at such block-sparsity
properties from a more general point of view, with potential applications in other contexts.
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Figure 1: Blocks in a matrix product state with two particles encoding unoccupied (0,
blue) and occupied (1, red) states for five orbitals.

We then consider the interaction of the block structure with matrix product operator
representations of Hamiltonians in quantum chemistry. We obtain explicit representations
of such Hamiltonians operating directly on the block structures, with improved rank
bounds under sparsity assumptions on the Hamiltonian coefficients. Finally, we discuss
their application in low-rank eigensolvers using full residual information.
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We present the construction and analysis of a space-time adaptive method for parabolic
partial differential equations that combines sparse wavelet expansions in time with
adaptive low-rank approximations in the spatial variables [2].

Similar to the existing adaptive low-rank method for elliptic problems [1], we use a
perturbed Richardson iteration, where we apply two reduction operators to the iterates
to keep the support as well as the arising ranks of the low-rank approximations near-
optimal for a given error tolerance. This perturbed Richardson iteration is applied to
a bi-infinite matrix-vector problem based on the space-time variational formulation [3]
which is equivalent to the parabolic initial boundary value problem.

For the analysis of the method we propose a new approximation class for the temporal
operator which is necessary due to the interaction between hierarchical tensor formats of
different time indices. One of the main challenges is the fact that the parabolic operator
is an isomorphism with respect to spaces not endowed with a cross norm. Therefore, as
in [1], we use a method for preconditioning operators in low-rank format by exponential
sum approximations.

The method is shown to converge and satisfy similar complexity bounds as the existing
adaptive low-rank method for elliptic problems [1, 2], establishing its suitability for
parabolic problems on high-dimensional spatial domains and does not suffer from the
curse of dimensionality. The construction also yields computable rigorous a posteriori
error bounds for the total error depending on the activated basis functions and ranks in
the approximation.

The results are illustrated by numerical experiments for the heat equation in high
dimensions, demonstrating the practical efficiency.
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We consider a parameter-dependent linear system motivated by a diffusion problem.
The combination of all finitely many parameters leads to an exponential scaling of the
computational effort in the number of parameters, the so-called curse of dimensionality.
To break this curse, we use low-rank tensor formats to represent this system. We introduce
the parameter-dependent multigrid method to solve such a high-dimensional system
within low-rank tensor formats.
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