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Chapter 1

Introduction

The development of the software package DROPS started in the interdisciplinary Collaborative
Research Center SFB 540 “Model-based Experimental Analysis of Kinetic Phenomena in Fluid
Multi-phase Reactive Systems” [84]. The goal of the DROPS related research activities is two-
fold: on the one hand we want to develop and improve numerical methods for the simulation
of two-phase flow problems and on the other hand the aim is to provide accurate and reliable
numerical simulations of realistic two-phase systems which are of interest for project partners
from engineering departments.

The development of DROPS is mainly carried out at the Chair of Numerical Mathematics,
RWTH Aachen University. Due to the complexity of two-phase flow problems we need the
ability to perform parallel computations. In a tight cooperation the parallelization of DROPS

is realized at the Chair of Scientific Computing, RWTH Aachen University.
The DROPS code is written in C++. Especially the implementation of the iterative solvers

heavily uses the object-oriented and template programming features of C++1.
Some further information including a gallery of simulation examples can be found on the

DROPS website [16]. More information concerning the numerical methods used and on results
of simulations with can be found in a sequence of papers [1]-[13].

In this guide we describe the main features of the DROPS package, which has been developed
at the Chair of Numerical Mathematics at RWTH Aachen University. The guide consists of
three parts. In this introductory chapter we describe the models of one- and two-phase flow
problems that can be solved numerically using DROPS (sections 1.1 and 1.2) and we give an
overview of the numerical methods that are available for such simulations. In part I we explain
these numerical methods. Our treatment, however, is restricted to a rather global description
of the methods and for further information references to the literature are given. In the second
part we discuss implementation issues such as data structures, important classes and routines
corresponding to the numerical methods. In the third part we present several examples which
show how numerical simulations of different one- and two-phase flow models can be realized in
DROPS.

Three-dimensional incompressible two-phase flow problems, with or without mass transport,
form the main application area of DROPS. The following models fit in the DROPS framework
and will be explained in more detail in section 1.1:

1) Navier-Stokes equations for one-phase flow (NS1).

1Our code is used by some compiler manufacturers as a benchmark test for their C++ compilers (e. g., SUN,
Microsoft).

7



8 CHAPTER 1. INTRODUCTION

2) Navier-Stokes equations for two-phase flow (NS2).

3) NS2 combined with transport of a dissolved species (NS2+T).

4) NS2 combined with transport of a surfactant at the interface (NS2+S).

5) NS2 combined with transport of both a dissolved species and a surfactant at the interface
(NS2+T+S).

In the models 2)-5) surface tension forces are taken into account.

We list some main features of the numerical methods that are used in DROPS for the
simulation of these models:

• A multilevel hierarchy of tetrahedral triangulations is used. Local refinement and coarsen-
ing routines are available.

• For spatial discretization we apply Finite Element (FE) techniques based on conforming
spaces. Special FE spaces suitable for functions that are discontinuous across the interface
can be used.

• A level set method for interface capturing is used.

• A special Laplace-Beltrami method for the discretization of surface tension forces is im-
plemented.

• A “sharp” interface approach is applied in the sense that there is no smoothing or regu-
larization of discontinuities or delta functions at the interface.

• We use implicit time integration methods in which flow variables, surface tension forces
and the level set function are strongly coupled.

• For the solution of large sparse linear systems preconditioned Krylov subspace methods
can be applied. Several efficient preconditioners are available. Inexact Uzawa type solvers
for saddle point problems are implemented. Multigrid solvers can be used.

• An MPI based parallel version of DROPS is currently developed.

For input an interface to the GAMBIT package is implemented and for visualization purposes
data can be transfered to Ensight, Tecplot, Geomview.

DROPS is written in C++. In chapter 8 some properties of the implementation are treated.
Currently a parallel version on DROPS is under development. More information on paralleliza-
tion issues is given in chapter 9.

In the remainder of this introduction we describe the models 1)-5) more precisely and give an
overview of the numerical methods. For ease of presentation the partial differential equations
used in the models are given in the strong formulation (section 1.1). The numerical methods, in
particular the FE methods for spatial discretization, are based on the weak formulation of these
partial differential equations, as explained in more detail in part I. In section 1.2 we address the
issue of initial and boundary conditions used in our models. The brief summary of numerical
methods given in section 1.3 is elaborated in part I.
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1.1 One- and two-phase flow models in strong formulation

In this section we give the partial differential equations (in strong formulation) which describe
the different one- and two-phase incompressible flow models that can be solved numerically using
DROPS.

We always assume that the computational domain Ω ⊂ R
3 is a bounded polyhedral domain.

1) Navier-Stokes equations for one-phase flow (NS1)

Let u = u(x, t) and p(x, t) be the velocity and pressure. For these unknowns we consider the
standard incompressible Navier-Stokes equations

ρ
(∂u

∂t
+ (u · ∇)u

)
= −∇p+ ρg + div(µD(u)) in Ω

divu = 0 in Ω,
(1.1)

with a strictly positive density ρ and viscosisty µ, and the strain tensor D(u) := ∇u + (∇u)T .
The vector g is a known external force (gravity). Initial and boundary conditions corresponding
to these Navier-Stokes equations are discussed in section 1.2.

Remark 1 The standard case is that ρ and µ are strictly positive constants. Using div u = 0
we then get

div(µD(u)) = µ∆u = µ





∆u1

∆u1

∆u3



 .

2) Navier-Stokes equations for two-phase flow (NS2)

We consider the situation in which the domain Ω ⊂ R
3 contains two different immiscible incom-

pressible newtonian phases (fluid-fluid or fluid-gas). A model problem is a liquid drop contained
in a surrounding fluid. The time-dependent domains which contain the phases are denoted by
Ω1 = Ω1(t) and Ω2 = Ω2(t) with Ω1∪Ω2 = Ω. The interface between the two phases (∂Ω1∩∂Ω2)
is denoted by Γ = Γ(t). To model the forces at the interface we make the standard assumption
that the surface tension balances the jump of the normal stress on the interface, i. e., we have a
free boundary condition

[σn]Γ = τKn,

with n = nΓ the unit normal at the interface (pointing from Ω1 in Ω2), τ the surface tension
coefficient (material parameter), K the curvature of Γ and σ the stress tensor, i. e., σ = −pI +
µD(u). Due to the assumption that the phases are viscous and immiscible the velocity should
be continuous across the interface. In combination with the conservation laws of mass and
momentum this yields the following standard model:







ρi

(
∂u
∂t

+ (u · ∇)u
)

= −∇p+ ρig + div(µiD(u)) in Ωi

divu = 0 in Ωi

for i = 1, 2,

[σn]Γ = τKn, [u · n]Γ = 0 . (1.2)

Initial conditions and boundary conditions are discussed in section 1.2.
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This model for a two-phase incompressible flow problem is often used in the literature. The
effect of the surface tension can be expressed in terms of a localized force at the interface, cf.
the so-called continuum surface force (CSF) model [32, 38]. This localized force is given by

fΓ = τKδΓnΓ .

Here δΓ is a Dirac δ-function with support on Γ. Its action on a smooth test function ψ is given
by ∫

Ω
δΓ(x)ψ(x) dx =

∫

Γ
ψ(s) ds .

This localization approach can be combined with the level set method for capturing the unknown
interface. We outline the main idea, for a detailed treatment we refer to the literature [38]. The
level set function, denoted by φ = φ(x, t) is a scalar function. At the initial time t = 0 we assume
a function φ0(x) such that φ0(x) < 0 for x ∈ Ω1(0), φ0(x) > 0 for x ∈ Ω2(0), φ0(x) = 0 for
x ∈ Γ(0). It is desirable to have the level set function as an approximate signed distance function.
For the evolution of the interface we consider the trace x(t) of a single particle x(0) ∈ Ω over
time. A particle on the interface remains on the interface for all time, i. e., for all x(0) ∈ Γ(0)
and all t ≥ 0 we have x(t) ∈ Γ(t). This is equivalent to the condition φ(x(t), t) = 0 (t ≥ 0) which
we extend to the whole domain as φ(x(t), t) = φ(x(0), 0) for all x(0) ∈ Ω and all t ≥ 0. By
differentiating this condition with respect to t we obtain φt +∇φ(x, t) ·xt = 0. The displacement
of a particle coincides with the velocity field, i. e., xt = u holds. Hence one obtains the first
order differential equation φt + u · ∇φ = 0 for t ≥ 0 and x ∈ Ω.

The jumps in the coefficients ρ and µ can be described using the level set function (which
has its zero level set precisely at the interface Γ) in combination with the Heaviside function
H : R → R:

H(ζ) = 0 for ζ < 0 , H(ζ) = 1 for ζ > 0 .

For ease one can take H(0) = 1
2 . We define

ρ(φ) := ρ1 + (ρ2 − ρ1)H(φ)

µ(φ) := µ1 + (µ2 − µ1)H(φ).
(1.3)

Combination of the CSF approach with the level set method leads to the following model for
the two-phase problem in Ω × [0, T ]:

ρ(φ)
(∂u

∂t
+ (u · ∇)u

)

= −∇p+ ρ(φ)g + div(µ(φ)D(u)) + τKδΓnΓ

divu = 0 (1.4)

φt + u · ∇φ = 0,

together with suitable initial and boundary conditions for u and φ, cf. section 1.2.

3) NS2 combined with transport of a dissolved species (NS2+T)

We consider a two-phase flow problem as described above in NS2. We assume that one or both
phases contain a dissolved species that is transported due to convection and diffusion and does
not adhere to the interface. The concentration of this species is denoted by c(x, t). This flow
problem can be modeled by the equations (1.4) for the flow variables and a convection-diffusion
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equation for the concentration c. At the interface we need interface conditions for c. The first
interface condition comes from mass conservation, which implies flux continuity. The second
condition results from a constitutive equation known as Henry’s law (derived from continuity of
chemical potentials at the interface) which states that the quotient of the concentration values
at both sides of the interface equals a given constant (Henry’s constant, which depends on the
given phases). This model is as follows, cf. [31, 98]:

Two-phase flow model (1.4) combined with:

∂c

∂t
+ u · ∇c = D(φ)∆c, (1.5)

[D(φ)∇c · n] = 0 at the interface,

c1 = CHc2 at the interface.

The diffusion coefficient is piecewise constant: D(φ) = D1 + (D2 − D1)H(φ). In the interface
condition we use the notation ci for c|Ωi

restricted to the interface. The constant CH > 0 is

given (Henry’s constant). Using Ĉ(φ) := 1 + (CH − 1)H(φ) the Henry interface condition can
also be written as [Ĉc] = 0. The model has to be combined with suitable initial and boundary
conditions, cf. section 1.2.

4) NS2 combined with transport of a surfactant at the interface (NS2+S)

We consider a two-phase flow problem as described above in NS2. We assume that there is a
species (called tenside or surfactant) which adheres to the interface and that the concentration
of this surfactant in the two phases is so small that it can be neglected in the model. The
concentration of this surfactant is denoted by S(x, t), x ∈ Γ. We introduce the orthogonal
projection P = I − nnT (n: normal on Γ). Correspondingly, for x ∈ Γ we have an orthogonal
decomposition u(x, t) = Pu(x, t)+(I−P )u(x, t) =: uΓ(x, t)+u⊥(x, t). The tangential gradient
is defined by ∇Γ := P∇, and divΓ := ∇T

Γ , ∆Γ := divΓ ∇Γ. The two-phase fluid dynamics model
with transport of surfactants at the interface is as follows, cf. [31, 58]:

Two-phase flow model (1.4) combined with:

∂t,nS + divΓ(SuΓ) + SKu · n = DΓ∆ΓS. (1.6)

The derivative ∂t,nS stands for the time derivative of S along a normal path. The diffusion
coefficient DΓ can be assumed to be constant on Γ. For the convection-diffusion equation in
(1.6) no boundary conditions are needed if the interface Γ is a manifold without boundary.

5) NS2 combined with transport of both a dissolved species and a surfactant at the
interface (NS2+T+S)

Forthcoming. This model combines the models in (1.5) and (1.6). If c in (1.5) models the
concentration of the surfactant in the two phases, then in (1.6) one usually includes an additional
source term that accounts for the change of the surfactant concentration at the interface (S)
due to ad- and desorption, cf. [31, 98].
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1.2 Initial and boundary conditions

In this section we describe the initial and boundary conditions that can be used in the models
1)-5) to make the problem well-posed.

For the NS1 model one needs suitable initial and boundary conditions only for the velocity
u. The initial condition is u(x, t) = u0(x) with a given function u0, which usually comes from
the underlying physical problem. For the boundary conditions we distinguish between essential
and natural boundary conditions. Let ∂Ω be subdivided into two parts ∂Ω = ∂ΩD ∪ ∂ΩN

with ∂ΩD ∩ ∂ΩN = ∅. We use essential boundary conditions on ∂ΩD that are of Dirichlet
type. In applications these describe inflow conditions or conditions at walls (e.g., no-slip). Such
Dirichlet conditions are of the form u(x, t) = uD(x, t) for x ∈ ∂ΩD, with a given function uD.
If, for example, ∂ΩD corresponds to a fixed wall, then a no-slip boundary condition is given by
u(x, t) = 0 for x ∈ ∂ΩD. On ∂ΩN we prescribe natural boundary conditions, which are often
used to describe outflow conditions. These natural boundary conditions are of the form

σnΩ = −pextnΩ, on ∂ΩN , (1.7)

with nΩ the outward pointing normal on ∂Ω and pext a given function (external pressure). For
the case pext = 0 we thus obtain a homogeneous natural boundary condition.

For the two-phase flow model NS2 in addition we have to consider initial and boundary
conditions for the level set funtion φ. The initial condition is φ(x, 0) = φ0(x), in which φ0 is given
and should be such that {x ∈ R

3 | φ0(x) = 0 } = Γ(0). Moreover, φ0 should be an (approximate)
signed distance function to Γ(0). To make the linear hyperbolic equation φt + u · ∇φ = 0 well-
posed one needs boundary conditions on the inflow boundary ∂Ωin := {x ∈ ∂Ω | u · nΩ < 0 }.
The function φ in the NS2 model (1.4) is introduced for the numerical purpose of capturing
the interface and has no physical interpretation. There are no natural (e.g., physics based)
boundary conditions for φ at the inflow boundary. We are only interested in values of φ close to
the interface (= zero level on φ) and φ is evolved according to φt + u · ∇φ = 0 only for a short
time interval. After this short time a re-initialization of φ is applied, cf. section 4.2.6. Due to
this one can use the level set equation in (1.4) without any boundary conditions on ∂Ω.

In the model NS2+M in (1.5) one needs in addition initial and boundary conditions for the
concentration c. The initial condition is c(x, 0) = c0(x) with a given initial concentration c0.
For the boundary conditions the standard ones, namely a Dirichlet (i.e., c given on part of ∂Ω)
and a Neumann ( ∂c

∂nΩ
given on part of the boundary) condition can be used.

In model NS2+S in (1.6) one has to prescribe an inititial concentration S(x, 0) = S0(x), x ∈
Γ, for the surfactant. If Γ is a manifold without boundary (droplet) no boundary conditions for
S are needed.

1.3 Overview of numerical methods

For the numerical simulation of the models 1)-5) many numerical methods are implemented in
DROPS. These methods are explained in part I. In this section we present a compact overview
of all important methods used, in the form of a matrix of methods, cf. table 1.1. As can be seen
from this table, we arrange the different methods according to two criteria, namely the models
for which they are used and the computational method class they belong to. To be more specific
we briefly address the methods shown in table 1.1 in a row wise order.

Model NS1. For the one-phase Navier-Stokes problem we use a multilevel hierarchy of nested
tetrahedral meshes. Local refinement and coarsening methods are available, too. These grid
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related methods are also used for all other models. For spatial discretization we use the standard
Hood-Taylor P2-P1 finite element pair. We need quadrature rules to evaluate the integrals that
occur in the weak formulation of the problem. After spatial discretization we obtain a large
system of nonlinear ordinary differential equations coupled with algebraic constraints (due to
divu = 0), i.e., a DAE system (Differential Algebraic Equation). For this system we use a
numerical time integration rule. In DROPS a fractional-step θ-scheme and a method based on
operator splitting are available. Per time step such a time integration rule results in a large
nonlinear system of algebraic equations, in which velocity u and pressure p are coupled. For
linearization we apply a standard Picard iteration (with steplength optimization). After lin-
earization we have a large sparse linear system of algebraic equations that is of saddle point
type. Several efficient iterative solvers, like for example preconditioned CG (PCG) and multi-
grid methods (MG), are available.

Model NS2. One very important issue for this class of problems is the discretization of the
level set equation. For this we use P2 finite elements combined with streamline diffusion sta-
bilization (SDFEM). Another topic is the approximation of the zero level of this discretization
φh of φ (Γ ; Γh). Related to the level set funtion we also need a re-initialization method. A
further issue is the discretization of the localized surface tension force in (1.4). For this we use
a Laplace-Beltrami technique. In this type of problems, due to surface tension, the pressure is
discontinuous across the interface. For an appropriate treatment of this discontinuity we use a
special finite element space (P1X). Due to this discontinuity and discontinuities in density and
viscosity we need special quadrature rules. After application of a time integration rule we obtain
a large nonlinear system of algebraic equations in which u, p and φ are coupled. We apply an
iterative decoupling strategy to split the coupled problem for u, p, φ into two subproblems for u, p
and φ, respectively. If in the model we have very large jumps in density and viscosity across the
interface (as, for example, in a liquid-gas system) then in the iterative solvers we need special
preconditioners that are robust with respect to variation in the size of these jumps.

Model NS2+M. For the spatial discretization of the convection-diffusion equation for the con-
centration c we use standard P1 finite elements. Due to the interface condition c1 = CHc2
(with CH 6= 1) in (1.5), the concentration is discontinuous across the interface. A special jump
removing transformation is used to eliminate this discontinuity. An alternative approach is to
use a P1X finite element space (instead of P1) for spatial discretization. For the time integra-
tion a standard θ-scheme (which includes Euler backward and the Crank-Nicolson method) is
available. A simple method is used for the decoupling of (u, p, φ) and c in each time step.

Model NS2+S. In this model we have a convection-diffusion equation on the (moving) interface
Γ, cf. (1.6). For the spatial discretization we use special finite element spaces that are obtained
from suitable restriction of the P1 finite element space corresponding to the tetrahedral triangu-
lation. Furthermore, interface adapted quadrature rules are needed. The time integration has
to be adapted to the special time derivative ∂t,n that occurs in (1.6).

Model NS2+M+S. Forthcoming.
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Grids spatial discretization time integration treatment of cou-
plings /linearization

iterative solvers

NS1

multilevel
tetrahedral
hierarchy;

P2-P1 FE; θ-scheme;
fractional-step
scheme

(u, p) fully coupled; PCG, MG;
inexact Uzawa;

local refinement; quadrature; operator splitting; Picard iteration for Schur compl. precond.;
local coarsening; linearization; GMRES, GCR, MINRES;

SSOR, Jacobi;

↓ ↓ ↓ ↓ ↓

NS2

P2-P1X; fixed point for special preconditioners

P2+ SDFEM for φ; decoupling (u, p); (due to jumps);

mass conservation; defect correction;

re-initialization of φ;

Γ ; Γh;

discretization of fΓ;

special quadrature;

↓ ↓ ↓ ↓ ↓

NS2+M
P1 + transf. for c; θ-scheme for c; decoupling of

P1X for c; (u, p, φ) ↔ c;

↓ ↓ ↓ ↓ ↓

NS2+S
FE space on Γh; discr. of time decoupling of

quadrature on Γh; derivative ∂t,n; (u, p, φ) ↔ s;

↓ ↓ ↓ ↓ ↓

NS2+M+S
decoupling of

(u, p, φ) ↔ c, s;

Table 1.1: Overview of numerical methods in DROPS
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In part I of this guide we will explain the numerical methods implemented in DROPS for
the numerical simulation of the one- and two-phase flow problems described in section 1.1.
The methods for spatial and time discretization and for the iterative solution of the resulting
nonlinear and linear large sparse systems, as summarized in table 1.1, are treated. In chapter 2
we discuss the multilevel family of tetrahedral nested meshes that is used in all our simulations.
In the chapters 3-7 we explain the methods used for the models 1)-5) given in section 1.1. The
presentation follows the row wise ordering of the methods in table 1.1.
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Chapter 2

Hierarchy of tetrahedral grids

We outline the basic ideas of the multilevel grid hierarchy on which our finite element dis-
cretization method is based. We only consider multilevel tetrahedral meshes based on red/green
refinement strategies (cf. [20, 22, 27]). The idea of a multilevel refinement (and coarsening)
strategy was introduced in [22] and further developed in [24, 27, 29, 63, 64, 97]. This grid re-
finement technique is used in UG [95]; for an overview we refer to [23, 25]. Similar techniques
are used in several other packages.

We first introduce a few basic notions. We assume that Ω is a polyhedral domain.

Definition 1 (Triangulation) A finite collection T = {T} of tetrahedra T ⊂ Ω is called a
triangulation of Ω if the following holds:

1. vol(T ) > 0 for all T ∈ T ,

2.
⋃

T∈T T = Ω,

3. int(S) ∩ int(T ) = ∅ for all S, T ∈ T with S 6= T .

Definition 2 (Consistency) A triangulation T is called consistent if the intersection of any
two tetrahedra in T is either empty, a common face, a common edge or a common vertex.

Definition 3 (Stability) A sequence of triangulations T0,T1,T2, . . . is called stable if all angles
of all tetrahedra in this sequence are uniformly bounded away from zero.

Definition 4 (Refinement) For a given tetrahedron T a triangulation K(T ) of T is called a
refinement of T if |K(T )| ≥ 2 and any vertex of any tetrahedron T ′ ∈ K(T ) is either a vertex or
an edge midpoint of T . In this case T ′ is called a child of T and T is called the parent of T ′. A
triangulation Tk+1 is called refinement of a triangulation Tk 6= Tk+1 if for every T ∈ Tk either
T ∈ Tk+1 or K(T ) ⊂ Tk+1 for some refinement K(T ) of T .

Definition 5 (Multilevel triangulation) A sequence of consistent triangulations M = (T0, . . . ,TJ)
is called a multilevel triangulation of Ω if the following holds:

1. For 0 ≤ k < J : Tk+1 is a refinement of Tk.

2. For 0 ≤ k < J : T ∈ Tk ∩ Tk+1 ⇒ T ∈ TJ .
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Definition 6 (Hierarchical decomposition) Let M = (T0, . . . ,TJ) be a multilevel trian-
gulation of Ω. For every tetrahedron T ∈ M a unique level number ℓ(T ) is defined by
ℓ(T ) := min{ k | T ∈ Tk }. The set Gk ⊂ Tk

Gk := {T ∈ Tk | ℓ(T ) = k }

is called the hierarchical surplus on level k (k = 0, . . . , J). Note that G0 = T0, Gk = Tk \Tk−1 for
k = 1, . . . , J . The sequence H = (G0, . . . ,GJ) is called the hierarchical decomposition of M. Note
that the multilevel triangulation M can be reconstructed from its hierarchical decomposition.

Remark 2 Let M be a multilevel triangulation and Vk (0 ≤ k ≤ J) be the corresponding finite
element spaces of continuous functions p ∈ C(Ω) such that p|T ∈ Pq for all T ∈ Tk (q ≥ 1). The
refinement property 1 in definition 5 implies nestedness of these finite element spaces: Vk ⊂ Vk+1.

Now assume that based on some error indicator certain tetrahedra in the finest triangulation
TJ are marked for refinement. In many refinement algorithms one then modifies the finest
triangulation TJ resulting in a new one, TJ+1. Using such a strategy (which we call a one-level
method) the new sequence (T0, . . . ,TJ+1) is in general not a multilevel triangulation because the
nestedness property 1 in definition 5 does not hold. We also note that when using such a method
it is difficult to implement a reasonable coarsening strategy. In multilevel refinement algorithms
the whole sequence M is used and as output one obtains a sequence M′ = (T ′

0 , . . . ,T ′
J ′), with

T ′
0 = T0 and J ′ ∈ {J−1, J, J+1}. In general one has T ′

k 6= Tk for k > 0. We list a few important
properties of this method:

• Both the input and output are multilevel triangulations.

• The method yields stable and consistent triangulations.

• Local refinement and coarsening are treated in a similar way.

• The implementation uses only the hierarchical decomposition of M.
This allows relatively simple data structures without storage over-
head.

• The costs are proportional to the number of tetrahedra in TJ .

For a detailed discussion of these and other properties we refer to the literature ([22, 27, 63, 1]).
In our implementation we use the multilevel refinement algorithm described in [1].



Chapter 3

Navier-Stokes equations for
one-phase flow (NS1)

3.1 Weak formulation

We consider the Navier-Stokes model as in (1.1). For simplicity we take ρ ≡ 1, µ =constant
and homogeneous Dirichlet boundary conditions for u on ∂Ω. For the weak formulation of this
problem we introduce the spaces

V := H1
0 (Ω)3, Q := L2

0(Ω) = { q ∈ L2(Ω) |
∫

Ω
q = 0 }. (3.1)

A weak formulation of this problem is as follows:

Determine u(t) ∈ V and p(t) ∈ Q such that

m(ut(t),v) + a(u(t),v) + c(u(t);u(t),v) − b(v, p(t)) = (g,v) ∀v ∈ V

b(u(t), q) = 0 ∀q ∈ Q,

for (almost) all t ∈ [0, T ]. Here and in the remainder, (·, ·) denotes the (component wise) L2

scalar product. In this variational formulation we used the bilinear forms

m(u,v) =

∫

Ω
u · v dx

a(u,v) = µ

∫

Ω

(
∇u · ∇v

)
dx

b(u, q) =

∫

Ω
q divu dx,

and the trilinear form

c(u;v,w) =

∫

Ω
(u · ∇v) ·w dx.

3.2 Spatial discretization

3.2.1 Galerkin finite element discretization

Let M = (T0, . . . ,TJ) be a multilevel triangulation of Ω. With each triangulation Tk (0 ≤ k ≤ J)
we associate a mesh size parameter h = hk. Let Vh ⊂ V, Qh ⊂ L2(Ω) and Vh ⊂ V be standard
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polynomial finite element spaces corresponding to the triangulation Tk. We assume the pair
(Vh, Qh) to be LBB stable. The standard pair used in DROPS is Hood-Taylor P2-P1, i.e.,
piecewise quadratic finite elements for the velocity and piecewise linears for the pressure.

Using such a pair (Vh, Qh), the Galerkin discretization reads: Find uh(t) ∈ Vh, ph(t) ∈ Qh,
with (ph(t), 1) = 0, such that for all vh ∈ Vh and all qh ∈ Qh:

m((uh)t(t),vh) + a(uh(t),vh) + c(uh(t);uh(t),vh) − b(vh, ph(t)) = (g,vh)

b(uh(t), qh) = 0.
(3.2)

for all t ∈ [0, T ]. Let {ξi}1≤i≤N and {ψi}1≤i≤K be the standard nodal bases of the finite element
spaces Vh, Qh and consider the representations

uh(t) =

N∑

j=1

uj(t)ξj , ~u(t) := (u1(t), . . . , uN (t)) (3.3)

ph(t) =

K∑

j=1

pj(t)ψj , ~p(t) := (p1(t), . . . , pK(t)). (3.4)

Using this the Galerkin discretization (3.2) can be rewritten as

M
d~u

dt
(t) + A~u(t) + N(~u(t))~u(t) + BT ~p(t) = ~g

B~u(t) = 0,
(3.5)

where

M ∈ R
N×N , Mij =

∫

Ω
ξi · ξj dx

A ∈ R
N×N , Aij = µ

∫

Ω
∇ξi · ∇ξj dx

B ∈ R
K×N , Bij = −

∫

Ω
ψi div ξj dx

N(~u) = N(uh) ∈ R
N×N , N(~u)ij =

∫

Ω
(uh · ∇ξj) · ξi dx

~g ∈ R
N , ~gi =

∫

Ω
g · ξi dx.

Thus we obtain a system of DAEs for the unknown vector functions ~u(t), ~p(t). Numerical
methods for the solution of this system are discussed in section 3.3.

3.2.2 Quadrature

For the computation of the entries in the matrices in (3.5) integrals have to be determined.
For this we implemented several quadrature rules. In this section we discuss some of these
quadrature rules.
The nodes and weights in these rules are denoted by xi and wi, i = 1, . . . ,m, respectively. The
method QT is of the form

∫

T

f(x) dx ≈ QT (f) := vol(T )

m∑

i=1

wif(xi).
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We use quadrature rules which have degree of exactness two and five on a tetrahedron. These
rules are of the form

∫

T

f(x) dx = vol(T )

m∑

i=1

wif(xi), f ∈ Pn,

The nodes are given in barycentric coordinates. A quadrature rule of degree two with m = 5 is
availabe. In this method as nodes the four vertices, with weights 1/120, are used and the center
of the tetrahedron (i.e. coordinates (1

2 ,
1
2 ,

1
2 ,

1
2)) with weight 2/15. Also a method of degree five

with m = 15 has been implemented. The nodes and weights of this method are listed in table
3.1.

nodes weights
(0.25, 0.25, 0.25, 0.25) 16/135

(A1, A1, A1, B1)

(A1, A1, B1, A1) A1 = (7 −
√

(15))/34

(A1, B1, A1, A1)
3(2665 + 14

√
15)/112900

B1 = (13 + 3
√

(15))/34
(B1, A1, A1, A1)

(A2, A2, A2, B2)

(A2, A2, B2, A2) A2 = (7 +
√

(15))/34

(A2, B2, A2, A2)
3(2665 − 14

√
15)/112900

B2 = (13 − 3
√

(15))/34
(B2, A2, A2, A2)

(A3, A3, B3, B3)
(A3, B3, A3, B3)

(A3, B3, B3, A3) A3 = (10 − 2
√

(15))/40

(B3, A3, A3, B3)
10/189

B2 = (10 + 2
√

(15))/40
(B3, A3, B3, A3)
(B3, B3, A3, A3)

Table 3.1: quadrature rule of degree 5

3.3 Time integration

Consider an initial value problem of the form

du

dt
+ F (u) = f(t), u(0) = u0. (3.6)

The Navier-Stokes system of DAEs in (3.5) takes this form if one elimates the pressure variable
by restricting to the subspace of (discrete) divergence free velocities. We consider three time
integration methods, namely the theta-scheme, the fractional-step θ-scheme and a fractional-step
method based on operator splitting. These three methods are treated in the following subsections.
As default in DROPS, for one-phase Navier-Stokes equations, the fractional-step θ-scheme is
applied.

3.3.1 The θ-scheme

The θ-scheme applied to the initial value problem (3.6) is is given by

unew − uold

∆t
+ θF (unew) + (1 − θ)F (uold) = θf(tnew) + (1 − θ)f(told), θ ∈ [0, 1].
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For θ = 0, we have the explicit Euler scheme, which is only first order accurate and not A-stable.
The Crank-Nicholson scheme (θ = 1

2) is second order accurate and A-stable, but opposite to the
fractional-step θ-scheme (cf. section 3.3.2) not strongly A-stable. When θ = 1, we obtain the
implicit Euler scheme, which is also first order accurate but strongly A-stable.

Application of this method to the Navier-Stokes DAE system results in

M~un+1−~un

∆t
+ θ[A~un+1 + N(~un+1)~un+1] + BT ~pn+1

= θ~gn+1 − (1 − θ)[A~un + N(~un)~un − ~gn]

B~un+1 = 0.

(3.7)

In each time step a nonlinear system of equations for the unknowns ~un+1, ~pn+1 has to be solved.
Iterative methods for solving this system are discussed in section 3.4.

3.3.2 fractional-step θ-scheme

For a given decomposition F = F1 + F2 and a given parameter α ∈ (0, 1
2), the fractional-step

θ-scheme is based on a subdivision of each time interval [n∆t, (n + 1)∆t] in three subintervals
with endpoints (n + α)∆t, (n + 1 − α)∆t, (n + 1)∆t. For given un the approximations un+α,
un+1−α, un+1 at these endpoints are defined by

un+α − un

α∆t
+ F1(u

n+α) + F2(u
n) = fn+α (3.8)

un+1−α − un+α

(1 − 2α)∆t
+ F1(u

n+α) + F2(u
n+1−α) = fn+1−α (3.9)

un+1 − un+1−α

α∆t
+ F1(u

n+1) + F2(u
n+1−α) = fn+1. (3.10)

We use a popular variant of this scheme, cf. [74, 94], with F = F1 + F2 := θF + (1 − θ)F . This
scheme is second order accurate and strongly A-stable for

α := 1 − 1

2

√
2, θ :=

1 − 2α

1 − α
= 2 −

√
2.

The Navier-Stokes DAE system (3.5) can be rewritten in a equivalent system of ODEs by
eliminating the pressure (which can be interpreted as a Lagrange multiplier). Applying the
fractional-step θ-scheme to this Navier-Stokes problem in ODE form and transforming it back
to its original DAE form results in







M~un+α−~un

α∆t
+ θ[A~un+α + N(~un+α)~un+α] + BT ~pn+α

= ~gn+α − (1 − θ)[A~un + N(~un)~un]

B~un+α = 0

(3.11)







M~un+1−α−~un+α

(1−2α)∆t
+ (1 − θ)[A~un+1−α + N(~un+1−α)~un+1−α] + BT ~pn+1−α

= ~gn+1−α − θ[A~un+α + N(~un+α)~un+α]

B~un+1−α = 0

(3.12)







M~un+1−~un+1−α

α∆t
+ θ[A~un+1 + N(~un+1)~un+1] + BT ~pn+1

= ~gn+1 − (1 − θ)[A~un+1−α + N(~un+1−α)~un+1−α]

B~un+1 = 0

(3.13)
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Note that in this method we perform in each time interval [n∆t, (n + 1)∆t] three successive
θ-scheme type substeps. The nonlinear problems for the pairs (~un+α, ~pn+α), (~un+1−α, ~pn+1−α),
(~un+1, ~pn+1) in these three substeps have a similar form.

3.3.3 Operator splitting

Another approach is introduced in [35] and further analyzed in [62]. This method is based on a
splitting in the subspace of divergence free functions of the operator F (~u) = M−1[A~u+N(~u)~u]
into F1(~u) = M−1(θA~u) and F2(~u) = M−1[(1 − θ)A~u + N(~u)~u]. Application of this operator
splitting method to the problem (3.5), results in the following method, cf. [35]:







M~un+α−~un

α∆t
+ θA~un+α + BT~pn+α

= ~gn+α − (1 − θ)A ~un − N(~un)~un

B~un+α = 0

(3.14)

{

M~un+1−α−~un+α

(1−2α)∆t
+ (1 − θ)A~un+1−α + N(~un+1−α)~un+1−α

= ~gn+1−α − θA~un+α −BT ~pn+α
(3.15)







M~un+1−~un+1−α

α∆t
+ θA~un+1 + BT ~pn+1

= ~gn+1 − (1 − θ)A~un+1−α − N(~un+1−α)~un+1−α

B~un+1 = 0

(3.16)

An important property of this method is that the nonlinearity and incompressibility condition in
the Navier-Stokes equations are decoupled. The problems in (3.14), (3.16) are linear Stokes type
of equations and the problem in (3.15) consists of a nonlinear elliptic system for the velocity
unknowns.

3.4 Linearization methods

Using an implicit time-stepping scheme we obtain a nonlinear system of algebraic equations in
each time step. As an example, we consider the first step (3.11) in the fractional-step θ-scheme
(note that the other two steps have a similar form). The nonlinear system is as follows:







(
1

α∆t
M + θA

)
~un+α + θN(~un+α)~un+α + BT ~pn+α

= ~g +
(

1
α∆t

M− (1 − θ)(A + N(~un)
)
~un

B~un+α = 0.

(3.17)

This nonlinear system has the form

Ãx + N(x)x + BTy = b

Bx = c
(3.18)

and is solved by a fixed point defect correction method with step size control taken from [94].

Algorithm 1 (fixed point defect correction method with step size control)
Set ω0 = 1.
Repeat until desired accuracy:
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1. Calculate the defects

(
d1

d2

)

=

(
Ãxk + N(xk)xk + BTyk − b

Bxk − c

)

2. Solve the a discrete Oseen system for the corrections v and q

[Ã + N(xk)]v + BT q = d1

Bv = d2

with accuracy tolk.

3. Step size control: Calculate the step length parameter

ωk+1 :=

〈

K

(
v
q

)

, K

(
xk

yk

)

−
(
b
c

)〉

〈

K

(
v
q

)

, K

(
v
q

)〉 (3.19)

with

K :=

(
Ã + N(xk − ωkv) BT

B 0

)

4. Update xk, yk
(
xk+1

yk+1

)

=

(
xk

yk

)

− ωk+1

(
v
q

)

The discrete Oseen system in step 2 can be solved using iterative solvers that are treated in
section 3.5.3.

3.5 Iterative solvers for large sparse linear systems

In this section we discuss iterative solvers available in DROPS that can be used for solving the
large sparse linear systems that arise after discretization and linearization of (Navier-)Stokes
equations.

3.5.1 Iterative solvers for discretized scalar elliptic problems

Let Ax = b be a large sparse linear system that results from the discretization of a scalar
elliptic problem, for example, a Poisson equation or a convection-diffusion equation. Basic
iterative methods for such a problem are:

• Jacobi method, Gauss-Seidel method.

• Successive overrelaxation method (SOR) and its symmetric variant (SSOR).

• Conjugate gradient method (CG).

• Krylov subspace methods for nonsymmetric problems: GMRES, BiCGSTAB, GCR.
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For a description of these methods we refer to the literature, e.g. [54, 79]. These methods,
which are easy to implement, are available in DROPS. However, often their rate of convergence
is (very) low. A much more efficient iterative solver can be obtained by using basic iterative
methods like a (damped) Jacobi or Gauss-Seidel method in a multilevel approach. Since in our
discretization technique we have a hierarchy of nested grids and corresponding finite element
spaces available such a multigrid approach can be used. A multigrid iterative solver with a
damped Jacobi or Gauss-Seidel smoother and canonical intergrid transfer operators (induced by
the nestedness of the finite element spaces) has been implemented in DROPS. This method is a
very efficient solver for scalar diffusion and convection-diffusion problems.

3.5.2 Iterative solvers for discretized Stokes equations

The discrete Stokes problem has a matrix-vector representation of the form

K

(
x
y

)

:=

(
Ã BT

B 0

)(
x
y

)

=

(
f1
f2

)

, Ã := A + βM , (3.20)

where the parameter β is proportional to 1/∆t. The matrix Ã is symmetric positive definite.
The matrix K is symmetric and strongly indefinite and has a saddle point structure. For this
type of linear systems we consider the following methods:

• inexact Uzawa methods,

• preconditioned MINRES,

• multigrid method.

We briefly address these three classes of methods.

Inexact Uzawa method

The Schur complement of the matrix K is given by S = BÃ−1BT . The matrix K has a block
factorization

K =

(
Ã 0
B −I

)(
I Ã−1BT

0 S

)

.

Solving the problem K

(
x
y

)

=

(
f1
f2

)

by block forward-backward substitution yields the equiva-

lent problem:

1. Solve Ãz = f1 . (3.21)

2. Solve Sy = Bz − f2, y ⊥ M(1, . . . , 1)T . (3.22)

3. Solve Ãx = z −BT y . (3.23)

In the Uzawa method one applies an iterative solver (e.g., CG) to the Schur complement system
in step 2. Note that the matrix S in this system is symmetric positive (semi)definite. The Ã-
systems that occur in each iteration of this method and in the steps 1 and 3 are solved sufficiently
accurate using some fast Poisson solver.
We consider a simple variant of this method in which the exact solves of the Ã-systems are
replaced by inexact ones. Let QA be a preconditioner of Ã. We use this preconditioner in the
steps 1 and 3 and also for the approximation of the Schur complement is step 2. For this we
introduce the notation

Ŝ := BQ−1
A BT . (3.24)
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We use a (nonlinear) approximate inverse of Ŝ denoted by Ψ. For each w, Ψ(w) is an approxi-
mation to the solution z∗ of Ŝz = w. We assume that

‖Ψ(w) − z∗‖
Ŝ
≤ δ‖z∗‖

Ŝ
for all w (3.25)

holds with a given tolerance parameter δ < 1. In our implementation Ψ is the (preconditioned)
CG method. Let (xk,yk) be a given approximation to the solution (x,y). Note that using the
block factorization of K we get

(
x
y

)

=

(
xk

yk

)

+

(
I −Ã−1BTS−1

0 S−1

)(
Ã−1 0

BÃ−1 −I

)((
f1
f2

)

− K

(
xk

yk

))

. (3.26)

With Ã−1 ≈ Q−1
A , S−1w ≈ Ŝ−1w ≈ Ψ(w) and rk

1 := f1−Ãxk−BT yk we obtain the (nonlinear)
iterative method

xk+1 = xk + Q−1
A rk

1 − Q−1
A BT Ψ

(
B(Q−1

A rk
1 + xk) − f2

)

yk+1 = yk + Ψ
(
B(Q−1

A rk
1 + xk) − f2

) (3.27)

Thus we obtain an inexact Uzawa method with the following algorithmic structure:






(
x0

y0

)

a given starting vector; r0
1 := f1 − Ãx0 − BTy0

for k ≥ 0 :

w := xk + Q−1
A rk

1

z := Ψ(Bw − f2
)

xk+1 := w − Q−1
A BTz

yk+1 := yk + z

rk+1
1 := rk

1 − Ã(xk+1 − xk) − BTz.

(3.28)

Here Ψ(·) is as follows:

Ψ(Bw − f2) =

{
Result of ℓ PCG iterations with starting vector 0
and preconditioner QS applied to Ŝv = Bw − f2.

(3.29)

This algorithm consists of an inner-outer iteration. An analysis of this method is given in [10]
where it is shown that in the inner iteration (3.29) one should use very small ℓ-values (ℓ = 1, 2)
and that this inexact Uzawa method is an efficient solver for the saddle point problem (3.20)
provided

we have good preconditioners QA of Ã and QS of S. (3.30)

For the preconditioner QA we use a standard symmetric multigrid V -cycle (Gauss-Seidel smoother).
An appropriate preconditioner QS is due to Cahouet and Chabard [36]. We briefly explain this
method. For further information and a convergence analysis we refer to the literature [10]. For
g ∈ L2(Ω) consider the Neumann problem: find w ∈ H1(Ω) ∩Q such that

(∇w,∇φ) = (g, φ) for all φ ∈ H1(Ω) ∩Q. (3.31)

Let Th be the stiffness matrix of the Galerkin discretization of this problem in Qh ⊂ H1(Ω):

〈Thx,y〉 = (∇JQx,∇JQy) for all x,y ∈ R
K
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with JQ : R
K → Qh the finite element isomorphism between finite element functions in Qh and

their nodal values, cf. (3.4). Note that ker(Th) = span(e), with e := (1, 1, . . . , 1)T . We define
Q̃−1

S : e⊥ → R
K by:

Q̃−1
S =

{

M−1 + βT−1
h , if β ≤ h−2,

βh2M−1 + βT−1
h , if h−2 ≤ β.

(3.32)

Note, that for β = 0 (which corresponds to the discrete stationary Stokes equation) we get
Q̃S = M. In [34] it is shown that Q̃S is uniformly in h and β spectrally equivalent to the Schur
complement S.

Preconditioned MINRES method

We consider a preconditioned minimal residual (PMINRES) method for solving the discretized
Stokes problem (3.20). This class of methods has been analyzed in [73, 78, 85]. We consider a
symmetric positive definite preconditioner

K̃ =

(
QA 0
0 QS

)

(3.33)

for K. Define the norm ‖v‖K̃ := 〈K̃v,v〉 1

2 for v ∈ R
K+N . Given a starting vector v0 with cor-

responding error e0 := v∗ − v0, then in the preconditioned MINRES method one computes the
vector vk ∈ v0 + span

{
K̃−1Ke0, . . . , (K̃−1K)ke0

}
which minimizes the preconditioned residual

‖K̃−1K(v∗ − v)‖
K̃

over this subspace.
An efficient implementation of this method can be derived using the Lanczos algorithm and
Givens rotations. For such an implementation we refer to the literature, e.g. [69, 51]. In an
efficient implementation of this method one needs per iteration one evaluation of Q−1

A , one eval-
uation of Q−1

S and one matrix-vector product with K. From a convergence analysis of this
method it follows that we have fast convergence if QA and QS are good preconditioners of Ã
and S, respectively. For these preconditioners one can take the ones discussed above. A detailed
discussion of this method and a comparison with the inexact Uzawa method are given in [10].

Multigrid method

Multigrid methods can be applied directly to the (generalized) Stokes problem (3.20). These
so-called coupled multigrid methods are based on a combination of a smoother that is applied to
the saddle point system (3.20) and coarse-grid corrections that are obtained from discretizations
of the form (3.20) on coarser grids. For a treatment of these multigrid methods we refer to the
literature, eg. [33, 53]. In DROPS two types of smoothers are available, namely a Braess-Sarazin
method and a Vanka smoother. An explanation of these smoothers and of the corresponding
multigrid solver is given in [5]. In that paper results of numerical methods are given in which this
multigrid method is compared to the preconditioned MINRES and the inexact Uzawa method.
These results show that for the class of generalized discrete Stokes equations as in (3.20) all
three methods are robust with respect to variation in the parameters h and β and often these
three methods have a comparable efficiency.

3.5.3 Iterative solvers for discretized Oseen equations

The discrete Oseen problem has a matrix-vector representation of the form

K

(
x
y

)

:=

(
Â BT

B 0

)(
x
y

)

=

(
f1
f2

)

, Â := A + N(xold) + βM , (3.34)
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where the parameter β is proportional to 1/∆t, cf. (3.17). This linear system has a saddle
point structure but opposite to the discrete Stokes equation in (3.20) the system matrix K in
this case is nonsymmetric. For this type of linear systems, methods similar to the ones used for
the Stokes problem in section 3.5.2 can be used. We again distinguish three classes of methods:
inexact Uzawa method, preconditioned Krylov-subspace solvers and multigrid methods. We
briefly address these classes of methods.

Inexact Uzawa method

The inexact Uzawa method has an algorithmic structure as in (3.28). For the Oseen problem
the Schur complement is nonsymmetric and therefore we do not apply a CG method in (3.29)
but for Ψ we use a (preconditioned) GMRES or GCR method. Also the preconditioners have to
be modified. For QA one can apply a Jacobi- or Gauss-Seidel iteration, a multigrid method or a
(preconditioned) Krylov-subspace iteration. More delicate is the choice of QS. One possibility
is given in (3.36) below.

Preconditioned Krylov-subspace methods

One can apply a Krylov-subspace method directly to the saddle point system (3.34) and combine
this with a block preconditioner K̃ of the form (3.33). It is convenient to allow for a precondi-
tioner that varies per iteration. Such a variable preconditioner arises if for the preconditioning of
Â or of the Schur complement one uses an inner Krylov-subspace iteration. Standard methods
like GMRES or BiCGSTAB do not allow such variable preconditioners. There are, however,
Krylov-subspace methods that can handle such variable preconditioners. In DROPS two of such
methods are available namely GCR (Generalized Conjugate Residuals, cf. [79]) and FGMRES
(Flexible GMRES, cf. [79]).

In our applications we often use GCR with a block-preconditioner introduced in [42] of the
form (

QA BT

0 −QS

)

. (3.35)

The application of Q−1
A to a vector b is defined by a Jacobi-preconditioned BICGSTAB solver

with the stopping criterion
‖rk‖
‖r0‖ ≤ tol

applied to the linear system Âx = b. For the Schur complement preconditioner Q−1
S we use the

diagonally scaled preconditioner from [42], i. e.

Q−1
S = (BM−1

1 BT )−1 BM−1
1 ÂM−1

1 BT (BM−1
1 BT )−1 (3.36)

where M1 is the diagonal of the matrix M. The inverse of (BT M−1
1 B) is approximated by

using a CG method with the same stopping criterion as of Q−1
A .

Multigrid method

The multigrid method used for the generalized Stokes problem, cf. section 3.5.2 and [5], can
be used without changes for the Oseen problem, provided the underlying flow problem is not
convection-dominated (i.e., a relatively low Reynolds number). For problems with strong convec-
tion, this multigrid method has to be modified. Such multigrid solvers for convection-dominated
flows are not available in DROPS, yet.



Chapter 4

Navier-Stokes equations for
two-phase flow (NS2)

4.1 Weak formulation

In this section we present a weak formulation of the two-phase flow model (1.4). For simplicity
we use homogeneous Dirichlet boundary conditions for u. We use the same spaces V. Q as
for the one-phase Navier-Stokes problems, cf. (3.1). We also use V := H1(Ω). We define the
bilinear forms

m : L2(Ω)3 × L2(Ω)3 → R : m(u,v) =

∫

Ω
ρ(φ)u · v dx

a : V × V → R : a(u,v) =
1

2

∫

Ω
µ(φ) tr

(
D(u)D(v)

)
dx

b : V ×Q→ R : b(u, q) =

∫

Ω
q div u dx

and the trilinear form

c : V × V ×V → R : c(u;v,w) =

∫

Ω
ρ(φ) (u · ∇v) ·w dx.

Note, that the bilinear forms a and m as well as the trilinear form c depend on φ. A weak
formulation of the problem (1.4) is as follows:

Determine u(t) ∈ V, p(t) ∈ Q and φ(t) ∈ V such that

m(ut(t),v) + a(u(t),v) + c(u(t);u(t),v) − b(v, p(t)) = m(g,v) + fΓ(v)

b(u(t), q) = 0 (4.1)

(φt(t), v)0 + (u(t) · ∇φ(t), v)0 = 0

with

fΓ(v) =

∫

Ω

(
τKδΓnΓ −∇ΓτδΓ

)
· v dx =

∫

Γ

(
τKnΓ −∇Γτ

)
· v ds. (4.2)

Here δΓ denotes a Dirac distribution and ∇Γ denotes the tangential gradient as defined in (4.12)
below. Note that the functional fΓ is Γ-dependent and therefore also φ-dependent.

31
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4.2 Spatial discretization

4.2.1 Galerkin finite element discretization

Let M = (T0, . . . ,TJ) be a multilevel triangulation of Ω. With each triangulation Tk (0 ≤ k ≤ J)
we associate a mesh size parameter h = hk. Let Vh ⊂ V, Qh ⊂ L2

0(Ω) and Vh ⊂ V be standard
polynomial finite element spaces corresponding to the triangulation Tk. For Vk and Vh we use
piecewise quadratics. The choice of the pressure finite element space is explained in section 4.2.4.

The Galerkin discretization leads to the following variational problem: Find uh(t) ∈ Vh,
ph(t) ∈ Qh and φh(t) ∈ Vh such that for t ∈ [0, T ]:

m((uh)t(t),vh) + a(uh(t),vh) + c(uh(t);uh(t),vh) − b(vh, ph(t))

= m(g,vh)+fΓh
(vh) ∀vh ∈ Vh (4.3)

b(uh(t), qh) = 0 ∀qh ∈ Qh (4.4)

((φh)t(t), vh)0 + (uh(t) · ∇φh(t), vh)0 = 0 ∀vh ∈ Vh. (4.5)

The term fΓh
(vh) is an approximation of fΓ(vh) with Γh being an approximation of the interface

Γ. These approximation issues are discussed in sections 4.2.2 and 4.2.3. To make this semi-
discrete problem well-posed we need initial conditions uh(0) and φh(0).

The discretization (4.5) of the linear hyperbolic level set equation is not stable. It can be
stabilized using a standard streamline diffusion technique. This streamline diffusion stabilization
applied to the level set equation can be seen as a Petrov-Galerkin method, with trial space Vh

and test functions v̂h. For each tetrahedron T ∈ Tk a stabilization parameter δT is chosen. The
test functions are then defined as

v̂h(x) = vh(x) + δTuh(x, t) · ∇vh(x), x ∈ T.

For an analysis of the streamline diffusion method and reasonable choices for the stabilization
parameter δT we refer to [76]. This leads to the following stabilized variant of (4.5):

∑

T∈Tk

((φh)t(t) + uh(t) · ∇φh(t), vh + δT uh(t) · ∇vh)T = 0 ∀vh ∈ Vh. (4.6)

Here (·, ·)T denotes the L2-scalar product over the domain T . Let {ξj}1≤j≤N , {ψj}1≤j≤K and
{χj}1≤j≤L be (nodal) bases of Vh, Qh and Vh, respectively. These bases induce corresponding
representations of the finite element functions in vector form. Functions uh(t) ∈ Vh, ph(t) ∈ Qh

and φh(t) ∈ Vh can be represented as:

uh(t) =

N∑

j=1

uj(t)ξj, ~u(t) := (u1(t), . . . , uN (t))

ph(t) =

K∑

j=1

pj(t)ψj , ~p(t) := (p1(t), . . . , pK(t))

φh(t) =
L∑

j=1

φj(t)χj , ~φ(t) := (φ1(t), . . . , φL(t)).
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For φh ∈ Vh and uh ∈ Vh we introduce the following (mass and stiffness) matrices:

M(φh) ∈ R
N×N , M(φh)ij =

∫

Ω
ρ(φh)ξi · ξj dx

A(φh) ∈ R
N×N , A(φh)ij =

1

2

∫

Ω
µ(φh) tr

(
D(ξi)D(ξj)

)
dx

B ∈ R
K×N , Bij = −

∫

Ω
ψi div ξj dx

N(φh,uh) ∈ R
N×N , N(φh,uh)ij =

∫

Ω
ρ(φh)(uh · ∇ξj) · ξi dx

E(uh) ∈ R
L×L, E(uh)ij =

∑

T∈Tk

∫

T

χj(χi + δTuh · ∇χi) dx

H(uh) ∈ R
L×L, H(uh)ij =

∑

T∈Tk

∫

T

(uh · ∇χj)(χi + δTuh · ∇χi) dx.

We also need the following vectors:

~g(φh) ∈ R
N , ~g(φh)i =

∫

Ω
ρ(φh)g · ξi dx

~fΓh
(φh) ∈ R

N , ~fΓh
(φh)i = fΓh

(ξi).

Using this notation we obtain the following equivalent formulation of the coupled system of
ordinary differential equations (4.3), (4.4), (4.6): Find ~u(t) ∈ R

N , ~p(t) ∈ R
K and ~φ(t) ∈ R

L

such that for all t ∈ [0, T ]

M(~φ(t))
d~u

dt
(t) + A(~φ(t))~u(t) + N(~φ(t), ~u(t))~u(t) + BT~p(t)

= ~g(~φ(t)) +~fΓh
(~φ(t)) (4.7)

B~u(t) = 0 (4.8)

E(~u(t))
d~φ

dt
(t) + H(~u(t))~φ(t) = 0. (4.9)

In addition we have initial conditions for ~u and ~φ.

4.2.2 Discrete approximation of the interface: Γ ; Γh

In this section we explain how a polyhedral approximation Γh of Γ is constructed.
The level set equation for φ (signed distance function) is discretized with continuous piecewise

quadratic finite elements on the tetrahedral triangulation Th. The resulting piecewise quadratic
finite element approximation of φ on Th is denoted by φh = φh(x, t). We assume a given fixed
time t. We introduce one further regular refinement of Th, resulting in T ′

h. Let I(φh) be the
continuous piecewise linear function on T ′

h which interpolates φh at all vertices of all tetrahedra
in T ′

h. The approximation of the interface Γ is defined by

Γh := {x ∈ Ω | I(φh)(x) = 0 }. (4.10)
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Th

T ′
h

Γ

Γh

Figure 4.1: Construction of approximate interface for 2D case.

and consists of piecewise planar segments. The mesh size parameter h is the maximal diameter of
these segments. This maximal diameter is approximately the maximal diameter of the tetrahedra
in T ′

h that contain the discrete interface, i.e., h = hΓ is approximately the maximal diameter of
the tetrahedra in T ′

h that are close to the interface. In Figure 4.1 we illustrate this construction
for the two-dimensional case.

Each of the planar segments of Γh is either a triangle or a quadrilateral. The quadrilaterals
can (formally) be divided into two triangles. Thus Γh consists of a set of triangular faces.
Concerning the (maximal) distance between Γ and Γh we note the following. If we assume
|I(φh)(x) − φ(x)| ≤ c h2

Γ for all x in a neighbourhood of Γ, which is reasonable for a smooth φ
and piecewise quadratic φh, then we have

dist(Γ,Γh) = max
x∈Γh

|φ(x)| = max
x∈Γh

|φ(x) − I(φh)(x)| ≤ c h2
Γ.

4.2.3 Discretization of the curvature localized force term

We now discuss the treatment of the surface tension term. In the weak formulation this localized
force is represented by the linear functional fΓ as in (4.2). If we assume that the surface tension
coefficient τ is constant this functional takes the form

fΓ(v) := τ

∫

Ω
KδΓnΓ · v dx = τ

∫

Γ
KnΓ · v ds (4.11)

with v an element from the space of testfunctions (H1
0 (Ω)3 in our case). The case with a variable

surface tension coefficient is discussed in Remark 3. Note that fΓ is Γ-dependent and therefore
φ-dependent. A difficulty in the discretization of this surface tension force is that due to the
curvature one has to deal with second derivatives. One possible approach (often used in finite
difference and finite volume discretizations) is to use the representation

K = divnΓ = div
( ∇φ
‖∇φ‖

)

and discretize the term on the right handside. In the finite element setting it is possible to avoid
the discretization of second derivatives. The approximation of the localized surface tension force
is based on a Laplace-Beltrami characterization of the curvature. For this we have to introduce
some elementary notions from differential geometry. For ease of notation, we choose a fixed t
and suppress the time-dependence throughout the rest of this section. Let U be an open subset
in R

3 and Γ a connected C2 compact hypersurface contained in U . For a sufficiently smooth
function g : U → R the tangential derivative (along Γ) is defined by projecting the derivative on
the tangent space of Γ, i.e.,

∇Γg = ∇g −∇g · nΓ nΓ. (4.12)
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The Laplace-Beltrami operator on Γ is defined by

∆Γg := ∇Γ · ∇Γg.

It can be shown that ∇Γg and ∆Γg depend only on values of g on Γ. For vector valued functions
f, g : Γ → R

3 we define

∆Γf := (∆Γf1,∆Γf2,∆Γf3)
T , ∇Γf · ∇Γg :=

3∑

i=1

∇Γfi · ∇Γgi.

We recall the following basic result from differential geometry.

Theorem 1 Let idΓ : Γ → R
3 be the identity on Γ and K = κ1 + κ2 the sum

of the principal curvatures. For all sufficiently smooth vector functions v on
Γ the following holds:

∫

Γ
KnΓ · v ds = −

∫

Γ
(∆Γ idΓ) · v ds =

∫

Γ
∇Γ idΓ ·∇Γv ds. (4.13)

Let Γh be a polyhedral approximation of Γ as described in section 4.2.2. In view of the result
in this theorem an obvious choice for fΓh

(vh) in (4.3) (that is used in, e.g. [19, 45, 46, 2, 57]) is
the following:

fΓh
(vh) := τ

∫

Γh

∇Γh
idΓh

·∇Γh
vh ds, vh ∈ Vh. (4.14)

Here idΓh
denotes the identity Γh → R

3, i.e., the coordinate vector on Γh. In [2] it is shown that
for piecewise quadratic functions v the result fΓh

(vh) can easily be determined exactly (i.e.,
without any further approximation errors).

Analysis and numerical experiments in [3] yield that for this choice we have

sup
vh∈Vh

|fΓ(vh) − fΓh
(vh)|

‖vh‖1
≤ c

√

hΓ, (4.15)

and that this bound is sharp w.r.t. the order of convergence for hΓ ↓ 0. Using the second Strang
lemma, cf. [4], this approximation error induces an error of the same order of magnitude (in
the H1-norm) in the velocity approximation and thus relatively large spurious velocities can
occur. In [3] a modified surface tension force discretization with better approximation quality
is presented. We briefly explain this method. For this we have to introduce some further
notation. Let nh be the unit normal on Γh (outward pointing from Ω1,h). Since Γh is planar
piecewise triangular, this normal is piecewise constant (and not defined at the edges of the
surface triangulation). We define the orthogonal projection Ph:

Ph(x) := I − nh(x)nh(x)T for x ∈ Γh, x not on an edge.

Recall that the discrete level set function φh is piecewise quadratic. Define

ñh(x) :=
∇φh(x)

‖∇φh(x)‖ , P̃h(x) := I − ñh(x)ñh(x)T , x ∈ Γh, x not on an edge.

For the discrete surface tension force as in (4.14) we have, due to ∇Γh
g = Ph∇g (for smooth

functions g), the representation

fΓh
(vh) = τ

3∑

i=1

∫

Γh

Ph(x)ei · ∇Γh
(vh)i ds, (4.16)
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with ei the i-th basis vector in R
3 and (vh)i the i-th component of vh. The modified discrete

surface tension force is given by

f̃Γh
(vh) = τ

3∑

i=1

∫

Γh

P̃h(x)ei · ∇Γh
(vh)i ds. (4.17)

The implementation of this functional requires only a minor modification if the implementation
of the one in (4.16) is available. In [3] it is shown that under reasonable assumptions on Γh and
φh, we have the error bound

sup
vh∈Vh

|fΓ(vh) − f̃Γh
(vh)|

‖vh‖1
≤ chΓ. (4.18)

This bound has a O(hΓ) behaviour (instead of O(
√
hΓ)). Numerical experiments in [3] show

a rate of convergence that is even somewhat higher than first order in hΓ. In DROPS both
discretizations (4.14) and (4.17) of the localized force term fΓ are available. The default choice
is the modified functional in (4.17).

Remark 3 The case with a variable surface tension coefficient τ = τ(x) can also be treated in
DROPS. Using partial integration, the surface tension functional in (4.2) takes the form

fΓ(v) =

∫

Γ
(τKn −∇Γτ) · v ds

=

∫

Γ
Kn · (τv) −∇Γτ · v ds

=

∫

Γ
τ ∇ΓidΓ · ∇Γv ds+

3∑

i=1

∫

Γ

(
∇Γ(idΓ)i · ∇Γτ

)
vi ds −

∫

Γ
∇Γτ · v ds.

(4.19)

For discretization of this term we can easily generalize the approach discussed above for the
case of a constant surface tension coefficient. The interface Γ is replaced by its approxmation
Γh and the tangential derivative are approximated (using the projection P̃h) in the same way
as in (4.17). This results in the discrete surface tension functional:

f̃Γh
(vh) =

3∑

i=1

∫

Γh

τP̃h(x)ei · ∇Γh
(vh)i ds

+
3∑

i=1

∫

Γh

(
P̃h(x)ei · ∇Γh

τ
)
(vh)i ds−

∫

Γh

(
P̃h(x)∇τ

)
· vh ds.

We assume that τ = τ(x), which is defined for x ∈ Γ, has an extension to x ∈ Γh.

4.2.4 Modified finite element space for the pressure: XFEM

In this section we discuss the finite element spaces Qh that are used for the approximation of the
pressure variable in the Galerkin discretization (4.3). Note that in the two-phase flow problems
that we consider, due to surface tension the pressure is smooth in the two subdomains Ωi but
discontinuous across the interface Γ. Moreover, the interface Γ (or its approximation Γh) is not
aligned to the faces in the tetrahedral triangulation. Due to this the finite element space Qh has
to be chosen carefully.
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To simplify the presentation, we assume that Γ is known. In practice, the approach explained
below is applied with Γ replaced by Γh. Let V = {xk}k∈I , I = {1, . . . , n}, be the set of all vertices
in the triangulation Th. We also assume that xk ∈/ Γ for all k. For m ≥ 1 let Hm(Ω1 ∪ Ω2)
denote the Sobolev space of functions, for which u|Ωi

∈ Hm(Ωi), i = 1, 2, holds. We use the
notation ‖u‖2

m,Ω1∪Ω2
= ‖u‖2

m,Ω1
+ ‖u‖2

m,Ω2
for u ∈ Hm(Ω1 ∪ Ω2). We introduce the standard

linear finite element space

W = Wh =
{
v ∈ C(Ω) | v|T ∈ P1 for all T ∈ Th

}
.

For the approximation of functions in Hm(Ω1 ∪Ω2), m ≥ 1, that are discontinuous across Γ (in
trace sense) the finite element space W is not suitable. In general, for u ∈ Hm(Ω1 ∪ Ω2), one
can not expect a better bound than

inf
v∈W

‖u− v‖0 ≤ c
√
h ‖u‖m,Ω1∪Ω2

,

cf. [4]. Therefore one should not use the space Qh = W in the Galerkin discretization (4.3) of
the two phase flow problem. To improve this poor approximation quality we extend the space
W by adding functions that can represent discontinuities across Γ. For the definition of this
space we first introduce some further notation. To simplify this notation we do not express the
dependence on h in our notation (for example, W instead of Wh).

The nodal basis in W is denoted by {ψk}k∈I . Let ΩΓ be the collection of all tetrahedra that
are intersected by Γ, i.e., ΩΓ = ∪{T ∈ Th | T ∩ Γ 6= ∅}. Let Ri : L2(Ω) → L2(Ω), i = 1, 2, be
restriction operators:

Riv =

{

v|Ωi
on Ωi

0 on Ω \ Ωi

(in L2-sense). We introduce subsets of I for which the corresponding basis functions have a
nonzero intersection with Γ:

IΓ
1 := { k ∈ I | xk ∈ Ω2 and supp(ψk) ∩ Γ 6= ∅ }

IΓ
2 := { k ∈ I | xk ∈ Ω1 and supp(ψk) ∩ Γ 6= ∅ }.

Corresponding spaces are defined by

WΓ
i := span{Riψk | k ∈ IΓ

i }, i = 1, 2.

We introduce the extended finite element space, which is defined as

WΓ := R1W ⊕R2W. (4.20)

Another characterization of WΓ is given by

WΓ = W ⊕WΓ
1 ⊕WΓ

2 .

Thus the standard linear finite element space W = Wh is extended by the spaces WΓ
i , i = 1, 2.

Note that v ∈ WΓ
i is discontinuous across Γ, supp(v) ⊂ ΩΓ and that v(xj) = 0 for all xj ∈ V.

In [13] the following approximation property of the XFEM space WΓ is derived:

Theorem 2 For integers 0 ≤ l < m ≤ 2 the following holds

inf
v∈WΓ

‖u− v‖l,Ω1∪Ω2
≤ c hm−l‖u‖m,Ω1∪Ω2

, for all u ∈ Hm(Ω1 ∪ Ω2). (4.21)
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This result shows that this space has optimal approximation properties for piecewise smooth
functions. Therefore the space Qh = WΓ is a good choice in the Galerkin discretization of the
two-phase flow problem. This space has been implemented in DROPS. We briefly discuss a few
specific issues that do not arise if standard finite element spaces (like, for example, W ) are used.

Basis used in the XFEM space WΓ

Let {ψk}1≤k≤n be the standard nodal basis in the finite element space W . In [13] it is shown
that

{ψk}1≤k≤n ∪ {R1ψk}k∈IΓ
1
∪ {R2ψk}k∈IΓ

2

forms a basis of the extended finite element space WΓ. Thus there is a unique representation

v =

n∑

k=1

βkψk +
∑

k∈IΓ
1

β
(1)
k R1ψk +

∑

k∈IΓ
2

β
(2)
k R2ψk, v ∈WΓ. (4.22)

This basis is used in the implementation. Concerning stability of this basis we note the fol-
lowing. Let MΓ be the mass matrix of this basis with respect to the L2-scalar product and
DΓ := diag(MΓ). In [13] it is proved that the matrix D−1

Γ MΓ has a spectral condition number
that is unformly (w.r.t. the mesh size h) bounded. Moreover, the constants that occur in the
spectral condition number bounds are also independent of the supports of the basis functions
Riψk, k ∈ IΓ

i . In other words, a simple scaling is sufficient to control the stability (in L2) of the
basis functions with “very small” supports.

Modified XFEM space: delete functions with very small supports

In general there are basis functions Riψk ∈ WΓ
i with very small support in the sense that

|supp(Riψk)|/|supp(ψk)| ≪ 1. It is clear that if functions with “very small” support are deleted
from the space WΓ

i this will not influence the approximation quality of the XFEM space WΓ

significantly. Therefore we introduce a smaller space in which basis functions from WΓ
i with

very small support are deleted. Avoiding very small supports has advantages, for example if the
contributions are dominated by rounding errors. We will explain how we chose the maximal size
of these “small supports” in order to maintain optimal approximation properties of the resulting
reduced XFEM space.

Let α > 0, c̃ > 0 be given parameters. Let Iγ
i ⊂ IΓ

i be the index set such that for all k ∈ IΓ
i \Iγ

i :

‖ψk‖l,T∩Ωi

‖ψk‖l,T

≤ c̃ hα
T for all T ⊂

(
supp(ψk) ∩ ΩΓ

)
. (4.23)

Remark 4 Note that for a function Riψk ∈ WΓ
i (k ∈ IΓ

i ) we have ‖Riψk‖l,T = ‖ψk‖l,T∩Ωi
for

all T ∈ Th. Furthermore, because ‖ψk‖l,T ∼ ch
1 1

2
−l

T , for l = 0, 1, the condition (4.23) can be
replaced by the following one:

‖ψk‖l,T∩Ωi
≤ ĉ h

α+1 1

2
−l

T for all T ⊂
(
supp(ψk) ∩ ΩΓ

)
. (4.24)

The constant ĉ may differ from c̃ in (4.23).

We define the reduced spaces W γ
i ⊂WΓ

i by

W γ
i := span{Riψk | k ∈ Iγ

i }, i = 1, 2,

and a modified XFEM space W̃Γ := W ⊕W γ
1 ⊕W γ

2 . For this space the following approximation
property holds, cf. [13]:



4.2. SPATIAL DISCRETIZATION 39

Theorem 3 We assume {Th}h>0 to be quasi-uniform. For 0 ≤ l < m ≤ 2 the following holds:

inf
v∈W̃Γ

‖u− v‖l,Ω1∪Ω2
≤ c

(
hm−l + hα−l

)
‖u‖m,Ω1∪Ω2

for all u ∈ Hm(Ω1 ∪ Ω2).

From this result we conclude that the order of approximation of the modified space W̃Γ is the
same as that of WΓ if we take α = m. In the context of our applications m = 1 is a natural
choice. Therefore the criterion (4.24) with l = 0 and α = 1 is used to decide which basis
functions are deleted from WΓ

i . The constant ĉ has to be set by the user. The default value is
ĉ = 0.1.

Implementation issues

We comment on two implementation issues. The basis of the (modified) XFEM space contains
functions that are discontinuous across Γ. Therefore, in the process of assembling the matrices
in the finite element discretization, integrals over T ∈ ΩΓ have to be treated carefully. This is
further discussed in section 4.2.5.

The (modified) XFEM space depends on the position of the interface (and thus on the level
set function φ). Therefore, in an instationary two-phase flow problem in each time step the
XFEM finite element space can be different. This causes additional technical difficulties in the
implementation. For example, one needs suitable interpolation procedures to handle pressure
unknowns that are deleted or created due to the change of the XFEM space. Furthermore, in
the linear algebra part one has to deal with the varying dimension of the pressure space.

4.2.5 Quadrature

At several places integrals over subdomains Ωi,h ∩ T (i = 1, 2) occur. Here T is a tetrahedron
and Ωi,h the discrete approximation of the subdomain Ωi. This approximation is given through
the discrete aproximation of the interface:

Ω1,h = int(Γh), Ω2,h = Ω \ Ω1,h.

Due to the fact that Γh is piecewise planar, these subdomains Ωi,h ∩ T have a relatively simple
geometric structure, cf. Figure 4.2.

Figure 4.2: Planar intersections of Γh and T ′ ∈ T ′
h

Quadrature rules for numerical integration over these subdomains are available. We outline
these numerical integration methods. In section 3.2.2 we explained quadrature rules of degree
two and five on tetrahedra. If T ∩Γh = ∅ we can use these rules. Otherwise we use the fact that
Γh is piecewise planar with respect to the triangulation T ′

h. We compute the planar intersection
between Γh and the eight children of T . Such a child is denoted by T ′, cf. Figure 4.2. Now we
iterate over these children and distinguish two cases (cf. Figure 4.2):
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• The intersection is a triangle; this means that the interface divides the tetrahedron into a
tetrahedron and a prism. The prism can be subdivided into three tetrahedra. Hence we
can use the quadrature rules implemented for tetrahedra.

• The intersection is a quadrilateral; the interface divides the tetrahedron into two prisms.
Both prisms can be subdivided into three tetrahedra. Hence we can use the quadrature
rules implemented for tetrahedra.

We also have to compute integrals over the approximate interface Γh. For this we use a quadra-
ture rule on triangles of degree five. This rule has seven nodes and corresponding weights as
given in table 4.1 (nodes in barycentric coordinates).

nodes weights
(1/3, 1/3, 1/3) 9/40

(A1, A1, B1)

(A1, B1, A1) (155 −
√

15)/1200
A1 = (6 −

√
15)/21

(B1, A1, A1)
B1 = (9 + 2

√
15)/21

(A2, A2, B2)

(A2, B2, A2) (155 +
√

15)/1200
A2 = (6 +

√
15)/21

(B2, A2, A2)
B2 = (9 − 2

√
15)/21

Table 4.1: Quadrature rule on triangles of degree 5

4.2.6 Re-initialization method for the level set function

During the evolution the level set function φh can become distorted and in general loses its
property of being an approximate signed distance function. At several places in the numerical
routines it plays a role that

|∇φh(x) | :=

√
(∂φh(x)

∂x1

)2
+

(∂φh(x)

∂x2

)2
+

(∂φh(x)

∂x3

)2
≈ 1, (4.25)

in particular for x “close” to the interface. Thus there is a need for re-initialization of the level
set function φh. After evolving φh over a few time steps it is re-initialized based on the following
criteria: we try to fulfil (4.25); the change in the discrete interface Γh (= zero level of φh) should
be small; we aim at mass conservation.

The condition (4.25) leads to the so called Eikonal equation

| ∇φ | = 1 in Ω

φ = φΓ on Γ ⊂ Ω.

For this kind of equation several numerical solution methods are known. In particular, for
re-initialization one often introduces a pseudo time variable τ and considers an instationary
problem of the form

∂φ

∂τ
= Sα(φold)

(
1 − |φ|

)

with initial condition φ(0, x) = φold
h and Sα a regularized sign function. Numerical methods can

be applied to determine an aproximate stationary solution of this equation which then is taken
as re-initialization of φold

h .
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Another approach, called fast marching method (FMM), is based on a greedy grid traversal
technique combined with a function for computing (approximate) distances. Such an FMM has
been implemented in DROPS. We outline this method. It consists of two phases: an initialization
phase, where the vertices that are directly adjacent to Γ are assigned new values and a second
(far field) phase in which all the vertices further away are updated.

Let Γh be the discrete interface that has been constructed as described in section 4.2.2 and
T ′

h the uniform refinement of Th that is used in this construction. Let

TΓ := {T ∈ T ′
h | meas2(T ∩ Γh) > 0 }

be the set of tetrahedra that have a nonzero intersection with the interface. The discrete interface
Γh consists of planar segments and can be represented as

Γh = ∪T∈TΓ
ΓT with ΓT := Γh ∩ T.

For a vertex v the set of tetrahedra T ∈ T ′
h that have v as a vertex is denoted by T (v). For

T ∈ T ′
h the set of vertices of T is denoted by V(T ).

Initialization phase
In the initialization phase an approximate disctance function for the vertices v ∈ VΓ := { v ∈
V(T ) | T ∈ TΓ } is determined. For a given T ∈ TΓ let ΓT = Γh ∩ T be the planar segment that
is part of Γh (cf. Fig. 4.2) and let Q1, . . . , Qm, m = 3 or 4, be the vertices of this segment. Let
W ⊂ R

3 be the plane that contains ΓT and PW the orthogonal projection on W . For T ∈ TΓ

and v ∈ V(T ) we define

dT (v) :=

{

||v − PW (v)|| if PW (v) ∈ T
min1≤j≤m ||v −Qj || otherwise.

(4.26)

Since a vertex is part of multiple tetrahedra, we still have to decide which tetrahedron T we use
to determine the (approximate) distance d(v):

d(v) := min
{
dT (v) | v ∈ V(T ) and T ∈ TΓ

}
. (4.27)

All vertices v ∈ V(T ), T ∈ TΓ now have values d(v).
Far field phase
In this second phase of the FMM we extend the approximate distance function d(v) to the
neighbors of those vertices which are already assigned a value. To organize this procedure, we
introduce three sets: FAR to contain those vertices which are not affected by the algorithm
yet, FIN containing those that are already assigned a final value and ACT which contains the
vertices that are currently updated, i.e. those adjacent to FIN. Let V(Ω) denote the set of all
vertices in Ω and T (v) denote the set of tetrahedra adjacent to v. The three sets are initialized
as follows:

FIN := {v ∈ V(Ω) | v is assigned a value d(v) during initialization}
ACT := {v ∈ V(Ω) | v has a neighbor in FIN }
FAR := {v ∈ V(Ω) | v has no neighbor in FIN }.

We determine values d(v) for all v ∈ ACT in a similar way as in the initialization phase.
Take v ∈ ACT, T ∈ T (v) such that V(T ) ∩ FIN 6= ∅. There are three possible cases, namely
|V(T ) ∩ FIN| = 1, 2 or 3. If |V(T ) ∩ FIN| = 1, say V(T ) ∩ FIN = w, we define

dT (v) := d(w) + ||v −w||.
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If T has m = 2 or m = 3 vertices common with FIN we use an orthogonal projection as in the
initialization phase. Let w1, w2 (and w3) be these common vertices and W either the line or
plane through w1, w2 (and w3). Then

dT (v) :=

{

d(PW v) + ||PW v − v|| if PW v ∈ T

min1≤j≤m{d(wj) + ||v − wj||} otherwise.
(4.28)

The value d(PW v) is calculated by linear interpolation of the known values d(wj), 1 ≤ j ≤ m.
The approximate distance for v ∈ ACT is then determined by

d(v) := min
{
dT (v) | T ∈ T (v), with V(T ) ∩ FIN 6= ∅

}
. (4.29)

After all v ∈ ACT have been updated, we choose

vmin := argminv∈ACT d(v).

This vertex is removed from ACT and added to FIN. All the neighbors of vmin that are in FAR
become an element of ACT and the whole process is repeated.

After we have determined the approximate distance grid function d(v), we still have to mark
if a vertex is ”inside” or ”outside” the zero level set. This is done by using the sign of the given
level set function φold

h :

d(v) := sign(φold
h )d(v). (4.30)

The calculated values d(v) uniquely determine a piecewise quadratic function φnew
h on the trian-

gulation Th. This function is defined to be the re-initialization of φold
h . For this function one can

construct an approximate zero level set Γnew
h as explained in section 4.2.2. The re-initialization

procedure guarantees that
Γnew

h ⊂ ∪T∈TΓ
T

holds, and in this sense the change in the discrete interface is small. Clearly in general we have
Γnew

h 6= Γh.

4.2.7 Mass conservation

The temporal and spatial discretization of the level set equation are not mass conserving. Due
to the surface tension, we usually lose mass from Ω1. This loss of mass is reduced if the grid is
refined. Such finer grids, however, result in higher computational costs. Therefore we introduce
another strategy to compensate for the mass loss.

After each time step, we shift the interface in normal direction such that the volume of Ω1

at current time is the same as at time t = 0. To realize this we exploit the fact that the level
set function is close to a signed distance function. In order to shift the interface over a distance
d in outward normal direction, we only have to subtract d from the level set function.

Let V (φ) := vol{x ∈ Ω | φ(x) < 0 } denote the volume of Ω1 corresponding to a level set
function φ and let φh be the discrete level set function at a given time. We have to find d ∈ R

such that
V (φh − d) − vol(Ω1(0)) = 0

holds. In order to keep the number of evaluations of V low, we use a method with a high rate
of convergence, namely the Anderson-Björk method [17], to solve this equation. We then set
φnew

h := φh − d and discard φh.
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Note that this strategy only works if Ω1 consists of a single component. If there are multiple
components, mass must be preserved for each of them. In this case the algorithm can be modified
to shift φh only locally. Discontinuities that may occur in the level set function can be removed
by a reparametrization step.

Finally note that the shifting of the level set function to obtain a better mass conservation
introduces a new source of discretization errors.

4.3 Time integration

For the two-phase flow problem, the time discretization is based on a generalization of the θ-
scheme given in section 3.3.1 for the one-phase flow Navier-Stokes equations. This generalized
method is not found in the literature and therefore we describe its derivation in detail. The
need for a generalization has two causes. Firstly, opposite to the one-phase flow problem the
mass matrix M is no longer constant but may vary in time. Secondly, if in the discretization the
XFEM space is used then the matrix B is in general also time dependent (due to the dynamics
of the interface). In the sections below we present two derivations of a generalized θ-schema. In
the first case we allow M to be time dependent but assume that B does not depend on t. In
the second case we allow both M and B to be time dependent. The resulting schemes are very
similar.

4.3.1 The generalized θ-scheme for a time independent B

We first consider the Navier-Stokes part in (4.7)-(4.8). We use the notation

G(~u, ~φ, ~g,~fΓh
) = ~g(~φ(t)) +~fΓh

(~φ(t)) − A(~φ(t))~u(t) − N(~φ(t), ~u(t))~u(t).

Then the Navier-Stokes equations can be written as

M(~φ(t))
d~u

dt
(t) + BT ~p(t) = G(~u, ~φ, ~g,~fΓh

)

B~u(t) = 0,
(4.31)

or, equivalently,

d~u

dt
(t) + M(~φ(t))−1BT ~p(t) = M(~φ(t))−1G(~u, ~φ, ~g,~fΓh

)

B~u(t) = 0.
(4.32)

We assume that B does not depend on t. To obtain a system of ODEs we eliminate the algebraic
equation B~u(t) = 0 and the (Lagrange multiplier) ~p(t) as follows. In the notation we suppress
the dependence on ~φ, ~g and ~fΓh

and write M(t) = M(~φ(t)), G(~u, t) = G(~u, ~φ, ~g,~fΓh
). From

Bd~u
dt

(t) = 0 (here we used that B does not depend on t) and substitution of d~u
dt

(t) from the first
equation we obtain

S(t)~p(t) = BM(t)−1G(~u, t), S(t) := BM(t)−1BT . (4.33)

The matrix BT has full rank and thus S(t) is invertible. Using (4.33) we can eliminate ~p(t) from
the first equation in (4.32) resulting in

d~u

dt
(t) =

[
I − M(t)−1BT S(t)−1B

]
M(t)−1G(~u, t)

=: Q(t)M(t)−1G(~u, t).
(4.34)
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The projection Q(t) = I − M(t)−1BTS(t)−1B satisfies BQ(t) = 0. Hence, if B~u(0) = 0 then
the solution ~u(t) of the ordinary differential equation (4.34) remains in the subspace Ker(B).
To this system of ODEs the θ-scheme is applied, resulting in the discretization

~un+1 − ~un

∆t
= θQ(tn+1)M(tn+1)

−1G(~un+1, tn+1) + (1 − θ)Q(tn)M(tn)−1G(~un, tn). (4.35)

We assume that for each n this system has a unique solution ~un+1 (which is the case for
∆t sufficiently small). If B~u0 = 0 then B~un = 0 for all n ≥ 1. For implementation it is
convenient to eliminate the projection Q by introducing a suitable Lagrange multiplier. Define
~pk := S(tk)

−1BM(tk)
−1G(~uk, tk). Then (4.35) takes the form

~un+1 − ~un

∆t
= θM(tn+1)

−1
(
G(~un+1, tn+1) − BT ~pn+1

)

+ (1 − θ)M(tn)−1
(
G(~un, tn) − BT ~pn

)
.

(4.36)

Assume that ~u0 is such that B~u0 = 0. The sequence (~un)n≥0 defined by the θ-scheme (4.35)
satisfies (4.36) and also B~un = 0 for all n. We use ~pk as a Lagrange multiplier to enforce
B~uk = 0 as follows. Given ~u0 with B~u0 = 0 define

~p0 := S(t0)
−1BM(t0)

−1G(~u0, t0),

and for n ≥ 0 let ~un+1, ~pn+1 be such that

~un+1 − ~un

∆t
= θM(tn+1)

−1
(
G(~un+1, tn+1) − BT ~pn+1

)
+ (1 − θ)M(tn)−1

(
G(~un, tn) − BT ~pn

)

B~un+1 = 0

(4.37)

holds. Note that in this saddle point type system the projection Q is not used. Due to (4.36)
this system has a solution. If we assume that for each n the saddle point problem (4.37) has
a unique solution (which is true for ∆t sufficiently small) then this yields the solution of the
θ-scheme in (4.35).

Remark 5 If the mass matrix M does not depend on t then we can take

~pk := S−1BM−1
(
θG(~uk, tk) + (1 − θ)G(~uk−1, tk−1)

)
, k ≥ 1,

and instead of (4.36) we obtain

~un+1 − ~un

∆t
= M−1

(
θG(~un+1, tn+1) + (1 − θ)G(~un, tn

)
−M−1BT ~pn+1,

which then results in the standard θ-scheme for a one-phase Navier Stokes equation, as described
in section 3.3.1.

For θ = 0 the method in (4.37) corresponds to the explicit Euler method applied to (4.34),
which is not very useful do to its poor stability properties. We consider θ 6= 0. In this case, in
(4.37) inverses of both M(tn+1) and M(tn) occur. The latter can be avoided by introducing an
additional variable, leading to a more convenient (but equivalent) formulation of (4.37). This is
done as follows. Define

~zk := M(tk)
−1

(
G(~uk, tk) − BT ~pk

)
, k ≥ 0,
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i.e.,

M(t0)~z
0 = G(~u0, t0) − BT ~p0

θ~zk+1 =
~uk+1 − ~uk

∆t
− (1 − θ)~zk, k ≥ 0.

Using thus, (4.37) can be reformulated as

M(tn+1)
~un+1 − ~un

∆t
+ θBT~pn+1 = θG(~un+1, tn+1) + (1 − θ)M(tn+1)~z

n

B~un+1 = 0

θ~zn+1 =
~un+1 − ~un

∆t
− (1 − θ)~zn,

(4.38)

for n ≥ 0 and a starting value ~z0 as defined above.

Application of the θ-scheme to the level set equation (4.9) results in

~φ
n+1 − ~φ

n

∆t
= −θE(~un+1)−1H(~un+1)~φ

n+1 − (1 − θ)E(~un)−1H(~un)~φ
n
.

This can be reformulated using a new variable

~wk = −E(~uk)−1H(~uk),

which satisfies (for θ 6= 0)

θ~wn+1 =
~φ

n+1 − ~φ
n

∆t
− (1 − θ)~wn,

resulting in

E(~un+1)
~φ

n+1 − ~φ
n

∆t
= −θH(~un+1)~φ

n+1
+ (1 − θ)E(~un+1)~wn. (4.39)

Combining these results and inserting the notation for G we obtain, for θ 6= 0, the following

coupled nonlinear system for (~un, ~pn, ~φ
n
) → (~un+1, ~pn+1, ~φ

n+1
):
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Given ~u0, ~φ
0
, determine ~z0 and ~w0 as follows:

G(~u0, ~φ
0
, ~g,~fΓh

) = ~g(~φ
0
) +~fΓh

(~φ
0
) − A(~φ

0
)~u0 − N(~φ

0
, ~u0)~u0

BM(~φ
0
)−1BT ~p0 = BM(~φ

0
)−1G(~u0, ~φ

0
, ~g,~fΓh

)

M(~φ
0
)~z0 = G(~u0, ~φ

0
, ~g,~fΓh

) − BT~p0

E(~u0)~w0 = H(~u0)~φ
0

(4.40)

For n ≥ 0:

M(~φ
n+1

)
~un+1

∆t
+ θ

[
A(~φ

n+1
)~un+1 + N(~φ

n+1
, ~un+1)~un+1 − ~g(~φ

n+1
) −~fΓh

(~φ
n+1

)
]
+ θBT~pn+1

= M(~φ
n+1

)
~un

∆t
+ (1 − θ)M(~φ

n+1
)~zn,

B~un+1 = 0

E(~un+1)
~φ

n+1

∆t
+ θH(~un+1)~φ

n+1
= E(~un+1)

~φ
n

∆t
+ (1 − θ)E(~un+1)~wn

θ~zn+1 =
~un+1 − ~un

∆t
− (1 − θ)~zn

θ~wn+1 =
~φ

n+1 − ~φ
n

∆t
− (1 − θ)~wn.

(4.41)

Remark 6 The derivation above shows that the scheme in (4.40)-(4.41) is a reformulation of
the θ-scheme applied to the system of ODEs in (4.34). The latter is A-stable and first order
accurate for θ ∈ (0, 1] and second order accurate for θ = 1

2 .

Remark 7 For the case θ = 1 the scheme takes a much simpler form. In particular the sequences
for ~zn and ~wn are not needed. The resulting method is as follows:

Given ~u0, ~φ
0
, determine for n ≥ 0:

M(~φ
n+1

)
~un+1

∆t
+

[
A(~φ

n+1
)~un+1 + N(~φ

n+1
, ~un+1)~un+1 − ~g(~φ

n+1
) −~fΓh

(~φ
n+1

)
]
+ BT ~pn+1

= M(~φ
n+1

)
~un

∆t
B~un+1 = 0

E(~un+1)
~φ

n+1

∆t
+ H(~un+1)~φ

n+1
= E(~un+1)

~φ
n

∆t
.

(4.42)

4.3.2 The generalized θ-scheme for a time dependent B

In this section we allow both M and B to be time dependent. We use the same notation as in
the previous section. For the derivation of a generalized θ-scheme we apply an approach that is
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standard in the field of differential algebraic equations, cf. [?].
We introduce

~y :=





~u
~φ
~p



 , C(~y) =





M(~φ)
E(~u)

0



 , F(~y) =





G(~u, ~φ, ~g,~fΓh
) − BT~p

−H(~u)~φ
B~u



 =:





F1(~y)
F2(~y)
F3(~y)



 .

The Navier-Stokes equations coupled with the level set equation can be written as

C(~y)
d~y

dt
(t) = F(~y),

with initial condition for ~u(t0) and ~φ(t0). For the numerical treatment of this DAE system we
introduce the variable ~q := d~y

dt
and thus we obtain the coupled DAE system

d~y

dt
(t) = ~q

C(~y)~q − F(~y) = 0.
(4.43)

The θ-scheme, with θ 6= 0, applied to this takes the form:

~yn+1 = ~yn + ∆t
(
θ~qn+1 + (1 − θ)~qn

)

C(~yn+1)~qn+1 − F(~yn+1) = 0.
(4.44)

We reformulate this method as follows. We decompose ~qn as ~qn = (~zn, ~wn,~rn)T . We only
consider θ 6= 0. From C(~yn+1)θ~qn+1 − θF(~yn+1) = 0 and θ~qn+1 = 1

∆t
(~yn+1 − ~yn) − (1 − θ)~qn

we get, for n ≥ 0,

M(~φ
n+1

)
~un+1

∆t
− θF1(~y

n+1) = M(~φ
n+1

)
~un

∆t
+ (1 − θ)M(~φ

n+1
)~zn,

E(~un+1)
~φ

n+1

∆t
− θF2(~y

n+1) = E(~un+1)
~φ

n

∆t
+ (1 − θ)E(~un+1)~wn,

0 = F3(~y
n+1),

and

θ~zn+1 =
~un+1 − ~un

∆t
− (1 − θ)~zn

θ~wn+1 =
~φ

n+1 − ~φ
n

∆t
− (1 − θ)~wn.

In this form we have exactly the same scheme as in (4.41). For n = 0 we need starting values

~z0 = d~u
dt

(t0), ~w
0 = d~φ

dt
(t0). From E(~u)d~φ

dt
= H(~u)~φ we get E(~u0)~w0 = H(~u0)~φ

0
and thus the

same starting value for ~w0 as in (4.40). For ~z0 we consider (4.31) and obtain

dB

dt
~u + B

d~u

dt
= 0

and thus (with the same notation as in the previous section)

S(t)~p(t) = B(t)M(t)−1G(~u, t) +
dB

dt
~u(t)
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From this we obtain the system

S(t0)~p
0 = B(t0)M(~φ

0
)−1G(~u0, ~φ

0
, ~g,~fΓh

) +
dB

dt
(t0)~u(t0). (4.45)

Note that if B does not depend on t this system is the same as the one in (4.40). Given this ~p0

the starting value ~z0 can be determined from

M(~φ
0
)~z0 = G(~u0, ~φ

0
, ~g,~fΓh

) − BT ~p0,

which is the same as in (4.40). We see that if B is independent of t then we obtain the same
starting values as in (4.40) and hence the method based on the DAE system (4.43) is exactly
the same as the one derived in the previous section (4.40)-(4.41). In that case the consistency
and stability properties can be derived from the fact that the method is a reformulation of a θ-
scheme applied to the system of ODEs (4.34), cf. Remark 6. If B depends on t then the scheme
(4.41)-(4.40) with a modified starting value for ~p as in (4.45) results from a formal application of
the θ-scheme to the DAE system (4.43) and an analysis of the accuracy and stability properties
of this method is not available, yet.

4.3.3 An implicit Euler type of method

We present a variant of an implicit Euler method which is particularly attractive due to its
simplicity. Starting point is the ODE system for the Navier-Stokes part in (4.34):

d~u

dt
(t) = Q(t)M(t)−1G(~u, t).

For the discretization the projection operator is treated explicitly, whereas the operator G(~u, t)
(which causes the stiffness in this problem) is treated semi-implicitly. If for the latter we apply
an implicit Euler method we obtain the discretization

~un+1 − ~un

∆t
= Q(tn)M(tn)−1G(~un+1, tn).

By introducing a Lagrange multiplier ~pk+1 := S(tk)
−1BM(tk)−1G(~uk+1, tk) the projection

Q(tn) can be eliminated and we obtain the saddle point form

~un+1 − ~un

∆t
= M(tn)−1

(
G(~un+1, tn) − BT~pn+1

)

B~un+1 = 0.

(4.46)

The same idea can be applied to the level set equation and thus we get the following time
integration scheme for the coupled problem

Given ~u0, ~φ
0
, determine for n ≥ 0:

M(~φ
n
)
~un+1

∆t
+

[
A(~φ

n
)~un+1 + N(~φ

n
, ~un+1)~un+1 − ~g(~φ

n
) −~fΓh

(~φ
n
)
]
+ BT ~pn+1

= M(~φ
n
)
~un

∆t
B~un+1 = 0

E(~un)
~φ

n+1

∆t
+ H(~un)~φ

n+1
= E(~un)

~φ
n

∆t
.

(4.47)



4.4. DECOUPLING AND LINEARIZATION 49

This scheme is similar to the one in remark 7, but now the mass matrices M and E are treated
explicitly (i.e. evaluated at tn instead of tn+1), in the Navier-Stokes equations the level set
function is treated explicitly and in the level set equation the velocity is treated explicitly. Due
to this, per time step there is a decoupling between the Navier-Stokes and level set equation.

4.3.4 The generalized fractional-step θ-scheme

We generalize the method from section 3.3.2 to the two-phase flow system (4.7)-(4.9).
Forthcoming.

4.4 Decoupling and linearization

In the two-phase flow case, besides the nonlinear system for the velocity ~u, we also have the
nonlinear coupling between the flow variables (~u, ~p) and the level set one ~φ. A time step in the
θ-scheme (4.41) is given by







[ 1
∆t

M + θA](~φ
n+1

)~un+1 + θN(~φ
n+1

, ~un+1)~un+1 + θBT~pn+1

= θ[~g +~fΓh
](~φ

n+1
) + M(~φ

n+1
)
(~un

∆t
+ (1 − θ)~zn

)

B~un+1 = 0

[ 1
∆t

E + θH](~un+1)~φ
n+1

= E(~un+1)
( ~φ

n

∆t
+ ~wn

)
.

The nonlinear coupling between (~un+1, ~pn+1) and ~φ
n+1

is decoupled by a fixed point iteration,
in each iteration which results in a linear system for the level set function and a nonlinear system
for the velocity and pressure. The fixed point iteration reads:

• Set

~gn :=
~un

∆t
+ (1 − θ)~zn

~hn :=
~φ

n

∆t
+ ~wn.

• Initialize ~un+1
0 and ~φ

n+1

0 with the value ~un, ~φ
n

from the previous time step. Iterate for
k = 0, 1, . . .

– Compute the level set vector ~φ
n+1

k+1 from the linear system

[ 1

∆t
E + θH

]
(~un+1

k )~φ
n+1

k+1 = E(~un+1
k )~hn. (4.48)

– Solve the following equations for (~un+1
k+1 , ~p

n+1
k+1)







[
1

∆t
M + θA

]
(~φ

n+1

k+1)~un+1
k+1 + θN(~φ

n+1

k+1 , ~u
n+1
k+1)~u

n+1
k+1 + θBT~pn+1

k+1

= θ
[
~g +~fΓh

]
(~φ

n+1

k+1) + M(~φ
n+1

k+1)~g
n

B~un+1
k+1 = 0

(4.49)
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The nonlinear system (4.49) is very similar to the discrete Navier-Stokes equations (3.17)
of the one-phase flow problem. Note, however, that the matrices in (4.49) are different due to
the fact that the viscosity and density are not constant over the whole domain. This nonlinear
system has the form

Ãx + N(x)x + BTy = b

Bx = c
(4.50)

and can be solved with the fixed point defect correction method explained in section 3.4. This
results in saddle point problems of the form

K

(
x
y

)

:=

(

Â BT

B 0

)(
x
y

)

=

(
f1
f2

)

, Â := A + N(xold) + βM . (4.51)

that have a very similar structure as the ones in section 3.5.3.

4.5 Iterative solvers

As can be seen from section 4.4 the decoupling and linearization method results in two types of
linear problems, namely an Oseen (i.e., linearized Navier-Stokes) problem and a linear discrete
hyperbolic problem, cf. (4.51) and (4.48). The latter can be solved by, for example, a precondi-
tioned GMRES or BiCGSTAB method, cf. section 3.5.1. For the Oseen equations one can use
the methods discussed in section 3.5.3.

In the two-phase flow applications that we consider (chapter ??) we typically have a (very)
small time step. Due to this the weighting of the mass matrix part in the Oseen problem (which
scales like 1/∆t) is relatively large compared to the diffusion and convection parts. Therefore
systems with the matrix Â are not very hard to solve. Simple preconditioners QA suffice to
obtain a reasonably efficient method. For the Schur complement preconditioner we can use the
same one as for the one-phase Navier-Stokes equations.

If one considers a two-phase flow problem in which the two phases are gas and liquid, then
the differences in density and viscosity between the two phases is very large. In such a case
it might be necessary to modify the Schur complement preconditioner such that it takes these
large density and viscosity jumps into account. Such a preconditioner was introduced in [7].



Chapter 5

Two-phase flow with transport of a
dissolved species (NS2+M)

5.1 Weak formulation of the transport equation

We recall the strong formulation of the two-phase flow problem coupled with a transport equation
as described in section 1.1.

The two-phase flow is modeled by (cf. (1.4)):

ρ(φ)
(∂u

∂t
+ (u · ∇)u

)

= −∇p+ ρ(φ)g + div(µ(φ)D(u)) + τKδΓnΓ

divu = 0 (5.1)

φt + u · ∇φ = 0,

together with suitable initial and boundary conditions. The transport equation for the concen-
tration of a dissolved species is given by (cf. (1.5))

∂c

∂t
+ u · ∇c = D(φ)∆c, (5.2)

[D(φ)∇c · n] = 0 at the interface, (5.3)

c1 = CHc2 at the interface. (5.4)

The diffusion coefficient is piecewise constant: D(φ) = D1 + (D2 − D1)H(φ). In the interface
condition we use the notation ci for c|Ωi

restricted to the interface. The constant CH > 0 is
given (Henry’s constant). The model has to be combined with suitable initial and boundary
conditions.

Note that the transport equation needs as input the flow field u that results from the Navier-
Stokes equations. If the surface tension coefficient τ is assumed to be independent of the concen-
tration c there is no dependence of the Navier-Stokes equation (5.1) on the transport problem
(5.2). Due to this we can use a simple “one direction decoupling” between the Navier-Stokes
equation and the transport problem as described in section 5.4.

The weak formulation of the Navier-Stokes equations for two-phase flow is given in section 4.1.
Below we describe a weak formulation of the convection-diffusion equation (5.2). Note that due
to the Henry interface condition in (5.4) the concentration c is discontinuous across the inter-
face (for CH 6= 1). To eliminate the discontinuity we introduce a piecewise constant weighting

51
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function

CH(φ(t)) =

{

1 in Ω1 (i.e., if φ(x, t) ≤ 0),

CH in Ω2 (i.e., if φ(x, t) > 0).

We define the scaled function c̃ = CH(φ)c. In view of (5.4) this function should be continuous
(maybe in some weak sense) across the interface. For this transformed concentration we derive
a weak formulation. Define

D̃(φ) = CH(φ)−1D(φ).

For simplicity we assume homogeneous zero boundary conditions for c̃ on ∂Ω. Furthermore, for
a given function c̃0 we assume an initial condition c̃(0) = c̃0. The weak formulation is as follows:

Determine c̃(t) ∈ H1
0 (Ω) such that for all t ∈ [0, T ]:

(
CH(φ(t))−1c̃t(t), v

)
+

(
CH(φ(t))−1u ·∇c̃(t), v

)
= −

(
D̃(φ(t))∇c̃(t),∇v

)
∀ v ∈ H1

0 (Ω). (5.5)

Here (c, v) =
∫

Ω c(x)v(x) dx denotes the L2-scalar product. Note that in our application the
velocity field u is time-dependent, i.e. u = u(t). A solution c̃ of this problem satisfies [c̃]Γ = 0 (in
trace sense) and thus c = CH(φ)−1c̃ satisfies the Henry interface condition in (5.4). Furthermore,
a solution c̃ satisfies [D̃(φ(t))∇c̃ ·n]Γ = 0 and thus [D(φ)∇c ·n]Γ = 0, which is the flux continuity
condition in (5.3). If the solution c̃ it sufficiently smooth then it satisfies the differential equation

CH(φ(t))−1 ∂c̃

∂t
(t) + CH(φ(t))−1u · ∇c̃(t) = D̃(φ(t))∆c̃(t) = CH(φ(t))−1D(φ(t))∆c̃(t)

in the two subdomains Ω1 and Ω2. This can be rewritten as

∂c

∂t
+ u · ∇c = D(φ)∆c,

in the two subdomains and for all t ∈ [0, T ] and thus we obtain the convection-diffusion equation
(5.2). This shows that the problem (5.5) is an appropriate weak formulation of the transport
problem. Note that to obtain the original physical quantity one has to rescale:

c = CH(φ)−1c̃.

5.2 Spatial discretization

We describe a finite element discretization of the problem in (5.5). Due to the fact that the
diffusion coefficient D(φ) is discontinuous across the interface Γ the solution c̃ has low regularity
across Γ. From this and from the fact that the interface is not aligned with the faces in the
triangulation is follows that standard finite elements will not have optimal approximation quality
for this type of problem, cf. [55]. An alternative is to use the XFEM method explained in
section 4.2.4. For the latter method, however, one needs a modified weak formulation of the
transport problem that results in additional technical complications in the implementation. In
section 5.2.1 we first consider the standard finite element method applied to (5.5). This method
is easy to implement but suboptimal. In section 5.2.2 it is explained how the XFEM method
can be applied to (5.5) resulting in a spatial discretization with a higher order of accuracy than
the standard FE method.
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5.2.1 Standard linear finite element space

Let Vh ⊂ V := H1
0 (Ω) be the subspace of continuous linear finite elements. The Galerkin

discretization of (5.5) reads: Find c̃h(t) ∈ Vh such that for all t ∈ [0, T ]:

(
CH(φ(t))−1(c̃h)t(t), vh

)
+

(
CH(φ(t))−1u · ∇c̃h(t), vh

)
= −

(
D̃(φ(t))∇c̃h(t),∇vh

)
∀ vh ∈ Vh.

In addition we need a initial condition c̃h(0) that is obtained from (interpolation of) c̃(0) = c̃0.
The standard nodal basis in Vh is denoted by {ψj}1≤j≤K . We introduce matrices

M(φ) ∈ R
K×K, M(φ)ij =

∫

Ω
CH(φ)−1ψiψj dx

H(φ,u) ∈ R
K×K, H(φ,u)ij =

∫

Ω
CH(φ)−1(u · ∇ψj)ψi dx

A(φ) ∈ R
K×K, A(φ)ij =

∫

Ω
D̃(φ)∇ψj · ∇ψi dx,

and the representation

c̃h(t) =

K∑

j=1

c̃j(t)ψj .

The unknown functions c̃j(t) (t ∈ [0, T ]) are collected in the vector function

~c(t) :=
(
c̃1(t), . . . , c̃K(t)

)
.

Using this notation we obtain the following system of ordinary differential equations:

Determine ~c(t) such that ~c(0) is given and

M(φ(t))
d~c

dt
(t) + H

(
φ(t),u(t)

)
~c(t) = −A(φ(t))~c(t) (5.6)

for all t ∈ [0, T ].

To determine the entries of the matrices M,H and A one has to compute integrals over tetrahe-
dra in which there are discontinuities in the coefficient functions CH and D̃ across the interface
(which is approximated by Γh). For this the methods discussed in section 4.2.5 are used.

5.2.2 Nitsche’s method combined with XFEM

In this section we use a technique from [55] that results in a finite element discretization method
with an optimal order of convergence.
Forthcoming.

5.3 Time integration

We recall the θ-scheme from section 3.3.1:

unew − uold

∆t
= (1 − θ)F (uold) + θF (unew), θ ∈ [0, 1].
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If this method is applied to the discrete transport equation in (5.6) with

F (~c) = −M(φ(t))−1
[
A(φ(t)) + H

(
φ(t),u(t)

)]
~c

we obtain the following fully discrete problem, with φk := φ(tk), uk := u(tk):

~cn+1 − ~cn = −∆t(1 − θ)M(φn)−1
[
A(φn) + H(φn,un)

]
~cn

− ∆tθM(φn+1)−1
[
A(φn+1) + H(φn+1,un+1)

]
~cn+1.

(5.7)

This can be rewritten as
[
M(φn+1) + ∆tθ

(
A(φn+1) + H(φn+1,un+1)

)]
~cn+1

= M(φn+1)
(

I − ∆t(1 − θ)M(φn)−1
[
A(φn) + H(φn,un)

])

~cn.
(5.8)

Thus per time step we have to solve two linear systems if θ ∈ (0, 1) and only one linear system
if θ = 1.

5.4 Decoupling and linearization

As can be seen from the model (5.1)-(5.4), there is only a coupling in one direction between the
two-phase flow problem (5.1) and the transport equation (5.2)-(5.4). This allows the following
obvious decoupling strategy. Given values for u(tn), φ(tn) and ~cn ≈ c(tn) we first apply a time
integration step tn → tn+1 to the two-phase flow model (5.1). For this we can use the methods
treated in section 4.3 and 4.4. This results in approximations for u(tn+1) and φ(tn+1). These
can be used in a time integration step c(tn) → c(tn+1), for example the θ-scheme given in (5.8).



Chapter 6

Two-phase flow with transport of a
surfactant (NS2+S)

We assume that in the two-phase flow problem there is a species (called tenside or surfactant)
which adheres to the interface and that the concentration of this surfactant in the two phases
is so small that it can be neglected in the model. The concentration of this surfactant is
denoted by S(x, t), x ∈ Γ. We introduce the orthogonal projection P = I − nnT (n: normal
on Γ). Correspondingly, for x ∈ Γ we have an orthogonal decomposition u(x, t) = Pu(x, t) +
(I − P )u(x, t) =: uΓ(x, t) + u⊥(x, t). The tangential gradient is defined by ∇Γ := P∇, and
divΓ := ∇T

Γ , ∆Γ := divΓ ∇Γ. The transport of surfactants at the interface is modeled by a
convection-diffusion equation, cf. [31, 58]:

∂t,nS + divΓ(SuΓ) + SKu · n = DΓ∆ΓS. (6.1)

The derivative ∂t,nS stands for the time derivative of S along a normal path. For the numerical
treatment of such a problem we introduced a new technique, cf. [9].

To explain the main idea of this method we first consider a stationary model problem, namely
the Laplace-Beltrami equation, on a given fixed interface Γ. In weak form this problem is as
follows: For given f ∈ L2(Γ) with

∫

Γ fds = 0, determine u ∈ H1(Γ) with
∫

Γ uds = 0 such that

∫

Γ
∇Γu∇Γv ds =

∫

Γ
fv ds for all v ∈ H1(Γ). (6.2)

The solution u is unique and satisfies u ∈ H2(Γ) with ‖u‖H2(Γ) ≤ c‖f‖L2(Γ) and a constant c
independent of f .

For the discretization of this problem one needs an approximation Γh of Γ. We assume that
this approximate manifold is constructed as follows. Let {Th}h>0 be a family of tetrahedral
triangulations of a fixed domain Ω ⊂ R

3 that contains Γ. These triangulations are assumed to
be regular, consistent and stable. Take Th ∈ {Th}h>0 and denote the set of tetrahedra that form
Th by {S}. We assume that Γh is a closed manifold such that

• Γh can be decomposed as

Γh = ∪T∈Fh
T, (6.3)

where for each T there is a corresponding tetrahedron ST ∈ Th with T = ST ∩ Γh and
meas2(T ) > 0. To avoid technical complications we assume that this ST is unique, i.e., T
does not coincide with a face of a tetrahedron in Th.
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• Each T from the decomposition in (6.3) is planar, i.e., either a triangle or a quadrilateral.

Note that the construction described in section 4.2.2 results in approximate interfaces that satisfy
these conditions if for the tetrahedral family we take {T ′

h}h>0 as explained in section 4.2.2.
The main new idea of our approach is that for discretization of the problem (6.2) we use

a finite element space induced by the continuous linear finite elements on Th. This is done as
follows. We define a subdomain that contains Γh:

ωh := ∪T∈Fh
ST . (6.4)

This subdomain in R
3 is connected and partitioned in tetrahedra that form a subset of Th. We

introduce the finite element space

Vh := { vh ∈ C(ωh) | v|ST
∈ P1 for all T ∈ Fh }. (6.5)

This space induces the following space on Γh:

V Γ
h := {ψh ∈ H1(Γh) | ∃ vh ∈ Vh : ψh = vh|Γh

}. (6.6)

This space is used for a Galerkin discretization of (6.2): determine uh ∈ V Γ
h with

∫

Γh
uhdsh = 0

such that ∫

Γh

∇Γh
uh∇Γh

ψh dsh =

∫

Γh

fhψh dsh for all ψh ∈ V Γ
h , (6.7)

with fh a suitable extension of f such that
∫

Γh
fhdsh = 0. Due the Lax-Milgram lemma this

problem has a unique solution uh. In [9] we present a discretization error analysis of this method
that shows that under reasonable assumptions we have optimal error bounds.

Remark 8 As far as we know this method for discretization of a partial differential equation
on a surface is new. We give some comments related to this approach:

• The family {Th}h>0 is shape-regular but the family {Γh}h>0 in general is not shape-regular.
In our applications, cf. chapters 12 and 13, Γh contains a significant number of strongly
deteriorated triangles that have very small angles. Moreover, neighboring triangles can
have very different areas. As is shown in [9], optimal discretization bounds hold if {Th}h>0

is shape-regular; for {Γh}h>0 shape-regularity is not required.

• Each quadrilateral in Fh can be subdivided into two triangles. Let F̃h be the induced set
consisting of only triangles and such that ∪T∈F̃h

T = Γh. Define

WΓ
h := {ψh ∈ C(Γh) | ψh|T ∈ P1 for all T ∈ F̃h }.

The space WΓ
h is the space of continuous functions that are piecewise linear on the triangles

of Γh. Clearly V Γ
h ⊂WΓ

h holds. There are, however, situations in which V Γ
h 6= WΓ

h .

• Let (ξi)1≤i≤m be the collection of all vertices of all tetrahedra in ωh and φi the nodal linear
finite element basis function corresponding to ξi. Then V Γ

h is spanned by the functions
φi|Γh

, 1 ≤ i ≤ m. These functions, however, are not necessarily independent. In compu-
tations we use this generating system φi|Γh

, 1 ≤ i ≤ m, for solving the discrete problem
(6.7). Properties that are of interest for the numerical solution of the resulting linear sys-
tem, such as conditioning of the mass and stiffness matrix are analyzed in a forthcoming
paper.
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• In the implementation of this method one has to compute integrals of the form

∫

T

∇Γh
φj∇Γh

φi ds,

∫

T

fhφi ds for T ∈ Fh.

The domain T is either a triangle or a quadrilateral. The first integral can be computed
exactly. For the second one standard quadrature rules can be applied, for example the one
discussed in section 4.2.5.

First results of this finite element method applied to the Laplace-Beltrami equation on a
given surface Γ are presented in [9]. The method will also be used for the spatial discretization
of the convection-diffusion problem (6.1). Clearly for the numerical treatment of this problem
we also need a time discretization method.
Remainder: forthcoming.
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Chapter 7

Two-phase flow with transport of
both a dissolved species and a
surfactant at the interface

Forthcoming.
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Part II

Implementation in DROPS

61





63

In this second part we discuss some implementation issues related to the numerical treated in
part I. In chapter 8 we describe some fundamental concepts and the most important classes of
DROPS. In chapter 9 we give a brief introduction to the parallel version.
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Chapter 8

Fundamental concepts and data
structures

In this chapter important data structures and algorithms implemented in DROPS are presented.
Figure 8.1 gives an overview of the main components of the software. The different modules are
arranged in a diagram such that has two levels of structuring, namely in vertical and horizontal
direction.

Figure 8.1: Overview of modules and structure of DROPS.
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Figure 8.2: A cube and its 6 boundary segments Σ0, . . . ,Σ5.

The vertical structure of the figure distinguishes between input and output routines, data
structures and algorithms. The different methods related to input and output are described in
Section 8.8. In part I we treated many numerical methods from a numerical analysis point of
view. In this chapter we discuss implementation issues of these algorithms, in particular their
relation with certain data structures. This corresponds to the object-oriented perspective of
C++ classes, where data structures (as data members) and functionality (as member functions)
are combined with each other.

The horizontal structure in Figure 8.1 shows a classification of the different modules based
on the categories ‘geometry’and ‘numerics’, emphasizing the fact that we tried to decouple geo-
metrical data such as the grid from numerical data such as vectors and matrices. Some tasks,
however, require geometrical as well as numerical information and are therefore located in the
middle column. For example, the discretization routines for setting up stiffness matrices, where
in a loop over all tetrahedra the corresponding matrix entries are determined. In these routines
the geometrical and numerical data are coupled. The geometrical and numerical data structures
are described in Sections 8.1 and 8.2, respectively.

8.1 Geometrical objects: multilevel triangulation and simplices

In this section we discuss the data structures that represent geometrical objects such as ver-
tices, edges, faces, tetrahedra, the boundary and the multilevel grid. The corresponding data
structures are called VertexCL, EdgeCL, FaceCL, TetraCL, BoundaryCL and MultiGridCL, re-
spectively. Note that all C++ classes in DROPS have a suffix CL to distinguish data type
identifiers from object identifiers.

Boundary and boundary segments

We assume that the boundary Σ = ∂Ω is partitioned into elementary boundary segments Σj,
j = 0, . . . , NΣ − 1. Note that we use a C style numbering starting with zero. To give an
example, if Ω is a cube, then Σ can be partitioned into NΣ = 6 boundary segments Σ0, . . . ,Σ5,
cf. Figure 8.2. Each boundary segment is represented by a BndSegCL object. Up to now DROPS

can only handle boundaries which are piecewise planar. The class BoundaryCL contains an array
of all BndSegCL objects.
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Simplices

In the following we describe the representation of the simplices.

VertexCL. Each vertex V stores its coordinates xV ∈ R
3 as a Point3DCL object. If V is

located on the boundary Σ, it stores a list of BndPointCL objects, each containing the
index j of the boundary segment Σj with xV ∈ Σj and the 2D coordinate in the local
reference frame. Note that V may be lie on multiple boundary segments. For the example
in Figure 8.2 a vertex may be part of up to 3 boundary segments.

EdgeCL. Each edge E is linked to the two vertices V1, V2 which are connected by E. If the
edge is further refined into two sub-edges E1, E2, then there is also a link to the midpoint
vertex Vm. Note that E1 = V1Vm and E2 = VmV2. If E is located on the boundary, then
it stores the indices j of the boundary segments with {xV1

,xV2
} ⊂ Σj. Note that an edge

can be located on at most 2 boundary segments.

FaceCL. Each face F is linked to its neighboring tetrahedra. For a boundary face the index j
of the corresponding unique boundary segment Σj is stored. A face F may possess up to 4
neighboring tetrahedra. This is the case if F is an inner face connecting two tetrahedra T1

and T2 which are irregularly refined such that F is not subdivided by the corresponding
green refinement rule. Then there are two green children T ′

1 ∈ K(T1) and T ′
2 ∈ K(T2) also

sharing F as a common face.

TetraCL. Each tetrahedron T is linked to its 4 vertices, 6 edges and 4 faces. If ℓ(T ) > 0, i. e.,
T is not stored in the initial triangulation T0, then T is linked to its parent tetrahedron.
If T is refined, then it is also linked to its children T ′ ∈ K(T ). T stores the integer values
mark(T ) (the refinement mark) and status(T ) (the actual refinement rule). These are used
in the refinement algorithm, cf. [1].

Furthermore, each simplex class contains an UnknownHandleCL object which stores the indices
of unknowns belonging to this simplex, cf. Section 8.3.

Multilevel triangulation

The class MultiGridCL represents a multilevel triangulation M = (T0, . . . ,TJ), cf. Definition 5.
The data structure is based on the corresponding hierarchical decomposition H = (G0, . . . ,GJ),
cf. Definition 6. The tetrahedra are stored in J + 1 lists, each one for the hierarchical surplus
Gj of a different level. The vertices, edges and faces are stored in a similar manner, where the
level of such a sub-simplex S is defined as

ℓ(S) := min{ ℓ(T ) : T ∈ H contains S as sub-simplex }.

Furthermore, MultiGridCL contains a BoundaryCL object in which all boundary segments are
stored.

The MultiGridCL constructor takes a MGBuilderCL object as input argument which creates
the initial triangulation T0. MGBuilderCL serves as an abstract base class from which specific
classes can be derived. For instance, the derived class BrickBuilderCL can be used to generate
an initial triangulation of a cuboid-shaped domain.

The member function Refine() calls the refinement algorithm described in [1]. It requires
that the tetrahedra T ∈ TJ in the input multilevel triangulation are marked for refinement or
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for coarsening. This can be achieved by calling the member functions SetRegRefMark() or
SetRemoveMark() of the corresponding TetraCL objects.

There are different kinds of iterators to access the simplices in the multilevel triangulation.
The MultiGridCL member functions GetTriangTetraBegin(L) and GetTriangTetraEnd(L)

return iterators to cycle through all tetrahedra

T ∈ TL
of a triangulation. Similarly the member functions GetAllTetraBegin(L) and GetAllTetraEnd(L)

can be used to iterate over all

T ∈
L⋃

j=0

Gj ,

where the level ℓ(T ) of the iterated tetrahedra T is increasing from 0 to L. Similar iterators
exist for vertices, edges and faces as well.

The iterators are implemented such that a corresponding for loop can be executed by mul-
tiple OpenMP threads in parallel [66]. This allows for faster computations on shared memory
machines. As the importance and availability of multicore architectures is growing nowadays and
will grow further in the future, this is a relevant advantage regarding computational efficiency.

8.2 Numerical objects: vectors and sparse matrices

Vectors

In DROPS there are two different type of vectors: SVectorCL for short vectors with a handful
of entries and VectorCL for vectors with a large number of entries. Throughout this chapter we
assume that indices always start with the number zero (C style numbering).

SVectorCL<RowsN> is a template class with template parameter RowsN for vectors x ∈
R
RowsN with a fixed dimension RowsN. It is mostly used for storing coordinates. For this pur-

pose we defined the typedefs Point2DCL, Point3DCL and BaryCoordCL which are identical to
SVectorCL<2>, SVectorCL<3> and SVectorCL<4>, respectively.

The data type VectorCL is used for storing vectors ~x ∈ R
N where N is large and may differ

from object to object. It is a typedef for VectorBaseCL<double>. The class VectorBaseCL<RealT>
is a template class for vectors with entry type RealT and is an ancestor of std::valarray<RealT>.
Thus VectorCL derives the benefits of the efficient expression template mechanisms available
for arithmetical operations involving valarray objects. By setting a debug flag DebugNumericC

range checking and other debug features can be enabled which are switched off by default for
performance reasons.

Matrices

There are two different types of matrices in DROPS, SMatrixCL for small matrices and MatrixCL

for large sparse matrices.
The template class SMatrixCL<RowsN,ColsN> is used for small matrices M ∈ R

RowsN×ColsN

with fixed dimensions.
Sparse matrices are stored in objects of the type SparseMatBaseCL<RealT> where RealT

indicates the type of the entries. For convenience, we introduced a typedef MatrixCL for
SparseMatBaseCL<double>.

We use the compressed row storage format (CSR) which is described in the following. For a
sparse matrix withm rows andN non-zero entries, SparseMatBaseCL contains a vector RowBegin
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with m+ 1 integer entries, a vector ColIndex with N integer entries and a vector Val with N
entries of type RealT. For a row i the indices from RowBegin[i-1] to RowBegin[i]-1 indicate
the range in Val where the values of the non-zero entries are stored. The column indices of the
corresponding values are stored in ColIndex.

As it is tedious task to compute the sparsity pattern stored in RowBegin and ColIndex,
we use an intermediate storage format called SparseMatBuilderCL<RealT> when setting up a
new sparse matrix M . The SparseMatBuilderCL first collects and accumulates all entries in a
std::map based data structure. After that a call of the member function Build() automatically
creates the corresponding SparseMatBaseCL object M and deletes the maps afterwards.

As maps are often too memory consuming we use them only for initializing M . When
updating M in subsequent steps the sparsity pattern is reused by default, i. e., access to
SparseMatBuilderCL entries directly returns the corresponding SparseMatBaseCL entries in
Val. If the sparsity pattern should not be reused (for example when the extended pressure
space QΓ

h changed because the interface Γ has moved) all matrix entries should be deleted by a
call to the member function clear() to force a complete initialization of the matrix.

8.3 The connnection between grid and unknowns: indices

As mentioned before we decided to decouple the geometrical data (grid) from the numerical
data (matrices, vectors). This is advantageous, because then the iterative solvers only have to
deal with matrices and vectors and not with the grid. Then a matrix-vector multiplication does
not require a loop over all grid entities which saves substantial computational time. For the
interpretation of a solution vector ~u, however, it is necessary to know which vector entries are
associated with a certain vertex V , for example. Here the concept of indices comes into play.

Index descriptions and numberings

For each finite element type used in a solution strategy there exists an associated index. An
index J is described by an IdxDescCL object. It contains the number of degrees of freedom
(DoF) for each simplex type, nV , nE, nF , nT , and the overall number of unknowns, NJ . To give
an example, a P1-index has nV = 1 DoF per vertex (and nE = nF = nT = 0), an index for
vector-valued P2-FE has nV = nE = 3 DoFs for each vertex and edge (and nF = nT = 0).

As a next step we have to create a numbering of all degrees of freedom which belong to
the index J , where degrees of freedom on Dirichlet boundaries are omitted. This is done by a
function CreateNumbering(...), which is usually a member function of the problem class (cf.
Section 8.4). By this we also obtain the total number of unknowns, NJ , which is equal to the
dimension of the vectors associated with J . Thus at the end CreateNumbering(...) sets the
value NJ in the corresponding IdxDesc object.

The numbering is stored by UnknownHandleCL objects contained in the corresponding VertexCL,
EdgeCL, FaceCL and TetraCL objects. Note that for a single simplex maybe multiple such num-
bers have to be stored, namely one for each index or, in other words, one for each finite element
type.

For an extended finite element space a call to UpdateXNumbering(...) augments the usual
numbering, also called base numbering, by a numbering for the new degrees of freedom (induced
by extension of the finite element space). These numbers are not stored in the UnknownHandleCL
objects, but in a seperate ExtendedIdxCL object. It contains a vector xidx ∈ NNJ where the
entry xidx[j] either stores the number of the extended DoF belonging to the base DoF j or it
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contains a flag that the DoF j is not extended. Note that UpdateXNumbering(...) has to be
called each time the interface has moved to account for the changed extended DoFs.

Vector and matrix descriptions

A VecDescCL object contains a vector Data of type VectorCL and a pointer RowIdx to the asso-
ciated index of type IdxDescCL. Calling the member function SetIdx(idx) sets the pointer and
resizes the vector to the right dimension. Similarly, a MatDescCL object contains a sparse matrix
Data and pointers RowIdx and ColIdx to the associated row and column indices, respectively. A
call of the member funtion SetIdx(ridx,cidx) sets the pointers and deletes all matrix entries.
The right dimension of the matrix are set later by SparseMatBuilderCL, cf. Section 8.2.

8.4 Problem classes

There are several problem classes in DROPS representing different types of partial differential
equations. For example, we have problem classes for the Poisson, Stokes and Navier-Stokes
problem (one-phase), the level-set equation and the two-phase Stokes and Navier-Stokes problem.
For example the class for the two-phase Stokes problem is called InstatStokes2PhaseP2P1CL.
All problem classes are derived from a common base class ProblemCL which contains three
objects constituting a problem:

• the domain Ω, given by a multilevel triangulation (MultiGridCL),

• the boundary conditions and boundary values, given by a BndDataT object,

• the coefficients and right hand-side of the partial differential equation, given by a CoeffT

object.

BndDataT and CoeffT are template parameters of the template class ProblemCL as their specific
structure may vary among different problem types. Their meaning is discussed in the subsequent
sections.

A specific problem class usually contains the index descriptions of the applied finite ele-
ment types and several matrix and vector descriptions. Among the member functions there are
CreateNumbering(...) procedures for the indices (cf. Section 8.3) and different Setup...(...)
routines to compute the matrices and the right-hand side vectors constituting the finite element
discretization.

Boundary data

The boundary data are represented by a BndDataCL<BndValT> object. It contains an array
of BndSegDataCL<BndValT> objects, one for each boundary segment Σj, cf. Section 8.1. Each
BndSegDataCL object stores the boundary condition and a function pointer for evaluating the
corresponding boundary values of type BndValT. The choice of the template parameter BndValT
depends on whether the boundary condition applies to a scalar (double) or vector-valued
(Point3DCL) quantity. The boundary condition of type BndCondT can be one of

• DirBC, Dir0BC for inhomogeneous and homogeneous Dirichlet boundary conditions, re-
spectively,

• NatBC, Nat0BC for inhomogeneous and homogeneous natural boundary conditions, respec-
tively,
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• Per1BC, Per2BC for periodic boundary conditions denoting corresponding boundaries.

WallBC and OutflowBC are alias names for Dir0BC and Nat0BC, respectively.

Coefficients

As an example of how the coefficients of a specific partial differential equation sre represented in
the implementation we consider a scalar convection-diffusion problem for the unknown function
u = u(x, t),

ut + v(x, t) · ∇u− div(a(x, t)∇u) = f(x, t) in Ω × [t0, tf ].

This type of problem is defined by the problem class InstatPoissonP1CL. The corresponding
PoissonCoeffCL contains the functions v(x, t), a(x, t) and f(x, t) as static member functions.

For the two-phase flow problem (4.1)-(4.2) the corresponding coefficient class stores quantities
such as densities ρi and dynamic viscosities µi of the phases Ωi, i = 1, 2, the surface tension
coefficient τ and the vector of gravitational acceleration g.

8.5 Tools for spatial discretization

In the discretization procedures Setup...(...) of the problem classes several sparse matrices
representing the discrete differential operators and vectors for the right-hand side have to be
constructed. This is done by iterating over all tetrahedra T ∈ Th, where for a single tetrahedron
T contributions to the matrix and vector entries are computed. These contributions are integrals
over T and the integrands are functions which can be defined locally on T , e. g., basis functions
or gradients of basis functions.

Grid functions

For representing the integrands and computing the integrals over T we use LocalP1CL and
LocalP2CL objects (for linear and quadratic functions, respectively) and quadrature rules Quad2CL,
Quad5CL (exact for polynomials up to degree 2 or 5, respectively). All these classes have a
template parameter ValT for the function values and are derived from a common base class
GridFunctionCL<ValT,PointsN>. This class stores PointsN values of type ValT which are as-
sociated to distinct nodes in a tetrahedron described by barycentric coordinates (BaryCoordCL,
cf. Section 8.2). For a LocalP1CL object these nodes are the 4 vertices of the tetrahedron, for a
LocalP2CL object the 6 midpoints of the edges are added. For the Quad...CL objects the nodes
are defined by the quadrature points of the corresponding quadrature rule

Arithmetic operations such as +, -, *, / for GridFunctionCL objects are defined point-
wise. In the same way functions can be applied to GridFunctionCL objects using the member
function apply(...). Due to inheritence all this functionality is also provided for the derived
LocalP...CL and Quad...CL classes. This is very useful when treating complex integrands like
(u · ∇vj) vi.

Several variants of assign(...) member functions enable the initialization of the LocalP...CL
and Quad...CL objects. Additionally, LocalP...CL objects can be evaluated in an arbitrary
point x ∈ T given by its barycentric coordinates. The Quad...CL objects have a member
function quad(...) which applies the quadrature rule and returns the result of the numerical
integration.
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Local numberings

A LocalNumbCL object is initialized with an index description of index J , the corresponding
boundary data object and a tetrahedron T . It collects the numbering of the local degrees of
freedom of T according to the index J , cf. Section 8.3. If a degree of freedom is on a boundary it
also provides the associated boundary condition and the number j of the corresponding boundary
segment Σj. Up to now LocalNumbCL can only be used for P2 finite elements.

Integration over interface patches or parts of a tetrahedron

An InterfacePatchCL object is initialized by a tetrahedron T and the level set function ϕh

given by an P2-FE VecDescCL object. It extracts the LocalP2CL object corresponding to ϕh,
decides whether Γh ∩ T 6= and provides information about the sign (∈ {+,−, 0}) of each degree
of freedom.

The member function ComputeForChild(i) computes the planar interface patch ΓT ′ = Γh∩
T ′ for the ith regular child T ′ ∈ K(T ), i = 0, . . . , 7. ΓT ′ is represented by the coordinates of its
vertices, which are given in terms of barycentric coordinates with respect to the parent T , cf.
Fig. 4.1 and Fig. 4.2. Note that for the computation of the patches the regular refinement of T
is not really constructed in the sense that geometrical data structures are changed.

After calling ComputeCutForChild(i) the member function quad(...) can be used to
compute the integral over the subdomain T ′ ∩ Ω1 or T ′ ∩ Ω2, where the integrand is an ar-
bitrary quadratic function f given by a LocalP2CL object. The additional member function
quadBothParts(...) provides the integrals over the union of the subdomains (T ′ ∩Ω1)∪ (T ′ ∩
Ω2).

8.6 Time discretization and coupling

For the one-phase Stokes and Navier-Stokes problem the one-step θ-scheme (cf. section 3.3.1) is
represented by the classes InstatStokesThetaSchemeCL and InstatNavStokesThetaSchemeCL,
respectively. Both classes have a template parameter SolverT for the type of the solver used
in each time step. The computation of one time step is performed by the member function
DoStep(...).

For the two-phase Stokes and Navier-Stokes problem we have to consider a coupled system
for velocity u, pressure p and level set function ϕ, cf. section 4.4. During the implementation
it turned out that the coupling and time discretization should be combined in one class as they
are closely connected to each other. However, the different coupling classes all have a similar
structure, thus we decided to derive them from a base class CouplLevelsetBaseCL which stores
common data members and defines a common abstract interface by means of virtual member
functions such as DoStep(...).

For the two-phase Stokes problem the class CouplLevelsetStokesCL represents a coupled
one-step θ-scheme. For the two-phase Navier-Stokes problem we implemented several methods,
for example, the following classes:

• CouplLevelsetNavStokes2PhaseCL: generalized θ-scheme as explained in sections 4.3 and
4.4.

• CouplLsNsBaenschCL: coupled fractional-step scheme with operator splitting. This method
generalizes the method explained in section 3.3.3 to the two-phase flow problem, cf. [2].
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In all these methods result in linear systems of equations that have to be solved. All these
classes have a template parameter SolverT controlling the type of the iterative solver used in
each time step.

8.7 Iterative solvers and preconditioners

For the implementation of iterative solvers we tried to use a software design that accounts for
the nested hierarchy of the solution methods. For example, the iterative linearization (by a fixed
point method) of the one-phase Navier-Stokes equations as described in section 3.4 results in
a linear saddle point problem (Oseen equation). For this linear Oseen problem one can use a
preconditioned MINRES method. In the preconditioner an inner iterative solver (for example
multigrid) may be used. Thus, in this example one has three nested iterative methods: a fixed
point linearization method, an Oseen solver and an inner preconditioner. In view of this we
use a template mechanism to specify the (inner) solution components as template parameters.
This enables an easy plug-in of different solution components to test and compare reasonable
combinations of solvers available from the DROPS solver toolbox. Furthermore, this technique
assures efficient code since the compiler can perform full code optimization for the template
specialization which is known at the moment of compilation.

Example 8.1 As an illustrative example for the template plug-in mechanism we give a piece
of code for the definition of a Stokes solver, cf. section 3.5.2:

// preconditioner for upper left block preconditioner

typedef SSORPcCL ULPcPcT;

ULPcPcT ULPcPc(...);

// preconditioner for upper left block

typedef PCGSolverCL<ULPcPcT> ULSolverT;

ULSolverT ULsolver( ULPcPc, ...);

typedef SolverAsPreCL<ULSolverT> ULPcT;

ULPcT ULPc( ULsolver);

// Schur complement preconditioner

typedef ISPreCL SchurPcT;

SchurPcT SchurPc( ...);

// Stokes solver

typedef InexactUzawaCL<ULPcT, SchurPcT> StokesSolverT;

StokesSolverT StokesSolver( ULPc, SchurPc, ...);

Hence, the object StokesSolver represents an inexact Uzawa method. For QA we chose some
iterations of an SSOR-preconditioned CG method (ULPc) applied to the upper left block of the
saddle point matrix. The Schur complement preconditioner QS is given by SchurPc.

We emphasize that there is a conceptual difference between solver objects and preconditioner
objects. Solver classes are derived from a common base class SolverBaseCL storing the tolerance
and the maximum number of iterations, i. e., the stopping criterion, as well as the norm of the
residual and number of iterations used after the last execution of the solver. Each solver class
comprises a member function Solve(...) calling the routine of the iterative solver for a given
initial guess. In contrast, each preconditioner class contains the analogon Apply(...) calling
the preconditoner for the initial guess 0.
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In the following we list the most important solvers and preconditioners available from the
DROPS solver toolbox.

Solvers

Navier-Stokes linearization methods, cf. section 3.4.

• FixedPtDefectCorrCL: Algorithm (1) with step length ωk = 1,

• AdaptFixedPtDefectCorrCL: Algorithm 1 with step length ωk as in (3.19).

Both are template classes where the template parameter SolverT determines the type of the
Oseen solver. Concerning the iterative solvers for linear equations (Oseen problem and level set
equation) we distinguish between Schur complement methods (only for saddle point problems),
Krylov subspace methods and multigrid solvers.

Schur complement methods, cf. sections 3.5.2 and 3.5.3.

• InexactUzawaCL: Algorithm 3.28 an a variant of this, introduced by Bramble and Pasciak
in [?], that is implemented in UzawaCL

• SchurSolverCL: a variant of algorithm (3.21)–(3.23).

Some of the classes provide template parameters ULPcT, SchurPcT to determine the type of
the preconditioners QA, QS, for the upper left block in the saddle poiint matrix and its Schur
complement, respectively.

Krylov subspace methods
For the application of a general Krylov subspace method to the saddle point matrix K one can
use the class BlockMatrixSolverCL<SolverT> where the template parameter SolverT specifies
the type of the Krylov solver. The following methods are available in DROPS

• PMResSPCL: preconditioned MINRES solver for the Stokes problem.

• CGSolverCL, PCGSolverCL: CG method and preconditioned variant,

• MResSolverCL, PMResSolverCL: MINRES method and preconditioned variant.

• GMResSolverCL, GMResRSolverCL: GMRES and GMRES-Recursive method with left or
right preconditioning,

• BiCGStabSolverCL: preconditioned BiCGSTAB method,

• GCRSolverCL: preconditioned GCR method.

The classes representing preconditioned Krylov subspace methods have a template parameter
PcT designating the type of the preconditioner.

Multigrid method
The MGSolverBaseCL represents a multigrid solver (V-cycle) with a fixed number of smoothing
steps. There are two template parameters SmootherT and SolverT which control the type of the
smoother and the coarse grid solver, respectively. The multigrid method requires a hierarchy of
linear systems

Aℓxℓ = bℓ, ℓ = 0, 1, . . . , L
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and prolongations Pℓ and restrictions Rℓ = PT
ℓ to transfer information between a finer and a

coarser level. For each level the corresponding system and prolongation matrices Aℓ,Pℓ and
right-hand side vector bℓ are stored in a MGLevelDataCL object. The hierarchy of matrices and
vectors is represented by the data structure MGDataCL which is simply a list of MGLevelDataCL
objects.
For the smoothers we implemented methods that are suitable for scalar (convection-diffusion)
problems such as damped Jacobi and Gauss-Seidel and methods that can be used for Stokes and
Oseen equations, for example Vanka- and Braess-Sarazin smoothers.

Preconditioners

The DROPS solver toolbox comprises the preconditioner classes given in the following lists. For
a discussion of some of these preconditioners we refer to sections 3.5.2 and 3.5.3.

Iterative method as preconditioners

• JACPcCL: one step of the Jacobi preconditioner,

• GSPcCL, SGSPcCL: one step of the Gauss-Seidel or symmetric Gauss-Seidel preconditioner,

• SSORPcCL, MultiSSORPcCL: one or multiple steps of the SSOR preconditioner,

• MGPreCL: fixed number of multigrid V-cycles with SSOR smoothing,

• DummyPcCL: no preconditioning

For the Jacobi and Gauss-Seidel preconditioners there exist variants which can be used as
smoother for the multigrid solver.

The wrapper class SolverAsPreCL enables the use of a solver object as a preconditioner.
That means that the Apply(...) member function of the wrapper class calls the Solve(...)

member function of the solver class with initial guess zero. This mechanism is used in Exam-
ple 8.1 in the definition of the preconditioner for the upper left block, ULPc, which wraps the
solver object ULsolver.

Schur complement preconditioners QS

• ISPreCL: the Schur complement preconditioner (3.32) where M−1 and T−1
h are replaced

by one step of the SSOR preconditioner applied to the corresponding pressure matrices,

• ISNonlinearPreCL: the same Schur complement preconditioner, but with M−1 and T−1
h

replaced by some iterations of a Krylov subspace method which can be chosen by means
of a template argument,

• ISBBTPreCL: variant of the Schur complement preconditioner (3.36).

The DiagBlockPreCL is used in combination with BlockMatrixSolverCL solvers. It com-
bines a preconditioner QA for the upper left block with a preconditioner QS for the Schur
complement yielding the diagonal block preconditioner K̃ as in (3.33). If this preconditioner
is used in combination with MINRES it must be symmetric positive definite. If it is combined
with a Krylov subspace method for nonsymmetric problems (for example, GMRES) this SPD
property is not required.
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8.8 Input and output

In this section we describe input and output interfaces for different types of data.

Numerical data

Vectors and sparse matrices can be saved to and restored from files by using the input and
output stream operators, >> and <<, implemented for VectorCL and MatrixCL objects. The
matrix format is MATLAB-compatible which is very useful for computing condition numbers or
the spectrum of a matrix.

Geometrical data

The initial triangulation T0 can be read from a mesh file generated with the mesh generator GAM-

BIT [44]. To construct the corresponding multilevel triangulation a ReadMeshBuilderCL object
containing the mesh file name is passed to the constructor of the MultiGridCL object. Here the
concept of the MGBuilderCL class is applied, cf. Section 8.1, from which ReadMeshBuilderCL is
derived. Other input file formats can be implemented by adding further ancestors of MGBuilderCL.

For the input and output of a hierarchy of triangulations M = (T0, . . . ,TJ) we use a self-
defined file format. For saving a MultiGridCL object representing a multilevel triangulation
we use a software technique called serialization. For this reason the class representing this
task is called MGSerializationCL. The deserialization is done by the class FileBuilderCL,
which is an ancestor of MGBuilderCL and is passed to the constructor of MultiGridCL. It reads
the files written out before by a MGSerializationCL object and recreates the corresponding
MultiGridCL object.

In this way, a simulation run that has stopped can be restarted from the last time step where
a serialized multilevel triangulation was saved to the file system. In a first step the geometrical
data is deserialized from the file system using the class FileBuilderCL. After that the vectors
representing the numerical solutions are restored by means of the class ReadEnsightP2SolCL,
see the subsequent section.

Visualization

For 3D visualization purposes we mainly use the software package Ensight [43]. The class
EnsightP2SolOutCL writes out the geometrical information (tetrahedra and coordinates of the
vertices) and the numerical solutions (uh, p, ϕ evaluated in all P2 degrees of freedom) using a
specific Ensight file format. This format can also be read by other visualization packages such
as ParaView [70].

The class ReadEnsightP2SolCL restores the vectors ~u, ~p and ~ϕ from the files written out by
the class EnsightP2SolOutCL. However, this only works properly if the multilevel triangulations
at the time of storing and restoring are the same.

There are interfaces to some other visualization tools as well.

• GeomMGOutCL, GeomSolOutCL for visualization of geometry and numerical solution with
Geomview [47],

• TecPlotSolOutCL, TecPlot2DSolOutCL for visualization of geometry and numerical solu-
tion (in 3D or on a 2D cut plane, respectively) with TecPlot [89],

• MapleMGOutCL, MapleSolOutCL for visualization of geometry and numerical solution with
Maple.



Chapter 9

Parallelization

In this chapter we consider the main concepts underlying the parallelization of DROPSfor dis-
tributed memory machines by means of a message passing interface (MPI). Shared memory
parallelization by means of OpenMP [66] has also been applied to some parts of DROPS, cf. [14]
for a description of the parallelized routines and some benchmark computations. Both paral-
lelization concepts can be combined when using multicore processors which are connected by a
high-speed network. For the parallelization of DROPS we pursue such a hybrid parallelization
approach due to the growing importance of multicore architectures.

In Section 9.1 we present a data distribution format for the geometrical data and, based on
this, we also derive a distribution format for the numerical data. In Definition 7 below the geo-
metrical data distribution format will be made mathematically precise by a formal specification
of a so-called admissible hierarchical decomposition. This data distribution format is such that
the following holds:

1. Let T ∈ Gk be an element from the hierarchical surplus on level k, cf. Definition 6. Then T
is stored on one processor, say p, as a so-called master element. In certain cases (explained
below) a ghost copy of T is stored on one other processor, say q.

2. The children of T (if they exist) are all stored as masters either on processor p or, if T has
a ghost copy, on processor q. For T ∈ Gk, k > 0, the parent of T or a copy of it is stored
on processor p.

For the multilevel refinement algorithm a crucial point is that for a tetrahedron T one needs
information about all children of T , cf. [27, 1]. Due to property 2 this information is available on
the local processor (p or q) without communication. The first property shows that in a certain
sense the overlap of tetrahedra is small.

In a parallel run of a simulation the computational load has to be distributed more or less
equally among the processors. Hence, an adaptive finite element solver has to be combined
with dynamic load balancing and data migration between the processors. This is the topic of
Section 9.2.

The main results concerning the admissible hierarchical decomposition, the parallel multilevel
refinement method and the load balancing strategy can be summarized as follows:

• An admissible hierarchical decomposition has the desirable properties 1 (small storage
overhead) and 2 (data locality) from above. This result is given in Section 9.1.

• The application of the parallel refinement algorithm to an admissible hierarchical decom-
position is well-defined and results in an admissible hierarchical decomposition. This is
proved in [1].

77
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P1
migration
to P2

P1 P2

ghost
T

K(T )

Figure 9.1: Ghost elements are required to represent links between parents and their children
since pointers across memory boundaries are not allowed for distributed memory machines.

• Given an admissible hierarchical decomposition one can apply a suitable load balancing
and data migration algorithm such that after data migration one still has an admissible
hierarchical decomposition. We comment on this in Section 9.2.

9.1 Data distribution

Distribution of geometrical data: admissable hierarchical decomposition

Let the sequence M = (T0, . . . ,TJ) of triangulations be a multilevel triangulation and H =
(G0, . . . ,GJ) the corresponding hierarchical decomposition. In this section we introduce a par-
ticular format for the distribution of the tetrahedra in H among processors on a parallel machine.
We assume that the processors are numbered by 1, . . . , P .

For the set of elements in the hierarchical surplus on level k that are stored on processor p
we introduce the notation

Gk(p) := {T ∈ Gk : T is stored on processor p }

and we define
H(p) :=

(
G0(p), . . . ,GJ (p)

)
.

Note that in general H(p) is not a hierarchical decomposition (in the sense of Definition 7). The
sequence

H̃ = (H(1), . . . ,H(P )) (9.1)

is called a distributed hierarchical decomposition (corresponding to H).
In general the intersection Gk(p) ∩ Gk(q), p 6= q, may be nonempty. Note that such an

overlapping distribution of the elements is necessary, due to the fact that parents and children
are linked by pointers. Consider, for example, the situation depicted in Figure 9.1 where a
parent T and its child T ′ ∈ K(T ) are stored on different processors, say 1 and 2. Since pointers
from one local memory to another are not allowed in a distributed memory setting, we have to
use a copy to realize this pointer. One could store a copy of T on processor 2 to represent the
link between T and T ′ as a pointer on processor q. If one does not allow such ghost copies, all
ancestors and descendants of a tetrahedron must be on the same processor. This would cause
very coarse data granularity, poor load balancing and hence low parallel efficiency.

For each level k and processor p we introduce a set of master elements, Mk(p) ⊂ Gk(p), and
a set of ghost elements, Gk(p) ⊂ Gk(p). In the formulation of the conditions below we use the
conventions K(T ) := ∅ if status(T ) = NoRef and MJ+1(p) := ∅.

We now formalize the conditions on data distribution as follows.
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Definition 7 (Admissible hierarchical decomposition) The distributed hierarchical decom-
position H̃ is called an admissible hierarchical decomposition if for all k = 1, . . . , J the following
conditions are fulfilled:

(A1) Partitioning of Gk(p): The sets of masters and ghosts form a disjoint partitioning of
Gk(p):

∀ p Mk(p) ∪ Gk(p) = Gk(p) and Mk(p) ∩ Gk(p) = ∅

(A2) Existence: Every element from Gk is represented as a master element on level k:

Gk =

P⋃

p=1

Mk(p)

(A3) Uniqueness: Every element from Gk is represented by at most one master element on
level k:

∀ p1, p2 : Mk(p1) ∩Mk(p2) 6= ∅ ⇒ p1 = p2

(A4) Child–parent locality: A child master element and its parent (as master or ghost) are
stored on the same processor:

∀ p ∀T ∈ Gk ∀T ′ ∈ K(T ) : T ′ ∈ Mk+1(p) ⇒ T ∈ Gk(p)

(A5) Ghosts are parents: Ghost elements always have children:

∀ p ∀T ∈ Gk(p) : K(T ) 6= ∅

(A6) Ghost–children locality: A ghost element and its children are stored on the same
processor:

∀ p ∀T ∈ Gk(p) : K(T ) ⊂ Mk+1(p)

Remark 1 Consider a consistent initial triangulation T0 = G0 with a nonoverlapping distri-
bution of the tetrahedra: G0(p) ∩ G0(q) = ∅ for all p 6= q. In this case all tetrahedra can be
stored as masters and there are no ghosts. Then the distributed hierarchical decomposition
H̃ = ((G0(1)), . . . , (G0(P ))) is obviously admissible.

Two elementary results are given in the following lemma.

Lemma 1 Let H̃ as in (9.1) be a distributed hierarchical decomposition. The following holds:

1. If the conditions (A3), (A5) and (A6) are satisfied then for any element from Gk there is
at most one corresponding ghost element:

∀T ∈ Gk ∀ p, q : T ∈ Gk(p) ∩ Gk(q) ⇒ p = q

2. If the conditions (A1), (A2), (A3), (A4) and (A6) are satisfied then all children of a parent
are stored as master elements on one processor:

∀T ∈ Gk ∃ p : K(T ) ⊂ Mk+1(p)
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A proof of this result is given in [1].
In [1] a parallel refinement (and coarsening) algorithm is presented which is based on an

admissible hierarchical decomposition and is suitable for distributed memory machines. It uses
the DDD package [64, 95] for the management of the distributed tetrahedra, faces, edges and
vertices. For a given input-multilevel triangulation the parallel method produces the same
output-multilevel triangulation as the serial method presented in [27, 28]. In this sense the
“computational part” of the algorithm is not changed. It is proven that the application of the
parallel refinement algorithm to an admissible hierarchical decomposition is well-defined and
results in an admissible hierarchical decomposition.

Remark 2 Let T ∈ Mk(p) be a parent master element. From the second result in Lemma 1
and (A4) it follows that either all children are masters on the same processor p as T , or they
are masters on some other processor q. In the latter case, the element T has a corresponding
ghost element on processor q. Due to this property, in the parallel refinement algorithm we use
the strategy:

• If a parent tetrahedron T has a ghost copy then operations that involve children of T are
performed on the processor on which the ghost and the children are stored.

From condition (A4) it follows that a child master element has its parent (as ghost or as
master) on the same processor. Therefore we use the strategy:

• Operations that involve the parent of T are performed on the processor on which the
master element of T and its parent are stored.

The first result in Lemma 1 shows that every T ∈ H has at most one ghost copy. Moreover, due
to (A5) all leaves (T ∈ TJ) have no ghost copies. In this sense the overlap of tetrahedra between
the processors is small.

Distribution of numerical data

Let ~x ∈ R
N a vector and A ∈ R

N×N a (sparse) matrix. The numbering J = {1, . . . ,N} is
associated with certain degrees of freedom of the hierarchical decomposition H. Based on the
distributed hierarchical decomposition H̃ we will define a corresponding distribution of the nu-
merical data ~x and A. For this purpose we first introduce the notion of a domain decomposition.

Definition 8 (Domain decomposition) Let H be a hierarchical decomposition and H̃ its
admissible distribution among the processors. Due to the conditions (A2) and (A3) every tetra-
hedron T ∈ H can be assigned a unique processor on which T is stored as a master element. In
other words, we have a well-defined function master : H → {1, . . . , P} that is given by

master(T ) = p ⇔ T ∈ Mℓ(T )(p).

For 0 ≤ j ≤ J and 1 ≤ p ≤ P we define

Tj(p) := {T ∈ Gj : master(T ) = p } and Ωj(p) :=
⋃

T∈Tj(p)

T.

Then for each 0 ≤ j ≤ J the sequence (Tj(1), . . . ,Tj(P )) is a partition of the triangulation
Tj (due to (A2), (A3)) and is called the domain decomposition of level j corresponding to the
admissible hierarchical decomposition H̃.
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Figure 9.2: Domain decomposition for P = 8 processors.

Figure 9.2 shows a domain decomposition for P = 8 processors.
A domain decomposition of level j automatically induces a distribution of the numerical data
on level j. Without loss of generality we assume that the (global) numbering J = {1, . . . ,N} is
associated with the finest level J . Let J (p) = {1, . . . ,Np} be a (local) numbering of the degrees
of freedom of the local triangulation TJ(p) on processor p, 1 ≤ p ≤ P . Then the relation between
a local number i ∈ J (p) and its global counterpart j ∈ J is given by the coincidence matrix
Ip ∈ R

N×Np ,

(Ip)i,j :=







1 if degree of freedom with global number j ∈ J exists

on processor p with local number i ∈ J (p),

0 else.

Degrees of freedom which are located on multiple processors form the so called processor bound-
ary.

Definition 9 (Accumulated and distributed storage) For a (global) vector ~x ∈ R
N the

sequence
~xa = (I1~x, . . . , IP~x) ∈ R

N1 × . . .× R
NP

is called the corresponding accumulated vector. That means that for unknowns on a processor
boundary each adjacent processor stores the same global value.

The sequence ~xd = (~x1, . . . , ~xP ) of vectors ~xp ∈ R
Np is called the distributed vector corre-

sponding to ~x, if

~x =
P∑

p=1

IT
p ~xp.

In this case the global value of an unknown on a processor boundary is the sum of all local
values stored on the adjacent processors. The same holds for entries of a distributed matrix
AD = (A1, . . . , AP ) with

A =

P∑

p=1

IT
p ApIp.

Remark 3 (Computation of distributed stiffness matrix) For a stiffness matrixA ∈ R
N×N

the local distributed matrix Ap ∈ R
Np×Np coincides with the stiffness matrix corresponding to

the subdomain ΩJ(p) with triangulation TJ(p). Thus the local matrices Mp can be set up in-
dependently by the different processors p = 1, . . . P without any communication. Furthermore,
the parallelization of the Setup routines (cf. Section 8.4) is a trivial task.

The conversion of a distributed into an accumulated vector is achieved by summing up the vector
entries on processor boundaries which requires communication between adjacent processors.
Obviously, the conversion in the other direction is not unique. For computing the matrix-vector
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multiplication ~y = A~x we use the accumulated storage ~xa as input and obtain the result ~yD in
a distributed fashion:

A~x =





P∑

p=1

IT
p ApIp



 ~x =
P∑

p=1

IT
p Ap(Ip~x)

︸ ︷︷ ︸

=:~yp

= ~y.

Hence, the computation of the matrix-vector multiplication does not require any communication.
The scalar product of two vectors ~x, ~y can be computed efficiently if one of them is stored
accumulated, for example ~xa, and the other one distributed, ~yd. Then the computation of

(~x, ~y) = ~xT
P∑

p=1

IT
p ~yp =

P∑

p=1

(Ip~x)
T ~yp =

P∑

p=1

(Ip~x, ~yp)

only requires the global summation of P real numbers (MPI::AllReduce(...)).

9.2 Distribution of work load

In the simulation of a rising bubble, for example, the multilevel triangulation M will change as
the refinement zone is moving upwards following the bubble geometry. Hence, the distributed
hierarchical decomposition H̃ and the numerical data have to be redistributed from time to time
to ensure a reasonable balance of the computational load. Otherwise the situation may occur
that almost all unknowns are stored on one processor, say p, while the others only have to solve
problems of small size. On the one hand this leads to an inefficient usage of the overall memory.
On the other hand runtime scalability severely decreases since all processors have to wait at
synchronization points such as MPI::AllReduce(...) until processor p has finished its work.

The challenge of the so-called load balancing is to find a mapping

m : T → {1, . . . , P}

describing the distribution of the tetrahedra among the processors such that

a) all processors have almost the same number of tetrahedra and

b) the corresponding processor boundary is as small as possible.

This problem statement is equivalent to a graph partitioning problem which will be stated in
Definition 11. For this reason, m is also called a partitioning of T . We now introduce the notion
of a weighted dual graph.

Definition 10 (Weighted dual graph) For a triangulation T the corresponding dual graph
G(T ) = (V,E) is given by the node set V = T and the edge set E ⊂ T × T , where (T1, T2) ∈ E
iff the tetrahedra T1, T2 share a common face.

By introducing weight functions α : V → R+ for nodes and β : E → R+ for edges of the
graph the computational load α(vT ) of the corresponding tetrahedron T and the amount of
communication β(eF ) for the corresponding face F can be described. Gw(T ) = (V,E, α, β) is
called a weighted dual graph.

Figure 9.3 shows a 2D example for a dual graph. For a subset Ṽ ⊂ V we define α(Ṽ ) :=
∑

v∈Ṽ α(v) corresponding to the total load of Ṽ . For a given partitioning m the set

Ecut(m) := { (T1, T2) ∈ E : m(T1) 6= m(T2) }
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Figure 9.3: Dual graph for 2D triangulation.

corresponds to the faces forming the processor boundary where communication takes place.

The graph partitioning problem is given by the following definition:

Definition 11 (Generalized graph partitioning problem) For a constant C > 1 and a
given weighted dual graph (V,E, α, β) find a partitioning m : V → {1, . . . , P} such that

costcomm(m) :=
∑

e∈Ecut(m)

β(e) → min

and

α(Vp) ≤ C
α(V )

P

with Vp := m−1(p).

The graph partitioning problem belongs to the class of NP-hard problems, in this sense
an optimal partitioning cannot be computed efficiently. Nevertheless, there are a couple of
heuristic approaches with polynomial runtime yielding reasonable results. For a survey on this
topic we refer to [37]. We use the package ParMETIS [72] which realizes a parallel multilevel
graph partitioning algorithm described in [59].

Based on a partitioning m computed by a graph partitioning tool the tetrahedra and numer-
ical data are rearranged among the processors. This phase is called data migration. To obtain
again an admissible hierarchical decomposition after the migration phase we have to ensure that
the properties (A1)–(A5) hold. In particular all children of a common parent have to stay to-
gether as masters on a single processor, cf. Lemma 1. Thus in the following we give a definition
for a reduced dual graph, where the children of a common parent are represented by a single
multi-node. For this purpose we introduce a map

P :
J⋃

k=0

Gk →
J−1⋃

k=0

Gk

from a tetrahedron T ∈ Gk to its parent tetrahedron P (T ) ∈ Gk−1, k = 1, . . . , J , with the
convention P (T ) = T for all T ∈ G0. For T ∈ T we define the corresponding equivalence class

[T ]P := {S ∈ T : P (S) = P (T ) }.
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Figure 9.4: Reduced dual graph for 2D triangulation.

Definition 12 (Reduced dual graph) For a triangulation T let Gw(T ) = (V,E, α, β) be the
corresponding weighted dual graph. The reduced dual graph G′

w(T ) = (V ′, E′, α′, β′) is given by
the reduced node set

V ′ := { [T ]P : T ∈ T }

inducing the reduced edge set

E′ := { (v′1, v
′
2) : ∃ v1 ∈ v′1, v2 ∈ v′2 : (v1, v2) ∈ E } \ { (v′, v′) : v′ ∈ V ′ }.

The weight functions α′, β′ are given by

α′(v′) :=
∑

v∈v′

α(v),

β′((v′1, v
′
2)) :=

∑

e∈E∩(v′
1
×v′

2
)

β(e).

Figure 9.4 shows the reduced dual graph corresponding to the dual graph given in Figure 9.3.
The tetrahedra forming a multi-node are surrounded by a bold frame. Note that the dual graph
G(T ) in Figure 9.3 has 20 nodes and 24 edges whereas the reduced dual graphG′(T ) in Figure 9.4
has only 8 nodes and 9 edges.

After computing a load balancing partitioning m′ : V ′ → {1, . . . , P} of the reduced dual
graph G′

w(T ), for the data migration we use an migration algorithm described in [52]. The
migration of the tetrahedra is carried out by means of the DDD package. After the migration
for the new distributed hierarchical decomposition H̃ the property

master(T ) = m′([T ]P )

holds. In [52] it is shown that for an admissible input hierarchical decomposition the distributed
hierarchical decomposition after the migration is again admissible.

Remark 4 (Migration of numerical data) If a tetrahedron T is moving from one processor
to another, also certain vector entries corresponding to the degrees of freedom on T have to be
migrated. The valid migration of numerical data is a delicate task and will not be discussed in
this thesis.
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9.3 Current status and outlook

The parallel refinement algorithm and load balancing strategy described in [1] served as a starting
point for the parallelization of DROPS. The work on parallelization is done at the Chair of
Scientific Computing, RWTH Aachen University.
Currently the parallel version of DROPS can solve the following problem classes

1. Poisson problems

2. Stokes problems

3. Navier-Stokes problems

4. Two-phase flow problems

In all these cases we can handle adaptive grids that change during the time integration.

Current status

In order to be able to solve these problems with DROPS on a distributed memory computer the
following methods are parallelized. We use the structure in Figure 8.1 to discuss the parallelized
algorithms and data structures and the algorithms and data structures that remain unchanged.

The refinement algorithm and load balancing strategy have been parallelized. This implies
that the underlying data structure of multilevel tetrahedral grids is distributed. The refinement
algorithm and the load balancing algorithm have been extended such that these can handle
degrees of freedom on hierarchical tetrahedral grids.

The initial triangulation T0 can be read from a mesh file generated by the mesh generator
GAMBIT [44] and is then distributed among all processors. The geometry as well as the finite
element solutions can be transfered to Ensight- [43], Geomview- [47] or to VTK-format [80].

The setup routines for matrices and right hand sides of the discretized PDEs were easy to
parallelize, cf. section 9.1. The data structures for finite elements, quadrature, index clases, etc.
of the sequential version of DROPS are reused in the parallel version with only minor changes.

In an adaptive setting it is essential to be able to perform interpolation operations on finite
element functions between different grids. Changing the triangulation or performing load bal-
ancing operations has to be done carefully in order to keep access to degrees of freedom that are
required for the transfer (interpolation) of FE-functions to another triangulation. In the current
parallel version all algorithms to create and change adaptive grids in time can handle P1- and
P2-FE-functions, cf. section 8.3.

Within the parallel solvers it is neccessary to transform vectors from the distributed storage
format into the accumulated one, see Definition 9. Efficient routines for such transformation
operations have been implemented.

A large part of the overall computing time is consumed by iterative solvers for linear systems.
Parallel versions of CG, GMRES, GCR, QMR and BiCGStab are implemented. For precondi-
tioning these solvers can be combined with a parallel Jacobi- or a blocked SSOR-method as well
as with iterative solvers in the form of preconditioners.

In order to solve Stokes- or Oseen type problems one can use a parallel Krylov subspace
method. Furthermore, a parallel version of the inexact Uzawa algorithm is available. cf. sec-
tions 3.5.2-3.5.3.
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To treat the nonlinearity in the discretized the Navier-Stokes-equations we use a parallel
version of the fixed point defect correction method with step size control, cf. algorithm 1 in
section 3.4.

The time integration methods methods available in the sequential DROPS version are easy
to parallelize. Such parallel variants are available.

Parallelization of the fast marching method (FMM), cf. section 4.2.6, is a delicate task,
because information from neighboring tetrahedra is needed to update degrees of freedom. This
information is used in each update step of the FMM and may be stored on a neighbor processor.
This implies a large number of small communications and thus can cause bad parallel efficiency.
Due to the inherent sequential structure of this algorithm there is no effective way of parallelizing
this algorithm with only minor changes. We have implemented in the current version a (with
respect to parallel efficiency) suboptimal strategy in which the update phase of the FMM is
realized on a single processor. It turns out that this is still acceptable for the problem sizes and
numbers of processors that we have considered so far.

For the decoupling (in each time step) between the level set and the Navier-Stokes subprob-
lems in a two-phase flow problem the sequential methods could be parallelized with only minor
changes.

Outlook on parallelization

The following concerning the parallelization of DROPS are planned.

• Hybrid parallelization. In order to use clusters of multicore architectures a hybrid
parallel version of DROPS will be developed. This will be done by combining OpenMP
and MPI, to get better parallel efficiency on these high-performance computers. The
planned shared memory parallelization will be based on the work that has been done by
the Center for Computation and Communication at RWTH [14].

• Improving parallel efficiency of linear solvers. The most time-consuming task in
solving two-phase flow problems is solving multiple linear systems of equation. We want
to use a large number of processors for solving such problems in order to be able to
store such large data sets and to have relatively short computing times. Synchronization
points will become a bottleneck for the parallel efficiency. Therefore new algorithms and
modified Krylov subspace solvers will be developed and implemented in DROPS. A good
option may be to apply so-called s-step methods in these solvers. Furthermore, more
parallel preconditioners have to be developed and implemented.

• Load balancing. The current version of the load balancing technique tries to

a) uniformly distribute the tetrahedra of a given level (in most cases of the finest trian-
gulation) and

b) keep the number of faces on the processor boundary as small as possible.

Both goals are not optimal. In the case of a) the number of tetrahedra does not necessarily
represent correctly the amount of work each processor has to do. For example, Dirichlet-
boundary conditions do not create degrees of freedom on all vertices of tetrahedra at
the domain boundary and/or the XFEM may introduce extra degrees of freedom in a
certain tetrahedron. With respect to b) we note that just considering faces may not be
a correct measure for the amount of communication between processors. It is known,
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that hyper graphs can often model the communication in a better way, cf. [40]. Thus
the load balancing algorithm can be improved by a better node weight function α′(v′),
cf. Definition 12 and by the use of hyper graphs to compute a graph partitioning.

• Reparametrization of the level-set function. The currently implemented strategy to
reparametrize the level-set function by performing the update phase in the fast-marching
algorithm on a single processors is not efficient for a large number of processors (Amdahl’s
law). A better parallel variant of the FMM has to be developed and implemented.

• XFEM. The present parallel version of DROPS cannot handle extended finite element
spaces. As is known from the sequential version these spaces result in much smaller
discretization errors as the standard finite element spaces. Therefore it is important to be
able to use the XFEM technique in the parallel code, too.
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Part III

Examples of implementations in
DROPS
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In this part we present examples of implementations of a few one- and two-phase flow problems
in DROPS.
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Chapter 10

How to get started

In this chapter we describe how the DROPS package can be obtained and installed.

10.1 How to obtain the code

For access to the DROPS CVS server, it may be necessary to register at TIM (Tivoli Identity
Manager) at the Computing Center RWTH Aachen University (see, for details, http://www.rz.rwth-
aachen.de/). Then the following should be done:

• Download the register form, fill-in and send it to Computing Center RWTH Aachen Uni-
versity. After that you will receive the login account <User-ID> by TIM and the password.

• Login by TIM and unlock ”Hochleistungsrechnen RWTH Aachen”.

• Write a mail to <terboven@rz.rwth-aachen.de>1 and ask to record the user <User-ID>
for the DROPS-CVS repository.

• Configure the computer cluster ssh so that not every time the password is demanded. Do
the following:

– Login at the computer cluster at Computing Center RWTH Aachen University

ssh User-ID@cluster.rz.rwth-aachen.de

– Create the .ssh subdirectory

mkdir .ssh

– Create (with the vi text editor) the authorized keys file

vi authorized keys

and copy the contents of the .ssh/id rsa.pub file from you computer into this file.

• Configure the DROPS-CVS repository on your computer

export CVS RSH=ssh

export CVSROOT=<User-ID>@cluster.rz.rwth-aachen.de:/home/drops/CVS REPOSITORY

If the registration is completed successfully, perform the following actions:

1This address may change. In this case ask the maintainers of DROPS about the current contact person.
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• Create a work directory for installation

mkdir your installation directory

and checkout drops from DROPS-CVS repository by

cvs co drops

Alternatively, you can use a GUI frontend to CVS such as tkcvs:

tkcvs

[Choose the option ”Browse Modules” in the menu-icon ”File”]

[In the new window ”Module Browser” choose
the module ”drops” and check out them]

Subdirectory drops will be created in your current directory.

• Go to this new subdirectory drops:

cd drops

10.2 Compilation of DROPS

You may have to change system-dependent settings. They are contained in the file drops.conf .
Use a text editor, for example nedit to change the file drops.conf .

nedit drops.conf

[change the file drops.conf ]

Set your architecture and compiler (option ARCH) to one of the following: to one of

• ARCH = LINUX for gcc compiler;

• ARCH = INTEL for icc (Intel C++) compiler;

• ARCH = SGI for CC compiler in OS Irix;

• ARCH = SUN for CC compiler in OS Solaris,

and correct the translator call (option ARCH CXX) and its options (option ARCH CXXFLAGS)
in the file arch/ARCH/mk.conf . For example, for ARCH = LINUX:

cd arch/LINUX

nedit mk.conf

[change the file mk.conf ]

cd ../.. (go back into the root directory drops).

Now that you have changed the files drops.conf and arch/ARCH/mk.conf , run the make
utility at the shell prompt in the current directory with the target dep:

make dep

This will create the corresponding file dependency needed for compiling DROPS.
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10.3 Building the binary file

There are four main subdirectories with the program examples for

• a Poisson problem ( subdirectory poisson) ;

• a one-phase Stokes problem ( subdirectory stokes) ;

• a one-phase Navier-Stokes problem ( subdirectory navstokes);

• a two-phase Navier-Stokes problem ( subdirectory levelset) .

As an example, go to the subdirectory navstokes:

cd navstokes

Now run the make utility at the shell prompt in the current directory:

make <name>

Here <name> may be one of the following:

• nsdrops for an stationary Navier-Stokes problem;

• insdrops for an instationary Navier-Stokes problem;

• insadrops for an instationary Navier-Stokes problem with adaptive grid refinement;

• drivcav for the driven cavity problem described in Chapter 11.

For example, we continue with the option drivcav:

make drivcav

10.4 Running DROPS

If the make finished successfully, the executable file drivcav has been constructed. The simplest
way to run the program is a command call such as

./drivcav 1e-7 200 0.1 100 1 200 0 100 0.1 0 1

A detailed description of this example is given in Section 11.2.4.
Another way to run a program in DROPS is the usage of the parameter file <name>.param.

For example, to run the program risingBubbleAdap from the ∼ /drops/levelset subdirectory,
in which the simulation of a rising bubble is implemented, we call

./risingBubbleAdap risingBubbleAdap.param

A detailed description of this example is given in Chapter 12.
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Chapter 11

Navier-Stokes equations for a
one-phase flow

11.1 Introduction

We consider a driven cavity problem of the form

∂u

∂t
− µ∆u + (u · ∇)u + ∇p = 0

divu = 0

in the unit cube Ω = [0, 1]3 for t ∈ [0, 1] with µ = 0.001. This rather small viscosity coefficient is
used to obtain a more interesting (compared to µ = 1) flow field, cf. Figure 11.2. The Dirichlet
boundary conditions are taken as u = (1, 0, 0)T on the face z = 0 and u = (0, 0, 0)T on the other
faces. The initial condition is u = (0, 0, 0)T for t = 0.

The following components are used:

• For the triangulation we partition Ω uniformly into 16 × 16 × 16 cubes and then each of
them is subdivided into six tetrahedra. Then the subdomains [0, 0.2] × [0, 0.2] × [0, 0.2]
and [0.8, 1] × [0, 0.2] × [0, 0.2] are refined once more.

• P2-P1 finite element pair for velocity and pressure. The discretization is implemented in the
routines SetupInstatSystem, SetupInstatRhs of the class StokesP2P1CL (file stokes-

/stokes.h) and SetupNonlinear of the class NavierStokesP2P1CL (file navstokes/nav-
stokes.h).

• For time discretization and linearization, the θ-scheme with θ = 1 and the fixed point de-
fect correction are used, cf. sections 3.3.1 and 3.4. These are implemented in the classes In-
statNavStokesThetaSchemeCL (file navstokes/integrTime.h) and AdaptFixedPtDefect-

CorrCL (file num/nssolver.h), respectively.

• The Oseen problems are solved by a preconditioned block GCR solver, cf. section 3.5.3. In
DROPS it is realized by a combination of the classes GCRSolverCL (file num/solver.h) and
BlockMatrixSolverCL (file num/stokessolver.h). The accuracy for the Oseen solver is
increased by a factor 10 after each iteration of the fixed point method. The preconditioner
for GCR is as in (3.35). This block preconditioner is implemented in the class BlockPreCL
in num/stokessolver.h. To apply Q−1

A to a vector b, we use a Jacobi-preconditioned
BICGSTAB solver. For Q−1

S we use the preconditioner as in (3.36).
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11.2 Implementation

In this section we describe how the problem and the methods outlined in the previous section
are implemented in DROPS (navstokes/drivcav.cpp).

11.2.1 Input parameters

The parameters needed to solve the Navier-Stokes problem are the following:

• parameters for the fixed point iteration

– fp tol: tolerance.

– fp maxiter: maximal number of iteration.

– deco red: the reduction factor, which is used to set the new tolerance of the linear
solver for the next fixed point iteration.

• parameters for the time integration

– theta: parameter of the θ-scheme.

– num timestep: number of time step.

– time begin and time end: begin and end point of the time interval.

• parameters for the mesh refinement:

– shell width: width of the domain to be further refined.

– c level: coarsest level.

– f level: finest level.

They will be read from the command line in the main function.

11.2.2 Structure of the program

We need the following libraries:

#include "geom/multigrid.h"

#include "out/output.h"

#include "out/ensightOut.h"

#include "geom/builder.h"

#include "stokes/stokes.h"

#include "num/nssolver.h"

#include "navstokes/navstokes.h"

#include "navstokes/integrTime.h"

#include <fstream>

#include <sstream>

#include <string>

The program consists of

• A class StokesCoeffCL, which contains the coefficients of the PDE and the right hand side
function g, to be used for the template parameter of the problem class NavierStokesP2-
P1CL.

• The functions uD for the Dirichlet boundary conditions and Null for the initial condition
of the velocity.
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• The functions MakeInitialTriangulation and ModifyGridStep for generating the initial
triangulation.

• The main function, which describes the Navier-Stokes problem and calls the function
Strategy to solve it.

• The function Strategy: the most important part, in which the Navier-Stokes problem
defined in the main function is solved.

In the next sections, we present the essential parts of functions main and Strategy in detail.

11.2.3 The function main

The main function first reads the input parameters into the corresponding variables.

The domain is partitioned uniformly into n× n×n cubes, then each of them is dived into 6
tetrahedra, using an object of the BrickBuilderCL class.

DROPS::BrickBuilderCL brick(DROPS::std_basis<3>(0), DROPS::std_basis<3>(1),

DROPS::std_basis<3>(2), DROPS::std_basis<3>(3),n,n,n);

For each face of the cube, the type of boundary condition is set with DirBC, which indicates
the inhomogeneous Dirichlet boundary condition and the boundary value for the velocity is
contained in the array bnd fun

const DROPS::BndCondT bc[6]= { DROPS::DirBC, DROPS::DirBC, DROPS::DirBC,

DROPS::DirBC, DROPS::DirBC, DROPS::DirBC};

const DROPS::StokesVelBndDataCL::bnd_val_fun bnd_fun[6]=

{&uD, &uD, &uD, &uD, &uD, &uD);

We define an object prob of the class NavierStokesP2P1CL for the Navier-Stokes problem:

typedef DROPS::NavierStokesP2P1CL<StokesCoeffCL> NavierStokesCL;

NavierStokesCL prob(brick, StokesCoeffCL(),

DROPS::StokesBndDataCL(6, bc, bnd_fun));

The problem is solved by calling the function Strategy.

Strategy(prob, fp_tol, fp_maxiter, deco_red, oseen_maxiter,

theta, num_timestep, time_begin, time_end, shell_width, c_level, f_level);

One can now access the computed solutions via the member functions GetVelSolution and
GetPrSolution of prob.

11.2.4 The function Strategy

The Strategy function has the following prototype

template<class Coeff>

void Strategy(DROPS::NavierStokesP2P1CL<Coeff>& NS, double fp_tol, int fp_maxiter,

double deco_red, int oseen_maxiter, double theta,

DROPS::Uint num_timestep, double time_begin, double time_end,

double shell_width, int c_level, int f_level)

First, we refine the grid in the above mentioned subdomains further and create the triangulation
MG with

MultiGridCL& MG= NS.GetMG();

MakeInitialTriangulation( MG, shell_width, c_level, f_level);
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For the spatial discretization, we define the variables A, B, M, N, b, c, cplM, cplN as pointers to
the corresponding members of the problem NS. After setting the velocity and pressure indices
vidx and pidx, we create the numbering for the velocity and pressure unknowns with

NS.CreateNumberingVel( MG.GetLastLevel(), vidx);

NS.CreateNumberingPr( MG.GetLastLevel(), pidx);

The members NumUnknowns of vidx and pidx now contain the number of velocity and pressure
unknowns. We set the dimensions of the matrices and vectors by assigning their row and column
indices to vidx and/or pidx with the routine SetIdx.

The initial condition for u when t = 0 is set to v by

NS.InitVel(v, &Null);

Then we assemble the matrices and the right hand side vector with

NS.SetupInstatSystem( A, B, M);

NS.SetupNonlinear( N, v, cplN, 0., 0.);

NS.SetupInstatRhs( b, c, cplM, 0., b, 0.);

As we use the same vector b for the right hand side and the couplings with the matrix A, the
sum of them is contained in b.

We also assemble the mass matrix:

NS.SetupPrMass( &M_pr);

The preconditoner QA, named Apc, is definen by

typedef JACPcCL APcPcT;

APcPcT Apcpc;

typedef BiCGStabSolverCL<APcPcT> ASolverT; // BiCGStab-based APcT

ASolverT Asolver( Apcpc, 300,1e-2, /*relative=*/ true);

typedef SolverAsPreCL<ASolverT> APcT;

APcT Apc( Asolver);

We create the preconditoner QS with the name BBTpc:

typedef MinCommPreCL BBTPcT;

BBTPcT BBTpc(0, B->Data, M-> Data, M_pr.Data);

The constructor of the class MinCommPreCL requires the pointer A to the upper left matrix Â of
the block matrix as its first argument. This matrix can only be obtained after we have an object
of class InstatNavStokesThetaSchemeCL, which should be defined later because its template
parameters in turn depend on MinCommPreCL. Therefore we initialize A with the null pointer and
will set the actual pointer to it when the matrix Â is available with the function SetupMatrixA.

We construct the block preconditioner oseenpc for the Oseen problem

typedef BlockPreCL<APcT, BBTPcT, false> OseenPcT;

OseenPcT oseenpc( Apc, BBTpc);

The third template parameter of the class BlockPreCL indicates the type of the preconditioner.
The value true denotes the diagonal block preconditioner and false stands for the upper
triangular one.

With this preconditoner, we define the block preconditoned GCR solver oseensolver

typedef GCRSolverCL<OseenPcT> OseenBaseSolverT;

OseenBaseSolverT oseensolver0( oseenpc, 100, oseen_maxiter, 1e-4, false, &os);

typedef BlockMatrixSolverCL<OseenBaseSolverT> OseenSolverT;

OseenSolverT oseensolver( oseensolver0);
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For the nonlinear solver statsolver we use the fixed point defect correction with step size
control

typedef AdaptFixedPtDefectCorrCL<NavStokesCL, OseenSolverT> NSSolverT;

NSSolverT statsolver(NS, oseensolver, fp_maxiter, fp_tol, deco_red);

The θ-scheme instatsolver is applied for the time integration. After that we obtain the
reference to the upper left matrix Â to set the pointer A of BBTpc

InstatNavStokesThetaSchemeCL<NavStokesCL, NSSolverT > instatsolver(NS, statsolver, theta);

BBTpc.SetMatrixA(&instatsolver.GetUpperLeftBlock());

Now we solve the instationary Navier-Stokes equations from time begin to time end with the
time step timestep. In each time step, the new time is set via SetTime and the routine DoStep

is called.

for (int timestep=1; timestep<=num_timestep; timestep++)

{

double t= time_begin + timestep*dt;

NS.SetTime( t);

instatsolver.DoStep( *v, p->Data);

}

After compiling, we run the executable with the command of the form

./drivcav <fp_tol> <fp_maxiter> <deco_red> <oseen_maxiter> <theta> <num_timestep>

<time_begin> <time_end> <shell_width> <c_level> <f_level>

In our example we take the following parameters:

./drivcav 1e-7 200 0.1 100 1 200 0 100 0.2 0 1

11.3 Results

The ”steady state” of the flow, which is determined by taking a tolerance 10−7 in the fixed point
iteration, is illustrated in Figures 11.1 and 11.2. In these figures the counter-rotating eddies in
the lower right and left corner can be seen.
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Figure 11.1: Driven Cavity: Velocity field at steady state.

Figure 11.2: Driven Cavity: Streamlines at steady state.



Chapter 12

Navier-Stokes equations for a
two-phase flow

12.1 Introduction

We consider a model of the form (1.4) that describes a “rising bubble” problem, namely an
n-butanol droplet in water that rises due to gravity. The domain is given as Ω := [0, 0.008] ×
[0, 0.04] × [0, 0.008]. At the initial time, the droplet (Ω1) is a sphere of radius R = 0.001,
centered at (0.004, 0.002, 0.004). The material coefficients are given as

µ1 = 0.003281

µ2 = 0.001388

ρ1 = 845.442

ρ2 = 986.506

τ = 0.00163

(12.1)

Homogeneous Dirichlet boundary conditions for velocity are used. The initial velocity is (0, 0, 0)T

and the external gravity force is (0,−9.81, 0)T .

The following methods are used:

• P2-P1X finite element spaces for velocity and pressure. The discretization of the two-phase
flow Navier-Stokes equations is done in the class InstatNavierStokes2PhaseP2P1CL with
the routines SetupSystem1, SetupSystem2 and SetupNonlinear (in the files stokes/in-
statstokes2phase.h and stokes/instatnavstokes2phase.h).

• The spatial discretization of the levelset equation is implemented in the classes Levelset-
P2CL and InterfacePatchCL (file levelset/levelset.h). The discretization is obtained
using a quadratic finite element space with streamline diffusion stabilization. The matrices
and vectors are assembled using the routines SetupSystem.

• The Laplace-Beltrami method for the discretization of the curvature localized force term,
cf. section 4.2.3, implemented in the function SF ImprovedLaplBeltrami, which is called
by the member function AccumulateBndIntegral.

• The discrete approximation of the interface, cf. section 4.2.2, is implemented in the class
InterfacePatchCL
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• A mass conservation correction, implemented in the routine AdjustVolume

• The Fast Marching Method for the reparametrization is implemented in the class Fast-

MarchCL (file levelset/fastmarch.h). Its member function Reparam is called by the
function ReparamFastMarching of LevelsetP2CL.

• The time integration is of implicit Euler type, cf. sections 4.3.3 and is implemented in the
class LinThetaScheme2PhaseCL (file levelset/coupling.h).

• A preconditoned GCR method is used to solve the Oseen problem, cf. section 11.2.

12.2 Implementation

The rising bubble problem is implemented in levelset/risingBubbleAdapt.cpp.

12.2.1 Input parameters

The input parameters are given in a parameter file (namely levelset/rising bubble butanol -

water.param), a text file (with the extension “.param“) which contains assignments of the form

parameter name = value.

These parameters are obtained easily using an object of the class ParamMesszelleCL (file level-
set/params.h) and can be accessed through its members. (Note that the names of the param-
eters in the parameter file and the corresponding class members are not identical).

12.2.2 Structure of the program

The following libraries are needed:

#include "geom/multigrid.h"

#include "geom/builder.h"

#include "navstokes/instatnavstokes2phase.h"

#include "stokes/integrTime.h"

#include "num/stokessolver.h"

#include "out/output.h"

#include "out/ensightOut.h"

#include "levelset/coupling.h"

#include "levelset/params.h"

#include "levelset/adaptriang.h"

#include "num/bndData.h"

#include <fstream>

Similar to the example in chapter 11, this program consists of

• the coefficient class ZeroFlowCL as the template parameter for the problem class, Instat-
NavierStokes2PhaseP2P1CL,

• the function Null for the initial and Dirichlet boundary conditions of the velocity,

• the function DistanceFct to initialize the levelset function,

• the function sigmaf which defines the surface tension. If the surface tension is variable
one needs an additional function for its gradient.

• the functions Strategy and main.
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12.2.3 The function main

In the function main we read the input parameters from the the parameter file into a global
object C of the class ParamMesszelleCL

std::ifstream param( argv[1]);

param >> C;

param.close();

Now we define the triangulation mg as an object of the BrickBuilderCL

std::string mesh( C.meshfile), delim("x@");

size_t idx;

while ((idx= mesh.find_first_of( delim)) != std::string::npos )

mesh[idx]= ’ ’;

std::istringstream brick_info( mesh);

brick_info >> dx >> dy >> dz >> nx >> ny >> nz;

if (!brick_info || dx!=dz)

{

std::cerr << "error while reading geometry information: " << mesh << "\n";

return 1;

}

DROPS::Point3DCL orig, px, py, pz;

px[0]= dx; py[1]= dy; pz[2]= dz;

DROPS::BrickBuilderCL builder( orig, px, py, pz, nx, ny, nz);

DROPS::MultiGridCL mg( builder);

which will be adaptively refined in a zone of width C.ref width up to the level C.ref flevel

around the interface through an object adap of the class AdapTriangCL. The routine Make-

InitialTriang creates the initial triangulation at the time t = 0 and uses the distance function
DistanceFct.

DROPS::AdapTriangCL adap( mg, C.ref_width, 0, C.ref_flevel);

adap.MakeInitialTriang(DistanceFct);

We assign a boundary condition to each boundary segment

DROPS::BndCondT bc[6];

DROPS::StokesVelBndDataCL::bnd_val_fun bnd_fun[6];

for (DROPS::BndIdxT i=0; i<num_bnd; ++i)

{

bc[i]= DROPS::WallBC;

bnd_fun[i]= &Null;

}

and define an object prob of the problem class InstatNavierStokes2PhaseP2P1CL

typedef ZeroFlowCL CoeffT;

typedef DROPS::InstatNavierStokes2PhaseP2P1CL<CoeffT> MyStokesCL;

MyStokesCL prob(mg, ZeroFlowCL(C), DROPS::StokesBndDataCL(

num_bnd, bc, bnd_fun), DROPS::P1X_FE, C.XFEMStab);

The function Strategy is now called to solve the problem

Strategy( prob, adap);

12.2.4 The function Strategy

The Strategy function has the prototype

template<class Coeff>

void Strategy( InstatNavierStokes2PhaseP2P1CL<Coeff>& Stokes, AdapTriangCL& adap)

The triangulation from Stokes is obtained using the routine GetMG
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MultiGridCL& MG= Stokes.GetMG();

An object lset of LevelsetP2CL is created to describe the levelset equation:

sigma= Stokes.GetCoeff().SurfTens;

LevelsetP2CL lset( MG, &sigmaf, /*grad sigma*/ 0, C.lset_theta, C.lset_SD, -1,

C.lset_iter, C.lset_tol, C.CurvDiff);

The third parameter in the above constructor of lset is set as the null pointer, because the
surface tension is constant. Otherwise, one should use a pointer to the function which describes
the gradient of the surface tension.

Then we create the numberings for the levelset, velocity and pressure using the member
functions CreateNumbering... of lset and Stokes with the corresponding index description
pointers lidx, vidx and pidx

IdxDescCL* lidx= &lset.idx;

IdxDescCL* vidx= &Stokes.vel_idx;

IdxDescCL* pidx= &Stokes.pr_idx;

lset.CreateNumbering( MG.GetLastLevel(), lidx);

Stokes.CreateNumberingVel( MG.GetLastLevel(), vidx);

Stokes.CreateNumberingPr( MG.GetLastLevel(), pidx, 0, &lset);

and set the indices to their member matrix- and vector description objects via the member
function SetIdx

lset.Phi.SetIdx( lidx);

Stokes.b.SetIdx( vidx);

Stokes.v.SetIdx( vidx);

cplN.SetIdx( vidx);

Stokes.c.SetIdx( pidx);

Stokes.p.SetIdx( pidx);

Stokes.A.SetIdx(vidx, vidx);

Stokes.B.SetIdx(pidx, vidx);

Stokes.prM.SetIdx( pidx, pidx);

Stokes.M.SetIdx(vidx, vidx);

Stokes.N.SetIdx(vidx, vidx);

The levelset function and velocity are initialized with the functions DistanceFct and Null

respectively

lset.Init( DistanceFct);

Stokes.InitVel( &Stokes.v, Null);

To export the solution at each time step to the ensight ouput files for visualization, we use an
object of the class EnsightP2SolOutCL

EnsightP2SolOutCL ensight( MG, lidx);

const string filename= C.EnsDir + "/" + C.EnsCase;

const string datgeo= filename+".geo",

datpr = filename+".pr" ,

datvec= filename+".vel",

datscl= filename+".scl";

ensight.CaseBegin( string(C.EnsCase+".case").c_str(), C.num_steps+1);

ensight.DescribeGeom( "Messzelle", datgeo, true);

ensight.DescribeScalar( "Levelset", datscl, true);

ensight.DescribeScalar( "Pressure", datpr, true);

ensight.DescribeVector( "Velocity", datvec, true);

The iterative nonlinear and linear and solvers (including the corresponding preconditioners)
for the Navier-Stokes problem are similar to those in the one-phase flow example in the previous
chapter:
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typedef JACPcCL APcPcT;

APcPcT Apcpc;

typedef GMResSolverCL<APcPcT> ASolverT;

ASolverT Asolver( Apcpc, 500, /*restart*/ 100, 1e-2, /*relative=*/ true);

typedef SolverAsPreCL<ASolverT> APcT;

APcT Apc( Asolver);

typedef MinCommPreCL BBTPcT;

BBTPcT BBTpc(0, Stokes.B.Data, Stokes.M.Data, Stokes.prM.Data);

typedef BlockPreCL<APcT, BBTPcT, false> OseenPcT;

OseenPcT oseenpc( Apc, BBTpc);

typedef GCRSolverCL<OseenPcT> OseenBaseSolverT;

OseenBaseSolverT oseensolver0( oseenpc, /*truncate*/ C.outer_iter, C.outer_iter,

C.outer_tol, /*relative*/ false);

typedef BlockMatrixSolverCL<OseenBaseSolverT> OseenSolverT;

OseenSolverT oseensolver( oseensolver0);

typedef AdaptFixedPtDefectCorrCL<StokesProblemT, OseenSolverT> NSSolverT;

NSSolverT nssolver( Stokes, oseensolver, C.ns_iter, C.ns_tol, C.ns_red);

An object of the class LinThetaScheme2PhaseCL is created for time integration:

typedef LinThetaScheme2PhaseCL<StokesProblemT, NSSolverT> CouplingT;

CouplingT cpl( Stokes, lset, nssolver, C.nonlinear, true, C.cpl_stab);

The routine SetMatrixA is used to set the actual matrix Â to the BBTPcT preconditioner.

BBTpc.SetMatrixA( &cpl.GetUpperLeftBlock());

We use the routine SetTimeStep to set the time and the time integration procedure is as
follows:

cpl.SetTimeStep( C.dt);

for (int step= 1; step<=C.num_steps; ++step)

{

cpl.DoStep( C.cpl_iter);

time+=C.dt;

if (C.VolCorr)

{

double dphi= lset.AdjustVolume( Vol, 1e-9);

lset.Phi.Data+= dphi;

}

if (C.RepFreq && step%C.RepFreq==0)

{

lset.ReparamFastMarching( C.RepMethod);

adap.UpdateTriang( Stokes, lset);

if (adap.WasModified() )

{

cpl.Update();

}

if (C.VolCorr)

{

double dphi= lset.AdjustVolume( Vol, 1e-9);

lset.Phi.Data+= dphi;

}

}

ensight.putGeom( datgeo, step*C.dt);

ensight.putScalar( datpr, Stokes.GetPrSolution(), step*C.dt);

ensight.putVector( datvec, Stokes.GetVelSolution(), step*C.dt);

ensight.putScalar( datscl, lset.GetSolution(), step*C.dt);

ensight.Commit();

}
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In each time step, the member function DoStep of cpl is used to solve the levelset and the Navier-
Stokes equations. After that, we compute the amount of volume difference in Ω1 with the routine
AdjustVolume and add the correction term to the levelset function. The reparametrization
is performed after each C.RepFreq steps by the member function ReparamFastMarching of
levelset. The triangulation is then modified and the solutions are interpolated based on the
new re-initialized levelset function with the function UpdateTriang of adap. If the numberings
and indices of the vectors are changed, the mass matrix for the pressure should also be updated.
At the end, we export the geometry and the solutions to the ensight files with the member
functions putGeom, putScalar and putVector of ensight.

12.3 Results

The domain is partitioned into 4 × 20 × 4 cubes and then each of them is subdivided into six
tetrahedra. A strip with width 4.5 · 10−4 that contains the interface is refined three times more,
resulting in a mesh size of 0.25mm near the interface. The initial grid is showed in Figure 12.3.

We consider the time interval [0, 0.75] with the time step ∆t is 5·10−4. The nonlinear system
for the velocity and pressure is solved with a tolerance 5 · 10−10 and the tolerance parameter for
the levelset equation is 10−10.

Figure 12.1: Rising droplet: Initial state.
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In Figure 12.2 position and velocities for different times are shown.

Figure 12.2: Dynamics of the rising droplet at t = 0.15, 0.3, 0.45, 0.6, 0.75, color coding indicates
velocity magnitude
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A zoom-in that illustrates the velocity field close to the droplet is given in Figure 12.3.

Figure 12.3: Velocity vectors at time t = 0.6

Figure 12.4 shows the size of the y-component of velocity at the droplet’s barycenter, for t from
0.2 to 0.6. These results were used for validation. It turns out that this rising velocity is in good
agreement with results from measurements that are available in the literature.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.049

0.0492

0.0494

0.0496

0.0498

0.05

0.0502
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Figure 12.4: Rising velocity of the droplet.



Chapter 13

A two-phase flow problem with mass
transport

13.1 Introduction

We consider the two-phase flow problem described in chapter 12 but now combined with an
additional the mass transport equation. Thus the model is as in (1.5). The surface tension
coefficient τ is assumed to be constant (independent of the concentration of the surfactant).
The diffusion coefficients and Henry’s constant are

D1 = 2.3 · 10−6

D2 = 5.8 · 10−6

CH = 0.75

(13.1)

which are much larger than physically realistic ones. We use these large values to have a time
scale for the transport process that is comparable the one of the flow dynamics. Hence one can
better observe the change in the concentration profiles while the droplet rises, cf. figure 13.1.
A homogeneous Neumann boundary condition is imposed for the mass transport problem. The
initial values of the concentrations inside and outside the droplet are 10 and 0.1, respectively.
Thus at t = 0 the Henry interface condition is not satisfied.

Since the surface tension coefficient is assumed to be independent of the concentration of the
third component there is a coupling only in one direction between the two-phase flow problem
and the transport equation for the third component. Thus per time step we first solve the two-
phase Navier-Stokes plus level set equations and then we use the given velocity and interface to
solve the transport equation. For the two-phase flow problem we use the same methods as in
chapter 12. For the transport equation we use the following methods, which are implemented
in TransportP1CL class (file poisson/transport2phase.h):

• P1 finite element space for the concentration c and the transformed concentration c̃, cf.
chapter 5. The matrices and vectors are assembled in the member functions SetupInstat-
System.

• the θ-scheme for the time integration, cf. section 5.3, in the function DoStep.

• the transformation from c to c̃ and vice versa, with the functions c2ct and ct2c.
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13.2 Implementation

The program is almost identical to that in the previous chapter, with the following additional
components for the mass transport part:

• The header file for TransportP1CL class

#include "poisson/transport2phase.h"

• The functions Initialcneg, Initialcpos to describe the initial values of the concentra-
tion in Ω1 and Ω2, respectively. These values are read from the parameter file in the main

function.

• The boundary conditions for the concentration

typedef DROPS::BndDataCL<> cBndDataCL;

typedef cBndDataCL::bnd_val_fun c_bnd_val_fun;

const DROPS::BndCondT c_bc[6]= { DROPS::OutflowBC, DROPS::OutflowBC, DROPS::OutflowBC,

DROPS::OutflowBC, DROPS::OutflowBC, DROPS::OutflowBC};

const c_bnd_val_fun c_bfun[6]= {0, 0, 0, 0, 0, 0};

• In the function main, we assign the parameters of the transport problem, which are read
from the parameter file, to the global variables needed to construct the TransportP1CL

class

ini_c[0]= C.cF;

ini_c[1]= C.cD;

D[0]= C.diffusityF;

D[1]= C.diffusityD;

H= C.equilibrium_jump;

• In the function Strategy, we define an object c of the TransportP1CL class with

cBndDataCL Bnd_c( 6, c_bc, c_bfun);

TransportP1CL c( MG, Bnd_c, Bnd_v, /*theta*/ 1., D, H, &Stokes.v, lset,

/*t*/ 0., C.dt, C.transp_iter, C.transp_tol);

IdxDescCL* cidx= &c.idx;

c.CreateNumbering( MG.GetLastLevel(), cidx);

c.ct.SetIdx( cidx);

c.Init( &Initialcneg, &Initialcpos);

c.Update();

c.SetTimeStep( C.dt);

The solutions of the transport problem can be exported to the ensight output files

const string datc = filename+".c" ,

datct = filename+".ct";

ensight.DescribeScalar( "Concentration", datc, true);

ensight.DescribeScalar( "TransConc", datct, true);

ensight.putScalar( datc, c.GetSolution(), 0);

ensight.putScalar( datct, c.GetSolution( c.ct), 0);

In each time step, after solving the two-phase flow part, we solve the transport problem
with the function DoStep of c. If the grid is modified, the concentration should be updated
with the member functions UpdateTriang of adap (using the address of c as the third
parameter) and Update of c.

for (int step= 1; step<=C.num_steps; ++step)

{

std::cerr << "Schritt " << step << "\t t = "<< step*C.dt<<":\n";

cpl.DoStep( C.cpl_iter);
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c.DoStep( step*C.dt);

lset.GetInfo( maxGradPhi, Volume, bary_drop, min_drop, max_drop);

infofile << Stokes.t << ’\t’ << maxGradPhi << ’\t’ << Volume << ’\t’ << bary_drop

<< ’\t’ << min_drop << ’\t’ << max_drop << std::endl;

std::cerr << "rel. Volume: " << lset.GetVolume()/Vol << std::endl;

if (C.VolCorr)

{

double dphi= lset.AdjustVolume( Vol, 1e-9);

std::cerr << "volume correction is " << dphi << std::endl;

lset.Phi.Data+= dphi;

std::cerr << "new rel. Volume: " << lset.GetVolume()/Vol << std::endl;

}

if (C.RepFreq && step%C.RepFreq==0) // reparam levelset function

{

lset.ReparamFastMarching( C.RepMethod);

adap.UpdateTriang( Stokes, lset, &c);

if (adap.WasModified() )

{

cpl.Update();

c.Update();

}

std::cerr << "rel. Volume: " << lset.GetVolume()/Vol << std::endl;

if (C.VolCorr)

{

double dphi= lset.AdjustVolume( Vol, 1e-9);

std::cerr << "volume correction is " << dphi << std::endl;

lset.Phi.Data+= dphi;

std::cerr << "new rel. Volume: " << lset.GetVolume()/Vol << std::endl;

}

}

ensight.putGeom( datgeo, step*C.dt);

ensight.putScalar( datpr, Stokes.GetPrSolution(), step*C.dt);

ensight.putVector( datvec, Stokes.GetVelSolution(), step*C.dt);

ensight.putScalar( datscl, lset.GetSolution(), step*C.dt);

ensight.putScalar( datc, c.GetSolution(), step*C.dt);

ensight.putScalar( datct, c.GetSolution( c.ct), step*C.dt);

ensight.Commit();

}

13.3 Results

In each time step the linear system for the new concentration is solved with a tolerance 10−10.
The concentration at several points in time are shown in Figure 13.1.
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Figure 13.1: Dynamics of the mass transport. Droplet position and concentration profiles at
t = 0.15, 0.3, 0.45, 0.6, 0.75, color coding indicates concentration value
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Appendix

14.1 Parameter file

#=============================================================

# DROPS parameter file for

# simulation of two-phase flow:

# rising droplet

#=============================================================

# time stepping

Time {

NumSteps = 1300

StepSize = 5e-4

ThetaLevelset = 1 # backward Euler

ThetaStokes = 1 # backward Euler

}

# flow solver

Stokes {

InnerIter = 1000

OuterIter = 200

InnerTol = 1e-12

OuterTol = 1e-10

StokesMethod = -1 # no effect

}

NavStokes {

Nonlinear = 1

Scheme = 1 # time integration: 0=FS op.splitting, 1=theta-scheme

Tol = 5e-10

Iter = 20

Reduction = 0.01

}

# levelset solver

Levelset {

Tol = 1e-10

Iter = 10000

SD = 0.1

CurvDiff = -1

VolCorrection = 1

}

Coupling {

Tol = 1e-10 # not used a.t.m.

Iter = -1 # -1 = till convergence

Stab = 1. # Laplace-Beltrami-Stabilization

}
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# re-initialization of levelset function

Reparam {

Freq = 3 # 0 = no reparametrization

Method = 1 # 0/1 = fast marching without/with modification of zero

}

# adaptive refinement

AdaptRef {

Freq = 1

FinestLevel = 3

Width = 0.45e-3

}

# material data, all units are SI

Mat {

DensDrop = 845.442 # n-Butanol / Wasser

ViscDrop = 3.281e-3

DensFluid = 986.506

ViscFluid = 1.388e-3

SmoothZone = 1e-4

SurfTension = 1.63e-3

}

# mass-transport-parameters, all units are SI

MassTransp {

ConcDrop = 5

ConcFluid = 0.1

DiffusityDrop = 2.3e-6

DiffusityFluid= 5.76e-6

EquilibJump = 0.75 # cFluid= EquilibJump*cDrop in the equilibrium

Tol = 1e-10 # relative

Iter = 500

}

# experimental conditions

Exp {

RadDrop = 1e-3 1e-3 1e-3

PosDrop = 4e-3 2e-3 4e-3

Gravity = 0 -9.81 0

FlowDir = 1 # flow in y-direction

InflowVel = 0

RadInlet = 4e-3 # 3.5e-3 for old meas. cell

}

# miscellaneous

InitialCond = 0 # 0=zero, 1/2=flow with/without drop, 3=read from file

InitialFile = initial/brick_adap0

MeshFile = 8e-3x40e-3x8e-3@4x20x4

EnsightCase = butanol_diam2mm

EnsightDir = ensight

XFEMStab = 1.0
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[19] E. Bänsch, Finite element discretization of the Navier-Stokes equations with a free capil-
lary surface, Numer. Math. 88, pp. 203–235, 2001.

[20] R.E. Bank, A.H. Sherman, A. Weiser, Refinement algorithms and data structures for
regular local mesh refinement, in: Scientific computing (R. Stepleman, ed.), North-Holland,
Amsterdam, pp. 3–17, 1983.

[21] R.E. Bank, B.D. Welfert, H. Yserentant, A class of iterative methods for solving
saddle point problems, Numer. Math. 56, pp. 645–666, 1990.

[22] P. Bastian, Parallele adaptive Mehrgitterverfahren, Teubner, Stuttgart, 1996.

[23] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuß, H. Rentz-Reichert,

C. Wieners, UG - A flexible software toolbox for solving partial differential equations,
Computing and Visualization in Science 1, pp. 27–40, 1997.

[24] P. Bastian, Load balancing for adaptive multigrid methods, SIAM J. Sci. Comput. 19,
pp. 1303–1321, 1998.

[25] P. Bastian, K. Birken, K. Johannsen, S. Lang, V. Reichenberger, G. Wittum,

C. Wrobel, A parallel software-platform for solving problems of partial differential equa-
tions using unstructured grids and adaptive multigrid methods, In: High performance com-
puting in science and engineering (E. Krause and W. Jäger, eds.), pp. 326–339, Springer,
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