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Abstract. The topic of this paper is motivated by the Navier–Stokes equations in rotation

form. Linearization and application of an implicit time stepping scheme results in a linear stationary
problem of Oseen type. In well-known solution techniques for this problem such as the Uzawa (or
Schur complement) method, a subproblem consisting of a coupled nonsymmetric system of linear
equations of diffusion-reaction type must be solved to update the velocity vector field. In this paper
we analyze a standard finite element method for the discretization of this coupled system, and
we introduce and analyze a multigrid solver for the discrete problem. Both for the discretization
method and the multigrid solver the question of robustness with respect to the amount of diffusion
and variation in the convection field is addressed. We prove stability results and discretization error
bounds for the Galerkin finite element method. We present a convergence analysis of the multigrid
method which shows the robustness of the solver. Results of numerical experiments are presented
which illustrate the stability of the discretization method and the robustness of the multigrid solver.
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1. Introduction. The incompressible Navier–Stokes problem written in velocity-
pressure variables has several equivalent formulations. Very popular is the convection

form of the problem: find velocity u(t,x) and kinematic pressure p(t,x) such that

∂u

∂t
− ν∆u + (u · ∇)u + ∇p = f in Ω × (0, T ],

div u = 0 in Ω × (0, T ],
(1.1)

with given force field f and viscosity ν > 0. Suitable boundary and initial conditions
have to be added to (1.1). One alternative to (1.1) is the rotation form of the Navier–
Stokes problem:

∂u

∂t
− ν∆u + (curlu) × u + ∇P = f in Ω × (0, T ],

div u = 0 in Ω × (0, T ],
(1.2)

which results from (1.1) after replacing the kinematic pressure by the Bernoulli (or
dynamic, or total; cf., e.g., [18]) pressure P = p + 1

2u · u and using the identity
(u·∇)u = (curlu) × u + 1

2∇(u · u). In the three-dimensional case × stands for the

vector product and curlu := ∇ × u. In two dimensions, curlu := −∂u1

∂x2
+ ∂u2

∂x1
and
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a×u := (−au2, au1)
T for a scalar a. Linearization and application of an implicit time

stepping scheme to (1.2) results in an Oseen-type problem in which the equations are
of the form

−ν∆u + w × u + αu + ∇P = f in Ω

div u = 0 in Ω,
(1.3)

with α ≥ 0 and w = curla, where a is a known approximation of u. Note that the
above linearization of (curlu)×u ensures the ellipticity of (1.3) in a certain sense (cf.
section 2). One strategy to solve (1.3) is an Uzawa-type algorithm, in which a Schur
complement problem SrotP = g̃ for the pressure has to be solved. The Schur comple-
ment operator has the formal representation Srot = −div (−ν∆+w×+αI)−1∇. The
operator (−ν∆+w×+αI)−1 in this Schur complement is the solution operator of the
problem

−ν∆u + w × u + αu = f in Ω,

u = 0 on ∂Ω,
(1.4)

where, for simplicity, we used homogeneous Dirichlet boundary conditions. The exact
solution of (1.4) can be replaced by a suitable approximation like in the inexact Uzawa
method [3] or in block preconditioners for (1.3) (see, e.g., [11], [19]).

Linearization and application of an implicit time stepping scheme to the convec-
tion form (1.1) result in equations as in (1.3) with w × u replaced by (a · ∇)u. The
Uzawa technique applied to this linear stationary problem for u and p corresponds to
a Schur complement problem with operator Sconv = −div (−ν∆ + a · ∇ + αI)−1∇.
The operator (−ν∆ + a · ∇ + αI)−1 in this Schur complement is the solution oper-
ator of decoupled convection-diffusion(-reaction) problems. Hence in this approach
an efficient solver for convection-diffusion equations is of major importance. In the
setting of this paper we are particularly interested in finite element discretization
methods and multigrid solvers for the discrete problem. There is extensive literature
on these solution techniques for convection-diffusion problems; see, e.g., [1], [4], [9],
[14], [15], [16], [20], [21], [23], and the references therein. Important topics are appro-
priate stabilization techniques for the finite element discretization and robustness of
the multigrid solvers for convection dominated problems.

In this paper we study the problem (1.4), which can be seen as the counterpart,
for the Navier–Stokes equations in rotation form, of the convection-diffusion problems
that correspond to the Navier–Stokes problem in convection form. Note that, opposite
to the convection-diffusion problems, the problem (1.4) is a coupled system. In this
paper we restrict ourselves to the two-dimensional case, since for this case we are
able to give complete error analyses for a finite element discretization and a multigrid
solver. However, the methodology (see [12]) and all multigrid tools can be extended
to the three-dimensional case as well. We allow α = 0, which corresponds to the
linearization of a stationary Navier–Stokes problem in rotation form. We will prove
that, under certain reasonable assumptions on the rotation function w, the standard
Galerkin finite element discretization method, without any stabilization, is a useful
method (see Theorem 3.2 and Remark 3.2). The bounds for the discretization error
that are shown to hold are similar to finite element error bounds for scalar linear
reaction-diffusion problems (as, e.g., in [17], [22]). We consider a multigrid solver
for the discrete problem that results from the Galerkin discretization of (1.4) with
standard conforming finite elements. It is proved that a multigrid W-cycle method
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with a canonical prolongation and restriction and a block Richardson smoother is
a robust solver for this problem, in the sense that its contraction number (in the
Euclidean norm) is bounded by a constant smaller than one independent of all relevant
parameters. Although to prove a robust convergence of the multigrid method we
need more restrictive assumptions on w, numerical experiments demonstrate good
performance of the method, even if such assumptions do not hold. Such a theoretical
robustness result is not known for multigrid applied to convection-diffusion problems.
Moreover, in the multigrid solver we do not need so-called robust smoothers or matrix-
dependent prolongations and restrictions, which are believed to be important for
robustness of multigrid applied to convection-diffusion problems. We will show results
of numerical experiments that illustrate the stability of the discretization method
and the robustness of the multigrid solver. Both in the analysis and the numerical
experiments it can be observed that the problem (1.4) resembles a scalar reaction-
diffusion problem. Note that from the numerical solution point of view reaction-
diffusion equations are believed to be simpler than convection-diffusion equations.

Recently, in [12], a new preconditioning technique for a discretization of the Schur
complement operator Srot has been introduced, which has good robustness properties
with respect to variation in ν and in the mesh size parameter. In this paper we consider
only the inner solution operator that appears in the Schur complement operator. Of
course, a stabilization may be needed in the outer iterations for (1.3). This subject is
addressed in [10], where it is shown that a Petrov–Galerkin-type stabilization method
for (1.3) yields optimal error bounds. The possible impact to (1.4) of additional
terms resulting from stabilized finite element method for (1.3) is not considered in
this paper. Generally, such terms enhance ellipticity of (1.4).

The results in [12], [10], and in the present paper show that for the application
of coupled (pressure-velocity) solvers and implicit schemes the rotation form of the
Navier–Stokes equations has interesting advantages compared to the convection form.
Some numerical experiments with a low order finite element method for rotation form
of the incompressible Navier–Stokes equations and comparision with the convection
form can be found in [13]. However, relatively little is known about the numerical
solution of the Navier–Stokes equations in rotation form, and we believe that this
topic deserves further research.

The remainder of the paper is organized as follows. In section 2 notation and
assumptions are introduced. Furthermore, continuity and regularity results for the
continuous problem are proved. In section 3 the finite element method is treated. We
prove discretization error bounds in a problem dependent norm and in the L2-norm.
In section 4 a multigrid solver for the discrete problem is introduced. A convergence
analysis is presented that is based on smoothing and approximation properties. In
section 5 we show results of a few numerical experiments.

2. Preliminaries and a priori estimates. Let Ω be a convex polygonal do-
main in R

2. This assumption on Ω will be needed to obtain sufficient regularity,
which strongly simplifies the multigrid convergence theory based on the smoothing
and approximation property. However, multigrid methods are known to preserve their
typical fast convergence, if this assumption is violated.

By (·, ·) and ‖ · ‖ we denote the scalar product and the corresponding norm in
L2(Ω)n, n = 1, 2. The standard norm in the Sobolev space Hk(Ω)2 is denoted by
‖ · ‖k. For u = (u1, u2), v = (v1, v2) ∈ L2(Ω)2 we have (u,v) = (u1, v1) + (u2, v2).
The norm on the space L∞(Ω) is denoted by ‖ · ‖∞.

For a scalar a and vector v we define the vector product a× v := (−av2, av1)T .
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We consider the variational formulation of (1.4) in the two-dimensional case: for
given ν > 0, α > 0, w ∈ L∞(Ω), f ∈ L2(Ω)2, determine u ∈ U := H1

0 (Ω)2 such that

a(u,v) = (f ,v) for all v ∈ U,(2.1)

where

a(u,v) = ν(∇u,∇v) + α(u,v) + (w × u,v) for u,v ∈ U.

Here we use the notation (∇u,∇v) :=
∑2

i=1(∇ui,∇vi) =
∑2

i,j=1(
∂ui

∂xj
, ∂vi

∂xj
).

Throughout the paper we use C to denote some generic strictly positive constant

independent of ν, α, and w .
The definition of the vector product implies (w × u,v) = −(w × v,u) for all

u,v ∈ L2(Ω)2, and thus the bilinear form a(·, ·) is elliptic:

C ν‖u‖2
1 ≤ a(u,u) for all u ∈ U .

Using ‖w × u‖ ≤ ‖w‖∞‖u‖ we obtain the continuity of the bilinear form:

a(u,v) ≤ (ν + α+ ‖w‖∞)‖u‖1‖v‖1 for all u,v ∈ U.(2.2)

From the Lax–Milgram lemma it follows that the variational problem (2.1) has a
unique solution.

For the analysis below we introduce a parameter dependent norm on U:

|||u|||τ =

(

ν‖∇u‖2 + α‖u‖2 +
τ

‖w‖∞
‖w × u‖2

)
1

2

, τ ≥ 0.

If w = 0, then the third term on the right-hand side is dropped. The constant
appearing in the Friedrichs inequality is denoted by CF :

‖ϕ‖ ≤ CF ‖∇ϕ‖ for all ϕ ∈ H1
0 (Ω).

The domain Ω is such that for any g ∈ L2(Ω) the solution of the variational problem

find ϕ ∈ H1
0 (Ω) such that (∇ϕ,∇v) = (g, v) for all v ∈ H1

0 (Ω)(2.3)

is an element of H2(Ω) and satisfies the regularity estimate ‖ϕ‖2 ≤ CP ‖g‖.
For the analysis in the remainder of this paper the following three conditions are

formulated. We denote cw := ess infΩ |w|.
(A1) Condition (A1) is satisfied if α+ cw > 0 and

η :=
‖w‖∞
α+ cw

≤ C.

(A2) Condition (A2) is satisfied if

w(x) ≥ 0 a.e. in Ω or w(x) ≤ 0 a.e. in Ω.

(A3) Condition (A3) is fulfilled if ∇w ∈ Lq(Ω)2 for some q > 2 and

‖∇w‖Lq
≤ C ‖w‖∞.

If w is a finite element function, then C is assumed to be independent of h.
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In the analysis below it will be explicitly stated which of these conditions are
assumed.

Remark 2.1. (A2) holds, for example, if w stems from the effect of Coriolis forces
(cf., e.g., [6]); (A1) holds if w is continuous and does not have any zeros in Ω or if in
a time stepping scheme we have lower bound for α: 0 < αmin ≤ α.

Note that (|w|u,u) = (|w| × u, 1 × u) ≥ 0, and thus we have for u ∈ L2(Ω)2

cw‖u‖2 ≤ (|w| × u, 1 × u).(2.4)

Using (|w| × u, 1 × u) ≤ ‖|w| × u‖‖1 × u‖ = ‖w × u‖‖u‖ we get

(α+ cw)‖u‖ ≤ ‖w × u‖ + α‖u‖.(2.5)

The inequalities (2.4) and (2.5) are used in the analysis below.

2.1. Analysis of the continuous problem. In this section we will derive a
regularity result (Theorem 2.1) and a continuity result (Lemma 2.2). In the latter,
opposite to the result in (2.2), the problem dependent norm ||| · |||τ is used. The con-
tinuity result is used in the derivation of the discretization error bounds in section 3.

Theorem 2.1. For f ∈ L2(Ω)2 let u ∈ U be the solution of problem (2.1). Then

u is an element of H2(Ω)2 and the estimates

ν‖∇u‖2 + α‖u‖2 ≤ c(ν, α)‖f‖2 ,(2.6)

ν2‖u‖2
2 + C2

P ‖w × u‖2 ≤ 2C2
P

(

4 + 2c(ν, α)2‖w‖2
∞

)

‖f‖2(2.7)

hold, with c(ν, α) =
C2

F

ν+C2

F
α
. If conditions (A1) and (A3) are satisfied, then

ν2‖u‖2
2 + ν(‖w‖∞ + α)‖∇u‖2 + α2‖u‖2 + ‖w × u‖2 ≤ C‖f‖2(2.8)

with a constant C independent of f , ν, α, and w.

Proof. Define f̃ = f−w×u−αu. Note that f̃ ∈ L2(Ω)2 and (∇u,∇v) = − 1
ν (f̃ ,v)

for all v ∈ U. Hence, due to the regularity result for the Poisson equation (2.3), we
have u ∈ H2(Ω)2 and

‖u‖2 ≤ CP

ν
‖f̃‖ ≤ CP

ν
(‖f‖ + ‖w × u‖ + α‖u‖).(2.9)

Note that ‖u‖2 = c(ν, α)(νC−2
F +α)‖u‖2 ≤ c(ν, α)(ν‖∇u‖2 +α‖u‖2). Using this and

taking v = u in (2.1) we get

ν‖∇u‖2 + α‖u‖2 ≤ ‖f‖‖u‖ ≤ ‖f‖c(ν, α)
1

2 (ν‖∇u‖2 + α‖u‖2)
1

2 ,(2.10)

and thus the result in (2.6) holds. We also have, using (2.6),

‖w × u‖2 ≤ ‖w‖2
∞‖u‖2 ≤ c(ν, α)‖w‖2

∞(ν‖∇u‖2 + α‖u‖2) ≤ c(ν, α)2‖w‖2
∞‖f‖2.

(2.11)

Combining this estimate with (2.9), and noting that α‖u‖ ≤ ‖f‖, yields

ν2‖u‖2
2 + C2

P ‖w × u‖2 ≤ C2
P (‖f‖ + c(ν, α)‖w‖∞‖f‖ + ‖f‖)2 + C2

P c(ν, α)2‖w‖2
∞‖f‖2

= C2
P ((2 + c(ν, α)‖w‖∞)2 + c(ν, α)2‖w‖2

∞)‖f‖2

≤ 2C2
P (3 + 2c(ν, α)2‖w‖2

∞)‖f‖2,

and thus the estimate (2.7) is proved.
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Now assume the conditions (A1) and (A3) to be valid. Since f ∈ L2(Ω)2 and
u ∈ H2(Ω)2, (1.4) is satisfied in a strong sense, and thus ‖−ν∆u+αu+w×u‖ = ‖f‖
holds. Taking the square of this identity and noting that (u, w × u) = 0 results in

ν2‖∆u‖2 + 2να‖∇u‖2 + α2‖u‖2 + 2ν(∇u,∇(w × u)) + ‖w × u‖2 = ‖f‖2.(2.12)

A simple computation yields (∇u,∇(w × u)) = −(∇u1, u2∇w) + (∇u2, u1∇w) and

|(∇u,∇(w × u))| ≤ ‖∇u‖(‖u1∇w‖2 + ‖u2∇w‖2)
1

2 .(2.13)

Take q as in (A3) and define q̃ = 1
2q. The Hölder inequality with 1

p + 1
q̃ = 1 and the

injection H1(Ω) →֒ L2p(Ω) yields, for i = 1, 2,

‖ui∇w‖ = (u2
i ,∇w · ∇w)

1

2 ≤ ‖ui‖L2p
‖∇w · ∇w‖

1

2

Lq̃

≤ C‖∇ui‖‖∇w‖Lq
≤ C‖∇ui‖‖w‖∞.

(2.14)

In the last inequality in (2.14) we used (A3). The combination of (2.13) and (2.14)
yields

2ν|(∇u,∇(w × u))| ≤ c̄ ν‖w‖∞ ‖∇u‖2.

From this result and (2.12) we obtain

ν2‖∆u‖2 + 2να‖∇u‖2 + α2‖u‖2 + ‖w × u‖2 ≤ ‖f‖2 + c̄ ν‖w‖∞ ‖∇u‖2.(2.15)

From (2.1) and (2.5) it follows that, for δ > 0,

ν‖∇u‖2 ≤ ‖f‖ ‖u‖ =
1√

δ(α+ cw)
‖f‖

√
δ(α+ cw)‖u‖

≤ ‖f‖2

2δ(α+ cw)2
+ δ(α2‖u‖2 + ‖w × u‖2).

(2.16)

If we set δ = (4 c̄ ‖w‖∞)−1 and multiply (2.16) with 1
2δ we obtain

2c̄ν‖w‖∞‖∇u‖2 ≤ c̄2
‖w‖2

∞

(α+ cw)2
‖f‖2 +

1

2
α2‖u‖2 +

1

2
‖w × u‖2 .

Adding this to (2.15) yields

ν2‖∆u‖2 + ν(c̄‖w‖∞ + 2α)‖∇u‖2 + α2‖u‖2 + ‖w × u‖2

≤
(

1 + c̄2
‖w‖2

∞

(α+ cw)2

)

‖f‖2 +
1

2
α2‖u‖2 +

1

2
‖w × u‖2.

Using assumption (A1), i.e.,
‖w‖2

∞

(α+cw)2 = η2 ≤ C and ‖u‖2 ≤ CP ‖∆u‖, the result in

(2.8) follows.
Note that in (2.6) and (2.7) with α = 0 we have regularity estimates of the

form ‖u‖1 = O(ν−1) and ‖u‖2 = O(ν−2), which show a similar behavior as regularity
results for convection-diffusion problems of the form −ν∆u+a ·∇u = f (cf. [16]). The
result in (2.8), which holds if conditions (A1) and (A3) are satisfied, yields regularity
estimates of the form ‖u‖1 = O(ν−1/2) and ‖u‖2 = O(ν−1). These bounds show
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a behavior that is typical for the solution of reaction-diffusion problems of the form
−ν∆u + bu = f if b > 0 (cf. [17]). In section 4.2 the regularity result (2.8) will be
used in the convergence analysis of the multigrid method.

Lemma 2.2. Take τ > 0. The following holds:

a(v,u) ≤ Cτ |||v|||τ
(

ν‖∇u‖2 + (α+ ‖w‖∞)‖u‖2
)

1

2

for all v,u ∈ U.(2.17)

If condition (A1) is satisfied, then

a(v,u) ≤ Cτ |||v|||τ |||u|||τ for all v,u ∈ U.(2.18)

The constants Cτ may depend on τ .
Proof. For v,u ∈ U we have

a(v,u) = ν(∇v,∇u) + α(v,u) + (w × v,u)

≤ ν‖∇v‖‖∇u‖ + α‖v‖‖u‖ + ‖w × v‖‖u‖.(2.19)

We define κ := τ‖w‖−1
∞ . If we use ‖w × v‖‖u‖ = (κ

1

2 ‖w × v‖)(κ− 1

2 ‖u‖) and apply
the Cauchy–Schwarz inequality in (2.19) we obtain

a(v,u) ≤
(

ν‖∇v‖2 + α‖v‖2 + κ‖w × v‖2
)

1

2
(

ν‖∇u‖2 + α‖u‖2 + κ−1‖u‖2
)

1

2

≤ Cτ |||v|||τ
(

ν‖∇u‖2 + (α+ ‖w‖∞)‖u‖2
)

1

2

,

(2.20)

and thus the result in (2.17) holds. If condition (A1) is satisfied we get, using (2.5),

‖w × v‖ ‖u‖ ≤ ‖w × v‖ 1

α+ cw
(α‖u‖ + ‖w × u‖)

≤ κ
1

2 ‖w × v‖κ
− 1

2 (α
1

2 + κ−
1

2 )

α+ cw
(α

1

2 ‖u‖ + κ
1

2 ‖w × u‖)

≤ Cτ (κ
1

2 ‖w × v‖)(α‖u‖2 + κ‖w × u‖2)
1

2 .

(2.21)

In the last inequality in (2.21) we used condition (A1):

κ−
1

2 (α
1

2 + κ−
1

2 )

α+ cw
≤

3
2κ

−1 + 1
2α

α+ cw
≤ 3

2τ
η +

α

2(α+ cw)
≤ Cτ .

From the results in (2.19), (2.21), and the Cauchy–Schwarz inequality, we obtain
(2.18).

3. Finite element method. In this section we apply a standard finite element
method to the problem (2.1) and derive bounds for the discretization error.

Let (Th) be a quasi-uniform family of triangulations of Ω, with mesh size pa-
rameter h, and Uh ⊂ U be a finite element subspace of U, consisting of piecewise
polynomials of degree k ∈ N. The finite element Galerkin discretization of the prob-
lem (2.1) is as follows: Find uh ∈ Uh such that

a(uh,vh) = (f ,vh) for all vh ∈ Uh.(3.1)
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To measure the effect of different terms in (1.4) we introduce mesh numbers:1

Ekh =
ν

‖w‖∞h2
, Dh =

αh2

ν
.

First we prove the stability of a(u,v) on Uh. Below we use the inverse inequality

‖∇vh‖ < µuh
−1‖vh‖ for all vh ∈ Uh.

The L2-orthogonal projection Ph : L2(Ω)2 → Uh is defined by

(Phu,vh) = (u,vh) for all vh ∈ Uh.(3.2)

We will assume the following approximation property of the spaces Uh (cf., e.g., [5]):
their exists interpolation operator Ih : U → Uh such that

‖u − Ihu‖ ≤ Chm‖u‖m, m = 0, 1, 2 for u ∈ U ∩Hm(Ω)2,(3.3)

‖u − Ihu‖1 ≤ Chm−1‖u‖m, m = 1, 2 for u ∈ U ∩Hm(Ω)2.(3.4)

In (3.3) we use the notation H0(Ω)2 := L2(Ω)2 and ‖ · ‖0 := ‖ · ‖.
Lemma 3.1. Assume that conditions (A1) and (A2) are fulfilled. If Ekh > 1 and

Dh < 1, condition (A3) is also assumed. Then there exists some τ ∈ (0, 1] such that

inf
uh∈Uh

sup
vh∈Uh

a(uh,vh)

|||uh|||τ |||vh|||τ
≥ C > 0.(3.5)

Proof. Take a fixed uh ∈ Uh. Note that

(w × uh,Ph(w × uh)) = (Ph(w × uh),Ph(w × uh)),
(uh,Ph(w × uh)) = 0.

Using (2.4) and condition (A2) it follows that

cw‖uh‖2 ≤ (|w| × uh, 1 × uh) = (Ph(|w| × uh), 1 × uh)
= (|Ph(w × uh)|, 1 × uh) ≤ ‖Ph(w × uh)‖‖uh‖,

and thus

(α+ cw)‖uh‖ ≤ α‖uh‖ + ‖Ph(w × uh)‖.(3.6)

We take

τ = min{1, µ−2
u , c̃−1},(3.7)

where c̃ is a constant (independent of all parameters) that will occur in the proof. Let
κ := τ‖w‖−1

∞ . Using (3.6) we obtain

α‖uh‖2 + κ‖w × uh‖2 ≤ (α+ κ‖w‖2
∞)‖uh‖2

≤ 2(α+ κ‖w‖2
∞)

(α+ cw)2
(α2‖uh‖2 + ‖Ph(w × uh)‖2)

≤ 2(α+ κ‖w‖2
∞)(α+ κ−1)

(α+ cw)2
(α‖uh‖2 + κ‖Ph(w × uh)‖2).

1The abbreviation and definition of Ek is chosen to be consistent with the definition of the Ekman
number in the theory of rotating flows. However, the latter is only a particular case (w = const).
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Note that τ−1 + τ ≤ max{1, µ2
u, c̃} + 1 ≤ C and thus, using condition (A1),

(α+ κ‖w‖2
∞)(α+ κ−1)

(α+ cw)2
=
α2 + (τ−1 + τ)α‖w‖∞ + ‖w‖2

∞

(α+ cw)2

≤ C
α2 + ‖w‖2

∞

(α+ cw)2
≤ C(1 + η2) ≤ C.

Hence,

α‖uh‖2 + κ‖w × uh‖2 ≤ C(α‖uh‖2 + κ‖Ph(w × uh)‖2).(3.8)

To prove (3.5) we choose vh = uh + κPh(w × uh). Then

a(uh,vh) = ν‖∇uh‖2 + α‖uh‖2 + νκ(∇uh,∇Ph(w × uh)) + κ‖Ph(w × uh)‖2

≥ ν‖∇uh‖2 + α‖uh‖2 − νκ‖∇uh‖ ‖∇Ph(w × uh)‖ + κ‖Ph(w × uh)‖2.

(3.9)

For the estimation of the term ‖∇Ph(w × uh)‖ we distinguish three cases: Ekh ≤ 1
(case 1), Dh ≥ 1 (case 2), and Ekh > 1 and Dh < 1 (case 3).
In case 1 we have

(νκ)
1

2 ‖∇Ph(w × uh)‖ ≤
(

ντµ2
u

‖w‖∞h2

)

1

2

‖Ph(w × uh)‖

= (Ekhτµ
2
u)

1

2 ‖Ph(w × uh)‖ ≤ ‖Ph(w × uh)‖.
(3.10)

Using this in (3.9) and applying the Cauchy–Schwarz inequality, we get

a(uh,vh) ≥ 1

2
ν‖∇uh‖2 + α‖uh‖2 +

1

2
κ‖Ph(w × uh)‖2.(3.11)

In case 2 we have

ν
1

2κ‖∇Ph(w × uh)‖ ≤ ν
1

2κµuh
−1‖w‖∞‖u‖ = τµuD

− 1

2

h α
1

2 ‖u‖

≤ τ
1

2µuD
− 1

2

h α
1

2 ‖u‖ ≤ α
1

2 ‖u‖.
(3.12)

Using this in (3.9) and applying the Cauchy–Schwarz inequality, we get

a(uh,vh) ≥ 1

2
ν‖∇uh‖2 +

1

2
α‖uh‖2 + κ‖Ph(w × uh)‖2.(3.13)

For case 3 first note that, using condition (A3) and the result in (2.14) it follows that

‖∇(w × uh)‖2 =

2
∑

i=1

‖(uh)i∇w‖2 + ‖w∇(uh)i‖2 + 2((uh)i∇w,w∇(uh)i)

≤ 2

2
∑

i=1

‖(uh)i∇w‖2 + ‖w∇(uh)i‖2 ≤ c1‖w‖2
∞‖∇uh‖2.

We use that the L2-orthogonal projection is bounded in the H1-norm (cf. [2]):

‖Phu‖1 ≤ c2‖u‖1 for u ∈ U.
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For the constant c̃ in (3.7) we take c̃ = 2c2
√
c1 and then obtain

κ‖∇Ph(w × uh)‖ ≤ c2κ‖∇(w × uh)‖ ≤ c2
√
c1κ‖w‖∞‖∇uh‖ ≤ 1

2
‖∇uh‖.(3.14)

Using this in (3.9) results in

a(uh,vh) ≥ 1

2
ν‖∇uh‖2 + α‖uh‖2 + κ‖Ph(w × uh)‖2.(3.15)

The combination of (3.11), (3.13), (3.15) with (3.8) proves that

a(uh,vh) ≥ C|||uh|||2τ(3.16)

holds. The results in (3.10), (3.12), and (3.14) imply

νκ2‖∇Ph(w × uh)‖2 ≤ |||uh|||2τ .

Using this it follows that

|||vh|||2τ = ν‖∇(uh + κPh(w × uh))‖2 + α‖uh + κPh(w × uh)‖2

+ κ‖Ph(w × uh + κw × Ph(w × uh))‖2

≤ 2(ν‖∇uh‖2 + νκ2‖∇Ph(w × uh)‖2) + α‖uh‖2 + κ2α‖Ph(w × uh)‖2

+ 2κ(‖Ph(w × uh)‖2 + κ2‖Ph(w × Ph(w × uh))‖2)

≤ 2ν‖∇uh‖2 + 2|||uh|||2τ + α(1 + τ2)‖uh‖2 + 2κ(1 + τ2)‖Ph(w × uh)‖2

≤ 2ν‖∇uh‖2 + 2α‖uh‖2 + 4κ‖Ph(w × uh)‖2 + 2|||uh|||2τ
≤ 6|||uh|||2τ .

The combination of the latter estimate and (3.16) completes the proof.
Remark 3.1. Note that τ in Lemma 3.1 does not depend on ν, α, or w.
Remark 3.2. Using the mesh-dependent norm

|||u|||τ,h =

(

ν‖∇u‖2 + α‖u‖2 +
τ

‖w‖∞
‖Ph(w × u)‖2

)
1

2

(3.17)

the stability of a(·, ·) on Uh can be proved without assumption (A1) and (A2) on
w, since estimate (3.8) is not needed. Moreover, continuity of a(·, ·) on Uh × U in
the mesh-dependent norm (3.17) can be proved without the assumptions (A1), (A2).
This then results in satisfactory discretization error bounds in the norm ||| · |||τ,h. (See
the treatment of the Oseen problem in [10].) However, for a certain duality argument
in the proof of the approximation property in the multigrid convergence analysis (see
Theorem 3.3 and section 4) we need the continuity of a(·, ·) on U × U, and then the
mesh-dependent norm becomes inconvenient.

We now derive discretization error bounds for the finite element method using
standard arguments based on Galerkin orthogonality, stability, continuity, and ap-
proximation properties of the finite element spaces.

Theorem 3.2. Let u and uh be the solution of (2.1) and (3.1), respectively. Let

the assumptions of Lemma 3.1 be fulfilled and take τ ∈ (0, 1] as in Lemma 3.1. Then

the following inequalities hold:

|||u − uh|||τ ≤ Cτ h
j(ν

1

2 ‖u‖j+1 + (α
1

2 + ‖w‖
1

2

∞)‖u‖j), j = 0, 1,(3.18)

|||u − uh|||τ ≤ Cτ h(ν
1

2 + (α
1

2 + ‖w‖
1

2

∞)h)‖u‖2.(3.19)

The constants Cτ are independent of ν, α, w, u, and h but may depend on τ .
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Proof. Let ûh be an arbitrary function in Uh. Take τ as in Lemma 3.1. Then
there exists vh ∈ Uh such that

C|||uh − ûh|||τ |||vh|||τ ≤ a(uh − ûh,vh).

Using Galerkin orthogonality and the continuity result in (2.18) we obtain

a(uh − ûh,vh) = a(u − ûh,vh) ≤ Cτ |||u − ûh|||τ |||vh|||τ .

Hence,

|||uh − ûh|||τ ≤ Cτ |||u − ûh|||τ(3.20)

holds. From the triangle inequality and (3.20) it follows that

|||u − uh|||2τ ≤ Cτ |||u − ûh|||2τ

≤ Cτ

(

ν‖∇(u − ûh)‖2 + α‖u − ûh‖2 +
τ

‖w‖∞
‖w × (u − ûh)‖2

)

≤ Cτ

(

ν‖u − ûh‖2
1 + (α+ τ‖w‖∞)‖u − ûh‖2

)

.

(3.21)

According to (3.3) and (3.4) ûh = Ihu can be taken such that

‖u − ûh‖2
1 ≤ Ch2j‖u‖2

j+1, ‖u − ûh‖2 ≤ Ch2j‖u‖2
j , j = 0, 1.

Using this in (3.21) proves the result in (3.18). If we use the inequalities

‖u − ûh‖2
1 ≤ Ch2‖u‖2

2, ‖u − ûh‖2 ≤ Ch4‖u‖2
2,

in (3.21) we get the result in (3.19).
Note that ‖w‖∞ occurs in the estimates (3.18)–(3.19) in a similar way as α, which

measures the reaction.
We now prove a discretization error bound in the L2-norm. This result will play

an important role in the convergence analysis of the multigrid method.
Theorem 3.3. Assume that the conditions (A1), (A2), and (A3) are fulfilled.

For f ∈ L2(Ω)2 let u and uh be the solutions of (2.1) and (3.1), respectively. Then

‖u − uh‖ ≤ Cmin

{

h2

ν
,

1

α+ ‖w‖∞

}

‖f‖(3.22)

holds with a constant C independent of ν, α,w, h, and f .

Proof. Take f ∈ L2(Ω)2 and let u, uh be the solutions of (2.1) and (3.1), respec-
tively. From (3.18) and the regularity estimate (2.8) it follows that

|||u − uh|||τ ≤ Cτh
(

ν
1

2 ‖u‖2 + (α
1

2 + ‖w‖
1

2

∞)‖u‖1

)

≤ Cτ
h√
ν

(

ν2‖u‖2
2 + ν(α+ ‖w‖∞)‖∇u‖2

)
1

2 ≤ Cτ
h√
ν
‖f‖.

(3.23)

We now apply a duality argument. For this we introduce the adjoint bilinear form

a∗(u,v) = ν(∇u,∇v) + α(u,v) − (w × u,v) for u,v ∈ U,



1694 MAXIM A. OLSHANSKII AND ARNOLD REUSKEN

and the adjoint problem

find ũ ∈ U such that a∗(ũ,v) = (f̃ ,v) for all v ∈ U,

with f̃ := u − uh ∈ U ⊂ L2(Ω)2. Let ũh ∈ Uh be the discrete solution of the adjoint
problem, i.e., a∗(ũh,vh) = (f̃ ,vh) for all vh ∈ Uh. Note that a∗(·, ·) equals a(·, ·)
if, in a(·, ·), we replace w by −w. The results in Lemma 3.1 and Theorem 3.2 do
not depend on sign(w) and thus hold for the adjoint problem, too. Moreover, since
the choice of τ in Lemma 3.1 does not depend on w (cf. Remark 3.1), the estimate
(3.23) holds for the original and the adjoint problem with the same τ value. Using
this discretization error bound for the original and adjoint problem and the continuity
result of Lemma 2.2 we obtain

‖u − uh‖2 = (f̃ , f̃) = a∗(ũ, f̃) = a(f̃ , ũ) = a(u − uh, ũ) = a(u − uh, ũ − ũh)

≤ Cτ |||u − uh|||τ |||ũ − ũh|||τ ≤ Cτ
h2

ν
‖f‖ ‖f̃‖ = Cτ

h2

ν
‖f‖ ‖u − uh‖.

Hence, ‖u − uh‖ ≤ Cτ
h2

ν ‖f‖ holds, which proves the first bound in (3.22). For the
second bound we note that from (2.5) and (A1) it follows that

‖u − uh‖ ≤ 1

α+ cw
(α‖u − uh‖ + ‖w × (u − uh)‖)

≤ 1

α+ ‖w‖∞
α+ ‖w‖∞
α+ cw

(

α
1

2 +
‖w‖

1

2

∞

τ
1

2

)(

α
1

2 ‖u − uh‖ +
τ

1

2

‖w‖
1

2

∞

‖w × (u − uh)‖
)

≤ 2

α+ ‖w‖∞
(1 + η)τ−

1

2 (α
1

2 τ
1

2 + ‖w‖
1

2

∞)|||u − uh|||τ

≤ Cτ
1

α+ ‖w‖∞
(α

1

2 + ‖w‖
1

2

∞)|||u − uh|||τ .

(3.24)

Finally, note that due to (3.18) with j = 0 and the results in (2.5), (2.8) we get

(α
1

2 + ‖w‖
1

2

∞)|||u − uh|||τ ≤ (α
1

2 + ‖w‖
1

2

∞)(ν
1

2 ‖u‖1 + (α
1

2 + ‖w‖
1

2

∞)‖u‖)
≤ ν

1

2 (α
1

2 + ‖w‖
1

2

∞)‖u‖1 + 2(α+ ‖w‖∞)‖u‖
≤ ν

1

2 (α
1

2 + ‖w‖
1

2

∞)‖u‖1 + 2(1 + η)(‖w × u‖ + α‖u‖)
≤ C

(

ν(α+ ‖w‖∞)‖∇u‖2 + α2‖u‖2 + ‖w × u‖2
)

1

2

≤ C‖f‖.

This in combination with (3.24) yields the second bound in (3.22).

4. A solver for the discrete problem. For the approximate solution of the
discrete problem we apply a multigrid method. The method and its convergence
analysis will be presented in a matrix-vector form as in Hackbusch [8].

4.1. Multigrid components. For the application of the multigrid solver we
assume that the quasi-uniform family of triangulations of Ω results from a global

regular refinement technique. This yields a hierarchy of nested finite element spaces

U0 ⊂ U1 ⊂ · · · ⊂ Uk ⊂ · · · ⊂ U.
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The corresponding mesh size parameter is denoted by hk and satisfies

c02
−k ≤ hk/h0 ≤ c12

−k

with positive constants c0 and c1 independent of k. Note that Uk = Uk × Uk, where
Uk is a standard conforming finite element space consisting of scalar functions. For
the matrix-vector formulation of the discrete problem we use the standard nodal basis
in Uk, denoted by {φi}1≤i≤nk

, and the isomorphism

Pk : R
nk → Uk, Pkx =

nk
∑

i=1

xiφi.

For the product space Uk = Uk × Uk we use the isomorphism

Pk : Xk := R
2nk → Uk, Pkx = Pk

(

x1

x2

)

= Pkx
1 × Pkx

2, xi ∈ R
nk , i = 1, 2.

On R
nk and Xk we use scaled Euclidean scalar products: 〈x, y〉k = h2

k

∑nk

i=1 xiyi for
x, y ∈ R

nk and 〈x,y〉k = 〈x1, y1〉k + 〈x2, y2〉k for x, y ∈ Xk. The corresponding
norms are denoted by ‖ ·‖. The adjoint P∗

k : Uk → Xk satisfies (Pkx,v) = 〈x,P∗
kv〉k

for all x ∈ Xk, v ∈ Uk. Note that the following norm equivalence holds:

C−1‖x‖ ≤ ‖Pkx‖ ≤ C‖x‖ for all x ∈ Xk,(4.1)

with a constant C independent of k. The stiffness matrix Lk : R
2nk → R

2nk on level
k is defined by

〈Lkx,y〉k = a(Pkx,Pky) for all x,y ∈ Xk.(4.2)

This matrix has the block structure

Lk =

(

νA+ αM −Mw

Mw νA+ αM

)

,

with

〈Ax, y〉k = (∇Pkx,∇Pky), 〈Mx, y〉k = (Pkx, Pky),

〈Mwx, y〉k = (wPkx, Pky)
(4.3)

for all x, y ∈ R
nk . Note that A is a stiffness matrix for a single (velocity) component,

M is a mass matrix, and Mw is of mass matrix type corresponding to the bilinear
form [x, y] → (wx, y). The latter is not necessarily a scalar product. The matrices
A,M,Mw are symmetric and A and M are positive definite.

For the prolongation and restriction in the multigrid algorithm we use the canon-
ical choice:

pk : Xk−1 → Xk, pk = P−1
k Pk−1,

rk : Xk → Xk−1, rk = P∗
k−1(P

∗
k)

−1 =
(

hk

hk−1

)2

pTk .
(4.4)

Consider a smoother of the form

xnew = xold −W−1
k (Lkx

old − b) for xold,b ∈ Xk

with the corresponding iteration matrix denoted by Sk = I −W−1
k Lk.
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The damped block Jacobi method corresponds to

Wk = ω−1

(

diag(νA+ αM) −diag(Mw)
diag(Mw) diag(νA+ αM)

)

,(4.5)

with a damping parameter ω ∈ (0, 1]. This type of smoother will be used in our
numerical experiments in section 5. In the convergence analysis of the multigrid
method we consider a smoother of block Richardson type:

Wk =

(

β1I −β2I
β2I β1I

)

,(4.6)

where I is the identity matrix and β1, β2 are suitable scaling factors. With the compo-
nents defined above, a standard multigrid algorithm with µ1 pre- and µ2 postsmooth-
ing iterations can be formulated (cf. [8]) with an iteration matrix Mk on level k that
satisfies the recursion

M0(µ1, µ2) = 0,

Mk(µ1, µ2) = Sµ2

k

(

I − pk(I −Mγ
k−1)L

−1
k−1rkLk

)

Sµ1

k , k = 1, 2, . . . .

The choices γ = 1 and γ = 2 correspond to the V- and W-cycle, respectively. For
analysis of this multigrid method we use the framework of [7], [8] based on the approx-
imation and smoothing property. In sections 4.2 and 4.3 we will prove the following
approximation and smoothing properties:

‖L−1
k − pk L

−1
k−1rk‖ ≤ C

( ν

h2
+ α+ ‖w‖∞

)−1

,(4.7)

‖LkS
µ1

k ‖ ≤ C√
µ1

( ν

h2
+ α+ ‖w‖∞

)

.(4.8)

As a direct consequence of (4.7) and (4.8) one obtains a bound for the contraction
number of the two-grid method:

‖(I − pkL
−1
k−1rkLk)S

µ1

k ‖ ≤ C√
µ1

.(4.9)

Using the analysis in [8, Theorem 10.6.25] the convergence of the multigrid W-cycle
can be obtained as a consequence of the approximation and smoothing property. In
section 4.3 we will prove ‖Sk‖ ≤ 1. Using this and (4.7), (4.8), Theorem 10.6.25 from
[8] yields the following result.

Theorem 4.1. Assume (A1)–(A3) hold; then for any ψ ∈ (0, 1) there exists

µ̄0 > 0 independent of the problem parameters ν, α and the level number k such that

for the contraction number of the multigrid W-cycle with smoothing (4.6) we have

‖Mk(µ, 0)‖ ≤ ψ for all µ ≥ µ̄0.

This proves the robustness of the multigrid W-cycle with respect to variation in

the problem parameters ν and α and the mesh size hk.
This robustness is confirmed by the numerical experiments in section 5.

4.2. Approximation property. The analysis of the approximation property is
as in [7], [8]. The key ingredient is the finite element error bound in Theorem 3.3.
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Theorem 4.2. Let the assumptions (A1)–(A3) be valid; then

‖L−1
k − pk L

−1
k−1rk‖ ≤ C

(

ν

h2
k

+ α+ ‖w‖∞
)−1

≤ C‖Lk‖−1.(4.10)

Proof. Take yk ∈ Xk. The constants C that appear in the proof do not depend
on ν, α,yk, or k. Let s∗ ∈ U, sk ∈ Uk, and sk−1 ∈ Uk−1 be such that

a(s∗,v) = ((P∗
k)

−1yk,v) for all v ∈ U,

a(sk,v) = ((P∗
k)

−1yk,v) for all v ∈ Uk,

a(sk−1,v) = ((P∗
k)

−1yk,v) for all v ∈ Uk−1.

Putting f = (P∗
k)

−1yk ∈ L2(Ω)2 in Theorem 3.3, we obtain

‖s∗ − sl‖ ≤ Cmin

{

h2
l

ν
,

1

α+ ‖w‖∞

}

‖(P∗
k)

−1yk‖ for l ∈ {k − 1, k}.

Due to hk−1 ≤ chk this yields

‖sk − sk−1‖ ≤ Cmin

{

h2
k

ν
,

1

α+ ‖w‖∞

}

‖(P∗
k)

−1yk‖.

From (4.2) and (4.4) it follows that sk = PkL
−1
k yk and sk−1 = Pk−1L

−1
k−1rkyk. Thus,

using (4.1), we get

‖(L−1
k − pkL

−1
k−1rk)yk‖ ≤ C‖PkL

−1
k yk − Pk−1L

−1
k−1rkyk‖ = C‖sk − sk−1‖

≤ C min

{

h2
k

ν
,

1

α+ ‖w‖∞

}

‖(P∗
k)

−1yk‖

≤ C min

{

h2
k

ν
,

1

α+ ‖w‖∞

}

‖yk‖.

Note that min{ 1
p ,

1
q} ≤ 2

p+q for all p, q > 0. Hence the first inequality in (4.10) is

proved. For the second inequality in (4.10) we note that

‖Lk‖ =

∥

∥

∥

∥

(

νA+ αM ∅
∅ νA+ αM

)

+

(

∅ −Mw

Mw ∅

)
∥

∥

∥

∥

≤ ‖νA+ αM‖ + ‖Mw‖ ≤ ν‖A‖ + (α+ ‖w‖∞)‖M‖.

Using ‖A‖ ≤ Ch−2
k and ‖M‖ ≤ C we obtain ‖Lk‖ ≤ C(νh−2

k + α+ ‖w‖∞).

4.3. Smoothing property. Let a1,m1 be positive constants independent of
ν, α, and k such that for spectral radius of the matrices in (4.3) we have

ρ(A) ≤ a1

h2
k

, ρ(M) ≤ m1.

Furthermore, let wmin = ess infΩ w and wmax = ess supΩ w and define

Cw =

{

wmax if wmax ≥ −wmin,
wmin if wmax < −wmin.

Note that |Cw| = ‖w‖∞. In the analysis below we use the following elementary result.
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Lemma 4.3. Assume that for B ∈ R
n×n and Λ ∈ (0,∞) we have BTB ≤

Λ(B +BT ). Then ‖I − ωB‖ ≤ 1 holds for any ω ∈ [0, 1
Λ ].

This result follows from

0 ≤ (I − ωB)T (I − ωB) = I − ω(B +BT ) + ω2BTB

≤ I − ω(1 − ωΛ)(B +BT ) ≤ I.

Using this lemma we prove that the contraction number of the block Richardson
method is bounded by 1.

Lemma 4.4. Assume that (A1) and (A2) are satisfied. Consider the block

Richardson method with Wk as in (4.6) and

β1 =
νa1

h2
k

+ ακ1m1, β2 = κ2Cw, with constants

κ1 ≥ 2(1 + η2), κ2 ≥ 4m1η.(4.11)

Then the following inequality holds:

‖I −W−1
k Lk‖ ≤ 1.

Proof. A straightforward computation yields

W−1
k Lk = R1 +R2, with(4.12)

R1 =
ν

β2
1 + β2

2

(

β1A β2A
−β2A β1A

)

,

R2 =
1

β2
1 + β2

2

(

β1αM + β2Mw β2αM − β1Mw

−β2αM + β1Mw β1αM + β2Mw

)

.

From

1

2
(RT

1 +R1) =
νβ1

β2
1 + β2

2

(

A 0
0 A

)

, RT
1 R1 =

ν2

β2
1 + β2

2

(

A2 0
0 A2

)

it follows that

RT
1 R1 ≤ 1

2
(RT

1 +R1) ⇔ νA ≤ β1I ⇔ νA ≤
(

νa1

h2
k

+ ακ1m1

)

I.

The last inequality holds, due to ρ(A) ≤ a1

h2

k

and ακ1m1 ≥ 0. Application of Lemma

4.3 yields

‖I − 2R1‖ ≤ 1 .(4.13)

For the matrix R2 we obtain

1

2
(RT

2 +R2) =
1

β2
1 + β2

2

(

β1αM + β2Mw ∅
∅ β1αM + β2Mw

)

,

RT
2 R2 =

1

β2
1 + β2

2

(

α2M2 +M2
w α(MwM −MMw)

−α(MwM −MMw) α2M2 +M2
w

)

.

We use the notation M̂ = β1αM + β2Mw. Note that RT
2 R2 ≤ 1

2 (RT
2 + R2) holds if

the following two conditions are satisfied:

α2M2 +M2
w ≤ 1

2
M̂,(4.14)

α|〈(MwM −MMw)x, y〉k| ≤
1

4

(

〈M̂x, x〉k + 〈M̂y, y〉k
)

,(4.15)
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for all x, y ∈ R
nk . We first consider (4.14). We have M2

w ≤ ‖w‖2
∞M

2 ≤ m1‖w‖2
∞M .

Due to (A2) the matrix Mw is definite and CwMw is positive definite; moreover,
CwMw ≥ |Cw|cwM = ‖w‖∞cwM . Using this we obtain

α2M2 +M2
w ≤ (m1α

2 +m1‖w‖2
∞)M,

1

2
M̂ ≥ 1

2
(κ1m1α

2M + κ2CwMw) ≥ 1

2
(κ1m1α

2 + κ2‖w‖∞cw)M.

Hence, (4.14) is fulfilled if the inequality

m1α
2 +m1‖w‖2

∞ ≤ 1

2
(κ1m1α

2 + κ2‖w‖∞cw)

holds. Substitution of ‖w‖∞ = η(α+ cw) and rearranging terms results in the equiv-
alent inequality

α2m1

(

1

2
κ1 − (1 + η2)

)

+ αcwη

(

1

2
κ2 − 2m1η

)

+ ηc2w

(

1

2
κ2 −m1η

)

≥ 0.

This inequality holds for κ1, κ2 as in (4.11). Hence, with κ1, κ2 as in (4.11) the
condition (4.14) is fulfilled. To prove (4.15) we note that

α|〈(MwM −MMw)x, y〉k| ≤ α(〈|MwMx, y〉k| + α|〈MMwx, y〉k|,
α|〈MwMx, y〉k| = α|〈Mx,Mwy〉k| ≤ 1

2

(

α2〈M2x, x〉k + 〈M2
wy, y〉k

)

,

α|〈MMwx, y〉k| = α|〈Mwx,My〉k| ≤ 1
2

(

〈M2
wx, x〉k + α2〈M2y, y〉k

)

.

Thus (4.15) follows from (4.14). We conclude that (4.15) and (4.14) are satisfied for
κ1, κ2 as in (4.11). Hence, RT

2 R2 ≤ 1
2 (RT

2 +R2) holds. And due to Lemma 4.3

‖I − 2R2‖ ≤ 1.(4.16)

Finally, (4.12), (4.13), and (4.16) yield

‖I −W−1
k Lk‖ = ‖I − (R1 +R2)‖ ≤ 1

2
‖I − 2R1‖ +

1

2
‖I − 2R2‖ ≤ 1.

Theorem 4.5. Assume that (A1) and (A2) are satisfied. Consider the block

Richardson method with Wk as in (4.6) and

β1 = 2

(

νa1

h2
k

+ ακ1m1

)

, β2 = 2κ2Cw,

with constants κ1, κ2 from (4.11). Then the following estimate holds:

‖LkS
µ1

k ‖ ≤ C√
µ1

( ν

h2
+ α+ ‖w‖∞

)

, µ1 = 1, 2, . . . .(4.17)

Proof. From Lemma 4.4 we obtain

‖I − 2W−1
k Lk‖ ≤ 1.(4.18)

Furthermore,

‖Wk‖ = ρ

((

β1I −β2I
β2I β1I

)(

β1I β2I
−β2I β1I

))
1

2

= (β2
1 + β2

2)
1

2 ≤ β1 + β2 ≤ C
( ν

h2
+ α+ ‖w‖∞

)

.

(4.19)

From (4.18) and (4.19) and Theorem 10.6.8 in [8] the result in (4.17) follows.
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5. Numerical results. In this section results of a few numerical experiments
related to the accuracy of the discretization method and the convergence behavior of
the multigrid solver are presented. For the discretization we use linear conforming
finite elements on a uniform triangulation of the unit square. The mesh size parameter
is h = hk = 2−k, k = 4, 5, . . . , 9.

In our experiments we consider problems with an a priori known continuous so-
lution u ∈ H2(Ω)2 ∩ U to the problem (2.1). Discretization errors are measured
as follows. Let ûh ∈ Uh be the nodal interpolant of the continuous solution u and
uh ∈ Uh be the solution of the discrete problem. As a measure for the discretization
error we take

err(u, h, ν) =
‖ûh − uh‖

‖f‖ .(5.1)

For the iterative solution of the discrete problem a multigrid V-cycle is applied.
The prolongations and restrictions in this multigrid method are the canonical ones,
as in (4.4). For the smoother a damped block Jacobi method as in (4.5) is used.
Thus for each pair of nodal values of {u1, u2} a 2 × 2 linear system is solved. The
damping parameter ω in each smoothing step is determined in a dynamic way based
on a residual minimization criterion: We set ω = (q,q)/(q, r), where for grid level k

r = W̄−1
k (Lkx

old − b), q = W̄−1
k Lkr,

and W̄k equals Wk from (4.5) for ω = 1.
We always use two pre- and two postsmoothing iterations. For the starting vector

in the iterative solver we take u0 = 0. The iterations are stopped as soon as the
residual, in the Euclidean norm, is at least a factor 109 smaller than the starting
residual.

We consider test problems with different choices for w. Note that in the set-
ting of a (linearized) Navier–Stokes problem w = curlv = −∂v2

∂x + ∂v1

∂y , where v =

(v1(x, y), v2(x, y)) is an approximation of the flow field. In Experiment I we consider
a problem which corresponds to a flow with rotating vortices. In Experiment II we
take a flow field v with a parabolic boundary layer behavior. Both in Experiment I
and Experiment II the right-hand side is taken such that the continuous solution u

equals the flow field v. This seems a reasonable choice if the problem (2.1) results
from a linearized Navier–Stokes problem. Finally, in Experiment III a flow v which
exhibits an internal layer behavior is considered.

In all the experiments we present results for the case α = 0. For α > 0 in our
numerical experiments we always observed better results than for α = 0, both with
respect to the discretization error and with respect to the multigrid convergence.

Experiment Ia. We take vr = (v1, v2), with

v1(x, y) = 4(2y − 1)x(1 − x),
v2(x, y) = −4(2x− 1)y(1 − y),

(5.2)

and w = curlvr. This type of convection vr simulates a rotating vortex. For this w
the conditions (A2) and (A3) are fulfilled. Related to (A1) we note that ‖w‖∞ = O(1)
and cw = 0. However, based on the fact that w equals zero only at the corner points
of the domain, one could say that (A1) is “almost” fulfilled. For several values of h
and ν the quantity err(u, h, ν) is given in Table 5.1.

In Figure 5.1 the differences (u1−(uh)1)(0.5, y) and (∂u1

∂y − ∂(uh)1
∂y )(0.5, y) between

(the derivatives of) the first components of the continuous and finite element solution



NAVIER–STOKES EQUATIONS AND A MULTIGRID SOLVER 1701

Table 5.1

err(u, h, ν) for Experiment Ia.

h

ν 1/16 1/32 1/64 1/128 1/256 1/512

1 4.5e-4 1.1e-4 2.8e-5 7.2e-6 1.8e-6 4.5e-7
1e-2 8.6e-3 2.1e-3 5.2e-4 1.3e-4 3.3e-5 8.2e-6
1e-4 1.0e-2 2.7e-3 7.0e-4 1.7e-4 4.4e-5 1.1e-5
1e-6 1.0e-2 2.7e-3 7.7e-4 2.1e-4 5.4e-5 1.3e-5
1e-8 1.0e-2 2.7e-3 7.7e-4 2.1e-4 5.9e-5 1.6e-5

h=1/512

h=1/256

h=1/128

0.10.080.06y

(a)

0.040.020

0.01

0

-0.01

-0.03

-0.05

h=1/512

h=1/256

h=1/128

0.50.40.3y

(b)

0.20.10

4e-4

3e-4

2e-4

1e-4

0

Fig. 5.1. Discretization error in Experiment Ia; ν = 10−6, x = 0.5 (a) in y-derivative, (b) in

solution.

Table 5.2

V-cycle convergence for Experiment Ia.

h

ν 1/32 1/64 1/128 1/256 1/512

1 11(0.15) 11(0.15) 11(0.15) 11(0.15) 11(0.15)
1e-2 11(0.14) 11(0.14) 11(0.14) 11(0.15) 11(0.15)
1e-4 6(0.03) 7(0.05) 9(0.10) 11(0.14) 11(0.15)
1e-6 5(0.01) 5(0.01) 5(0.01) 7(0.04) 7(0.05)
1e-8 5(0.01) 5(0.01) 5(0.01) 5(0.01) 5(0.01)

Number of iterations and average reduction factor

are plotted for the case ν = 10−6. Because of the symmetry the error in the solution is
shown only on half of the interval (Figure 5.1b) and the error in the solution derivative
only on the interval [0, 0.1] near the boundary (Figure 5.1a). The numerical boundary
layer, typical for reaction-diffusion problems with dominating reaction terms, is clearly
seen. Results for the convergence behavior of the multigrid method are shown in
Table 5.2.
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Fig. 5.2. (a) Function w in Experiment Ib; (b) function w in Experiment II, ν = 10−3.

Table 5.3

err(u, h, ν) for Experiment Ib.

h

ν 1/16 1/32 1/64 1/128 1/256 1/512

1 1.9e-3 4.9e-4 1.2e-4 3.0e-5 7.5e-6 1.9e-6
1e-2 1.5e-2 3.6e-3 9.0e-4 2.3e-4 5.7e-5 1.4e-5
1e-4 4.8e-2 7.1e-3 1.8e-3 4.5e-4 1.1e-4 2.9e-5
1e-6 1.4e-1 7.8e-2 1.0e-2 9.5e-4 2.3e-4 5.7e-5
1e-8 1.4e-1 9.7e-2 6.7e-2 2.9e-2 2.0e-3 1.4e-4

Experiment Ib. We take vR = (v1, v2), with

v1(x, y) =
1

ψ
sin(ψπx) cos(πy),

v2(x, y) = − cos(ψπx) sin(πy),
(5.3)

and w = curlvR. This models a flow with two vortices rotating in opposite directions.
Note that the conditions (A1) and (A2) are not fulfilled. For the parameter ψ we
choose ψ = 1.6. One vortex lies entirely in the computational domain, the second one
only partially. The (vorticity) function w for this problem is plotted in Figure 5.2(a).
Note the change of sign for w at x = 0.625. The error in the discrete solution
shown in Table 5.3 is larger compared to example Ia (which might correspond to
the strong violation of the conditions (A1) and (A2)). In Figure 5.3 the difference
(u1 − (uh)1)(0.5, y) is plotted for ν = 10−6. Note that some local oscillations in the
error are observed in the neighborhood of x = 0.625, i.e., where condition (A1) is
locally violated. The results for the convergence behavior of the multigrid method are
very similar to those in Table 5.2 for Experiment Ia.
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h=1/32
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0.04

0.02
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h=1/512

h=1/256
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Fig. 5.3. Error in finite element solutions in Experiment Ib; ν = 10−6, y = 0.5.

Table 5.4

err(u, h, ν) for Experiment II.

h

ν 1/16 1/32 1/64 1/128 1/256 1/512

1 7.4e-6 1.8e-6 4.5e-7 1.1e-7 2.8e-8 7.0e-9
1e-2 3.7e-3 8.6e-3 2.1e-4 5.3e-5 1.3e-5 2.2e-6
1e-4 4.2e-2 2.4e-2 3.1e-3 6.8e-4 1.6e-4 4.1e-5
1e-6 1.2e-2 1.2e-2 1.2e-2 1.2e-2 1.0e-2 8.0e-4
1e-8 3.9e-3 3.7e-3 3.7e-3 3.7e-3 3.6e-3 3.6e-3

Experiment II. We take vl = (v1, v2), with

v1(x, y) = 1 − exp(−y/√ν),
v2(x, y) = 0,

(5.4)

and w = curlvl. This models a parabolic boundary layer behavior in the velocity
field. The width of the layer is proportional to

√
ν. Note that ‖w‖∞ = O(ν−1/2).

The vorticity is of ν−
1

2 magnitude near the boundary and decays exponentially outside
the layer (see Figure 5.2(b)). As before, we take f such that the continuous solution
equals the flow field: u = vl. Results for the discretization error are given in Table 5.4.
The L2 norm of f is O(ν−

1

4 ) for ν → 0; therefore one has to use a proper scaling of
the values from Table 5.4 (e.g., multiplying by 10 for ν = 10−4) to obtain the absolute
value of the error ‖ûh − uh‖ (cf. (5.1)).

In Figure 5.4 we plot u1(0.5, y) and (uh)1(0.5, y) for the cases ν = 10−3 and
ν = 10−4 and for several h values. The finite element solution is a poor approximation
to the continuous one if the boundary layer is not resolved: h > ν

1

2 . However, for
h ∼ ν

1

2 the results are quite good, although both the mesh Reynolds numbers and
Ek−1

h are very large (e.g., ≈ 102 for ν = 10−4). Moreover, no global oscillations
are observed even for very coarse meshes. We expect that a significant improvement
can be obtained if this simple full Galerkin discretization is combined with local grid
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Fig. 5.4. Exact and discrete solutions in Experiment II; x = 0.5: (a) ν = 10−3; (b) ν = 10−4.

Table 5.5

V-cycle convergence for Experiment II.

h

ν 1/32 1/64 1/128 1/256 1/512

1 11(0.15) 11(0.15) 11(0.15) 11(0.15) 11(0.15)
1e-2 12(0.16) 11(0.15) 11(0.15) 11(0.15) 11(0.15)
1e-4 18(0.30) 17(0.29) 16(0.26) 14(0.22) 13(0.19)
1e-6 23(0.40) 29(0.48) 29(0.49) 28(0.41) 29(0.48)
1e-8 15(0.24) 19(0.33) 23(0.40) 28(0.47) 25(0.43)

Number of iterations and average reduction factor

refinement in the boundary layer. In Table 5.5 numerical results for the multigrid
method are presented. Note that assumptions (A1) and (A2) were also violated in
this experiment. Hence our convergence analysis of the multigrid method does not
apply here. One reason for the deterioration of multigrid convergence compared to
the case Ib could be weaker regularity of the function w.

Experiment III. In this experiment we try to model the presence of an internal
layer. To this end, for the convection field we take the model of the Euler flow
(extreme case if ν → 0), where the tangential velocity component is discontinuous
on some line in the interior of the domain. Hence the flow, potential a.e., has a
vorticity concentrated on this line (so-called vortex sheet). We take w = curlvd, with
vd = (v1, v2), and, for a given constant ψ,

{

v1(x, y) = cosψ
v2(x, y) = sinψ

if cosψ > (x− 0.25) sinψ,

{

v1(x, y) = 0
v2(x, y) = 0

if cosψ ≤ (x− 0.25) sinψ.

Using the parameter ψ one can vary the angle under which the layer enters the domain.
We set ψ = π/3 so the grid is not aligned to the layer. For the discrete velocity vd

h ∈
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Table 5.6

V-cycle convergence for Experiment III.

h

ν 1/32 1/64 1/128 1/256 1/512

1 11(0.15) 11(0.15) 11(0.15) 11(0.15) 11(0.15)
1e-2 13(0.20) 13(0.19) 14(0.22) 14(0.21) 13(0.19)
1e-4 19(0.33) 19(0.34) 20(0.35) 21(0.36) 22(0.38)
1e-6 17(0.29) 20(0.36) 24(0.42) 28(0.47) 30(0.50)
1e-8 17(0.29) 20(0.35) 24(0.42) 28(0.48) 32(0.53)

Number of iterations and average reduction factor

Uh we take the nodal interpolant of vd, and set w = curlvd
h, obtaining a piecewise

constant function w, which is essentially mesh-dependent due to the discontinuity of
vd (‖w‖∞ = O(h−1)). Results for the convergence behavior of the multigrid method
are given in Table 5.6.

Since discontinuous solutions are generally not allowed for viscous motions and
our given data are mesh-dependent, we do not consider discretization errors in this
example.

5.1. Discussion of numerical results. Recall that the analysis in the previous
sections yields, for the case α = 0,

err(u, h, ν) ≤ cmin{ν−1h2, ‖w‖−1
∞ }(5.5)

under certain assumptions on w. These assumptions are “almost valid” for the prob-
lem Ia and do not hold for the problems Ib and II.

The results of the numerical experiments indeed show the O(h2) behavior of
err(u, h, ν) unless ν is very small. In the latter case the second, ν- and h-independent,
upper bound for err(u, h, ν) in (5.5) is observed and O(h2) convergence is recovered
for smaller h. For fixed h and ν → 0 a growth of the error is observed (up to some
limit). In the experiments Ia,b this growth appears to be less than O(ν−1), indicating
that the ν-dependence in (5.5) might be somewhat pessimistic for these cases.

Although in the last two examples the multigrid convergence for a small values
of ν is somewhat worse, the multigrid V-cycle with block Jacobi smoothing appears
to be a very robust solver. The convergence rates for realistic values of viscosity (in
laminar flows 1 − 10−4) are excellent.
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