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1 Introduction

In this paper we present an overview of a software package called DROPS, which has recently
been developed at the IGPM (Institut für Geometrie und Praktische Mathematik) at the Aachen
University of Technology. This development is still continuing and our aim is to build an efficient
software tool for the numerical simulation of incompressible flows. In the field of incompressible
CFD already quite a few packages exist. The state of the art, however, is such that for com-
plicated three-dimensional fluid dynamics (e. g. turbulent flows, multiphase reacting flows, flows
with free boundaries) a black-box solver is not yet available. The DROPS package is developed
in an interdisciplinary project (SFB 540 “Model-based Experimental Analysis of Kinetic Phe-
nomena in Fluid Multi-phase Reactive Systems”, cf. [36]) where complicated flow phenomena are
investigated. The modeling of several complex physical phenomena in this project (e. g., mass
transfer between liquid drops and a surrounding fluid or the fluid dynamics and heat transport
in a laminar falling film) requires a flexible efficient and robust CFD package. Our aim is to
provide such a tool. From the scientific computing point of view it is of interest to develop a
CFD code in which several modern numerical techniques which have recently been introduced in
the literature are implemented. Examples of such techniques are error estimation methods for
Navier-Stokes equations ([18, 33]), fast and robust iterative solvers for discretized Navier-Stokes
equations with large Reynolds numbers ([15, 16]) and level set methods for two-phase flows
([37, 44]).

In this paper we describe the main components of the DROPS package and show results of
a few first applications. At the end of the paper an outlook concerning the further development
of the code in the near future is given.

We start with a brief description of the problem class that we consider. As landmarks for
testing certain components in the code we use the Poisson equation, the convection-diffusion
equation, the stationary Stokes problem and the stationary and time-dependent Navier-Stokes
equations. We only consider spatially three-dimensional problems, i. e. we assume Ω ⊂ R3 to be
a polygonal Lipschitz domain. As a first test problem we consider the Poisson equation with
homogeneous boundary conditions: given f ∈ C(Ω) determine u = u(x) such that

−∆u = f in Ω

u = 0 on ∂Ω .
(1)

The Poisson equation corresponds to a symmetric elliptic operator. A first test case in which
(strong) nonsymmetry arises is the convection-diffusion problem. In strong formulation this
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problem is as follows: given sufficiently smooth functions b = (b1, b2, b3)
T , a0, f with a0 ≥ 0 and

a scalar ν > 0, determine u = u(x) such that

−ν∆u+ (b · ∇)u+ a0u = f in Ω

u = 0 on ∂Ω .
(2)

We introduce the stationary Stokes problem: given sufficiently smooth functions f = (f1, f2, f3)
T

and a0 ≥ 0, determine functions u = (u1(x), u2(x), u3(x))
T and p = p(x) such that

−∆u+ a0u+∇p = f in Ω

div u = 0 in Ω

u = 0 on ∂Ω .

(3)

The instationary Navier-Stokes problem reads in strong formulation: given sufficiently smooth
vector functions f , u0 and a scalar ν > 0, determine functions u = (u1(x, t), u2(x, t), u3(x, t))

T

and p = p(x, t) (x ∈ Ω, t ∈ [0, T ]) such that

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f in Ω× [0, T ]

div u = 0 in Ω× [0, T ]

u = 0 on ∂Ω× [0, T ]

u(·, 0) = u0 on Ω .

(4)

Below we will also use the weak formulations of the problems in (1)–(4).

The instationary Navier-Stokes equations are discretized in time by an implicit integration
method which is explained in §3.3. In each time step one then has to solve an elliptic (continuous
in space) boundary value problem. The nonlinearity N(u)u = (u · ∇)u in the Navier-Stokes
equations is often treated by a fixed point technique (cf. §4.3) in which N(u) is replaced by
ũ · ∇, where ũ is a known approximation of the solution u. This implicit time integration and
linearization of the instationary Navier-Stokes equations results in so called Oseen equations
(or Stokes equations with convection). Such an Oseen problem is of the following form: given
sufficiently smooth vector functions f and b and a scalar a0 ≥ 0, determine functions u =
(u1(x), u2(x), u3(x))

T and p = p(x) such that

−∆u+ (b · ∇)u+ a0u+∇p = f in Ω

div u = 0 in Ω

u = 0 on ∂Ω .

(5)

For notional convenience we scaled the velocity u such that ν = 1. The linearization of a
stationary Navier-Stokes problem results in an Oseen problem as in (5) with a0 = 0.

For the numerical solution of the stationary elliptic boundary value problems in (1), (2), (3),
(5) we apply an adaptive strategy as sketched in Figure 1. This diagram shows the following
main building blocks of the solution method: grid generation and grid refinement, discretization
method, iterative solvers for the discrete problem and error estimation techniques. We briefly
comment on our choices for these components.

Grid generation and grid refinement. We only use tetrahedral grids. These grids are con-
structed in such a way that they are consistent (no hanging nodes) and that the hierarchy of
triangulations is stable. The main ideas are taken from [5, 6]. A detailed discussion is given
in §2.

2



ready

error estimation

of discrete problem
iterative solution 

accuracy

grid refinement

construction of
a starting grid

discretization
method

test not satisfied

satisfied

Figure 1: Adaptive solution strategy for stationary problems

Discretization method. We use finite element methods for the discretization of the elliptic
boundary value problems. Up to now we only implemented low order conforming finite elements.
Further explanation is given in §3. The discrete time integration is discussed in §3.3.

Iterative solution methods. For the scalar Poisson and convection-diffusion problems we use
a multigrid solver. The (Navier-)Stokes equations are treated by a Schur complement (inexact
Uzawa) technique. Details on these methods are presented in §4.

Error estimation methods. For the error estimation we use techniques from [39]. Up to now
we implemented error estimators for the Poisson equation and for the stationary Stokes problem.
We refer to §5 for further information.

We realize that for each of these choices there are one or more good alternatives which for
certain problems might even be more appropriate. However, in view of the problem class that
we want to treat and of the aims formulated in the interdisciplinary research project we believe
that the approach sketched above results in a good compromise between simplicity, flexibility,
efficiency and robustness.

Apart from the numerical building blocks that are outlined above there are other aspects
which are of main importance for the performance of a CFD code. Here we mention the use
of suitable data structures and the implementation on parallel architectures. One important
decision we made related to data structures is to decouple the grid generation and finite element
discretization (using a grid based data handling) as much as possible from the iterative solution
methods (which use a sparse matrix format). Our code is programmed in C++ and uses several
attractive facilities offered by this programming language. A discussion of certain important
implementation issues is given in §4.5.
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In many cases the numerical complexity of three dimensional flow simulations is extremely
high. Hence in view of both memory requirements and computing times the implementation
on a parallel machine can be very important. A good parallelization potential is an important
objective in the development of the DROPS package. A first MPI based parallel version of
DROPS has been implemented on a PC-cluster. A further explanation of parallelization issues
is given in §6.

2 Grid generation

The first step in discretizing PDE’s with finite elements is to provide suitable grids. We opted
for tetrahedral grids, because they can handle complex geometries better than hexahedral grids
and are much easier to deal with than hybrid grids consisting of combinations of, for example,
tetrahedra, pyramids, prisms and hexahedra. In the remainder, a triangulation stands for a
tetrahedral grid.

For the quality of the discretization two properties of the underlying triangulation are essen-
tial: consistency and stability. Consistency allows for conforming discretizations without taking
special care of hanging nodes etc. In addition certain error estimators assume (at least in the-
ory) consistent grids [39]. Stability means that in a hierarchy of triangulations all angles of the
tetrahedra are uniformly bounded away from 0 and π. Note that stability is not a property of a
single (non-degenerate) grid but of a sequence of (refined) grids which will be constructed in an
adaptive discretization method and used in a multigrid solver. Error bounds (and therefore the
accuracy of the solution) as well as error estimators and the LBB-stability for the discretized
Stokes problem depend on the stability of the underlying triangulations.

The construction of a hierarchy of grids can be divided into two parts. In a first step a consis-
tent initial grid must be constructed. This is done by DROPS only for fairly simple geometries.
For more complex settings we plan to use standard (CAD) software. Appropriate modules that
parse standard file formats and translate them into DROPS’s internal representation will then
be implemented. The second part is a refinement/unrefinement1 algorithm that serves two pur-
poses. Firstly, by using an appropriate adaptively refined grid a discretization error smaller
than some given tolerance can be obtained without introducing too many unknowns. Secondly,
it generates a hierarchy of grids that can be used for multigrid solvers. The refinement algorithm
is a crucial component in the DROPS package. The algorithm we implemented is based on the
one described in [4, 5] but contains several improvements.

To maintain consistency and stability the refinement algorithm uses two kinds of refinement
rules.

For uniform refinement the “regular” or “red” rules are applied which subdivide a tetrahedron
into 8 children such that all its edges are cut in half. This is accomplished by first taking out the
four corners of the tetrahedron and then cutting the remaining octahedron twice which yields four
additional tetrahedra (see Figure 2). The children belong to (up to) three congruency classes:
The outer four tetrahedra belong to the same class as their father and the inner four belong to two
different classes (in general). Note that the two transversal cuts through the octahedron share
one diagonal which in principle offers three possible subdivisions of the octahedron since there
are three diagonals. All of them lead to consistent triangulations of the enclosing tetrahedron.
If one carefully picks the appropriate diagonals when subdividing the children and their children
etc. using the “red” rule, it can be shown that all tetrahedra in the hierarchy of triangulations
belong to at most three different congruency classes (see [6]). Using this strategy we are able
to perform uniform refinement in a stable (due to the finite number of congruency classes) and
consistent fashion.

1for convenience we will call it simply “refinement algorithm”
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Figure 2: Regular refinement of a tetrahedron

For non-uniform refinement, different levels of refinement have to be combined in a stable
and consistent way. This is done by the “irregular” or “green” rules that generate tetrahedra
which are refined on some faces/edges but remain unrefined on others (see examples in Figure 3).
The resulting children can connect tetrahedra that differ by one level of refinement. If we do not
allow “green” children (i. e. children that were generated by green rules) to be further refined,
we still have a finite number of possible congruency classes (due to the finite number of green
rules). Hence, stability is preserved. The non-trivial task of the refinement algorithm is to apply
the rules in such a fashion that green children remain unrefined and consistency is guaranteed.

Figure 3: Examples of irregular refinement

For the algorithm the tetrahedra are organized in so called levels. Level L0 contains the
tetrahedra of the initial grid, level L1 all the children, L2 all the grandchildren etc. up to some
final level L`. The triangulation G` (for ` = 0, . . . , `) then consists of all tetrahedra from level
L` and the tetrahedra from the levels below that do not have any children. The triangulations
G0, . . . ,G` form a set of nested grids that are suitable for the application of multigrid methods.
The levels, however, are more natural for the refinement algorithm.

In addition to the tetrahedra the edges play an important role in the algorithm because of
the following consideration. If one subdivides a tetrahedron or a face, one has to divide some of
its neighbours, too, to maintain consistency. However, if one refines an edge, no neighbouring
edge is affected — edges can be subdivided independently. This is exploited by the algorithm.

Let us assume, that an error estimator has marked some of the tetrahedra of the finest
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triangulation G` for refinement and some others for coarsening.2 The structure of the refinement
algorithm — which basically consists of two loops — is as follows:

• A loop from the finest level L` to the coarsest L0. It does not actually add or remove
tetrahedra, but modifies the marks on the edges, that determine whether the edge should
be refined or not. Its inner loop iterates over all tetrahedra on the current level. All 6
edges of the current tetrahedron will be refined, if one of the following three conditions
holds:

1. The current tetrahedron is not green and marked for refinement by the error estimator.

2. The current tetrahedron is refined irregularly and one of its children is marked for
refinement (so that the green rule will be replaced by a red rule).

3. If a child of a neighbour shall be refined (to ensure that the levels of refinement differ
by at most 1).

If all children of a tetrahedron are marked for removement, the edges of the tetrahedron
will be unrefined (if that is permitted by the neighbours).

• A loop from the coarsest level L0 to the finest L`. In this loop the construction and
destruction of tetrahedra actually takes place: If the marks on the edges do not coincide
with the actual refinement pattern of a tetrahedron, the children will be deleted and new
children (if required) will be generated.

This strategy is illustrated for the 1D case in Figure 4. In Figure 4a) we have four grid cells on
level 0. The inner ones are refined regularly (this is denoted by the fat line on top), their children
are on level 1. The outer two grid cells are refined irregularly, their green children (which connect
two levels of refinement) are on level 1, too. In b) one cell is marked for refinement. In c) we
start the top-down loop on level 1: The mark on the grid cell is translated into a refinement
pattern (thus the fat line on top). In d) we go to level 0. Because of rule 3. from above the
leftmost cell has to be refined, since its right neighbour has a child that will be refined. In e)
we start the bottom-up loop on level 0: The leftmost cell has a regular refinement pattern (the
fat line), but its child is a green one. Therefore the green child is deleted and replaced by two
regular children. On level 1 in f) we have to add the missing children, thus generating level 2.
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Figure 4: The refinement algorithm – 1D example

There is, however, a dangerous pitfall. The refinement rule for each new tetrahedron must
be determined from the refinement patterns on its edges. For some patterns there are several
possible matching refinement rules. Consider the situation in Figure 5: If two of the three edges
of a face are marked for refinement, there are two ways to cut the face into smaller triangles
accordingly.

2Note that because no tetrahedron in G` has children only tetrahedra without children will be marked.
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Figure 5: Non-unique refinement

If two tetrahedra share such a face one has to choose their refinement rules so that both cut
this face in the same way to maintain consistency. One might think that just prescribing the
pattern on all those faces would solve the problem, but this is only part of the truth, because it
is possible to have a pattern on all four faces of a tetrahedron in such a way that no acceptable
refinement rule can match all the patterns on the faces. Since this situation would lead to an
inconsistent triangulation it has to be avoided!

In [4, 5] this problem does not arise, because only a limited set of green rules is used: In
complicated cases green refinement is replaced by red refinement. The disadvantage is that the
neighbours have to be adjusted to match the new rule. This in turn can affect their neighbours
and so on. Since such a domino effect hinders parallelization we favor a different solution.

Our approach to deal with this problem is as follows. We use an arbitrary global numbering
of the vertices of the tetrahedra in level L0 to determine an ordering of the vertices in each
tetrahedron of this level. Our set of refinement rules not only tells how to cut a tetrahedron
into pieces, but it also induces an ordering of the vertices in each of the children. This results
in an ordering of the vertices of each tetrahedron in each level. If a situation as in Figure 5
occurs we choose the pattern that connects the vertex with the lowest number and the midpoint
of the opposite edge. Since the ordering is consistent between neighbouring tetrahedra, the
choice of the patterns will be, too. By using this strategy to determine the patterns on the faces
we can always find a rule to match the patterns and we never get the “forbidden” situation
mentioned above. In fact there is precisely one rule for every pattern on the edges, so that
we need a set of 26 = 64 refinement rules. In addition there are two positive side-effects.
One can determine the appropriate refinement rule without considering the neighbour — this
reduces the communication in a parallel algorithm. Furthermore, when applying the red rule
one automatically chooses the appropriate diagonal for subdivision of the inner octahedra.

Remark 1 In the refinement algorithm any operation on a specific tetrahedron etc. is deter-
mined by/affects only some small neighbourhood of this tetrahedron. This locality property is
very favorable for parallelization,

The locality property of the refinement algorithm also yields an interesting result related
to adaptivity. A refinement mark for some tetrahedron will affect only a small part of the
triangulation. Hence, only a small number of new tetrahedra/unknowns will be generated. In
combination with an appropriate local error estimator this allows for a fine-tuned error control.

Remark 2 We use vertices, edges, faces and tetrahedra as data structures which allows a very
“geometric” implementation of the refinement algorithm described above. This also enables us
to store geometry-related data at the appropriate places, which facilitates the implementation
of finite element discretizations.

Remark 3 The refinement rules are stored as data sets for each rule that are parsed whenever
new tetrahedra have to be generated. Each set contains the number of the children, the order and
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location (relative to the father) of their vertices, edges and faces. To determine the appropriate
rule we interpret the given refinement pattern on the edges as 6-bit binary number which we
use as index into the data base.

3 Discretization

3.1 Finite element discretization of scalar stationary problems

We consider the weak formulation of the Poisson equation with homogeneous boundary condi-
tions (1): given f ∈ L2(Ω),

find u ∈ H1
0 (Ω) such that a(u, v) = (f, v) for all v ∈ H1

0 (Ω), (6)

where a(u, v) :=
∫

Ω∇u · ∇v and (·, ·) is the scalar product on L2(Ω). The finite element
approach is a special case of a Galerkin method where we replace the infinite dimensional space
V := H1

0 (Ω) by a space Vh ⊂ V of finite dimension:

Find uh ∈ Vh such that a(uh, vh) = (f, vh) for all vh ∈ Vh. (7)

Given a basis Φ := {ϕ1, . . . , ϕn} of Vh and using the decomposition uh =
∑n

j=1 αjϕj with
αj ∈ R, we get the following linear system of equations:

Find α1, . . . , αn such that

n∑

j=1

a(ϕj , ϕi)αj = (f, ϕi) for all i = 1, . . . , n.

Using the notation A := (a(ϕj , ϕi))i,j=1,...,n, b := ((f, ϕ1), . . . , (f, ϕn))
T , and x := (α1, . . . , αn)

T

we can reformulate the problem as

Find x ∈ Rn such that Ax = b . (8)

The bilinear form a is symmetric and elliptic, hence the stiffness matrix A is symmetric positive
definite. This property can be exploited by iterative solvers.

Let u and uh be the solutions of (6) and (7), respectively. For v ∈ V we introduce the energy
norm ‖v‖1 := a(v, v)1/2. An important theoretical result is Cea’s Lemma (see [30]), which for
the Poisson equation yields the discretization error bound

‖uh − u‖1 ≤ inf
vh∈Vh

‖vh − u‖1 . (9)

This means that the discretization error is directly related to approximation properties of the
space Vh.

Hence, two obvious criteria for the choice of Vh and its basis Φ are obtained: u should be
approximated by functions from Vh “very accurately” and Φ should be chosen such that the
matrix A has “nice” properties.

We chose one of the most popular methods to achieve these goals, namely finite elements.
Given a consistent triangulation G = {T} of Ω the space Vh consists of all functions vh on Ω, such
that vh|T is a polynomial for any given tetrahedron T ∈ G. The choices for the triangulation
(e. g. tetrahedral, hexahedral), the polynomials (e. g. linear, quadratic) and the smoothness of
the functions (e. g. continuous, differentiable) determine the type of the finite elements.

On the tetrahedral triangulations used in DROPS we implemented the following two types
of elements: P1-element (linear polynomials) and P2-element (quadratic polynomials). One can
interpret the polynomials as interpolating polynomials with nodes as shown in Figure 6. The
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Figure 6: P1-element (4 nodes) and P2-element (10 nodes)

location of the nodes automatically guarantees that the polynomials on different tetrahedra are
continuous across edges and faces.

Based on the nodes we can easily construct the so called nodal basis for Vh. It consists of
all functions in Vh that have the value 1 at one node and zero at all the others. These functions
are linearly independent and span Vh, so that they indeed form a basis for Vh. In addition it
is easy to decompose any given function in Vh with respect to this basis. A further important
property is that the nodal functions have local support. Hence, the matrix A is sparse and we
only have to integrate over few tetrahedra to compute a(ϕj , ϕi) and (f, ϕi).

Using Cea’s Lemma and approximation properties of polynomials one can for example show
the following error bound (see [30]) for P1-elements on a uniform grid of step size h:

‖uh − u‖L2
≤ ch2. (10)

However, for many problems uniform refinement is not optimal. Actually, Cea’s Lemma already
suggests the use of adaptive grids. It would be a waste of computational time to put many
nodes into those parts of Ω where u could be approximated almost just as good with much fewer
nodes. Note that in an adaptive discretization method with strong local refinements an error
bound as in (10) makes no sense because there is no reasonable global mesh size parameter h.

Assembling the stiffness matrix A is done by iterating over all tetrahedra of a given trian-
gulation G and computing their share of the integrals. This can of course be done in parallel in
a straightforward manner. To compute the entries of A we just have to integrate polynomials,
so that we can provide the exact values. To compute the entries (f, ϕi) of the right hand side b
we have to use quadrature formulas, since in general f is not a piecewise polynomial. In case
of P1-elements, for example, DROPS uses a quadrature formula that evaluates the integrand in
the four nodes and the barycenter of the tetrahedron T . This guarantees that the local error is
of order O(diam(T )2).

The treatment of certain boundary conditions different from homogeneous Dirichlet condi-
tions is also implemented in DROPS. In the case of nonhomogeneous Dirichlet conditions we
simply take into account the known values at nodes that lie on the boundary. In the case
of Neumann boundary conditions the values at the boundary nodes are treated as additional
unknowns.

We briefly discuss the finite element discretization method for the convection-diffusion equa-
tion (2). The weak formulation of this problem is as in (7) with the bilinear form a replaced
by

ã(u, v) := ν a(u, v) +

∫

Ω
b · ∇u v +

∫

Ω
a0 u v

We use the same finite element spaces as for the Poisson equation. This is reasonable only if
the problem is not convection-dominated, i. e. if maxi=1,2,3 ‖bi‖∞,Ω . ν holds. Up to now we
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restricted ourselves to diffusion dominated problems. In the near future we plan to implement
stabilization techniques like streamline diffusion finite elements (SDFEM) which then allow a
proper finite element discretization of convection dominated problems (cf. §8).

For the convection-diffusion problem the assembling of the stiffness matrix is very similar
to the assembling of the Poisson stiffness matrix A. One only has to compute a few additional
integrals. Note that for the convection-diffusion problem the stiffness matrix is nonsymmetric.
For the diffusion dominated case, however, we can solve the resulting discrete problem using the
same iterative solvers as for the discrete Poisson equation.

Remark 4 For iterative solvers like Krylov subspace methods we only need the matrix of the
linear system (8) resulting from the discretization on the finest grid G`. For multigrid solvers,
however, we also need the hierarchy of grids. In addition we have to provide prolongations
and restrictions. The prolongations are obtained from the natural embedding of a coarse finite
element space in the next finer one. The prolongation is constructed by projecting the coarse
grid piecewise polynomial nodal functions to the next finer grid and decomposing them into the
respective fine grid basis functions. The restrictions are merely the transposed prolongations,
so we get them for free (and can save the computer memory).

3.2 Discretization of stationary systems

We consider the stationary Stokes equations. Using the notation V := H1
0 (Ω)

3, Q := { q ∈
L2(Ω) |

∫

Ω q = 0 } the weak formulation of the Stokes problem (3) reads: Given f ∈ L2(Ω)
3 and

a sufficiently smooth function a0 : Ω→ [0,∞),

find u ∈ V, p ∈ Q such that

{

a(u, v) + (a0u, v) + b(v, p) = (f, v) for all v ∈ V

b(u, q) = 0 for all q ∈ Q,
(11)

where a(u, v) := (∇u,∇v) = ∑3
i,j=1(

∂ui
∂xj

, ∂vi
∂xj

) for u, v ∈ V and b(u, q) := −(div u, q) for u ∈ V ,

q ∈ Q.
For the discretization we again use the Galerkin approach with finite element spaces Vh ⊂ V

and Qh ⊂ Q. The discrete problem is obtained by replacing V by Vh and Q by Qh in (11).
For the discrete problem to be well-posed (for h ↓ 0) the pair of spaces Vh, Qh must satisfy the
famous inf-sup (or LBB) condition (see [19]):

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖1 · ‖qh‖L2

≥ β (12)

where β is some positive constant independent of h. There is extensive literature on finite
element spaces that satisfy this condition. A pair that is known to work (see [19]) and used
in DROPS is P1-elements for the pressure unknowns (Qh) and P2-elements for the velocity
unknowns (Vh).

Using the nodal bases of the spaces Vh and Qh the discrete problem can be formulated as a
linear system of the form

(
A BT

B 0

)(
u
p

)

=

(
b
0

)

. (13)

The matrix of this system is symmetric but strongly indefinite. The matrix A is symmetric
positive definite. Special iterative solvers for this type of system are discussed in §4.2.

For the representation of the stiffness matrix in (13) we store the matricesA andB separately.
This simplifies the implementation of iterative solvers that exploit the special block structure of
the stiffness matrix in (13).
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The Oseen equations (5) can be written in weak formulation and a finite element discretiza-
tion method as discussed above can be applied. The discrete problem is of the same form as in
(13), but now the matrix A is nonsymmetric due to the convection term.

3.3 Time discretization for instationary problems

We treat instationary problems by first discretizing with respect to time. For each time step
the resulting problem can be seen as a stationary equation for which the discretization methods
discussed in §3.2 can be used.

The time-dependent Navier-Stokes equations (4) can be represented as follows (where for
simplicity we omit the initial/boundary conditions):

∂u
∂t = f − F (u)u−∇p

div u = 0

with F (u) := −ν∆ + N(u). Replacing ∂u
∂t by a forward finite difference with time step τ we

obtain the following explicit Euler scheme:

ui+1−ui

τ = f i − F (ui)ui −∇pi

div ui+1 = 0.

Here ui denotes the known velocity field at time ti and ui+1 the unknown field at time ti+1 =
ti+τ . This scheme is only first order accurate, i. e. the discretization error is O(τ). Furthermore,
the scheme is not A-stable. In many CFD applications the equations are very stiff and then the
lack of A-stability causes strong limitations on the time step. This is considered to be major
drawback of the explicit Euler scheme. A generalization of this Euler method is the so called
θ-scheme (θ ∈ [0, 1]):

ui+1−ui

τ = θ[f i+1 − F (ui+1)ui+1 −∇pi+1] + (1− θ)[f i − F (ui)ui −∇pi]
div ui+1 = 0.

The parameter θ controls the implicitness of the scheme. For θ = 0 we obtain the explicit Euler
method. Two other well-known examples are the implicit (or backward) Euler scheme (θ = 1)
and the Crank-Nicholson scheme (θ = 1

2). The first offers A-stability (even strong A-stability),
but is still of order one. The second is of order two, but does not have the strong A-stability
property, which leads to stability problems in certain situations.3

In DROPS we use a similar second order method which, however, is strongly A-stable. This
so called fractional-step method can be found in [38]. Each time step is subdivided into three

substeps with step sizes µτ , µ′τ and µτ where µ := 1−
√
2
2 ≈ 0.293 and µ′ := 1− 2µ =

√
2− 1 ≈

0.414:

ui+µ−ui

µτ = f i − θF (ui+µ)ui+µ − (1− θ)F (ui)ui −∇pi+µ

div ui+µ = 0

ui+1−µ−ui+µ

µ′τ = f i+1−µ − θF (ui+µ)ui+µ − (1− θ)F (ui+1−µ)ui+1−µ −∇pi+1−µ

div ui+1−µ = 0

ui+1−ui+1−µ

µτ = f i+1−µ − θF (ui+1)ui+1 − (1− θ)F (ui+1−µ)ui+1−µ −∇pi+1

div ui+1 = 0.

3In spite of this we implemented the θ-schemes to be able to perform numerical comparisons.
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Because of the special choice of µ it is a second order scheme. The parameter θ is chosen such
that θµ = (1 − θ)µ′ holds (θ = 2 −

√
2 ≈ 0.586). The scheme can be shown to be strongly

A-stable (cf. [38]).
For the implementation we have to collect the terms with the unknown velocities and pres-

sures on the left hand side of the equations and the rest is treated as a source term on the right
hand side (θ′ := 1− θ):

[
I + θµτF (ui+µ)

]
ui+µ + µτ∇pi+µ =

[
I − θ′µτF (ui)

]
ui + µτf i

div ui+µ = 0

[
I + θ′µ′τF (ui+1−µ)

]
ui+1−µ + µ′τ∇pi+1−µ =

[
I − θµ′τF (ui+µ)

]
ui+µ + µ′τf i+1−µ

div ui+1−µ = 0

[
I + θµτF (ui+1)

]
ui+1 + µτ∇pi+1 =

[
I − θ′µτF (ui+1−µ)

]
ui+1−µ + µτf i+1−µ

div ui+1 = 0

These equations can be written in weak formulation and then discretized w. r. t. space as
before. The discretization of the identity operator I then results in a mass matrix M :=
((ϕj , ϕi)i,j=1,...,nv) ∈ Rnv×nv . In the implementation the boundary conditions (at time ti and
ti+1) must be treated carefully.

4 Iterative solvers

4.1 Solvers for the Poisson equation

In this section we discuss iterative solvers for the Poisson equation, as they are implemented
in DROPS, namely the preconditioned conjugate gradient method (PCG) and the multigrid
method (MG). The discretization of the Poisson equation leads to a linear system Ax = b as
in (8), with a stiffness matrix A ∈ Rn×n that is symmetric positive definite. For this type
of problems PCG methods are very popular iterative solvers. The presentation of the PCG
algorithm is skipped, as it is well known and can be found in the literature (e. g. [22]). In each
iteration of the PCG algorithm one matrix-vector multiplication with the matrix A has to be
computed and a linear system of the form

Wx̃ = r (14)

must be solved, whereW is the preconditioner. Here we use an SSOR technique for precondi-
tioning. Let A be decomposed as A = D − L −U where D = diag(A) and L, U are strictly
lower and strictly upper triangular matrices, respectively. The SSOR preconditioner is given by

W =
1

ω(2− ω)
(D− ωL)D−1(D− ωU) . (15)

The parameter ω ∈ (0, 2) is user-defined. For the case ω = 1 one obtains the symmetric Gauss-
Seidel preconditioner. The solution x̃ of (14) is given by

x̃0i := ω/aii

(

ri −
∑

j<i aij x̃
0
j

)

, i = 1, . . . , n

x̃1i := (2− ω)x̃0i − ω/aii
∑

j>i aij x̃
1
j , i = n, n− 1, . . . , 1

x̃ := (x̃11, x̃
1
2, . . . , x̃

1
n)

T .
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For the multigrid method, a hierarchy of grids (triangulations)

G0 ⊂ G1 ⊂ · · · ⊂ G`

and corresponding matrices
A` ∈ Rn`×n` , ` = 0, · · · , `,

as well as prolongations
P` ∈ Rn`×n`−1 , ` = 1, · · · , `,

are needed. The restrictions R` ∈ Rn`−1×n` , ` = 1, · · · , `, are defined by R` := P
T
` .

The idea of multigrid methods is to smooth the error (or defect) so that it can be repre-
sented accurately on a coarser grid by restriction, and then solve a coarse grid error equation.
Optionally, a post-smoothing follows, as we do for the sake of symmetry. For the solution of the
coarse grid problem, the same idea can be applied recursively. For an introduction to multigrid
methods we refer to [22]. The multigrid algorithm has the following structure:

Algorithm 1 (Multigrid method)

function MGM`(x`,b`)
{

if l = 0 then

x0 := A
−1
0 b0; // solve coarse grid problem

else
{

x` := Sν
` (x`,b`); // presmoothing

d`−1 := R` (b` −A`x`); // restriction of defect
e0`−1 := 0;
for i = 1 to τ do // recursion

ei`−1 := MGM`−1(e
i−1
`−1,d`−1);

x` := x` +P` e
τ
`−1; // add coarse grid correction

x` := Sν
` (x`,b`); // postsmoothing

}
return x`;

}

In our applications we use τ = 1 (V-cycle) and ν ∈ {1, 2, 3} smoothing steps, where S is one
step of the symmetric Gauss-Seidel method.

An important difference between the PCG and MG method concerns the dependence of the
rate of convergence on the mesh size parameter h. When h is reduced the PCG method will
typically need more iterations to obtain a certain error reduction. This behaviour is predicted by
the following theoretical result (cf. [22]). Let x0 be the starting vector of the PCG algorithm and
xk the result after k iterations. For the error in the energy norm ‖y‖2A := yTAy the inequality

‖xk − x‖A ≤ 2
(√κ− 1√

κ+ 1

)k
‖x0 − x‖A (16)

holds, with κ = cond(W−1A) the spectral condition number of the preconditioned matrix. In
our applications we typically have κ → ∞ for h ↓ 0. For example for the Poisson equation
discretized with P1 finite elements on a uniform triangulation and using SSOR preconditioning
one has

cond(W−1A) = O(h−2) for h ↓ 0 . (17)
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Hence, for this case if the mesh size is halved one expects a doubling of the number of PCG
iterations needed to obtain a given error reduction.

The multigrid method is a linear iterative method and thus the (asymptotic) convergence
rate is determined by the spectral radius of the iteration matrix, which is denoted by ρMG. In
[21, 22] it is shown that for a large class of elliptic boundary value problems the multigrid method
applied on a hierarchy of regularly refined grids satisfies the inequality

ρMG ≤ α < 1,

with a constant α independent from h. In [9] similar theoretical results are shown to hold for
an adaptive setting in which multigrid is applied on a hierarchy of locally refined grids (cf. also
[43]). These results give a theoretical explanation for the fact that in many practical applications
the multigrid convergence rate does not deteriorate when the grid is (locally) refined. This can
also be seen in the numerical examples in §7.

Of course, for the efficiency of an iterative solver apart from the rate of convergence the
arithmetic work per iteration has to be taken into account, too. For the PCG method with SSOR
preconditioning the work per iteration is comparable to 2–3 sparse matrix-vector multiplications
A ∗ x. We briefly discuss the arithmetic work needed in one multigrid V-cycle iteration. As a
convenient unit of arithmetic work we use MV, which stands for the work needed in one A ∗ x
computation on the finest level `. Let n` be the number of unknowns in the discrete problem
A`x` = b` (in a scalar problem with linear finite elements this is approximately the same as
the number of vertices in the triangulation G`). We introduce θ` :=

n`−1

n`
(1 ≤ ` ≤ `), which

measures the reduction of the dimension of the discrete problem when going from level ` to `−1.
In case of global uniform refinement one has θ` ≈ 1

8 . In an adaptive setting with local refinement
one has 1

8 ≤ θ` < 1. The value of θ` is strongly influenced by the marking strategy that is used
in the refinement algorithm (cf. §5.3). The arithmetic work in the multigrid V-cycle on level `
is denoted by WMGM

`
. For the costs of one multigrid V-cycle one obtains (cf. [22])

WMGM
`
≈
(
1 + θ` + θ`θ`−1 + θ`θ`−1θ`−2 + . . .+ θ`θ`−1 . . . θ1

)
2(ν + 1)MV +W0 .

Here ν is the number of smoothing iterations used in the multigrid algorithm and W0 the work
needed for solving the problem on the coarsest grid, A0x0 = b0. This work can be considered to
be negligible compared to one MV. If we assume θ` ≤ θ < 1 for all ` and neglect W0 we obtain

WMGM
`
≈ 2

1− θ
(ν + 1)MV .

Hence the arithmetic costs for the multigrid V-cycle are proportional to a sparse matrix-vector
multiplication, A∗x, on the finest grid: WMGM

`
≈ CMV. The constant C depends on the num-

ber of smoothing iterations used and on the “rate of refinement” (parameter θ). In particular,
if from one level to the next finer one only relatively few new vertices (unknowns) are added the
arithmetic costs per iteration can be quite high. Hence, we use a marking strategy which tries
to avoid this.

Remark 5 The finite element discretization of the convection-diffusion problem (2) results in
a linear system with a nonsymmetric stiffness matrix. Up to now we only considered diffusion
dominated problems. For such problems the stiffness matrix is a perturbation of a symmet-
ric positive definite matrix and the PCG method described above still works quite well. For
problems with stronger convection the CG method has to be replaced by other Krylov subspace
methods (cf. §8). Standard multigrid methods can be applied to diffusion dominated convection-
diffusion equation. For the convection-dominated case special tools like robust smoothers or
matrix-dependent prolongations and restrictions should be used (cf. [35]).
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4.2 Solvers for the stationary Stokes and Oseen equation

The discretization of the stationary Stokes equation leads to the saddle point problem

Ax+BTy = b,

Bx = c.

with a symmetric positive definite matrix A ∈ Rnv×nv and B ∈ Rnp×nv . In order to decouple
the equations, we multiply the first one with BA−1 from the left, which results in

Sy = BA−1b− c with the Schur complement S := BA−1BT .

This leads to

Algorithm 2 (Schur complement method)

1. Solve Az = b.

2. Solve Sy = Bz− c.

3. Solve Ax = b−BTy.

For the systems with matrix A in steps 1 and 3 one can use the PCG method described above.
The Schur complement matrix S is symmetric positive definite, too, and hence we can apply
the CG method. Every multiplication with S in the CG algorithm involves solving a linear
system with matrix A (plus multiplications with B and BT ). The inner iteration for solving
this A-system has to be performed with high accuracy for the CG-solver to converge (we use
resouter < 10−10, resinner < 10−14 for instance). Note that finding a preconditioner for the matrix
S is a difficult task because this matrix is not explicitly available. The SSOR preconditioner,
for example, cannot be applied. Fortunately, for many problems the condition number of S is
moderate and remains bounded for h ↓ 0 (cf. [10]). In general the efficiency of the CG-solver for
the Schur complement problem in step 2 can be improved by preconditioning the system with
the mass matrixM ∈ Rnp×np for the pressure unknowns. For preconditioning we use one SSOR
iteration (i. e., the matrixW in (15)) applied to the matrix M.

A disadvantage of the Schur complement technique is that the inner A-systems in step 2
must be solved with high accuracy. A more popular approach which avoids this is the so called
inexact Uzawa method (cf. [10]).

Algorithm 3 (Inexact Uzawa method)
Repeat until desired accuracy:

xi+1 := xi + Ã
−1(b−Axi −BTyi), (18)

yi+1 := yi + S̃
−1(Bxi+1 − c). (19)

In this method one uses preconditioners Ã and S̃ of A and S, respectively (this is why this
Uzawa method is called inexact). In our applications the correction term in (18) is the result of
several iterations of a Poisson solver (multigrid or PCG) with starting vector 0 applied to the
system

Az = b−Axi −BTyi . (20)

For the correction term in (19) we apply a few iterations of an iterative solver (e. g. PCG) with
starting vector 0 applied to

Mz = Bxi+1 − c . (21)

We briefly discuss an interesting theoretical result from [10] concerning the rate of convergence
of the inexact Uzawa method. We assume symmetric positive definite preconditioners Ã of A

15



and S̃ of the Schur complement S. We assume that Ã and S̃ are scaled such that Ã −A and
S̃− S are positive semidefinite. Furthermore, let σA, σS ∈ [0, 1) be such that

(1− σA)(Ãx,x) ≤ (Ax,x) for all x ,

(1− σS)(S̃y,y) ≤ (Sy,y) for all y .

We use the notation (·, ·) for the Euclidean scalar product on Rn. Note that since Ã and S̃ are

positive definite such σA and σS always exist. In [10] it is shown that for the error ei :=

(
x− xi
y − yi

)

the inequality
[|ei|] ≤ ρi[|e0|] for i = 0, 1, 2, . . .

holds, where [| · |] is some problem dependent norm and

ρ =
σS(1− σA) +

√

σ2S(1− σA)2 + 4σA

2
≤ 1− 1

2
(1− σS)(1− σA) .

From this result we conclude that the rate of convergence of the inexact Uzawa method is high
if one uses good preconditioners Ã and S̃.

Remark 6 We briefly discuss a result from [45] related to the inexact Uzawa method. Let

K =

(
A BT

B 0

)

, K̃ =

(
Ã 0

B S̃

)

, x =

(
x
y

)

, b =

(
b
c

)

, xi =

(
xi
yi

)

.

The inexact Uzawa iteration (18),(19) can be rewritten as

xi+1 = xi − K̃−1
(
Kxi − b

)
. (22)

Hence the inexact Uzawa method can be seen as a Richardson method for solving K̃−1Kx =
K̃−1b.

We assume that the preconditioners Ã and S̃ are symmetric positive definite and that A−Ã
is positive definite. Then it can be shown that the preconditioned matrix K̃−1K is symmetric
positive definite with respect to the scalar product

〈(
x
y

)

,

(
x̃
ỹ

)〉

∗
:= ( (A− Ã)x, x̃ ) + (S̃y, ỹ).

From this it follows that we can apply a CG method to the preconditioned system K̃−1Kx =
K̃−1b. This results in a method with a (significantly) higher rate of convergence than the Uzawa
(= Richardson) method in (22).

We consider the Oseen problem resulting from linearization of the stationary Navier-Stokes
equation, i. e., (5) with a0 = 0. Finite element discretization of this problem results in a linear
system of the form

(A+C)x+BTy = b,

Bx = c.
(23)

The matrix A corresponds to the Laplace operator and is symmetric positive definite. The
matrix C is nonsymmetric and results from the discretization of the convection term in the
Oseen equation. The matrix A+C has (after permutation) a simple block diagonal structure:
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A + C = blockdiag(AC ,AC ,AC). The diagonal blocks AC are the discretization of a scalar
convection-diffusion problem as in (2).

Since we only consider problems which are diffusion dominated (Navier-Stokes with small
Reynolds number) the linear system in (23) can be considered to be of saddle point type and
the Schur complement and inexact Uzawa methods can be used as solvers. The linear problems
that arise in step 1 and 3 of the Schur complement algorithm and in (20) are now of convection-
diffusion type.

4.3 Solvers for the stationary Navier-Stokes equation

The discretization of the stationary Navier-Stokes equation leads to a nonlinear system of the
form

Ax+N(x)x+BTy = b

Bx = c.

For linearization of this system we use a fixed point iteration technique. The resulting linear
problems are as in (23) and can be treated by the iterative methods from §4.2. In the linearization
method we use a standard step size control technique. The following algorithm is from [38]:

Algorithm 4 (Fixed point defect correction method with step size control)
Set ω0 = 1.
Repeat until desired accuracy:

1. Calculate the defect vector

(
resx
resy

)

:=

(
Axi +N(xi)xi +B

Tyi − b
Bxi − c

)

2. Solve the discrete Oseen problem

[A+N(xi)] v +B
Tq = resx

Bv = resy

with accuracy toli to obtain the correction v and q.

3. Step size control: Calculate the step length parameter

ωi+1 :=

〈

K

(
v
q

)

, K

(
xi
yi

)

−
(
b
c

)〉

〈

K

(
v
q

)

, K

(
v
q

)〉 with K :=

(
A+N(xi − ωiv) B

T

B 0

)

4. Update xi,yi: (
xi+1
yi+1

)

:=

(
xi
yi

)

− ωi+1

(
v
q

)

Step 3 may be skipped, using ωi+1 := 1 in step 4, resulting in a simpler linearization method
(cf. [31]). The use of step size control, however, improves the robustness of the algorithm. By
far most of the computational work is done in step 2. The accuracy toli of the solver in step 2
is increased during the outer iteration.
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4.4 Solvers for the time-dependent Navier-Stokes equation

In the instationary Navier-Stokes equation the fractional step method from §3.3 is used for time
discretization. In each time step a quasi stationary Navier-Stokes problem arises. Discretization
of these problems yields nonlinear systems of the form

Ax+N(x)x+Mx+BTy = b

Bx = c.
(24)

These nonlinear systems can be treated by the method given in algorithm 4. Note that in this
time dependent case the Oseen problems in step 2 of the algorithm are discrete counterparts
of the Oseen problem (5) with a0 > 0. The reaction term a0u in this Oseen problem (Mx in
(24)) comes from the identity operator I on the left handside of the fractional step method. We
summarize the solution process:

• Outer loop: time stepping with fractional step scheme

• Second loop: fixed point defect correction method for linearization

• Third loop: inexact Uzawa (or Schur complement) method to solve discrete Oseen problems

• Inner loop: iterative solver (PCG, MG) for the convection-diffusion problems

This is only a rough description of the algorithm we implemented since we completely left out
the construction of the systems (24), i. e. the whole discretization part. For adaptivity we have
to add another loop that contains error estimation and grid refinement.

4.5 Implementation issues

In this section we describe important data structures (matrices and vectors), the numerical
solvers are based on. Furthermore the design of the solvers is briefly addressed.

The vector data structure is mainly a wrapper class around a std::valarray<double> ob-
ject, a standard container from the C++ Standard Template Library (STL) especially designed
for the purpose of numerical applications.

Since the matrices arising from the discretization are sparse, we use an appropriate matrix
storage format, the CRS (compressed row storage) format, in which only nonzero entries are
stored. It contains an array for the values of the nonzero entries and two auxiliary integer

arrays that define the position of the entries within the matrix. Consider an m× n matrix with
l nonzero entries. The latter are stored successively row by row in the data array of length l.
In addition their column indices are stored in the first index array which is, of course, also of
length l. Because the data are stored row-wise, we do not have to provide a row number for
each nonzero entry. Instead we only store where a new row begins (and the last one ends). This
is done by means of a second index array, which is of length m+ 1.

The memory requirement for a sparse n × n stiffness matrix is largely determined by the
size of the value array (l doubles), which is proportional to n. This results in an O(n) memory
requirement. Also the arithmetic work for a matrix-vector product computation is roughly
proportional to n.

Unfortunately, the nice computational and storage properties of the CRS format are not for
free. A disadvantage of this format is that insertion of a non-zero element into the matrix is
rather expensive — usually O(l) elements and column indices have to be moved. Since this is
unacceptable when building the matrix in the discretization step, we designed a sparse matrix
builder class with an intermediate storage format that offers write access in O(log l) time for
each element. Afterwards, the matrix is converted into the CRS format.
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We conclude with a note on the design of the iterative solvers. Since the (Navier-)Stokes
solvers and the time integration schemes require the solution of inner problems (e. g. of Poisson-
or convection-diffusion type), the solvers have been encapsulated in template classes, where
the template parameter controls the inner solver used. All solver classes offer a standardized
interface such that it is easy to use other inner solvers. This technique allows a simple way
to compare different solvers for a given problem or to use a library of solvers which contains
different methods which are appropriate for special problem classes.

5 A posteriori error estimators and refinement strategies

For reliable and efficient numerical simulations the topic of error estimation is of major im-
portance. A priori estimates, which are known for many problems, usually yield bounds for
the discretization error that are very pessimistic and should not be used for error estimation.
Moreover, these a priori results bound the global (i. e. over the whole domain) average of the
error, for example, the L2(Ω) norm of the error as in (10). Hence, these a priori results cannot
be used for adaptivity, i. e., for local grid refinement in those parts of the domain, where the
error is relatively large.

Error estimation techniques that use a computed discrete approximation of the continuous
solution are called a posteriori estimators. These methods overcome the above-mentioned draw-
backs of a priori techniques. In this section we discuss the main ideas related to the a posteriori
estimators we use.

Let G = {T} be a consistent triangulation. Let u be the solution of the continuous problem
and uh be an approximation of u which results from a (finite element) discretization on the
triangulation G. We are interested in local error estimates ηT (T ∈ G), that give a good
indication of the size of the error on T , i. e., ηT ≈ ‖u − uh‖∗,ωT . Here ‖ · ‖∗,ωT with ωT ⊃ T is
some suitable norm (examples are given below), which measures the discretization error u− uh

on a small subdomain ωT , that contains T , but is not much larger than T .

For local error estimators the following properties are important:

• Locality. This means that the error estimates ηT give a reasonable indication of the size
of the local error (u − uh)|T . An error estimator which has this property can be used as
an indicator in a local refinement method.

• Reliability. For this property to hold an inequality of the form

‖u− uh‖∗,Ω ≤ C

√
∑

T∈G
η2T

must be fulfilled with a moderate constant C independent of diam(T ) for all T ∈ G. It is
useful for global error control, i. e., for checking a tolerance bound of the form ‖u−uh‖∗,Ω ≤
eps, where eps is a user-defined parameter.

• Efficiency. This stands for the existance of a bound of the form

ηT ≤ C‖u− uh‖∗,ωT

for the error estimator. As above, C should be a moderate constant that does not depend
on diam(T ). Thereby we can guarantee that if the actual local error ‖u − uh‖∗,ωT is
relatively small, the error estimator ηT will also be small. Thus, a refinement strategy
based on the relative size of ηT will not refine in regions with relatively small errors.
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• Low computational complexity. The arithmetic work for computing ηT for all T ∈ G should
not exceed the arithmetic work needed in the discretization method or the iterative solver.

Until now we only implemented residual error estimators (cf. [39]) in DROPS. These methods
are based on the following very general result:

Theorem 1 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be two Banach spaces and L : X → Y be a linear
continuous bijective mapping. For g ∈ Y let u be the solution of Lu = g. Then the error bounds

‖L‖−1X→Y ‖Lũ− g‖Y ≤ ‖ũ− u‖X ≤ ‖L−1‖Y→X‖Lũ− g‖Y

hold for all ũ ∈ X.

Remark 7 The result of this theorem can be seen as a generalization of the following very
elementary fact. Consider a linear system Ax = b with a nonsingular matrix A. Let x̃ be an
approximation of the solution x with residual Ax̃− b =: b̃− b. Then the following holds:

‖A‖−1‖b̃− b‖ ≤ ‖x̃− x‖ ≤ ‖A−1‖‖b̃− b‖ .

Remark 8 The Poisson equation in weak formulation can be cast into the general setting of
Theorem 1 if one takes

X = H1
0 (Ω), ‖u‖2X =

∫

Ω
∇u∇u, Y = X ′ (dual space of X),

L : X → Y, L(u)(v) :=

∫

Ω
∇u∇v, g(v) :=

∫

Ω
fv .

For this special case one obtains ‖L‖−1X→Y = ‖L−1‖Y→X = 1.

The main task in the development of residual error estimators for a class of partial differ-
ential equations (e. g. Poisson equation or the Stokes equation) is the construction of efficient
approximation methods for the norm of the residual Lũ−g. How this can be done, can be found
in [1] or [39], for example. In the following two sections we present some concrete methods for
the Poisson and for the Stokes equation.

5.1 Residual error estimator for the Poisson equation

Here the general result of Theorem 1 is applied with X = H1
0 (Ω), Y = X ′ (cf. Remark 8).

In [39] it is shown how the estimation of the residual ‖Luh − g‖Y (where uh is the solution of
the discrete problem (7)) can be made computable by using jumps of the gradient of uh. For
simplicity, we only present a result for the case of linear finite elements.

For an arbitrary tetrahedron T or face F the diameter of the circumcircle of the simplex is
denoted by dT and dF , respectively. We introduce

ωT := T ∪ ω̃T , ω̃T :=
⋃

T ′∩T∈Fh
T ′,

Fh := {F | F is a face of some T ∈ G} .

Note that ω̃T is the union of tetrahedra in G, which have one common face with T . Also, for
any function f ∈ L2(Ω) let fT be the piecewise constant function given by

fT (x) =

{
1
|T |
∫

T f for x ∈ T

0 otherwise .
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Every face F ∈ F is assigned a normal vector nF that shall point out of Ω, if F ∈ ∂Ω. Let F ∈ F
be an interior face and g be a scalar function that is continuous on each of the two tetrahedra
that share F as a common face. The jump of g across F is defined by

[g]F (x) = lim
t↓0

g(x+ tnF )− lim
t↓0

g(x− tnF ) (x ∈ F ).

Using these definitions we can now introduce a residual error estimator for the Poisson equation:

ηR,T :=

√
√
√
√d2T ‖fT ‖2L2(T )

+
1

2

∑

F∈Fh∩F(T )
dF ‖ [nF · graduh]F ‖2L2(F )

. (25)

Here, F(T ) denotes the set of all faces of T , which lie in the interior of Ω. For the computation
of ηR,T only quantities from T and from the neighbouring tetrahedra T ′ ⊆ ω̃T are needed. Note
that for linear finite elements graduh is a piecewise constant function. Hence, the computation
of ηR,T is quite simple and the arithmetic costs are acceptable.

In the following theorem from [39] two important results for this residual error estimator are
stated.

Theorem 2 Let u be the solution of the Poisson equation (6) and uh the solution of the discrete
problem (7) with linear finite elements. There are constants c, C > 0 that depend only on the
smallest ratio of incircle- to circumcircle-radius of any T ∈ G such that the following estimates
hold:

‖u− uh‖H1
0 (Ω)

≤ C

√
∑

T∈G
η2R,T +

∑

T∈G
d2T ‖f − fT ‖2L2(T )

(26)

ηR,T ≤ c

√

‖u− uh‖2H1(ωT )
+
∑

T ′∈ωT
‖f − fT ′‖2L2(T ′) (27)

The terms with ‖f − fT ‖ on the right hand side in equations (26) and (27) describe the data
approximation error. Without exact integration of f in ηR,T these cannot be avoided, but for
dT ↓ 0 they are in general small compared to the other terms on the right hand side. From
the inequalities in the preceding theorem it follows that the error estimator ηR,T is reliable and
efficient. Results of numerical experiments using ηR,T are given in §7.

DROPS also offers a version of this estimator, that can deal with Neumann boundary values.
For this case, integrals over the faces lying on the Neumann boundary must be calculated in
ηR,T , and the estimates in theorem 2 then contain a term, which takes the data approximation
error on the Neumann boundary into account.

In [39] additional methods are described, which allow an estimation of the discretization
error in the L2(Ω) norm. One such technique is implemented in DROPS, too.

5.2 Residual estimator for the Stokes equations

In this section we briefly describe a residual error estimator for the P2-P1 finite element dis-
cretization of the Stokes equation. For an a posteriori estimator that has been applied to the
Mini-element discretization in DROPS, we refer to [40].

Let V := H1
0 (Ω)

3 and Q := { q ∈ L2(Ω) |
∫

Ω q = 0 } be as in §3.2. The Stokes problem in
weak formulation (11) can be analyzed in the setting of theorem 1 if one takes

X = V ×Q, Y = X ′ (dual space of X),

‖(u, p)T ‖X =
√

‖u‖2
H1(Ω)

+ ‖p‖2L2(Ω)
,

L(u, p; v, q) := a(u, v) + (a0u, v) + b(v, p) + b(u, q), g(v, q) := (f, v).
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The definitions of dT , dF , ωT , Fh, F(T ) and nF are the same as in section 5.1; fT and [f ]F can
be defined componentwise for functions taking values in R3.

With this notation an error estimator for the discrete Stokes problem formulated in sec-
tion 3.2 can be defined as follows (where for simplicity we assume a0 = 0):

ηR,T =
{

d2T ‖ −∆uh + grad ph − fT ‖2L2(T )
(28)

+
∑

F∈Fh∩F(T )
dF ‖ [ν nF graduh − nF ph]F ‖2L2(F )

+ ‖div uh‖2L2(T )

} 1
2

As for the Poisson equation the arithmetic costs of this error estimator are acceptable. The
following result concerning reliability and efficiency can be shown to hold:

Theorem 3 Let (u, p)T be the solution of the Stokes problem (11) and (uh, ph)
T be the dis-

crete solution that is obtained by a P2-P1 finite element discretization. There are constants
c, c2, C, C2 > 0 that depend only on the smallest ratio of incircle- to circumcircle- radius of any
T ∈ G such that the following inequalities hold:

‖(u, p)T − (uh, ph)
T ‖X ≤ C

√
∑

T∈G
η2R,T + C2

√
∑

T∈G
d2T ‖f − fT ‖2L2(T )

(29)

ηR,T ≤ c
√

‖u− uh‖2H1(ωT )
+ ‖p− ph‖2L2(ωT )

+ c2

√
∑

T ′∈ωT
‖f − fT ′‖2L2(T ′) (30)

As in Theorem 2 the bounds contain a data approximation error that is in general negligible
on fine triangulations.

5.3 Marking Strategies

An a posteriori error estimator yields a positive real number for each tetrehedron T ∈ G:
{ (ηT , T ) }T∈G . The number ηT is an estimate for the size of the discretization error on (a
small neighborhood of) T . Based on this set of local error estimates one needs a method for
deciding, which tetrahedra should be marked for refinement or removement. Such a method is
called a marking strategy. For DROPS three different algorithms have been implemented so far.

Presently, we only use grid refinement and do not consider grid coarsening. Hence, it suffices
to have a marking scheme, which does not take coarsening into account. In a setting with time
dependent problems one must have a marking strategy that is capable of coarsening, too.

We describe the three different marking strategies that are implemented in DROPS.

Threshold technique

In this method the user chooses a threshold value whigh and calling the routine EstimateError
(currently only implemented for Poisson equation) all unrefined tetrahedra T fulfilling ηT > whigh

are marked for refinement. Note that by defining a similar threshold wlow this method can easily
be extended to take coarsening into account, too.

A disadvantage of this simple technique is that it is often not clear how one should choose
an appropriate threshold value whigh.
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Error equilibration

To improve the above technique, a second marking strategy is implemented, which tries to
distribute the error equally over the domain Ω. In an initialization step the global error estimate
E := (

∑

T∈G η
2
T )

1
2 is computed and based on a user specified factor 0 < red ≤ 1 a target

value errtar = redE |Ω|− 1
2 is computed. Now, every tetrahedron, for which ηT |T |−

1
2 > errtar

holds, is marked for refinement. Note that if ηT |T |−
1
2 ≈ errtar holds for all T we obtain

(
∑

T∈G η
2
T )

1
2 ≈ redE. Unfortunately, this method has the tendency to generate rather uniform

refinements.

Largest error first strategy

This marking strategy is used in [14]. As in the previous method, the global error estimate

E := (
∑

T∈G η
2
T )

1
2 is computed. We assume a user defined parameter value errrel ∈ (0, 1). The

local estimates ηT are sorted by decreasing value and the correspondingly sorted tetrahedra are
denoted by T1, T2, . . . , Tm. Then, the tetrahedra with the largest error estimates T1, . . . , Tk are
marked such that √

∑

j≤k

η2Tj ≈ errrelE

holds. This procedure is applied in each iteration of the adaptive solution strategy from figure
1. In this way, the regions, in which refinement takes place, are responsible for a relatively
large amount of the global error. Coarsening could be performed via an additional threshold
for marking those tetrahedra with the smallest errors for removement. We use this method as
default marking strategy in DROPS.

6 Parallelization

For numerical simulations of instationary spatially three dimensional flows one often has to solve
problems with very high numerical complexity. Hence, parallelization is an important issue —
it increases the amount of available memory and can significantly reduce computation time. As
a consequence, DROPS was already designed with parallelization in mind.

This does not mean that the whole code is parallelized already, but this should be possible
without major changes. By now, the data structures can be managed in parallel so that a
grid that was built on one processor can be distributed among the others by means of a graph
partitioner (ParMetis [29]). We can discretize the Poisson equation on this distributed grid and
solve the linear system using a parallel CG solver.

The parallel implementation of the refinement algorithm is about to be finished so that
each part of the grid can be refined on the processor where it is stored. This eliminates the
restriction that the whole grid has to fit into the memory of a single processor. The next step
is the parallelization of the multigrid algorithm and the expansion to the parallel numerical
treatment of the Stokes/Navier-Stokes equations.

The parallelization is based on the library DDD [7, 8], that was originally designed for the
parallelization of the software package UG [3]. DDD can use several different parallel interfaces
— we opted for MPI (message passing interface) which is the quasi-standard for distributed
memory machines. The functionality of DDD is sketched in §6.3.

We start with a brief discussion of a few basic notions related to parallelization.
A distributed memory machine basically is a number of processors, each with its own memory,

that are connected via a network. Data transfer between processors (so called inter-processor
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communication) is carried out by calling library routines — MPI is such a library. Communica-
tion is very time-consuming compared to floating point operations so that it should be minimized.
In addition messages should be bundled to save startup time caused by the network’s latency.

The quality of a parallel code is measured by its scalability:

Definition 1 (Speedup, efficiency, scalability)

• The speedup S(P ) is the time profit of a parallel algorithm running on P processors com-
pared to the serial version for a fixed problem size:

S(P ) =
T (1)

T (P )
.

T (j) denotes the computation time of the algorithm on j processors.

• The (parallel) efficiency E(P ) is defined as

E(P ) =
S(P )

P
.

• An algorithm is called scalable, if E(P ) is close to 1, assuming a sufficiently large problem
size.

PDE solvers typically spend most of their time solving linear systems, which mainly reduces
to performing matrix-vector-multiplications in the case of iterative solvers. Hence, parallelizing
the matrix-vector-multiplication is a crucial step to achieve scalability.

6.1 Data distribution

The parallel version of the matrix-vector-multiplication requires parallel (i. e. distributed) storage
of the numerical data, i. e. every processor stores a certain part of the matrices and vectors, such
that the product can be computed with minimal communication.

In order to avoid communication during the discretization step the parts of the matrices
and vectors are stored on the same processor as the correponding part of the grid. Hence, the
distribution of the numerical data is determined by the distribution of the geometrical data and
the load-balancing problem is transformed into a graph-partitioning problem.

We chose a distribution of the tetrahedra without overlap (a tetrahedron is stored on one
processor only), whereas faces, edges and vertices are stored with overlap (e. g. if a tetrahedron
has a neighbour on a different processor the connecting face is stored on both processors). This
is because for the discretization as well as for the refinement algorithm it is desirable that every
tetrahedron has (fast) access to its faces, edges and vertices. The consistency of the distributed
geometry data storage is guaranteed by DDD (cf. §6.3).

As a consequence, the numerical data are stored with overlap, too, since most finite element
types have unknowns on faces, edges or vertices.

6.2 Load balancing

For optimal scalability it is important to distribute the workload equally among the processors.
An unbalanced distribution not only increases the computation time but also wastes computer
memory thus decreasing the maximal problem size that can be handled on a specific machine.
Even though the initial grid may be distributed equally, load unbalance arises due to the adaptive
refinement of the grid.

In case of load unbalance, an improved, more balanced, configuration has to be computed
and the corresponding load migration has to be performed (the latter is done by DDD). This
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kind of load balancing is called dynamic (in contrast to static load balancing, which is performed
only once at the beginning).

The load balancing algorithm does not only have to yield for a uniform data distribution
(which would be trivial), it also has to minimize the overlap (to minimize communication). In
order to describe this mathematically, we define for a triangulation G the dual graph G(G) =
(G, F ) with

(T1, T2) ∈ F ⊂ G × G :⇔ the tetrahedra T1 and T2 share a common face.

Note that this graph is undirected. In order to express the workload for each tetrahedron (i. e.
vertex of the dual graph) and the amount of communication across each face (i. e. edge of the dual
graph), a weighted graph G = (G, F, α, β) with weight functions α : G → R+ and β : F → R+ is
used. The weight of a subset G̃ ⊂ G is defined as

α(G̃) :=
∑

T∈G̃

α(T ),

representing the cumulative workload for the corresponding tetrahedra. For a given partitioning
m : G → {1, . . . , P} the set

cut(m) := {(T1, T2) ∈ F : m(T1) 6= m(T2)}

corresponds to the faces, where the inter-processor communication occurs. The load balancing
problem can now be written as a graph partitioning problem, where the parameter C controls
the level of imbalance:

Definition 2 (Generalized graph partitioning problem) Given P ∈ N, C ∈ R, C ≥ 1,
and an undirected weighted graph G = (G, F, α, β), find a mapping m : G → {1, . . . , P} such that

costcomm(m) :=
∑

e∈cut(m)
β(e)→ min

subject to

α(Gp) ≤ C
α(G)
P

∀ 1 ≤ p ≤ P

with Gp := m−1(p) = {T ∈ G : m(T ) = p}.

As the graph partitioning problem is NP complete, an optimal solution of the load balancing
problem is out of reach. However, there exist several heuristic approaches that produce reason-
ably good results. Besides methods from discrete optimization like simulated annealing (SA),
geometry based algorithms like recursive coordinate bisection (RCB) or recursive inertial bisec-
tion and graph based algorithms like the recursive spectral bisection (RSB) or the Kernighan-Lin
algorithm (KL) are widely used. A new approach is the application of the multilevel idea, but
now in the field of graph partitioning. In this approach the initial graph is coarsened several
times resulting in a hierarchy of graphs, where only the coarsest graph is partitioned by means
of one of the foregoing methods. An overview of several graph partitioning algorithms can be
found in [13].

As load balancing has to be performed when the mesh is already distributed among the
processors, we need parallel graph partitioning method. Therefore, we use the parallel graph
partitioning library ParMetis [29]. It offers both graph-oriented and geometry-oriented algo-
rithms for partitioning, also including a (graph-)multilevel version of the KL-algorithm.
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6.3 DDD — dynamic distributed data

The DDD library ([7, 8]) was originally designed for the software package UG to parallelize the
serial code. DDD performs all communication via its portable parallel interface layer (PPIF)
and therefore is independent from the underlying parallel programming model. Hence, DDD
can be used on almost all platforms that offer a message passing model (not necessarily MPI).
DDD includes a wide range of functionality and can be easily adapted to a special application
by means of user-defined handler functions.

DDD offers an abstract interface for the parallel management of distributed data. The data
are assumed to be organized as a graph (V,E), where V consists of the distributed objects and
an edge (o1, o2) ∈ E ⊂ V × V means, that object o1 references object o2, in our case via a
pointer from o1 to o2. Because of the distributed memory model there is no global address
space, only different local address spaces. Due to this fact, the global data graph divides into
several local graphs. As references across processors are not admissible the coupling of the local
graphs to the distributed graph has to be established by means of the distributed objects. The
coupling is established and held consistent automatically by four program modules of DDD: the
management module, the transfer module, the interface module and the identify module.

PPIF MemMgr

DDD
DDD

(serial) application

interface application - DDD

parallel hardware

parallel interface

Transferface

Management module

Identi-
fication

Inter-

Figure 7: The structure of DDD (according to [7])

Management module. All data types that are assigned for distributed storage have to
be registered with DDD as a DDD data type: Every DDD object contains a DDD_HEADER record,
that stores the global ID, the DDD type, the two properties “priority” and “attribute”, and some
internal data about the coupling lists. The registration is done at runtime by telling DDD the
location of the DDD_HEADER and all other members inside the object as well as specifying their
validity (local or global): Global data has the same value for all copies of a distributed object,
whereas the local data may differ on each processor. Once a DDD type is registered, distributed
objects of this type can be constructed and transferred from one processor to another.
Transfer module. DDD object copies can be deleted or copied to other processors by

means of the transfer functions DDD_XferDeleteObj() and DDD_XferCopyObj(). All calls to
transfer functions are enclosed by DDD_XferBegin() and DDD_XferEnd(), such that all com-
munication between two processors can be bundled. The behaviour of the objects during the
transfer can be controlled by several standard or user-defined handler functions.
Interface module. Interfaces are sets of distributed objects of a certain type on the

processor boundaries, for which synchronizing communication can be performed, e. g. for the ac-
cumulation of distributed vectors (cf. §6.4). The interface is defined by calling DDD_IFDefine(),
the communication is determined by gather/scatter handlers, that also have to be defined by
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the user. Every interface is adjusted automatically whenever topological changes of the data
graph (e. g. by the transfer module) occur.
Identify module. The identify module is used, when objects on different processors are

combined to one distributed object. This identification process utilizes identification tuples, that
may consist of integers, strings or distributed objects. Identification is done between enclosing
calls to DDD_IdentifyBegin() and DDD_IdentifyEnd(), thus allowing bundled communication
as in the transfer process.

6.4 Parallelization of matrix and vector operations

This section describes the parallelization of the matrix-vector product and the inner product,
the main operations of a CG iteration and at the same time the only operations that have to be
parallelized to obtain a parallel CG algorithm.

There exist two types of parallel vectors: accumulated and distributed vectors. They differ
in the way the data is stored in the overlapping parts. Accumulated vectors store the correct
value in each copy of an entry, whereas distributed vectors only store some share of the value,
the sum of all local shares yields the correct value.

The definition of the both vector types below is from [20]. In order to define them properly,
we have to introduce coincidence matrices, first:

Definition 3 (Coincidence matrix) Let n be the total number of unknowns and np the num-
ber of unknowns on processor p. The coincidence matrix Ip ∈ Rnp×n is defined as

(Ip)i,j :=







1 unknown with global number j exists on process p
with local number i

0 else

Definition 4 (Accumulated vector) x ∈ Rn is stored accumulated on processor p as xp, iff

xp = Ipx.

Definition 5 (Distributed vector, distributed matrix) x ∈ Rn is stored distributed on
processor p as xp, iff

x =
P∑

p=1

ITp xp,

i. e. the overlap unknowns store only a fraction of the value, the sum of the values corresponding
to an overlap unknown yields the global value. The same holds for a distributed matrixM, whose
part Mp is stored distributed on processor p:

M =
P∑

p=1

ITpMpIp.

Note that if M is a stiffness matrix, then Mp is equal to the stiffness matrix corresponding to
the subtriangulation Gp of processor p. This facilitates parallel discretization, since no commu-
nication is needed when assembling the stiffness matrix using standard finite elements.

Clearly, basic vector operations like addition and multiplication with a scalar can be done
without communication if the parallel vectors are of the same type. The conversion from a
distributed to an accumulated vector requires communication:

xp = Ip

P∑

i=1

ITi xi.
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In the opposite direction, the conversion is not unique. One way is to store the value in one
unknown, whereas all copies store the value 0. Another way would be to distribute the value
uniformly.

The easiest way to compute the inner product of two vectors in parallel is to use vectors of
different type, in which case all computations can be performed locally. Only the last step, the
accumulation of the partial inner products requires communication:

(x,y) = xTy = xT
P∑

p=1

ITp yp =
P∑

p=1

(Ipx)
Typ =

P∑

p=1

(xp,yp) .

Thus the inner products are computed locally and then the local results are summed up via
MPI_Reduce() or MPI_Allreduce(). If the vectors are of the same type, a type conversion
(which requires additional communication) has to be done first.

Now let us consider the parallel matrix-vector product:

M · x =

P∑

p=1

ITpMpIp · x =

P∑

p=1

ITp Mpxp
︸ ︷︷ ︸

:=yp

= y

As one can see, the product of a distributed matrix and an accumulated vector yields a dis-
tributed vector. The products are computed locally, so no communication has to be done. Only
the product of a distributed matrix with a distributed vector requires prior type conversions,
i. e. communication.

The accumulation of distributed vectors for the purpose of type conversion is performed in
DROPS using DDD interfaces. According to the finite element type, i. e. where the unknowns
are placed, interfaces for vertices, edges or faces are required. The implementation in principle
only requires the definition of a gather/scatter handler, in particular no parallel programming
has to be done.

The pair of gather/scatter handler functions determines the action of the interface commu-
nication. The gather handler on the sending processor collects the appropriate values of the
overlap unknowns and stores them in buffers, which are sent to other processors across the in-
terface during the communication. Then on the receiving processor, the scatter handler adds
the buffer values to the corresponding values of the vector.

6.5 A first parallel numerical experiment

We tested the parallel preliminary version of DROPS for a simple model problem. We consider
the Poisson equation on the unit cube Ω = [0, 1]3 with homogeneous Dirichlet boundary condition
on the face Σ1 = [0, 1]2 × {0} and homogeneous Neumann boundary conditions on the other
faces:

−∆u = f in Ω

u = 0 on Σ1
∂u

∂n
= 0 on ∂Ω\Σ1 .

The triangulation of the unit cube consists of 21× 21× 21 resp. 32× 32× 32 subcubes, each
subdivided into 6 tetrahedra. Table 1 and 2 show the times in seconds used for the numerical
solution of this problem on a small PC cluster for different numbers of processors. Trun is the
time used for the discretization method and the iterative solver. TCG is the time for solving
(CG solver with stopping criterion res < 10−10, initial vector x0 := 0).
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P 1 2 4 8

mP 10164 5569 2935 1571

Trun(P ) 9.7 5.5 3.0 2.9
TCG(P ) 5.0 3.2 1.9 2.3

Erun(P ) — 88.9% 81.8% 42.3%
ECG(P ) — 78.0% 68.1% 27.3%

Table 1: runtime for n = 10164 unknowns (176 iterations)

P 1 2 4 8

mP 34848 18138 9682 4988

Trun(P ) 43.2 21.8 11.7 8.6
TCG(P ) 26.8 13.7 7.8 6.6

Erun(P ) — 99.0% 92.1% 62.5%
ECG(P ) — 97.7% 86.0% 50.4%

Table 2: runtime for n = 34848 unknowns (248 iterations)

The efficiency is of course better for the second example, as it has a significantly larger
problem size. For this example we have scalability up to P = 4 processors.

The poor efficiency for P = 8 processors can be explained by the small local problem size,
because then the communication costs are rather big compared to the computational costs. This
leads to results like TCG(4) < TCG(8) in Table 1, where the communication costs seem to exceed
the computational costs.

The loss of efficiency with increasing P is not surprising if one considers the increase of the
communication cost. The inner processors have an interface size

sp ≈ 6n2/3p .

Since the communication costs are proportional to sp and the arithmetic costs are proportional

to np, the quotient of communication costs to arithmetic costs is proportional to n
− 1

3
p . This

quotient increases with growing P and thus the efficiency E(P ) can be expected to decrease.
Only if the problem size is big enough compared to the number of processors P , the question
for scalability is reasonable.

Unfortunately the extension of the problem size by the factor P for a run on P processors is
not possible yet because of the preliminary parallel version’s restrictions: The grid is generated
on a single processor, from where it is distributed onto the other processors. This makeshift
is only used for the reason that the parallelization of the refinement algorithm has not been
finished yet. Not only the local memory size but also the huge time expense for the transfer of
P−1
P % of the tetrahedra limit the experiment to fairly low problem sizes n. The future parallel

version of DROPS (with parallel refinement algorithm) will have to demonstrate its scalability
for P ≥ 8 by means of proportionally bigger problems, which will be possible soon.

7 Numerical results

In this section we present results of a few numerical experiments with the DROPS package.
These experiments are conducted under SuSe-Linux 7.2 on one processor of a dual Pentium-
III computer with 600 MHz and 1 GB RAM. DROPS is compiled with a recent snapshot of
GCC-3.1 (-W -Wall -pedantic -O2 -funroll-loops -march=pentium3 -fomit-frame-pointer -finline-
limit=2000). The system is in multi-user-mode, but calm apart from the usual daemons. Each
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experiment is conducted twice and only the arithmetic mean of times in both runs is quoted in
subsequent tables. All times are given in seconds if not stated otherwise.

7.1 Poisson equation

As a first test problem we take the Poisson equation on the unit cube Ω = [−1, 1]3 with Dirichlet
boundary conditions. The right hand side f and the boundary conditions are taken such that
the continuous solution is given by

u(x) =
1

1 + e−60(r(x)−0.3)
, with r(x) =

√

x21 + x22 + x23.

u is a slowly varying function with a very rapid change in a small neighbourhood of a sphere
with radius 0.3 centered at the origin. For the initial triangulation we first partition Ω regularly
into 4× 4× 4 cubes and then each of these cubes is subdivided into six tetrahedra. One regular
refinement step is performed yielding 3072 tetrahedra on the starting level 0. We use linear
finite elements for discretization.

7.1.1 Poisson equation on a uniform triangulation

Here, we consider a case with only global regular refinement, where we compare a SSOR-
preconditioned CG iterative solver with a multigrid method. For the later, we use a V-cycle
with two applications (ν = 2) of a symmetric Gauß-Seidel smoother for pre- and post-smoothing.
Table 3 contains statistics on the geometric data-structures. For each loop as in Figure 1 the
triangulation level and the number of unknowns and tetrahedra are listed. Also, the total (i. e.,
on the present and all coarser levels) numbers of tetrahedra (Ttot), faces (Ftot), edges (Etot) and
vertices (Vtot) are given.

Loop Level #Unk. #Ttri #Ttot #Ftot #Etot #Vtot hmax
0 1 3375 24576 28032 58080 35812 4913 0.2165
1 2 29791 196608 224640 457440 274500 35937 0.1083
2 3 250047 1572864 1797504 3627744 2146564 274625 0.05413

Table 3: Uniform triangulations

The number of simplices is roughly proportional to h−3max, as is expected for tetrahedral
triangulations. This behaviour leads to a very strong increase in memory requirements if the
grid is refined. The storage needed for the multigrid solver on the finest triangulation (level 3)
is circa 690 MB, so only 70 percent of the main memory is utilized, but the next finer uniform
triangulation would lead to a memory footprint of several Gigabytes, which exceeds the capacity
of our computer by far.

Note that the use of higher-order finite elements (for example, P2) would probably yield a
higher attainable accuracy given the storage capacity.

In Tables 4 and 5 some characteristics of the multigrid and PCG solver are presented. The
total time needed for the solution process, the time for setting up the discrete equation and the
amount of time spent in the iterative solver are listed in the first columns. The fifth column
contains the number of iterations needed to obtain a discrete residual less than 10−8. In the
sixth column the average reduction of the residual per iteration is shown. In the last column
the L2(Ω) norm of the discretization error is given.

These results are consistent with the properties of the multigrid and PCG method discussed
in §4.1. The rate of convergence of the multigrid method is high and independent of hmax,
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Loop tcum tdisc tsol # it. Av. Redres ‖u− uh‖L2

0 0.91 0.81 0.10 10 0.121 0.369
1 8.78 7.20 1.58 11 0.157 0.0342
2 73.4 59.9 13.5 11 0.159 0.0117

Table 4: Multigrid-solver on uniform triangulations

Loop tcum tdisc tsol # it. Av. Redres ‖u− uh‖L2

0 0.85 0.75 0.10 25 0.438 0.369
1 9.3 6.5 3.00 47 0.644 0.0342
2 103.5 54.8 48.7 87 0.794 0.0117

Table 5: PCG-solver on uniform triangulations

whereas for the CG method we observe a h−1 effect in the number of iterations. Due to the
prolongation matrices and linear systems on coarser grids the discretization phase of the multi-
grid algorithm takes longer than that of the PCG algorithm, which leads to a (slightly) higher
efficiency of the PCG algorithm for small problems. With increasing problem size the multigrid
method becomes (much) faster than the PCG method.

In Figure 8 a plot of the discrete solution uh(x1, x2, 0) on the level 3 triangulation is shown.

7.1.2 Poisson equation with adaptive refinement

In this experiment for the Poisson equation the residual error estimator from section 5.1 is used
in combination with the largest error first marking strategy. This introduces a new parameter,
namely errrel of §5.3. We use the multigrid method as iterative solver.

In Table 6 the dependence of the total solution time, the number of unknowns and the
number of tetrahedra on errrel is shown. Column two contains the number of iterations of the
adaptive algorithm depicted in Figure 1 before the stopping criterion is met. The adaptive
solution process is stopped as soon as the discretization error ‖u − uh‖L2

is less than 0.0117.
This tolerance is chosen in order to compare the results with the results in Table 4 (uniform
refinement).

errrel Loop it. tcum ‖u− uh‖L2
# Unk. #Ttot

0.2 57 75.0 0.0116 9554 71165
0.3 29 40.1 0.0115 10246 76131
0.4 20 51.1 0.0078 23581 175105
0.6 10 25.5 0.0112 19937 147258
0.8 7 28.0 0.0070 31530 227609

Table 6: Results for adaptive refinement

Note that the adaptive algorithm is faster than the uniform one in all cases except for
errrel = 0.2. For small values of errrel the adaptive algorithm is rather slow, but due to the
relatively small number of tetrahedra that are refined in each loop iteration the stopping criterion
can be met very precisely. With errrel = 0.2 the number of unknowns and of tetrahedra needed
is approximately a factor 25 smaller as compared to uniform refinement.

In the following experiment we take errrel = 0.8 and a residual tolerance of 10−8 for the
multigrid iterative solver.
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Figure 8: Solution on uniform triangulation with 1.6 106 tetrahedra; x3 = 0 plane

In Table 7 results for the adaptive refinement method are given. Between two iterations of
the algorithm in Figure 1 the number of unknowns is more than doubled, so that one can expect
the multigrid solver to work with optimal complexity. Indeed, the time spent in the solver scales
linearly with the number of unknowns as indicated by Tables 7 and 8. One can observe that the
average reduction of the residual is better than for the uniform case.

Regarding memory efficiency, the adaptive algorithm is clearly superior to the one with
uniform refinement. Although errrel is rather high, the former only needs 31530 unknowns and
about 2.3 105 tetrahedra to reduce the L2(Ω)-error to below 0.1166. The method with uniform
refinement achieves this with 250047 unknowns and about 1.6 106 tetrahedra.

These savings come at the price of the error estimator though. Table 8 shows that the error
estimator is slightly cheaper than the discretization method, which is the most time consuming
component in this implementation. The grid-manager and solver are notably faster than the
other two components. The 7 steps in this experiment take 28 seconds to complete, which is 45
seconds less than the uniform algorithm needs.

Figure 10, which is based on Table 7 illustrates the quality of the global error estimate. One
can see that the ratio of estimated to true global error lies around 30. On coarse triangula-
tions the effect of the perturbation terms in Theorem 2 and the use of quadrature formulas for
calculating the ’exact’ error becomes visible.

Finally, a test that is tuned to use 1.6 106 tetrahedra as in the finest uniform triangulation
is performed. The result is shown in Figure 11. Here the L2(Ω)-error is 0.00200, a factor 6 less
than for the uniform triangulation.
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Figure 9: Adaptive triangulation for the Poisson equation, errrel = 0.2; 71000 tetrahedra; x3 = 0
plane

Loop # Unk. #Ttot Av. Redres ‖u− uh‖L2
.

0 343 3456 1e-9 0.268
1 426 4100 0.01411 0.425
2 633 5664 0.01498 0.218
3 1345 10866 0.06519 0.0651
4 3840 29181 0.06952 0.0290
5 7807 56749 0.1154 0.0136
6 31530 227609 0.1163 0.00698

Table 7: Details of adaptive refinement for errrel = 0.8

7.2 Stokes equation

In the following, we consider the stationary Stokes equation (3) with a0 = 0. The weak formu-
lation is given in (11). The problem is discretized using P2-P1 finite elements. For the iterative
solution of the discrete problem we apply the inexact Uzawa method described in §4.2. We
first perform a numerical experiment with uniform refinement to test the reliability of the error
estimator. Then we show results of a driven cavity experiment, in which adaptivity is used.

7.2.1 Stokes equation with regular refinement

To illustrate the reliability of the residual error estimator for the stationary Stokes problem, we
solve a model Stokes problem as in (3) with a0 = 0 on the domain Ω = [0, π/4]3. We take

f(x, y, z) =





0
0

3 · cos(x) sin(y) cos(z)





u(x, y, z) =
1

3





sin(x) sin(y) sin(z)
− cos(x) cos(y) sin(z)
2 · cos(x) sin(y) cos(z)





p(x, y, z) = cos(x) sin(y) sin(z) + C
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Loop Level tcum tref tdisc tsol test
0 1 0.20 0.01 0.08 0.01 0.10
1 2 0.27 0.01 0.13 0.01 0.12
2 3 0.44 0.02 0.23 0.02 0.17
3 3 0.84 0.07 0.40 0.05 0.32
4 4 2.39 0.19 1.16 0.19 0.85
5 4 4.74 0.43 2.15 0.45 1.71
6 5 19.2 1.56 8.62 2.11 6.87

Table 8: Time statistics for the adaptive refinement; errrel = 0.8
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Figure 10: Ratio of estimated to true L2(Ω)-error for each loop iteration.

with a constant C such that the integral of p over Ω vanishes. The Dirichlet boundary conditions
are obtained by restricting this solution u to the boundary.

Initially, the domain is partitioned into 162 tetrahedra and refined regularly for each sub-
sequent computation. Table 9 contains the level (`), the total number of tetrahedra (Ttot), the
estimated global error in the norm ‖ · ‖X introduced in §5.2 and the discretization error in this
norm. The last column shows the ratio of the estimated error to the true error.

As theory for P2-P1 finite elements predicts ([30]), the true error scales like h−2 for regular
refinement. The results in the last column demonstrate the reliability of the residual error
estimator.
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Figure 11: Grid and solution for adaptive refinement with 1.6 · 106 tetrahedra; x3 = 0 plane

` #Ttot ‖ · ‖X-error estimate ‖ · ‖X-error ratio

0 162 0.0410 0.00482 8.51
1 1458 0.00995 0.00116 8.58
2 11826 0.00248 2.89e-4 8.58
3 94770 6.19e-4 7.22e-5 8.57

Table 9: Global error estimation for the Stokes problem

7.3 Driven cavity problem with adaptive refinement

We consider the popular “driven cavity” test problem. Let Ω = [0, 1]3 be the unit cube and
Σ0 = [0, 1]2 × {1} be one of its faces. The continuous problem is given by

−∆u+∇p = f in Ω

div u = 0 in Ω

u = 0 on ∂Ω \ Σ0
u = φ on Σ0 ,

(31)

where

φ(x, y, z) =

{
(1, 0, 0)T for 0.1 ≤ x, y ≤ 0.9

0.5−max(|x−0.5|,|y−0.5|)
0.1 (1, 0, 0)T else.

Instead of u = (1, 0, 0)T on the whole face Σ0 the smoothed boundary values u = φ are chosen
to obtain proper Dirichlet boundary conditions. Otherwise, in the presence of an adaptive
error estimation technique, one would discover that the driven cavity problem with the former
boundary condition is ill-posed, as jumping boundary conditions lead to infinite pressure in the
corners of the in- and outflow edge of the domain.

The initial triangulation G0 consists of a 2× 2× 2 grid of sub-cubes that are triangulated by
inserting a diagonal. To control the adaptive refinement the default (largest error first) marking
strategy of §5.3 is employed with errrel = 0.8 and the residual error estimator of §5.2.
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In the inexact Uzawa method for the preconditioners Ã−1 and S̃−1 we use kiter iterations
of an SSOR-preconditioned CG solver applied to the systems (20), (21). In the near future the
PCG solver will be replaced by the multigrid solver. At the moment this is not possible because
the prolongation for P2 elements is not implemented yet.

The Uzawa iteration is stopped, if ‖r‖2 < 10−8 holds, where r =

(
Ax+BTy − b
Bx− c

)

is the

residual vector. The number of Uzawa iterations needed for this stopping criterion depends
on kiter. Table 10 shows the number of Uzawa iterations (# iter) and the computation times
for different values of kiter. The results are given for the triangulation G6 in loop iteration 7
(nv = 33129 velocity unknowns, np = 2637 pressure unknowns).

kiter 2 3 4 5

# iter DIV 231 158 156
tsol — 106 89 106

Table 10: Inexact Uzawa method: inner-outer iteration

For kiter = 2 the method does not converge because of poor preconditioning. For kiter = 4
an optimal computation time is achieved. We now set kiter = 4 and apply adaptive refinement
for nine iterations of the algorithm in Figure 1. Results are shown in Table 11.

Loop Level tdisc tsol test # Uzawa It. nv np ‖ · ‖X error-est.

0 0 0.01 0.16 0.01 463 81 27 51.77
1 1 0.01 0.46 0.03 360 243 48 48.57
2 2 0.04 1.04 0.06 348 546 86 32.84
3 3 0.11 3.55 0.14 314 1335 168 25.11
4 3 0.19 6.57 0.22 271 2247 246 17.09
5 4 0.50 17.9 0.53 228 5430 535 10.11
6 5 1.60 52.0 1.49 193 16335 1338 6.131
7 6 3.35 89.5 3.02 158 33129 2637 3.782
8 7 8.14 229 7.03 162 78903 5823 2.546
9 8 18.5 1840 14.6 548 170760 11076 1.562

Table 11: Driven cavity with adaptive refinement

Note that the iteration numbers in the inexact Uzawa method are quite high and that the
iterative solver is by far the most time consuming component. We mention two possibilities for
a significant improvement. In the first place, a nested iteration technique should be used. This
means that for solving the discrete problem in iteration i+1 one can use the already computed
discrete solution of iteration i of the adaptive algorithm as a starting vector. Here, we use this
approach only for the pressure components, as we cannot prolongate the P2 velocity components
yet. For these, we simply use the zero vector as starting vector for the Uzawa method. Secondly,
the inexact Uzawa method can be accelerated by a CG method as explained in Remark 6.

Figures 12 and 14 show the adaptively generated grid, the pressure contours and the velocity
field in the x2 = 0.5 plane. Note, that Figure 12 only shows the upper right quadrant of the
whole grid in the x2 = 0.5 plane.

8 Outlook

The basic components which have been implemented form the skeleton of the DROPS parallel
adaptive multigrid code. We summarize the main methods that are available in DROPS:
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Figure 12: Driven Cavity: Triangulation in
x2 = 0.5 plane

Figure 13: Driven Cavity: Triangulation in
x3 = 1 plane

1. A grid generation method which can construct a hierarchy of consistent and stable tetrahedral
triangulations.

2. A conforming finite element discretization method for discretizing stationary elliptic problems
(Poisson and (Navier-)Stokes).

3. A linearization method for the discrete Navier-Stokes equation.

4. The fractional-step method for time discretization of instationary (Navier-)Stokes equations.

5. The multigrid and SSOR-preconditioned CG iterative methods for solving discrete scalar
problems (Poisson and convection-diffusion equations). The inexact Uzawa iterative method
for solving discrete Stokes and Oseen problems.

6. A posteriori residual error estimators for the Poisson and stationary Stokes equation and
marking strategies for grid refinement.

A parallel version of DROPS is currently developed. Parallel modules for the construction of
the finite element discretization (assembling of the stiffness matrix) and for the sparse matrix-
vector multiplication are already available. The implementation of a parallel version of the grid
refinement method is almost finished.

Although the skeleton of the DROPS package is available now, the code is still far from a
general purpose robust and efficient tool for CFD simulations. Below we briefly discuss some
important issues concerning the further development of DROPS in the near future. We plan to
address the following topics (not in chronological ordering):

• We will implement level set methods ([28, 37, 44]) for the treatment of two-phase incom-
pressible flows with sharp interfaces. We intend to start with a variant of this level set
technique (phase-field method) which has been successfully applied in the interdisciplinary
research project ([25]).
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Figure 14: Driven Cavity: pressure contour lines and velocity field; x2 = 0.5 plane

• As an application we consider a two-phase incompressible fluid flow consisting of a (small)
drop in a surrounding fluid (as in [44]). One is interested in a detailed numerical simulation
of the fluid dynamics in and around the drop (which may deform in time). In a second step
also models for mass transport across the interface are implemented. Results of numerical
simulations for a two-dimensional model problem can be found in [42].

• Grid coarsening strategies which are important in a time dependent setting should be
implemented.

• We want to have a library of iterative solvers. Krylov subspace methods like GMRES and
BiCGSTAB should be available. More multigrid components (other smoothers and other
prolongation and restriction operators) have to be implemented. Some of these methods
should be suitable for treating strongly nonsymmetric (“convection dominated”) problems.

• More variants of the finite element discretization method are needed. For example, the
streamline diffusion finite element method ([30, 34]) for the stable discretization of con-
vection dominated flows.

• Other iterative methods of inexact Uzawa type will be considered. One needs, for example,
methods which are robust with respect to the variation in the time step ([12, 24]). Methods
as in [15, 16, 17] which can be used for convection dominated flows will be investigated.

• The work on parallelization will be continued.

• Stabilization techniques as in [27] will be implemented and tested.

• Error estimators for Navier-Stokes equations with large Reynolds numbers are needed.
Techniques proposed in the literature (e. g., [18, 33]) will be studied.

• The development of the DROPS code will be problem driven. An important goal is to
obtain satisfactory numerical simulations of incompressible flow models that are of interest
in the interdisciplinary research project.

• A suitable user interface (with manual) has to be made available.
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