PARALLEL MULTILEVEL TETRAHEDRAL GRID REFINEMENT

SVEN GROSS AND ARNOLD REUSKEN*

Abstract. In this paper we introduce and analyze a parallel version of a multilevel red/green
local refinement algorithm for tetrahedral meshes. The serial version of this algorithm is presented
in [6, 7]. We introduce a new data distribution format that is very suitable for parallelization of the
multilevel refinement algorithm. This format is called an admissible hierarchical decomposition. We
will prove that the application of the parallel refinement algorithm to an input admissible hierarchi-
cal decomposition yields an admissible hierarchical decomposition. We will show that due to this
property one has good data locality (hence little communication) and at the same time only a small
amount of copies (small storage overhead).

AMS subject classifications. 65N50, 65N55

Key words. tetrahedral grid refinement, parallelization, stable refinement, consistent triangu-
lations

1. Introduction. In the field of numerical solution methods for partial differ-
ential equations adaptive discretization methods gain growing acceptance. In such
adaptive methods both simplicial and hexahedral meshes are used. In this paper we
only consider the former class and we restrict ourselves to the three dimensional sit-
uation, i.e., we treat tetrahedral meshes (which we also call triangulations). For well-
known reasons one usually requires these meshes to fulfill a stability and consistency
condition. The stability condition means that in a repeated refinement process, the
interior angles of all tetrahedra that are generated must be uniformly bounded away
from zero. A triangulation is called consistent if the intersection of any two tetrahedra
from the triangulation is either empty, a common face, a common edge or a common
vertex. Several refinement algorithms are known that satisfy both conditions for con-
sistent input triangulations. These algorithms can be divided in two classes: red/green
refinement methods (for example, [6, 8, 19, 26]) and bisection methods (for example,
[1, 18, 20, 22, 23, 24]). For a discussion of the main differences between these classes
of methods we refer to the literature (e.g., [6, 8, 24]). In this paper we only consider
the three dimensional red/green refinement method as presented in [6, 8, 26]. This
method is a 3D generalization of the well-known 2D red/green refinement technique
due to Bank [2, 3]. Based on an idea from [4] a 3D multilevel red/green refinement
algorithm is presented in [6, 7]. Below we will explain the term “multilevel”. Variants
of this algorithm are used in several packages, for example in UG [5], KASKADE
[17], DROPS [12], PML/MG [21]. The main topic of this paper is the introduction
and analysis of a parallel version of this algorithm. Although parallel versions of this
algorithm have already been implemented (e.g., in UG, PML/MG) we do not know
of any paper in which a clear formulation of such a parallel version, which turns out
to be rather complicated (cf. section 4.3), and an analysis of important properties are
given.

To be able to summarize some interesting properties of the (parallel) refinement
algorithm we first have to introduce a few notions. A sequence of triangulations
M = (To,...,Ty) of some domain Q is called a multilevel triangulation if: 1. each
tetrahedron in T; (k > 1) is either in T;_; or it is obtained by a (red or green)
refinement of its parent in Ti_1; 2. if a tetrahedron in 7} is not refined when going

*Institut fiir Geometrie und Praktische Mathematik, RWTH Aachen, D-52056 Aachen,
reuskenQigpm.rwth-aachen.de, gross@igpm.rwth-aachen.de

1

to Tr+41, then it remains unrefined in all 7y, £ > k. Such a multilevel triangulation
has nice structural properties. For example, the whole sequence M can be uniquely
reconstructed from 7y and 7. A related property is that all the information on M can
be represented in a natural way using a hierarchical decomposition H = (Go,...,GJ),
Go := To, Gk := Tk \ Tk—1, k > 1. The hierarchical surplus on level k, Gi, consists
of all tetrahedra in M that are on the same level k. In the implementation of the
refinement algorithm this hierarchical decomposition plays a key role.

Now assume that based on some error indicator certain tetrahedra in the finest
triangulation 7; are marked for refinement. In many refinement algorithms one then
modifies the finest triangulation 77 resulting in a new one, 7y4+1. Using such a strategy
(which we call a one-level method) the new sequence (7o, ..., Ty+1) is in general not a
multilevel triangulation because the nestedness property 1 does not hold. We also note
that when using such a method it is difficult to implement a reasonable coarsening
strategy. In multilevel refinement algorithms as in [12, 6] the whole sequence M is
used and as output one obtains a sequence M' = (7y,...,7}), with 7§ = 7o and
J' € {J—-1,J,J +1}. In general one has T, # Ty for k > 0. We list a few important
properties of this method:

Both the input and output are multilevel triangulations.
The method is stable and consistent.
Local refinement and coarsening are treated in a similar way.
The implementation uses only the hierarchical decomposition of M. This
allows relatively simple data structures without storage overhead.

e The costs are proportional to the number of tetrahedra in 7.
For a detailed discussion of these and other properties we refer to [6, 7]. In this
paper we consider the parallelization of such a multilevel refinement algorithm. To
make the paper more self-contained and in view of a better understanding of the
parallel algorithm we decided to give a rather detailed description of the serial method
(section 3).

The parallel method that we propose produces, for a given input multilevel tri-
angulation, the same output multilevel triangulation as the serial method. In this
sense the “computational part” of the algorithm is not changed. The main problem
related to the parallelization is how to store the distributed data on the different
processors® of the distributed memory machine in a useful way: One has to find a
good compromise between storage overhead on the different processors and the costs
of communication between the processors. In the case of the multilevel refinement
method, a crucial point is that for the refinement (or unrefinement) of a tetrahedron
T one needs information about the children of T'. If the generic case is such that T
and its children are not stored on the same processor one needs a large amount of
small messages and the high communication costs will result in low parallel efficiency.
Hence, in view of a reduction of communication costs it is advantageous to have T' (or
a copy of T') and its children on the same processor. If this condition has to be ful-
filled, one must allow copies (i.e., overlap) of tetrahedra on different processors since
otherwise a domino effect can occur: all ancestors and descendants of a tetrahedron
have to be on the same processor. This causes very coarse data granularity and hence
low parallel efficiency.

We will introduce and analyze a new data distribution format that is very suit-
able for parallelization of the multilevel refinement algorithm. This format is called
an admissible hierarchical decomposition. We will prove that the application of the

There ‘processor’ means CPU with associated memory
2

parallel refinement algorithm to an input admissible hierarchical decomposition yields
an admissible hierarchical decomposition. We will show that due to this property one
has good data locality (hence little communication) and at the same time only a small
amount of copies (small storage overhead).

This paper is organized as follows. In section 2 we collect some definitions. In
section 3 a rather detailed description of the serial multilevel refinement algorithm
is given. In section 4 we introduce and analyze the admissible hierarchical decom-
position. Furthermore, the parallel multilevel refinement algorithm is presented. In
section 4.1 we summarize the main new results of this paper. In section 5 a theo-
retical analysis is given which proves that the application of the parallel refinement
algorithm to an input admissible hierarchical decomposition yields an admissible hi-
erarchical decomposition. Finally, in section 6 we give results of a few numerical
experiments.

2. Definitions and notation. In this section we collect notations and defini-
tions that will be used in the remainder of this paper. Let €2 be a polyhedral domain
in R3.

DEFINITION 1 (Triangulation). A finite collection 7~ of tetrahedra T' C Q is called
a triangulation of Q (or Q) if the following holds:

L. vol(T) >0 forall T €T,

2 Uper T =10,
3. int(S)Nint(T) =0 for all S,T € T with S #T.

DEFINITION 2 (Consistency). A triangulation 7 is called consistent if the inter-
section of any two tetrahedra in 7T is either empty, a common face, a common edge
or a common vertex.

DEFINITION 3 (Stability). A sequence of triangulations 7o, 71, 72, - - - is called
stable if all angles of all tetrahedra in this sequence are uniformly bounded away from
Z€ro.

DEFINITION 4 (Refinement). For a given tetrahedron T a triangulation K(T')
of T is called a refinement of T if |K(T)| > 2 and any vertex of any tetrahedron
T'" € K(T) is either a vertex or an edge midpoint of T'. In this case T” is called a
child of T and T is called the parent of T". A refinement K(T') of T is called regular if
|[K(T)| = 8, otherwise it is called irregular. A triangulation Tg41 is called refinement
of a triangulation Ty # Tg41 if for every T € Ty, either T' € Tpq1 or K(T') C Tg41 for
some refinement K(T') of T

DEFINITION 5 (Multilevel triangulation). A sequence of consistent triangulations
M= (To,...,Ty) is called a multilevel triangulation of Q if the following holds:

1. For 0 <k < J: Ty is a refinement of Ty.

2. For0<k<J: TET:NTrp1=>T€ET;.
The tetrahedra T € 7 are called the leaves of M. Note that T is a leaf iff T has
no children in M. A tetrahedron T € M is called regular if T € Ty or T resulted
from a regular refinement of its parent. Otherwise T is called irregular. A multilevel
triangulation M is called regular if all irregular T € M are leaves (i.e., have no
children in M).

REMARK 1. Let M be a multilevel triangulation and V;, (0 < k < J) be the
corresponding finite element spaces of continuous functions p € C({) such that piT €
P, for all T € T, (¢ > 1). The refinement property 1 in definition 5 implies nestedness
of these finite element spaces: Vj, C Vi41.

DEFINITION 6 (Hierarchical decomposition of M). Let M = (Tp,...,T;) be a
multilevel triangulation of Q. For every tetrahedron T' € M a unique level number

3

£(T) is defined by £(T) := min{k | T € Ty }. The set Gy C Ty,
Gr :={T €T | LT) =k}

is called the hierarchical surplus onlevel k (k=0,1,...,J). Note that Go = To, Gr =
Ti \ Tk—1 for k =1,...,J. The sequence H = (Go,...,G,) is called the hierarchical
decomposition of M. Note that the multilevel triangulation M can be reconstructed
from its hierarchical decomposition.

REMARK 2. The hierarchical decomposition induces simple data structures in a
canonical way. The tetrahedra of each hierarchical surplus Gy, are stored in a separate
list. Thus every tetrahedron 7' € M is stored exactly once since 7" has a unique level
number £(T"). By introducing unique level numbers also for vertices, edges and faces,
these subsimplices can be stored in the same manner: For a subsimplex S the level
number £(S) is defined as the level of its first appearance. Additionally, the objects
are linked to certain corresponding objects by pointers (e.g., a tetrahedron is linked
to its vertices, edges, faces, children and parent).

3. A serial multilevel refinement algorithm. In this section we describe a
refinement algorithm which is, apart from some minor modifications, the algorithm
presented in [6, 7]. This method is based on similar ideas as the refinement algorithms
in [3, 4, 5]. At the end of this section (remark 4) we discuss the differences between the
method presented here and the one from [6, 7]. We give a rather detailed description
of the algorithm to facilitate the presentation of the parallel version of this method
that is given in section 4.3. The refinement strategy is based on a set of regular and
irregular refinement rules (also called red and green rules, due to [2, 3]). The regular
and irregular rules are local in the sense that they are applied to a single tetrahedron.
These rules are applied in a (global) refinement algorithm (section 3.3) that describes
how the local rules can be combined to ensure consistency and stability.

3.1. The regular refinement rule. Let T be a given tetrahedron. For the
construction of a regular refinement of 7' it is natural to connect midpoints of the
edges of T by subdiving each of the faces into four congruent triangles. This yields
four subtetrahedra at the corners of T' (all congruent with 7') and an octahedron
in the middle. For the subdivision of this octahedron into four subtetrahedra with
equal volume there are three possibilities corresponding to the three diagonals that
connect opposite vertices of the octahedron. One has to be careful in choosing an
appropriate subdivision since in [26] it has been shown that the wrong choice may
lead to a sequence of triangulations that is not stable. A stable tetrahedral regular
refinement strategy, based on an idea from [11], is presented in [6, 8]. We recall this
method.

Let T = [z™),2?) £ 2(1] be a tetrahedron with ordered vertices z(1), z(?),
3, z® and

2@ = (@0 +al) | 1<i<j<4,

the midpoint of the edge between z(* and z(¥). The regular refinement K(T) :=
{T1,...,Tg} of T is constructed by the (red) rule

T, = 20, 5(12) z(13) 5(10)] Ty i= [0, 5(13) 500 g0
Ty i= [0, 5) 229 0] Ty i= [0, 5(13) 529 0] |

Ty = [2(19), 223 2(3) | 7(39)] (3-1)

Ty = [0, 520 730 54)]

, Ty = [209), 5(14) 720 469
, Ty = [2019), 5(28) £ (20) 439 |

In [8] it is shown that for any T the repeated application of this rule produces a
sequence of consistent triangulations of 7" which is stable. For a given T all tetra-
hedra that are generated in such a recursive refinement process form at most three
congruence classes.

3.2. Irregular refinement rules. Let 7 be a given consistent triangulation.
We select a subset S of tetrahedra from 7 and assume that the regular refinement
rule is applied to each of the tetrahedra from S. In general the resulting triangulation
T' will not be consistent. The irregular (or green) rules are used to make this new
triangulation consistent. For this we introduce the notions of an edge counter and
edge refinement pattern. The edge counter C'(E), that depends on T and S, assigns
an integer value to each of the edges E of T as follows: C'(E) = m if the edge E is
an edge of precisely m elements from S. Hence, the edge E has been refined when
going from 7 to 7' iff C'(E) > 0 holds. Related to this, for T € T we define the edge
refinement pattern R(T') as follows. Let Ei,..., Eg be the ordered edges of T. We
define the 6-tuple

R=(r1,...,7¢) € {0,1}°

by: 7, = 0if C(E;) = 0 and 7, = 1 if C(E;) > 0. This edge refinement pattern
describes a local property in the sense that it is related to a single tetrahedron and its
value directly follows from the values of the edge counter. For T' € S we have R(T') =
(1,...,1). For T € T\ S the case R(T) = (0,...,0) corresponds to the situation that
the tetrahedron T does not contain any vertices from 7' at the midpoints of its edges.
For each of the 2% — 1 possible patterns R # (0,...,0) there exists a corresponding
refinement IC(T') of T (in the fashion of (3.1)) for which the vertices of the children
coincide with vertices of T' or with the vertices at the midpoints on the edges E;
with r; = 1. This refinement, however, is not always unique. This is illustrated in
figure 3.1.

Fi1G. 3.1. Non-unique face refinement

To obtain a consistent triangulation in which the subdivision of adjacent faces
matches special care is needed. One way to ensure consistency is by introducing a
so-called consistent vertex numbering;:

DEFINITION 7 (Consistent vertex numbering). Let 77 and T be two adjacent
tetrahedra with a common face F' =T N T, and local vertex ordering

T =[a", 27,2, 2V, 1=1,2.
Let the vertex set of F' be given by
{.Z'gil); xgiz), .’L'gw)} — {ngl),wgh), ngs)}]

Without loss of generality we assume i; < iz < i3 and j; < jo < j3. The pair (T1,T3)
has a consistent vertex numbering if

xgi’“) = xéj’“), k=1,2,3
5

holds, i.e., if the ordering of the vertices of F' induced by the vertex numbering of T3
coincides with the one induced by the vertex numbering of T>. A consistent triangu-
lation 7 has a consistent vertex numbering if every two neighbouring tetrahedra have
this property.

We note that a consistent vertex numbering can be constructed in a rather simple
way. Consider an (initial) triangulation 7 with an arbitrary numbering of its vertices.
This global numbering induces a canonical local vertex ordering which is a consistent
vertex numbering of 7. Furthermore, each refinement rule can be defined such that
the consistent vertex numbering property of the parent is inherited by its children
by prescribing suitable local vertex orderings of the children. (3.1) is an example of
such a rule. Using such a strategy a consistent triangulation 7" that is obtained by
refinement of 7 according to these rules also has a consistent vertex numbering.

ASSUMPTION 1. In the remainder of this paper we always assume that the initial
triangalution To is consistent and has a consistent vertex numbering.

Assume that the given triangulation 7 has a consistent vertex numbering. For
a face with a pattern as in figure 3.1 one can then define a unique face refinement
by connecting the vertex with the smallest number with the midpoint of the opposite
edge. For each edge refinement pattern R € {0,1}% we then have a unique rule. We
emphasize that if the edge refinement pattern is known for the application of the
reqular or irreqular rules to a given tetrahedron no information from neighbouring
tetrahedra is needed. Clearly, for parallelization this is a very nice property.

Up to now we discussed how the consistency of a triangulation can be achieved
by the choice of suitable irregular refinement rules based on the consistent vertex
numbering property. We will now explain how the regular and irregular rules can be
combined in a repeated refinement procedure to obtain a stable sequence of consistent
triangulations. The crucial point is to allow only the refinement of reqular tetrahedra,
i.e. children of irregularly refined tetrahedra, also called green children, are never
refined. If such a green child 7 is marked for refinement, instead of refining T the
irregular refinement of the parent will be replaced by a regular one. As the application
of the regular rule (3.1) creates tetrahedra of at most 3 congruence classes (cf. [11, 8]),
the tetrahedra created by a refinement procedure according to this strategy belong to
an a-priori bounded number of congruence classes. Hence the obtained sequence of
triangulations is stable.

3.3. The multilevel refinement algorithm. In this section we describe how
the regular and irregular refinement rules are used in a multilevel refinement algorithm
(asin [12, 6, 7]).

We first illustrate the difference to well-known one-level refinement methods as
in, e.g., [2, 3]. For ease of presentation, we use triangles instead of tetrahedra in our
examples. Consider the following multilevel triangulation (7g, 77):

\/

To Th

In 71 two triangles are marked (by shading) for further refinement. The one-
level method from [3] uses the finest triangulation 7; as input and applies a regular
refinement rule followed by irregular refinement rules:

As output one obtains a consistent triangulation 73 which is not a refinement
of 71 (in the sense of definition 4). Related to this we note that the finite element

6

red green 72

T

F1G. 3.2. One-level red/green refinement

spaces corresponding to 7y, 7> are not nested (cf. remark 1) and that it is not obvious
how to construct a hierarchical decomposition of the sequence 7o, 71,72. These are
disadvantages if one uses such grid refinement techniques in combination with multi-
grid solvers for the numerical solution of partial differential equations. An advantage
of the one-level method compared to the multilevel strategy discussed below is its
simplicity. In multilevel refinement algorithms both the input and the output are
multilevel triangulations (definition 5). In the implementation only the hierarchical
decompositions of these multilevel triangulations are used. The algorithmic structure
of the method presented in [6, 7] is shown in figure 3.3.

Algorithm SerRefinement(Gy,...,GJ)

for k=J,...,0 do // phase I
DetermineMarks(Gy,); (1)
MarksForClosure(Gy,); (2)

for k=0,...,J do if G, #0 then // phase II

if k>0 then MarksForClosure(Gy);
if k < J then Unrefine(Gy);

:
Refine(Gy); (
(
(

if G;=0 then J:=J—1;
else if Gyj11 #0 then J:=J+1;

~— — ~— —

4
)
6
7

F1G. 3.3. Serial multilevel refinement algorithm.

We now introduce the notions of status and mark of a tetrahedron that will be
used in the subroutines of this algorithm. Let M = (7o, ..., Ts) be a multilevel trian-
gulation that has been constructed by applying the regular and irregular refinement
rules and let H = (Go, - -.,Gy) be the corresponding hierarchical decomposition. Ev-
ery tetrahedron T € H is either a leaf of M (i.e., T € Ty) or it has been refined. The
label status is used to describe this property of 7T':

NoRef if T isaleafof M
For T e?H: status(T) = RegRef if T is regularly refined in M
IrregRef if T is irregularly refined in M

We note that the label IrregRef contains the number of the irregular refinement rule
(one out of 63) that has been used to refine T, i.e., status(T) coincides with the edge
refinement pattern of T'.

In adaptive refinement an error estimator (or indicator) is used to mark certain
elements of 77 for further refinement or for deletion. For this the label mark is used:

Ref if T €7T; is marked for refinement
For T eH: mark(T)= < Del if T e7T; ismarked for deletion

status(T) otherwise
7

The main idea underlying the algorithm SerRefinement is illustrated using the mul-
tilevel triangulation (7p,71) from above. The hierarchical decomposition and the
corresponding marks are as follows:

/N /N mak(T) = NoRef
/N mark(T) = IrregRef
§ mark(T') = Ref

Note that for the two shaded triangles in G; we have status(T") # mark(T'). For
all other triangles status(T') = mark(T") holds. In phase I of the algorithm (top—down:
(1),(2)) only marks are changed:

Gi

Once phase I has been completed the marks have been changed such that mark(T) €
{NoRef, RegRef, IrregRef} holds for all T' € H. We emphasize that all green children in
G1 have mark(T) = NoRef, as they are not refined because of stability reasons. Instead
the corresponding irregular refined parents in Gy are labeled by mark(T') = RegRef.
In the second phase (bottom—up: (3)-(5)) the actual refinement (unrefinement is not
needed in our example) is constructed:

VAN NSO, AR

g(r)new

new gnew
2

new new new

In the output hierarchical decomposition H = (G, ,G; ,G,) wehave mark(T) =
status(T') for all T € H. The output multilevel triangulation M = (T~ , T, T)
is regular (cf. definition 5) and is given by

7?.)'Aew — g(x;ew7 7_1)1ew - g]xhxew7 7_2,new — g;}ew U {T c g;-lew | mark(T) — NoRef})

Note that Ty = To, T, # 71 (!) and that the new finest triangulation 7, is the
same as the triangulation 75 in figure 3.2 resulting from the one-level algorithm.

Below we describe the subroutines used in algorithm SerRefinement. A detailed
discussion of these subroutines is given in [6, 7].

DetermineMarks. In this subroutine only marks are changed. The new values
of the marks that are changed are of the type RegRef or NoRef. The value mark(T') =
RegRef is assigned if

e T is a regular leaf with mark(T") = Ref

e T has been irregularly refined (status(T') = IrregRef) and at least one of its
children is marked for refinement (either by mark(child) = Ref or by a certain
edge refinement pattern)

The value mark(T") = NoRef is assigned if
o status(7') = RegRef and all children of T' are marked for deletion (mark(T") =
Del for all 7" € K(T))
e T has been irregularly refined (status(T') = IrregRef) and none of its children
is marked for refinement
The subroutine is described in detail in figure 3.4. Another important task of De-

Function DetermineMarks(Gy,)
for T € G, do
if status(T) = NoRef then
if T is regular and mark(T) = Ref then
mark(T") := RegRef; (1)
increase edge counters; (2)
if k=0 and mark(T) = Del then mark(T) := NoRef; (3)

else if status(7') = RegRef then
if VI' € K(T) : mark(T") = Del then

mark(7T’) := NoRef; (4)

decrease edge counters; (5)
for T' € K(T) do

if mark(T') = Del then mark(T") := NoRef; (6)

else // status(T) = IrregRef
if 3T € K(T) : mark(T") = Ref
or an edge of a child, which is not an edge of T,
is marked for refinement then

mark(T') := RegRef; (7)
increase edge counters; (8)
else mark(T") := NoRef; 9)
for T' € K(T') do mark(T") := NoRef; (10)

Fi1G. 3.4. Subroutine DetermineMarks.

termineMarks is the book-keeping of the edge counters. If a tetrahedron is to be
regularly refined the counters of its edges are increased. Similarly, if all children of a
regularly refined tetrahedron are removed the edge counters of its edges are decreased.

MarksForClosure. In this subroutine an appropriate irregular refinement rule
is determined for an element T' € G to avoid hanging nodes. The tetrahedron T
must be regular (irregular elements are never refined) and it should not be marked
for regular refinement. The subroutine is described in figure 3.5.

Function MarksForClosure(Gr)
for T € Gy do
if T isregular and mark(T) # RegRef then
Determine the edge refinement pattern R

of T (using the edge counters); (1)
if R=(0,...,0) and mark(T) = Del then

do nothing;

// NoRef-mark is set in DetermineMarks(Gx—1)
else

mark(T) := R; 2)

Fi1a. 3.5. Subroutine MarksForClosure.

Unrefine. In the call of this subroutine on level k all the tetrahedra, vertices,
9

edges and faces on level k + 1 that are not needed anymore (due to changed marks)
are removed. More details are given in figure 3.6. We note that for an efficient
implementation one could check also for the case status(T') # NoRef and mark(T) #
status(7T) whether certain already known objects (tetrahedra, edges, etc.) on level
k + 1 can be reused in the refinement.

Function Unrefine(Gy)
Label all tetrahedra, vertices, edges and faces on level k + 1 for deletion; (1)

for T € G, do if (status(T) # NoRef and mark(T) = status(7T")) then
Remove all deletion labels of the

children of T and of their vertices, edges, faces; (2)
Remove all tetrahedra, vertices, edges and faces on level k + 1
that are labeled for deletion; (3)

FiG. 3.6. Subroutine Unrefine.

Refine. In the subroutine Refine, if mark(T) # status(T'), an appropriate refine-
ment of T, based on mark(T'), is made and new objects (tetrahedra, vertices, edges
and faces) are created on level k + 1. For k = J, a new hierarchical surplus G4 is
constructed. The refined tetrahedron T is labeled with its new status. After appli-
cation of the subroutine Refine on level k all tetrahedra on this level have a status
which corresponds to their mark. Leaves are given the status NoRef. Further details
are presented in figure 3.7.

Function Refine(Gy)
if k=J then Gii1:=0; (1)

for T € G, do
if mark(T) # status(7’) then

Refine T according to mark(T); (2)
status(T') := mark(T); (3)
for T' € K(T) do
Find existing vertices, edges and faces of T"'; (4)
create missing vertices, edges and faces of T'; (5)
status(7") := NoRef; (6)

Fi1a. 3.7. Subroutine Refine.

REMARK 3. Applicating the subroutines to Gy, for any T" € Gj, one only needs
information that is directly connected with T' (e.g., mark(T")), information about a
possible parent (to decide, for example, whether T is regular or not) and if T is not
a leaf, information about the children of T'.

REMARK 4. As already noted above, algorithm SerRefinement is very similar
to the method of BEY ([6, 7]). There are, however, some differences. We use a
complete set of 64 refinement rules, whereas BEY uses a much smaller number of
green rules, which may cause a domino effect. In view of data locality we wanted to
avoid this effect. Concerning the implementation there are two major differences with
the approach of BEY. Firstly, in our implementation faces are explicitly represented
in the data structure, which simplifies the access from one tetrahedron to its four
neighbour tetrahedra. Secondly, each vertex, edge and face is stored only once (and
not on every level where corresponding tetrahedra occur).

10

4. Parallelization of the multilevel refinement method.

4.1. Introduction. In many applications (for example, CFD) the computa-
tional complexity is very high and one wants to use parallel machines. Here we
only consider distributed memory machines which use message passing (MPI). In this
section we reconsider the local refinement algorithm SerRefinement and present a
version, which is called ParRefinement, that is suitable for such a machine. For a
given input-multilevel triangulation the parallel method produces the same output-
multilevel triangulation as the serial method. In this sense the “computational part”
of the algorithm is not changed. In the parallel case load has to be distributed uni-
formly among the processors, so in practice an adaptive parallel refinement algorithm
is combined with dynamic load balancing and data migration between the processors.
One of the main decisions related to the parallelization of the algorithm SerRefine-
ment is to find an appropriate distributed storage of data with regard to data locality.
Therefore one has to find a good compromise between storage overhead on the differ-
ent processors and the costs of communication between the processors. In the case
of the multilevel refinement method, a crucial point is that for a tetrahedron T one
needs information about the children of T'. If T and its children are not necessarily
stored on the same processor, then in general one needs a large amount of small mes-
sages and the high communication costs will result in low parallel efficiency. Hence,
in view of a reduction of communication costs it is advantageous to have T (or a copy
of T') and its children on the same processor. If this condition has to be fulfilled, one
must allow (ghost) copies (i.e., overlap) of tetrahedra on different processors since
otherwise a domino effect can occur: all ancestors and descendants of a tetrahedron
must be on the same processor. This would cause very coarse data granularity, poor
load balancing and hence low parallel efficiency.

One main topic of this paper is the introduction and analysis of a new data
distribution format that is very suitable for parallelization of the multilevel refinement
algorithm. This data distribution format is such that the following holds:

1. Let T € Gy, be an element from the hierarchical surplus on level k. Then T
is stored on one processor, say p. In certain cases (explained below) a ghost
copy of T is stored on one other processor, say q.
2. The children of T' (if they exist) are all stored either on processor p or, if T'
has a ghost copy, on processor q. For T' € Gy, k > 0, the parent of T or a
copy of it is stored on processor p.
Due to property 2 the refinement algorithm can be applied on level k (i.e., to the
hierarchical surplus Gy) with low communication costs. Communication in the form
of relatively few large messages will be needed to transfer information from elements on
one processor to copies (if they exist) on other processors and to exchange information
on edge counters between the processors. The first property shows that in a certain
sense the overlap is small.

The new data distribution format will be made mathematically precise by a formal
specification of a so-called admissible hierarchical decomposition. This is presented in
section 4.2. In section 4.3 we introduce the parallel version of the multilevel refinement
algorithm (ParRefinement).

The main results concerning the admissible hierarchical decomposition and the
parallel multilevel refinement method can be summarized as follows:

a. An admissible hierarchical decomposition has the desirable properties 1 (small
storage overhead) and 2 (data locality) from above. This is proved in sec-
tion 4.2.

11

b. The application of the algorithm ParRefinement to an admissible hierarchical
decomposition results in an admissible hierarchical decomposition. This is
proved in section 5.

c. Given an admissible hierarchical decomposition one can apply a suitable load
balancing and data migration algorithm such that after data migration one
still has an admissible hierarchical decomposition. We comment on this in
remark 7 below.

4.2. Admissible hierarchical decomposition. Let the sequence M = (To,...,Ts)

of triangulations be a multilevel triangulation and H = (Go,...,Gs) the correspond-
ing hierarchical decomposition. In this section we introduce a particular format for
the distribution of the tetrahedra in H among processors on a parallel machine. We
assume that the processors are numbered 1,..., P.

For the set of elements in the hierarchical surplus on level k that are stored on
processor p we introduce the notation

Gr(p) :={T € Gy | T is stored on processor p }

and we define

H(p) := (Go(P),---,9(P)) -

In general the intersection Gi(p) NG (q), p # ¢, may be nonempty. Also note that in
general H(p) is not a hierarchical decomposition (in the sense of definition 6). The
sequence

H = (H(),...,H(P)) (4.1)

is called a distributed hierarchical decomposition (corresponding to H).

For each level k and processor p we introduce a set of master elements, Mag(p) C
Gr(p), and a set of ghost elements, Ghy(p) C Gi(p). In the formulation of the condi-
tions below we use: K(T') := 0 if status(T') = NoRef, and Ma;,(p) := 0.

We now formalize the conditions on data distribution as follows.

DEFINITION 8 (Admissible hierarchical decomposition). The distributed hierar-
chical decomposition # is called an admissible hierarchical decomposition if for all
k=1,...,J the following conditions are fulfilled:

(A1) Partitioning of Gr(p): The sets of masters and ghosts form a disjoint
partitioning of G (p):

Vp Ma(p) UGhi(p) = Gi(p) and May(p) NGhi(p) =0

(A2) Existence: Every element from Gy is represented as a master element on
level k:

Gr = U Ma(p)

(A3) Uniqueness: Every element from Gy, is represented by at most one master
element on level k:

Vp1,pe: Mag(p1) NMag(p2) #0 = p1 =po
12

(A4) Child—parent locality: A child master element and its parent (as master
or ghost) are stored on the same processor:

Vp VT eG, VT e K(T): T' € Mag,1(p) = T € Gr(p)
(A5) Ghosts are parents: Ghost elements always have children:
Vp VT e Ghg(p): KT)#0

(A6) Ghost—children locality: A ghost element and its children are stored on
the same processor:

Vp VT € th(p) : IC(T) C MakH(p)

REMARK 5. Consider a consistent initial triangulation 7y = Gy with a nonover-
lapping distribution of the tetrahedra: Go(p) N Go(q) = O for all p # ¢. In this case
all tetrahedra can be stored as masters and there are no ghosts. Then the distributed
hierarchical decomposition H = ((Go(1)),- .., (Go(P))) is admissible.

Two elementary results are given in:

LEMMA 4.1. Let H as in (4.1) be a distributed hierarchical decomposition. The
following holds:

1. If the conditions (A3), (A5) and (A6) are satisfied then for any element from
Gy there is at most one corresponding ghost element:

VT €G, Vp,q: T € Ghg(p) NGhr(q) = p=g¢q

2. If the conditions (A1), (A2), (A3), (A4) and (A6) are satisfied then all chil-
dren of a parent are stored as master elements on one processor:

VYT eG, 3p: K(T) C Mag41(p)

Proof.

1. Take T € Gp and p,q such that T € Ghg(p) N Ghi(g). Then because of
(A5) and (A6) we obtain @ # K(T) C Magy1(p) N Mags1(q) . From (A3) we
conclude p = q.

2. Take T € Gi. For K(T) = 0 nothing has to be proven, so we consider
K(T) # 0. Choose T' € K(T') C Gr41. Then because of (A2)

dp: T' € Mag41(p) ,

and due to (A4) T is also stored on processor p: T € Gi(p). From (Al)
it follows that T is stored either as a ghost element or a master element
on processor p. First consider T € Ghy(p). Then (A6) implies K(T) C
Mak+1(p), ged.

Now consider the case T € Mag(p). Suppose another child T" € K(T),
T" #T', is not stored as master element on processor p, i.e. T" ¢ May11(p)-
From (A2) it follows that there is a processor ¢, ¢ # p, with T"" € Mag41(q),
and (A4) yields T € Gi(q). From T € Mag(p), (A3) and (Al) we obtain
T € Ghg(gq) and hence (A6) yields K(T') C Mag41(q). In particular we have
T’ € Mag41(q) and thus

T' € Magy1(p) N Mag41(q) ,

with p # ¢. This is a contradiction to (A3). Hence for all children T" € K(T')
T" € Mak+1(p) holds.
a

13

REMARK 6. Due to the conditions (A2) and (A3) every tetrahedron T' € H can
be assigned a unique processor on which T is stored as a master element. In other
words, we have a well-defined function master : H — {1,..., P} that is given by

master(T) =p < T € Mayr)(p) .

Let T € Mag(p) be a parent master element. From the second result in lemma 4.1
and (A4) it follows that either all children are masters on the same processor p as T,
or they are masters on some other processor q. In the latter case, the element 7" has
a corresponding ghost element on processor g. Due to this property, in the parallel
refinement algorithm below we use the strategy:

If a parent tetrahedron T has a ghost copy then operations that involve
children of T are performed on the processor on which the ghost and the — (4.2)
children are stored.

From condition (A4) it follows that a child master element has its parent (as ghost or
as master) on the same processor. Therefore we use the strategy:

If a child tetrahedron T has a ghost copy then operations that involve the
parent of T are performed on the processor on which the master element (4.3)
of T and its parent are stored.

The first result in lemma 4.1 shows that every T' € H has at most one ghost copy.
Moreover, due to (A5) all leaves (T' € T;) have no ghost copies. In this sense the
overlap of tetrahedra between the processors is small.

4.3. Parallel multilevel refinement algorithm. In figure 4.1 the parallel ver-
sion of algorithm SerRefinement is given. For the subroutines that are new compared
to the serial version of the refinement algorithm we use a different font.

Algorithm ParRefinement(Gy(p), .. .,Gs(p))
for k=J,...,0 do // phase I
DetermineMarks(Gy (p)); (1)
CommunicateMarks(Gr(p)); (2)
AccumulateEdgeCounter(Gg(p)); (3)
MarksForClosure(G(p)); 4)
for k=0,...,J do if Gi(p) #0 then // phase II
if k>0 then MarksForClosure(Gr(p)); (5)
if k< J then Unrefine(G(p)); (6)
Refine(Gy (p)); (7)
DetermineNewestLevel(); (8)

F1G. 4.1. Parallel multilevel refinement algorithm.

The structure of the algorithm is the same as in the serial case. Below we discuss
the subroutines used in the algorithm ParRefinement. Most of these subroutines are
modifications of the subroutines (with the same name) that are used in the serial
algorithm in section 3.3. For these we only explain the main differences between the
parallel and the serial versions.

Let us first explain some notions that are used in the following to describe certain
parallelization aspects: An object is said to be stored on a processor boundary, if it

14

is stored on several processors at the same time. For these objects one often needs
communication: The exchange of messages between corresponding local copies of
objects on processor boundaries is called interface communication. The correlation
of local copies and the corresponding global objects is realized by global identification
numbers: Local copies (on different processors) with the same global ID represent the
same global object.

The set of master elements on processor p which have ghost elements on some
other processor is defined by

HasGhy (p) := Mag(p)n |] Ghi(q) .

This set plays an important role in the description of the subroutines for the parallel
case. We note that if a tetrahedron T has a corresponding ghost element on some
other processor then for certain operations which involve T, its children or its parent,
one has to decide whether these are performed using 7' or the ghost copy of T'. This
decision is based on the two strategies (4.2) and (4.3) formulated in remark 6.
DetermineMarks. This subroutine is presented in figure 4.2 and is almost the
same as for the serial case. Only T € Gi(p) \ HasGhg(p) are involved in the block
(4)—(10) since access to the children is needed (cf. (4.2)). In (5) and (8) edge counters

Function DetermineMarks(Gr(p))
for T € Gi(p) do
if status(7) = NoRef then
if T is regular and mark(T) = Ref then

mark(7T’) := RegRef; (1)

increase edge counters; (2)
if k=0 and mark(T) = Del then

mark(T") := NoRef; (3)

else if T ¢ HasGhy(p) then
if status(7) = RegRef then
if VI" € K(T) : mark(T') = Del then
mark(T") := NoRef; (4)
if T ¢ Ghi(p) then decrease edge counters; (5)
for T' € K(T) do
if mark(T’) = Del then
mark(T") := NoRef; (6)
else // status(T) = IrregRef
if 37" € K(T): mark(T') = Ref
or an edge of a child, which is not an edge of T,
is marked for refinement then

mark(T") := RegRef; (7)

if T ¢ Ghi(p) then increase edge counters; (8
else

mark(T") := NoRef; (9)
for T' € K(T') do

mark(T") := NoRef; (10)

Fic. 4.2. Subroutine DetermineMarks; parallel case.

are updated only by master tetrahedra to avoid multiple updates. The condition if
T is reqular can be checked without communication. For this it is important to note

15

that ghost elements are always regular: if a ghost element T was irregular, it would
not have any children, which contradicts (A5). For a master element its parent is
stored on the same processor (cf. (A4)). Hence no communication is needed in this
subroutine.

CommunicateMarks. This subroutine is given in figure 4.3. The marks from
the ghost copies are communicated to the corresponding master tetrahedra (interface
communication). Once this information is available, the marks and edge counters
of the tetrahedra T' € HasGhy(p) which where not treated in DetermineMarks are
modified, if necessary. Note that, due to (A5), for T' € HasGhy(p) always status(T") #
NoRef holds.

Function CommunicateMarks (G (p))
for T € Ghg(p) do
myp := mark(T); (1)

for (¢=1,...,P, q#p)do
send {mr : T € Ghy(p) N Ma(q)}

to processor q; (2)
Receive corresponding messages
from other processors; (3)
for T € HasGhg(p) do

mark(T') := mr; (4)

if status(7’) = RegRef then

if mr # RegRef then
decrease edge counters; (5)

else // status(T') = IrregRef

if m7r = RegRef then
increase edge counters; (6)

F1G. 4.3. Subroutine CommunicateMarks.

AccumulateEdgecounter. For an edge F that is stored on several processors
the value of its edge counter C(E) is stored in a distributed manner, i.e. each local
copy stores a contribution of the global value. Thus in order to obtain the global
counter value C'(E) on each local copy of E, the local values have to be added up
among the local copies. For this purpose interface communication involving the edges
is needed.

MarksForClosure. This subroutine is the same as the one in the serial case in
figure 3.5 (one only has to replace G, by Gi(p)). Since after the call of AccumulateEdge-
counter(Gy(p)) the edge refinement pattern is available on each tetrahedron T' €
Gk (p) the marks can be set without communication.

Unrefine. This subroutine is shown in figure 4.4. In the first for-loop T' €
HasGhy (p) are skipped since in (2) access to the children is needed (see (4.2)). Ghost
elements that are marked for no refinement are deleted in (3) in order to ensure (A5).
The second for-loop (4) is needed because it may happen that for 7" € Ghgy1(p) there
is no parent on the same processor that removed the deletion labels from 7" in (2).
Note that the deletion of local objects that have copies on other processors causes
communication since all copies have to be informed about the local deletion.

Refine. This subroutine is given in figure 4.5. It is almost the same as for the
serial case except that the for-loop only iterates over Gy (p) \ HasGhy(p), cf. (4.2). We
emphasize that local objects created on processor boundaries have to be identified
with each other. Consider, for example, an unrefined edge E which is stored on two

16

Function Unrefine(Gy(p))
Label all tetrahedra, vertices, edges and faces on level k + 1 for deletion; (1)

for T € Gr(p) \ HasGhy(p) do if status(7’) # NoRef then
if mark(T) = status(7’) then
Remove all deletion labels of the
children of T and of their vertices, edges, faces; (2)
else if T € Ghy(p) and mark(T) = NoRef then
Remove T and its vertices, edges, faces,

that are not needed anymore by other tetrahedra; (3)
for T € Ghg41(p) do
Remove all deletion labels of T and of its vertices, edges, faces; 4)

Remove all tetrahedra, vertices, edges and faces on level k + 1,
that are labeled for deletion; (5)

F1G. 4.4. Subroutine Unrefine; parallel case.

different processors, say p and ¢, with a counter C'(E) that has changed and is now
positive. Then for both local copies of £ new midvertices V}, and V; are created
independently on processor p and g, respectively. The information that V, and Vj
represent the same global object has to be communicated between the processors p
and ¢ by identifying both midvertices with each other. The identification of edges and
faces can be done in a similar way. In our implementation we use the DDD library to
take care of this identification (cf. remark 8).

Function Refine(Gr(p))
if k=J then Gii1(p):=0; @
for T € Gi(p) \ HasGhy(p) do
if mark(T) # status(T’) then
Refine T' according to mark(T"), i.e.

create children of T as master elements; (2)
status(7’) := mark(T); 3)
for T' € K(T) do
Find existing vertices, edges and faces of T'; 4)
create missing vertices, edges and faces of T'; (5)
status(7”) := NoRef; (6)

F1G. 4.5. Subroutine Refine; parallel case.

DetermineNewestLevel. In this subroutine, which is described in figure 4.6,
the new global finest level index € {J — 1,J,J + 1} is determined. For this an
MPI — Allreduce operation is used in (4).

REMARK 7. We note that ghost copies are not created within the parallel re-
finement algorithm. These are generated only in a data migration procedure that is
used for load balancing. In this paper we do not discuss the load balancing and data
migration algorithm. This will be presented in a separate paper. The main idea is as
follows. The load balancing is performed by means of a graph partitioning method
which assumes the dual graph G of a triangulation as input. In order to ensure that
the children of a common parent are all assigned to the same processor, they are com-
bined to one multi-node, inducing a reduced dual graph G’ which is then passed to
the graph partitioner. Based on the output of the graph partitioning method certain
tetrahedra are migrated and certain ghost copies are created. It can be shown that

17

Function DetermineNewestLevel()

if Gs(p) =0 then J,:=J—1;)
else if Gy11(p) #0 then J,:=J +1;)
else J,:=J; 3
Determine J' := maxi<p<p Jp ; @)
if J,<J
for k=J,+1,...,J" do
Gu() = s (5)

F1G. 4.6. Subroutine DetermineNewestLevel.

given an input admissible hierarchical decomposition the data migration algorithm is
such that its output is again an admissible hierarchical decomposition.

REMARK 8. We briefly comment on some implementation issues. The man-
agement of the distributed data is handled by the library DDD (which stands for
dynamic distributed data, cf. [9]) also used in the package UG [5] for the same task.
The behaviour of DDD can be adjusted to the user’s requirements by means of sev-
eral user-defined handler functions. The functionality of DDD includes the deletion of
objects and the transfer of local objects from one processor to another (transfer mod-
ule), interface communication across processor boundaries (interface module) and the
identification of local objects from different processors (identification module). All
communication is bundled such that the number of exchanged messages is kept small.
All parallel communication and administration actions occuring in ParRefinement
(e.g., the accumulation of edge counters by interface communication, the consistent
deletion of local objects or the identification of local objects with each other) can be
handled by DDD.

5. Analysis of the parallel refinement algorithm. In this section we analyze
the algorithm ParRefinement applied to an input admissible hierarchical decomposi-
tion

HO = (11 (1),..., HOY(P)) (5.1)

as in (4.1) with H°4(p) = (G§"(p),...,G%%(p)). The main result we prove (theo-
rem 5.7) is that the output of this algorithm

FHOOY = (P (1),..., H " (P)) (5.2)

is again an admissible hierarchical decomposition.

First we prove that the algorithm ParRefinement is well-defined:

THEOREM 5.1. The algorithm ParRefinement applied to an admissible hierarchi-
cal decomposition is well-defined.

Proof. We have to show that all data that are needed in the subroutines of Par-
Refinement applied to G (p) are available on processor p. By definition a tetrahedron
T € Gi(p) is stored (as master or ghost) on processor p. A tetrahedron is always stored
together with its vertices, edges and faces. Hence information on these subsimplices
is available on processor p if the tetrahedron is available on processor p.

For T € G (p) the two critical points are references to its parent and references to
its children. The former is needed only to check the condition if T is regular, which
occurs at several places.

We first consider this condition. If T is a ghost element then it must be regular
(hence the condition must be fulfilled), since if we assume T to be irregular then T has

18

no children and a contradiction follows from (A5). If T' is a master element, then due
to (A4) its parent is stored (as ghost or master) on processor p. Hence the reference
to its parent is available on processor p and the condition can be checked.

We now consider the references to the children of T' that occur at several places
in the subroutines. A look at the subroutines shows that such a reference is needed
only for T' € Gy(p) \ HasGhy(p). Such a T is either a master element (on processor
p) which does not have a ghost copy on another processor or a ghost element. In
the former case it follows using (A4) that children of T' must be master elements on
processor p. If T is a ghost element then it follows from (A6) that the children are
stored on processor p. We conclude that in all cases the references to children are
available on processor p. O

It is straightforward to check that for a given hierarchical decomposition of an
input multilevel triangulation the serial algorithm SerRefinement and its parallel ver-
sion ParRefinement yield the same output triangulation. In [6, 7] it is proved that
this output is again a multilevel triangulation. Hence the distributed hierarchical
decomposition in (5.2), which corresponds to the output multilevel triangulation is
well-defined. In the remainder of this section we will prove that this output dis-
tributed hierarchical decomposition is admissible. We first show that the condition
(A1) is satisfied. Here and in the remainder we always assume that the input dis-
tributed hierarchical decomposition (5.1) is admissible.

LEMMA 5.2. The output distributed hierarchical decomposition (5.2) of algorithm
ParRefinement satisfies condition (A1).

Proof. The new set G2V (p) is obtained from the old one G'(p) by removing
elements (in Unrefine) and by creating new master elements (in Refine). The removal
of elements does not destroy property (A1). If a new tetrahedron T is added to G3'4(p)
we obtain G}, (p) := Gr(p) U {T'} and the partitioning

Maj (p) := Mag(p) U{T}, Ghi(p) := Gh(p) ,

which still has property (A1). O

In order to prove that the other conditions (A2)-(A6) also hold we need a few
lemmas. We use the notation F(T') for the parent of T

LEMMA 5.3. Let k > 1 and let T € GV be a tetrahedron such that T ¢ G'9.
Then the following holds:

dp: T e Ma;*™(p) (5.3)
T eMay™(p) = F(T)egri(p) (5.4)

Proof. A new tetrahedron T € G2®% \ G4 can only be constructed in the subrou-
tine Refine. There it is created as a master element on some processor p. Hence, the
result (5.3) holds.

Let T € Ma}*"(p) be a new master element which has a parent, i.e., it is obtained
by applying a refinement rule to its parent F(T) € G¢!4,. Since T is on processor p, this
refinement must be performed in the call of the subroutine Refine(G'9, (p)), and thus
F(T) € G2, (p). The element F(T) can only be removed in the subroutine Unrefine
on level £ < k. This can not happen because the second phase of the refinement
algorithm ((5)-(7)) is a bottom-up procedure. We conclude that F(T) € Gp®¥(p)
holds. O

19

LEMMA 5.4. Let k > 0. For T € G2 N G9! the following holds:

TeMa(p) & TeMal®(p) (5.5)
T €GIp) and K**Y(T)#0 = T e€G*v(p) (5.6)

Proof. Consider a tetrahedron T' € G2'9 N GR®". The result in (5.5) follows from
the fact that nowhere in the algorithm ParRefinement a tetrahedron is moved from
one processor to another or a master element is changed to a ghost element.

We now consider (5.6). If T € Ma(p) then the result directly follows from
(5.5). Hence, we only have to consider a ghost element T € Gh%'d(p) with K% (T') #
0. Because the tetrahedron T has children in H™®" we have mark™"(T) # NoRef.
Assume that T' ¢ Gpe™(p) holds. Since tetrahedra are not moved between processors
it follows that 7' has been removed from G2'(p). This can be caused only by the
assignments (5) in Unrefine(G2', (p)) or (3) in Unrefine(G'(p)). We first consider
the latter case. From the bottom-up structure of the second phase of the refinement
algorithm it follows that mark(T') is not changed after the call of Unrefine(G2'4(p)).
Thus, in this call we have mark(T") # NoRef and the assignment (3) is not applied.

We now treat the other case. As outlined above we only have to consider a ghost
element T € Gh('%(p). Thus assignment (4) in Unrefine(G!4, (p)) is applied to T and
so T won’t be removed in assignment (5) of this routine. Since there are no other cases
left, we conclude that 7 is not removed from G¢'9(p), which yields a contradiction. O

The result in (5.5) shows that master elements from T € GI¢™ N G9!4 remain on
the same processor. The result in (5.6) yields that elements from 7' € G2eW N Gold
that are refined in H"" remain on the same processor. The refinement condition
Krmew(T) # 0 is necessary (there may be ghost elements in G¢'¢ that are removed).

The next lemma shows that ghost elements in Gp°" on processor p must be ghost
elements in GP'9 on the same processor.

LEMMA 5.5. The following holds:

T eGhi™(p) = T eGhd(p)

Proof. This can be concluded from the following two properties. Firstly, tetrahe-
dra are not moved from one processor to another. Secondly, new tetrahedra (created
in the subroutine Refine) always are masters. O

We now formulate a main result of our analysis.

THEOREM 5.6. Let the input hierarchical decomposition H°'Y be admissible, i.e.,
it satisfies the conditions (A1)-(A6) for the levels k = 0,...,J. Then for the output
hierarchical decomposition H™" the conditions (A2) -(A6) are satisfied for the levels
k=0,...,J—1.

Proof. Note that the levels k =0,...,J — 1 exist in H v Since the distributed
input hierarchical decomposition H°'4 is admissible we can use that on the levels
k=0,...,J the conditions (A1)-(A6) hold for H°'4. These properties are denoted by
(Al)OId—(AG)Old.

(A2). By definition we have GV = Ule Gr®™(p) and May*"(p) C Gpe¥(p).
From this we get U§:1 Ma;*™(p) C Gp®™ . For the other inclusion DO we consider
T e Gpev. If T € G99 then using (A2)°9 we have:

Ip T e Madd(p)
20

and thus, from lemma 5.4 it follows that T' € Ma}*" (p) holds. Now consider the case
T ¢ G4, On level 0 no new tetrahedra are created and thus k > 1 must hold. From
lemma 5.3 we obtain:

Ip T € Ma™"(p) .

We conclude that the inclusion Ule Ma®" (p) 2 Gpe™ holds, too.
(A3). We have to prove:

Vp,q: Ma;®" (p) "Map®™(q) #0 = p=gq (5.7)

This will be proved using an induction argument. For & = 0 we have Mag® (r) =
Mad'd(r) for r = 1,..., P. Thus the result (5.7) for k = 0 follows from (A3)°101

Now we take k > 1 and assume that the result in (5.7) holds for the lower levels
2,0 << k. Consider T € Ma;*™ (p) N Ma;*" ().

If T € G, then from lemma 5.4 we obtain

T € Ma(p) and T € Ma(q) .

From (A3)° it follows that p = ¢ holds.
We now treat the other, more involved case T' ¢ G2'9. Then T must have a parent
F(T). From lemma 5.3 we get

F(T) € 6;i%1(p) N Gi%i(q) -

This parent can be stored as master or as ghost. We analyze the three possible
situations:

1. Both on procesor p and processor g the parent F(T') is stored as a master
element: F(T) € Ma;™ (p) N Ma;® (¢). From (5.7) on level k — 1 it follows
that p = ¢q holds.

2. Both on procesor p and processor g the parent F(T') is stored as a ghost
element: F'(T) € Ghp™ (p) N Gh;® (¢g). From lemma 5.5 it follows that

F(T) € Gh, (p) N Ghi?, (g) -

From the first result in lemma 4.1 we conclude that p = ¢ holds.
3. Assume that F(T') is stored as ghost on one processor and as a master on
another one:

F(T) € GhiZy(p) and F(T) € Ma;Ti(q) , p#g¢.

From lemma 5.5 we get F(T') € Gh%'Y, (p) and thus also F(T) € G'9,. Appli-
cation of lemma 5.4 yields F(T) € Ma°ld (¢) and we conclude:

F(T) € HasGh', (¢q) . (5.8)

The new tetrahedron 7' € Ma}®" (g) can only be created as refinement of F(T')
in instruction (2) in the call of the subroutine Refine(G¢'4, (¢)). However, this

instruction is only performed if F(T) ¢ HasGh$' (g). Thus we obtain a
contradiction with (5.8). We conclude that this third case can not occur.

21

(A4). Take T € Gpev. If K**¥(T') = () there is nothing to prove. We consider the
situation K"V (T) # 0, T' € K**V(T') with T' € Ma}] (p).

We first treat the case T' € Gpi,. Then for its parent T' we have T € G
and T' € K°9(T). Take g such that 7' € Ma} (g). Using lemma 5.4 we get
T' € Ma; T} (q) From the uniqueness property (A3) we conclude ¢ = p. We thus
have T' € Majy, (p), and together with (A4)°'d this yields T € G'4(p). Now note that
K"e¥(T) # B and use the second result in lemma, 5.4. This implies

T e Gi*™(p) .

We now consider the case 7" ¢ Ggl¢, . From lemma 5.3 we obtain:

3q T'e Mafi(o) .

Due to the uniqueness property (A3) we have ¢ = p. Application of the second result
in lemma 5.3 yields

T=F(T")egG({p) .

So in both cases we have that the parent T is stored on the same processor p as T".
(A5). Take T' € Gh;*¥(p). Lemma 5.5 implies

T € Ghy'(p) ,

and K°'4(T) # () because of (A5)°'9. Assume that K" (T) = () holds. This implies
mark™¥(T') = NoRef. In the second phase of the refinement algorithm the mark of
T is not changed after the call of Unrefine(Gy(p)), and thus mark(7T') = NoRef during
this call. In the instruction (2) of this call the element T is then removed, which
implies T' ¢ Gh;®"(p). We obtain a contradiction and conclude that K% (T) # 0
holds.

(A6). Take T € Gh}°¥(p). Lemma 5.5 implies T' € Gh%'4(p). From (A5)°' it
follows that K°'4(T) # (). From (A5) we have K"V (T) # (). Let

T' € K™ (T) C Gi%%

be one of the children of T' in H"e".

First consider the case T' € K(T). Due to T € Gh%'¢(p) and (A6)° we get
T € Mazlfl() and lemma 5.4 yields T" € Ma;{ (p).

We now treat the other case, T' ¢ K°'4(T). Since F(T') = T € Gh%(p) the new
child tetrahedron 7" must have been created in Refine(Gy,(p)), instruction (2). Thus
T' € Ma; T (p) holds.

We conclude that X"V (T') C Map{ (p). O

Finally, we prove the main result:

THEOREM 5.7. The output distributed hierarchical decomposition (5.2) of algo-
rithm ParRefinement satisfies the conditions (A1)-(A6).

Proof. The result concerning (A1) follows from lemma 5.3. It remains to prove
that the conditions (A2) — (A6) are satisfied for the sets Gp*¥(p), k = 0,...,J"".
Note that J"% € {J —1,J,J + 1}. We consider these three cases.

Jrew = J — 1. For this situation the desired result is proved in theorem 5.6.

Jrew = J. From theorem 5.6 it follows that the sets Gp*%(p),k = 0,...,J — 1
satisfy the conditions (A2) -(A6), hence we only have to consider G5V (p). First note

22

that, due to (A5)°d we have G$'4(p) = Ma%9(p), i.e., the input finest level contains
only master elements. Now consider an element T € G3°" (p). Then either T € G3'(p),
in which case T is a master element or T is a child of some element F(T) € G5°%. In
the latter case T is created in Refine (2) and must be a master element. We conclude
that G5V (p) = Ma’}®™ (p) and Gh'™™(p) = 0, i.e., there are no ghost elements in the
output on level J. One easily verifies that for this situation the conditions (A1)-(A6)
are satisfied for level J (as for Gy in remark 5).

JrW = J + 1. The arguments used in the case J*V = J still hold and thus it
follows that the conditions (A1)-(A6) hold for the levels k =0, ..., J. We only have to
consider the set G5 (p). This set contains only new tetrahedra, i.e. elements which
are created in Refine (2) by refinement of elements from G5°%. Thus all these elements
are masters: G5 (p) = Maj%"] (p) and Gh}% (p) = 0. The same argument as used in
the case J*°" = J yields that the conditions (A1)-(A6) are satisfied for G5 (p). O

6. Numerical experiments. In this section we present results of a few nu-
merical experiments. The computations were executed on the RWTH SunFire SMP
cluster, using up to 64 900-MHz-processors. 1 GB RAM per processor was reserved
by the batch system when starting a parallel job. The SMP nodes are connected to
each other by Gigabit Ethernet, messages between processors of the same node are
exchanged through the shared memory. Because of the multi-user mode one can not
expect optimal runtimes. All runs were performed twice, then for each number of
processors P the average of the measured runtimes was taken. The parallel runtimes
are compared to the serial runtime in terms of the following definition to obtain a
rough measure for the scalability of the parallel algorithm.

DEFINITION 9 (Scaled efficiency). Consider an algorithm of complexity O(n)
where n denotes the characteristic problem size. For a given number of processor P
let T,,(P) denote the runtime of the parallel algorithm on P processors for a problem
of total size n. Choose a fized local problem size n' (based on the memory available
per processor). The ratio

T, (1)
E3(P):= —~7_
of serial runtime to parallel runtime on P processors for a fixed local problem size n’
is called the scaled efficiency.
Note that the refinement algorithm is of complexity O(n) where n is the number
of tetrahedra.

6.1. Experiment 1: global refinement. First, we consider the global refine-
ment of the unit cube Q = [0, 1]3. For P processors the initial triangulation 7q consists
of P-384 tetrahedra. Thus, the problem size grows proportional to the processor num-
ber and we have a fixed local problem size. This triangulation is refined globally four
times. The resulting finest triangulation 74 then consists of P - 1572864 tetrahedra,
the whole final multilevel triangulation M contains P - 1797 504 tetrahedra.

The parallel runtimes (in seconds) for the last refinement step and the scaled
efficiency for several numbers of processors P are shown in table 6.1. Satisfactory
efficiencies are obtained and thus the parallel refinement algorithm turns out to be
scalable for uniform refinement (at least, up to P = 64 processors).

6.2. Experiment 2: local refinement. In the second and third experiment
we treat a problem with local refinement. In the second experiment we do not use
load balancing, whereas in the third experiment a load distribution is used. We again

23

P | 1 2 4 8 16 32 64
T(P) | 6945 70.96 7131 7342 79.48 86.48 94.79
E*(P) | 100% 98% 97% 95% 87% 84% 80%

TABLE 6.1
Ezperiment 1: global refinement, last refinement step.

consider the unit cube Q = [0, 1]® with the same initial triangulation as in experiment
1. Let B C Q be the ball with radius » = 0.3 centered at (0.4,0.4,0.4). Before
applying the refinement algorithm only those tetrahedra are marked for refinement,
whose barycenter is located within B. This is repeated four times. The parallel
runtimes (in seconds) for the last refinement step are presented in table 6.2. After the
last refinement the number of tetrahedra per processor ranges from 384 up to 927 832.
Due to this heavy load imbalance between the processors two effects can be observed.
On the one hand efficiency is very poor even for fairly low processor numbers due to
the fact that for some processors the local grid is refined almost uniformly whereas
on other processors only few tetrahedra are refined. Thus some of the processors are
idle waiting for others with much more computational load. On the other hand a
large amount of the available memory will not be used, so the theoretical maximum
problem size nmax, which is determined by the overall memory supply of the parallel
machine, cannot be reached without a suitable load balancing strategy.

P | 1 2 4 8 16 32 64
T(P) | 744 1111 17.03 2942 4252 57.06 112.23

E*(P) | 100% 67% 44% 25% 17% 13% 7%
TABLE 6.2
Ezperiment 2: local refinement without load balancing, last refinement step.

6.3. Experiment 3: local refinement with load balancing. Because of the
disadvantages mentioned above it is clear, that one has to use load balancing to obtain
better efficiency and better memory utilization. In the third experiment we consider
the situation as in experiment 2 but now additionally apply load balancing before
the last refinement step. In contrast to the previous two experiments ghost copies
appear which are created during the load balancing phase. The parallel runtimes (in
seconds) for the last refinement step are shown in table 6.3. One of course obtains
much better results as for the imbalanced case in table 6.2. Nevertheless we get worse
efficiency with local refinement as compared to the results for uniform refinement in
table 6.1. This is not surprising as there is more communication (because of the ghost
copies) and at the same time much less computational work: The average number of
tetrahedra per processor after the last refinement step is about 200 000 whereas in the
first experiment this number is about 1.8 - 106.

P | 1 2 4 8 16 32 64
T(P) | 807 863 937 1047 12.14 1473 23.97

E*(P) | 100% 94% 86% 7% 6% 5% 34%
TABLE 6.3
Ezperiment 3: local refinement with load balancing, last refinement step.

Figures 6.1-6.3 show the distributed triangulation on P = 4 processors after the last
24

F1G. 6.1. Distributed tri- F1G. 6.2. Interior. F1G. 6.3. Detail.
angulation.

refinement.

REMARK 9. In an adaptive parallel CFD code the parallel multilevel refiniment
algorithm is used in combination with discretization routines (creation of the stiffness
matrix) and solution routines (iterative solvers). Usually the bulk of the arithmetic
work is needed in the solution routine. In such a setting a deterioration of the parallel
efficiency as in table 6.3 will probably hardly influence the overall parallel efficiency.
The latter is mainly determined by the parallel efficiency of the solution method.

REFERENCES

[1] E. Bansch: Local mesh refinement in 2 and 3 dimensions, Impact of Computing in Science
and Engineering 3, 1991, 181-191.

[2] R.E. Bank: PLTMG: A software package for solving elliptic partial differential equations,
users’ guide 6.0, STAM, Philadelphia, 1990.

[3] R.E. Bank, A.H. Sherman, A. Weiser: Refiment algorithms and data structures for regular local
mesh refinement, in Scientific computing (R. Stepleman, ed.), North-Holland, Amsterdam
(1983), pp. 3-17.

[4] P. Bastian: Parallele adaptive Mehrgitterverfahren. Teubner, Stuttgart 1996.

[5] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuf}, H. Rentz-Reichert and C. Wieners,
UG - A flexible software toolboz for solving partial differential equations, Computing and
Visualization in Science 1, 1997, 27-40.

. Bey: Tetrahedral grid refinement, Computing 55, 1995, 355-378.

. Bey: Finite- Volumen- und Mehrgitterverfahren fiir elliptische Randwertprobleme. Disserta-
tion, Universitat Tilbingen, 1997.

[8] J. Bey: Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of
congruence classes, Numer. Math. 85, 2000, pp. 1-29.

. Birken: Dynamic Distributed Data (DDD) — a software tool for distributed memory par-
allelization. Dokumentation, 1997.

http://cox.iwr.uni-heidelberg.de/~ddd/

[10] B. L. Chamberlain: Graph Partitioning Algorithms for Distributing Workloads of Parallel
Computations. Technical report, University of Washington, 1998.
http://www.cs.washington.edu/homes/brad/cv/pubs/degree/generals.html

. Freudenthal: Simplizialzerlegungen von beschrankter Flachheit, Annals of Mathematics 43,
1942, pp. 580-582.

. Gro8, J. Peters, V. Reichelt, A. Reusken: The DROPS Package for Numerical Simulations
of Incompressible Flows Using Parallel Adaptive Multigrid Techniques. IGPM Report 211,
2002.
http://wuw.igpm.rwth-aachen.de/reports/html/rep_2002.html

. Grof}: Parallelisierung eines adaptiven Verfahrens zur numerischen Ldsung partieller Dif-
ferentialgleichungen, Master thesis, in German, RWTH Aachen, 2002.
http://www-igpm.rwth-aachen.de/wuw/diplomarbeiten.html

[14] G. Haase: Parallelisierung numerischer Algorithmen fir partielle Differentialgleichungen.

25

]

)
~

=

(11]

[12]

wn

(13]

wn

Teubner, Stuttgart; Leipzig 1999.

[15] G. Karypis, K. Schloegel, V. Kumar: ParMETIS. Parallel Graph Partitioning and Sparse
Matriz Ordering Library. Dokumentation, University of Minnesota, Army HPC Research
Center Minneapolis, 1998.
http://www-users.cs.umn.edu/"karypis/metis/parmetis/

[16] G. Karypis, K. Schloegel, V. Kumar: Parallel Static and Dynamic Multi-Constraint Graph
Partitioning. University of Minnesota, Supercomputing Institute, 2001.

[17] KASKADE. A toolbox for adaptive multilevel codes.
http://www.zib.de/Scisoft/kaskade2/

[18] A. Liu, B. Joe: Quality local refinement of tetrahedral meshes based on bisection, STAM J. Sci.
Comput. 16, 1995, 1269-1291.

[19] A. Liu, B. Joe: Quality local refinement of tetrahedral meshes based on 8-subtetrahedron sub-
division, Math. Comp. 65, 1996, 1183-1200.

[20] J.M.L. Maubach: Local bisection refinement for N-simplicial grids generated by reflection,
SIAM J. Sci. Comput. 16, 1995, 210-227.

[21] MG. A parallel multilevel platform for unstructured grids.
http://rcswuw.urz.tu-dresden.de/~jstiller/projects/mg/

[22] W.F. Mitchell: Adaptive refinement for arbitrary finite-element spaces with hierarchical basis,
J. Comput. Appl. Math. 36, 1991, 65-78.

[23] M.C. Rivara: Algorithms for refining triangular grids suitable for adaptive and multigrid tech-
niques, International Journal of Numerical Methods in Engineering 20, 1984, 745-756.

[24] C.T. Traxler: An algorithm for adaptive mesh refinement in n dimensions, Computing 59,
1997, 115-137.

[25] C. Walshaw, M. Cross, M. Everett: Parallel Dynamic Graph Partitioning for Adaptive Un-
structured Meshes. J. Parallel Distrib. Comput. 47 (1997), 102-108.

[26] S. Zhang: Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes,
Houston J. Math. 21, 1995, 541-556.

26

