ANALYSIS OF A STOKES INTERFACE PROBLEM

MAXIM A. OLSHANSKIT* AND ARNOLD REUSKEN

Abstract. We consider a stationary Stokes problem with a piecewise constant viscosity coef-
ficient. For the variational formulation of this problem we prove a well-posedness result in which
the constants are uniform with respect to the jump in the viscosity coefficient. We apply a stan-
dard discretization with a pair of LBB stable finite element spaces. The main result of the paper is
an infsup result for the discrete problem that is uniform with respect to the jump in the viscosity
coefficient. From this we derive a robust estimate for the discretization error. We prove that the
mass matrix with respect to some suitable scalar product yields a robust preconditioner for the Schur
complement. Results of numerical experiments are presented that illustrate this robustness property.
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1. Introduction. In this paper we treat the following Stokes problem on a
bounded connected Lipschitz domain 2 in d-dimensional Euclidean space (d = 2, 3):
Find a velocity u and a pressure p such that

—div (¢v(x)Vu) + Vp=1f in Q,

divu=0 in €,
u=0 on 09,
with a piecewise constant viscosity:
1 in Ql
V_{ e>0 in Qs. (14)

The subdomains Q;, Q5 are assumed to be Lipschitz domains such that Q; Ny =
and Q@ = Q; UQy. By I' we denote the interface between the subdomains: I' =
001 N ONs.

An important motivation for considering this type of Stokes equations comes from
two-phase incompressible flows. Often such problems are modeled by Navier-Stokes
equations with discontinuous density and viscosity coefficients. The effect of interface
tension is taken into account by using a special localized force term at the interface.
The latter approach is known as the continuum surface force (CSF) model, cf. [5]. A
well-known technique for capturing the unknown interface is based on the level set
method, cf. [23, 17, 13] and the references therein. If in such a setting one has highly
viscous flows then the Stokes equations with discontinuous viscosity are a reasonable
model problem.

For pure diffusion problems (Poisson equation) with a discontinuous diffusion coeffi-
cient one can find analyses of discretization methods [1, 2, 6, 14, 19], error estimators
[18, 4] and iterative solvers [8, 9, 20, 25] in the literature. For the Stokes problem
with discontinuous viscosity, however, we did not find any theoretical analysis. This
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paper presents an analysis of a finite element method and of a solver for the dis-
cretized Stokes interface problem together with some results for the weak formulation
of (1.1)-(1.3).

Consider a variational formulation of the equations (1.1)-(1.3). We use the nota-
tion V := H}(Q)? for the velocity space. For the pressure space some factorization
of L?(€2) is used. It appears that for this problem it is convenient to use:

M :={peL*Q) | / vip(x)de =0} . (1.5)
Q
The variational problem reads as follows: given f € V' find {u,p} € V x M such that

(vVu,Vv) — (divv,p) =(f,v) for veV, (1.6)
(divua,q) =0 for ge M . '

Here and in the remainder the L? scalar product and associated norm are denoted by

(,), |l - |I, respectively. The bilinear form (vV-,V-) defines a scalar product on V.
We use the norm induced by this scalar product:
[lullv := (¥Vu, Vu)% for ueV (1.7)

On M, apart from the L? scalar product we will also use a weighted L? scalar product:
(P, @)m = / v ipgde=(v'p,q)  for p.ge M, (1.8)
Q

and ||p||ar = (p,p)I%VI. In the analysis we use the v-dependent norm (|- [|3, 4| - ||§V[)%
on the product space V x M. In section 2 we prove a continuity and an infsup result
that are uniform with respect to the parameter €. Using standard arguments this
then yields uniform well-posedness of the continuous Stokes problem.

In section 3 we consider the discrete variational problem in a pair of finite element
spaces (M, C M, V;, C V) that are assumed to be LBB stable. As a main result
of this paper we present a discrete infsup result that is uniform with respect to the
parameters h (mesh size) and €. This result is used to derive a (sharp) uniform bound
for the discretization error.

In section 4 we prove that the mass-matrix with respect to the scalar product
(1.5) in the pressure subspace M}, is spectrally equivalent to the Schur complement
uniform in the parameters h and €. In combination with known results on block-
preconditioning and on multigrid this then implies optimality results for certain it-
erative methods. For the Uzawa method and a preconditioned MINRES method we
present results of numerical experiments in section 5. In section 6 instead of M we
use the more standard space L3(€2) for the pressure and we present (without proofs)
infsup results and discretization error bounds for this case. These results show that
for a theoretical analysis the space M is more natural than L3(2).

2. The continuous problem. In this section we analyze the variational prob-
lem (1.6). We introduce the piecewise constant function

_ |Ql |_1 on Ql
—{ e[ on Q. (2.1)
and the one-dimensional subspace My := span{p} of M. We consider an (-,-)-

orthogonal decomposition M = My & Mg-. For p € M we use the notation
p=po+py . po€ Mo, py € My (2.2)
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One easily verifies that
Mg ={pe M| pda:z/pdx:()}
Ql Q2

By definition we have ellipticity and continuity of the bilinear form (¥V-,V-) in the
space (V, |- |lv) : (#Vu,Vu) = ||[ul|3,. Continuity of the bilinear form (div-,-) is
shown in the following lemma:

LEMMA 2.1. The inequality

|(divu,p)| < Ve|ullvllplla

holds for allu eV, pe M.
Proof. This result immediately follows from the Cauchy inequality and the esti-
mate ||vzdivul| < Vd||luv forue V. O

In the next theorem we prove a uniform (w.r.t. v) infsup property corresponding
to the problem (1.6). It generalizes the well-known Necas inequality:

div u,
(@l < 1pll_t = sup EEEP) e ps (1) =0, (2.3)
ue

v [[Vu]

with ¢(2) > 0. We will need an equivalent form of (2.3): for any p € Ly such that (p,1) =
0 their exists u € V such that

Ipll* = (diva,p) and c(Q)[|Vull < [|p]- (2.4)
THEOREM 2.2. There exists a constant C' > 0 independent of v such that

(divu,p)

sup > Clipllye for all pe M

uev ||11HV

Proof. Fix an arbitrary p € M. We first consider the component pg- from the
decomposition p = pg + pg- in (2.2). Since pglo, € L?() and (pg,1)q, = 0 for
k = 1,2, we can apply the Necas inequality in the form (2.4) in each subdomain.
Thus there exists a function u; € Hg(Q1)? such that the following relations hold with
a constant ¢({21) > 0:

lp5 1%, = (divus,py)e, and ()| Vuille, < |pg e, (2:5)

Similarly, using a scaling argument, it follows that there exists uz € H}(€2)? such
that

1 . 1 1
le™=pg II%, = (divuz, pg)a,,  c(Q2)e* Vuzla, < lle™2py [la., (2.6)

with ¢(Q2) > 0. Extending u; and us by zero on the whole domain 2 and taking a
sum of (2.5) and (2.6) we get

Ipa 3 = (divi,pg) and cifaflv <[pylla, 0i=u +us (2.7)

with ¢; = min{c(Q1), ¢(Q2)}.
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For the component py we define pgp := v~! py. Note that (pg,1) = (po,1)ar = 0
and thus we can use the Necas inequality in Q. Hence there exists @ € H}(2)¢ such
that

1ol = (diva,po) and c(Q)[[Val < ol (2.8)
Due to the definition of My we obtain
Ipoll3s = Cle, DlBol* and  (diva,po) = Ce, Q)(div u, po)

with C(e, Q) = S22l Note that

=TTz
C(e, Q) > é(Q) max{l,e}, ¢&(f2):=min {% , %} (2.9)
Thus this and from (2.8) we deduce
Ipoll3r = (diva, po) and ez max{1,Ve}|Vall < [[pofln, (2.10)

with ¢z = ¢(Q) &(€2)? a constant independent of . We also have:

(diva,po) =0, |lvzdival < Vd|al|v,
[allv < max{1, ve}|Val < 5 {polla

Using this and the results in (2.7) and (2.10) we get for arbitrary « > 0

(div (o + 1), p) = allpg |13, + l[poll3, + (diva, py)

> allpy 13 + Ipollds — e5 ' Valpollalpg | a
1 . 1 d
> 5lpli; it 0425(14_%):: o

Thus if we take u = apu + u we get
Ipl3, < 2(divu,p) and ully < 2(agllal, + 8l < clpllis

with a constant ¢ independent of v. 0O

It follows that we have ellipticity of the bilinear form (vV-, V:), continuity of the
bilinear forms (v¥V-,V-) and (div-,-), and the infsup property in the norms || - ||v
and || - [|a with constants that are independent of v. Thus we have uniform (w.r.t.
v) well-posedness of the continuous variational Stokes problem (1.6) in these norms.
Using standard arguments (cf. [16, 10]) it can be shown that the problem (1.6) has a
unique solution and that the a priori estimate

1
(lully + IplI3) % < cllf[lv (2.11)

holds with a constant ¢ independent of f and of v.
REMARK 1. The dual norm ||f||y/ in (2.11) can replaced by a more trackable
norm of f. For this we need the Poincare type inequality

[v3v| < Cpllv]v, forall veV. (2.12)
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The optimal constant Cp in (2.12) is uniformly bounded w.r.t. v if one of the following
conditions is satisfied:

meas(0Q; NON) >0 for k=1,2 (2.13)
meas(0Q; NON) >0 and e <C (2.14)

The fact that the condition (2.13) is sufficient for uniform boundedness of Cp follows
from lemma 1 and (the proof of) lemma 7 in [19]. The fact that the condition (2.14)
is sufficient for uniform boundedness of C'p is proved with the following argument.
Due to (2.14) u vanishes on a part of d€2; with nonzero measure, hence

lulla, < c¢[Vullg,. (2.15)
holds. Therefore
[ulrll = llulae, | < ¢[[Vullq, . (2.16)
In the subdomain 25 we have
ellullf, < ce(IVullg, + lluloe, |?) = ce(IVullg, + [lulr]?). (2.17)

Inequalities (2.15), (2.16), and (2.17) give the inequality (2.12) with a constant C
independent of € and hence independent of v.

Assume now that f € Ly(€2)% and that one of conditions (2.13),(2.14) holds. Then
the Cauchy inequality and (2.12) immediately yield the a-priori estimate

1 _1
([l + IR 2 < cCpllv™2f], (2.18)

with ¢Cp independent of f and of v.

3. Finite element discretization. In this section we consider the discretiza-
tion of the variational Stokes problem using a family of pairs of conforming finite
element spaces. For this we assume a family of triangulations {7} in the sense of
[11, 12]. An important assumption for our analysis is that each triangulation 7}, is
conforming w.r.t. the two subdomains 1, 25 in the following sense:

3T T VT TeTVy =0, i=12 (3.1)

This assumption is easily fulfilled if £, and 5 are polyhedral subdomains.

REMARK 2. In computational fluid dynamics for two-phase flow problems it is
(more) realistic to assume that I' = 90y N 0y is smooth. Then the assumption
(3.1) in general does not hold. However, in such applications it is common practice to
approximate I' by a polyhedral discrete interface I'y,. In such a setting the assumption
(3.1) may still make sense. As far as we know no rigorous analysis is available which for
the (Navier)-Stokes equations shows the effect of approximating the smooth interface
T’ by a piecewise smooth interface I'y,. A theoretical analysis of this effect for a Poisson
interface problem can be found in [14]. The results in [14], however, are not robust
with respect to the jump in the diffusion coeflicient.

We assume a pair of finite element spaces Vi, C V and Q, C LE(Q) = {p €
L?(Q) | (p,1) = 0} that is LBB stable with a constant 3 independent of h:

di
inf sup 7( VVh, gn)

>(3>0. 3.2
QhEthhGVh vahHth” ( )
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Note that due to the different normalization in the space M (namely (p, 1)y = 0) we
in general have Q, € M. To maintain conformity we use the space

My ={pn=pn+al| p, €Qn, «o€R suchthat (pp,1)ps =0 }.

Note that M} C M and that functions in M}, and in @} only differ by a constant.
For the analysis in this section it is convenient (but not necessary) to introduce
the bilinear form a: (V x M) x (V x M) - R

a‘(uvp; v, Q) = (Vvua VV) - (diVV,p) + (le u, Q) (33)
an formulate the discrete problem as follows: find {up,pr} € Vi x M}, such that
a(up, pn; Ve, qn) = (f,vy) for all {vp,qn} € Vi x M}, . (3.4)

In this section we will analyze continuity (theorem 3.4) and discrete stability (theo-
rem 3.5) of the bilinear form a(-,-). The estimates are uniform with respect to the
mesh size parameter h and the diffusion coefficient v. As a corollary we then obtain
a uniform discretization error bound.

In the proof of the discrete infsup condition below we will use a decomposition
which is similar, but not identical to the one from the previous section. Let p;, € M,
be the M-orthogonal projection of p on My,

(P —Dh,qn)m =0 forall ¢, € My,

and define the one-dimensional subspace Mg p, := span(pp) of M. This induces an
(-,+) ar-orthogonal decomposition of M (and also of Mp): M = My, & Mo{-h, and for
p € M we use the notation

P = Po,h + Dips po.n € Mo, Py € Mg, (3.5)

We will need the following elementary result
LEMMA 3.1. For all pp, = po,n —|—pé‘}h € My, we have

(p(J)_,hal)Qk =0 for k=1,2

Proof. First note that by definition (p&h,ﬁh)M = 0. Using (pé-’h,ﬁh)M = pé:h,ﬁ)M
we then get

1 1
0=— g Da, — =— Pon Da, 3.6
|Ql| (pO,h )Q |Q2| (pO,h )Q ( )

Since pé:h € M we have (pé:h, 1)am = 0 and thus

(p(J)_,ha 1)91 + Eil(p(J)_,ha 1)92 =0 (37)

Combination of (3.6) and (3.7) proves the lemma. 0O

In the analysis below we use the quantity

1P — prllns
p o= A2~ Phllag (3.8)
[121] a1
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which measures the error made by approximating p in the finite element pressure
space. Note that pp = 0 if M}, contains piecewise constant finite elements. In general
we have p;, = O(h?), where h is the maximal diameter of the elements in 7;, that
have a nonempty intersection with I". Note that pp < 1 and pp < ch? with a v-
independent constant c. For the analysis of the discrete infsup property we need the
following result:

LEMMA 3.2. For every po,n € Mo, there exist po € Mo such that

Hpo,h — pollar = wallpollar (3.9)

Ipo,nllar = /1 = pj, Ipollae (3.10)

Proof. For pgp € My, we have pgp = ap, with € R. We set pyg = ap. Since
Dr, is the M-orthogonal projection of p on My p, po,n is the M-orthogonal projection
of pg on My j,. This choice of py implies (3.9) by definition of y5,. The result in (3.10)
follows from

lpoll3r = llpo.n = pollir + llpo.allas = s llpollas + llpo.nllas

O

We need an additional assumption on Vj. Consider p = v~'p with p defined in
(2.1). p has zero mean: (p,1) = 0. We assume that Vj, is such that there is a
constant 3. > 0 independent of h such that

(diVVh,ﬁ) A
sup ~———— > Bc[p] . (3.11)
vhEV) ||VV}L||

REMARK 3. Assumption (3.11) is rather weak. We briefly discuss two cases in
which this assumption is satisfied. Let hg be the mesh size parameter corresponding
to the coarsest triangulation. Then (3.11) trivially holds for V}, with a constant
BC = Bc(ho). If the family of spaces {Vp, }h<n, is nested then (3.11) with BC = Bc(ho)
holds for any V},. The second case is when M, n contains piecewise constant elements.
Then (3.11) immediately follows from (3.2).

We now prove a discrete infsup stability result, which is a main result of this pa-
per:

THEOREM 3.3. There exist constants C; > 0,Co > 0 independent of v and h
such that

if pn <Cp  then (3.12)
Qi
M > Collprllave for all pp, € My (3.13)
up€Vy ”uhHV

Proof. The proof is based on similar arguments as used in the proof of theorem
2.2. All the constants that appear in the proof are independent of v and of h.
Take an arbitrary p;, € Mp. We first consider the component p&h from the decom-
position pn, = po,n —I—péjh in (3.5). From lemma 3.1 it follows that (pé:h, 1)q, =0 for
k = 1,2 and thus we can use the LBB property (3.2) in each subdomain. Hence there
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exists a function u; € Vy with u; = 0 on Q9 such that the following relations hold
with a constant ¢; > 0:

I all, = (divur, pop)e, and e[ Vaille, < [lpg ey (3.14)

Similarly, using a scaling argument, it follows that there exists ug € Vj, with ug =
0 on €7 such that

1 . 1 _1

e 2pynlld, = (divug, pyy)e, and clle? Vuslla, < e 2pglla, (3.15)

with a constant ¢y > 0. Taking a sum of (3.14) and (3.15) we get for @y, := u; + ua:
Iponll3s = (divan,p) and  éllanlv < [|poallar, (3.16)

with ¢ := min{¢1,c2 }. We now consider the component pg . Take pg € My as in
lemma 3.2. Then we have

lpo,n — pollar = pnllpollar,  llponllar = /1 — 2 llpollas (3.17)

For pg := v~ 1py we get (Po, 1) = (po, 1) s = 0. From assumption (3.11) it follows that
there exists uy, € V}, such that

70]l* = (div@n, o) and B ||V < 5ol
Using the same arguments as in the proof of theorem 2.2 one can show that
Ipoll3r = (divan, po) and [[anllv < 5 [[pollw (3.18)

with ¢3 = 8. &(€)2 and &(2) the constant from (2.9). Also note that (div G, po) = 0.
Using this and the results in (3.16), (3.18) we obtain for arbitrary o > 0:

(div (atip + p), pr) = a(div s, po + (po,n — Po) —l—péh)
+ (div an, po + (po,n — o) + Pyp)
= a|lpgpllas + o (div ag, pon — po)

+ llpoll3s + (div @, (po,n — po) +p&h)

We assume that p7 < 3. From (3.17) we then get

Ipo,ullRs < llpollis < 2 llponll3s
and using |[v2div vy | < Vd|vh||v for vi, € V) we obtain

(div (iiy + ), ) > @ lIpgalir + I1po.nllas — aValltn v Ipo.n — polla
— Vd||au|lv (IIpo.n — pollar + 1p3nllar)
> allpgpllar + llponllir — av2d e pnllpg sl vllpo,nllar
— ¢5V2d|lpo.nl s (V20 [po.nllar + Ilpgsllar)
= a|lpoallas + (1= 25"V ) [po.nll3s
—V2d(a¢™ i + ¢5 ) lpo.nllarlpg sl
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Take pp < 4% then 1 — 2c5 YWy, > % and we obtain, using the Cauchy inequality

. - _ e _ 1
(div (@t + n), pr) > (= 2d(ac¢™ i+ ¢37)*) [Ipgiall s + 7lponllis

We now take
1

1 - -1
ﬂhﬁa—oa ao::1+2d(c 1""33 )?

and then for uy := aguy, + 1, we obtain

. 1
(divup, pp) > 1 lpnll3e
a3y < 2(agllun |3 + 1aslR) < Clipallis

with a constant C' independent of h and v.

Hence for C1 = min { %, T 0%0 } we have the desired result. 0

Note that for h sufficiently small (independent of v) the condition up < Cj in
(3.12) is fulfilled.

We now use standard arguments to derive continuity and stability results for the
bilinear form a(-,-). For completeness we also present the proofs. We introduce the
product norm

1
llw.plll = ([l + lIplI3)* {w.p} eV xM

From (vVu,Vu) = ||u||?, and the result in lemma 2.1 we immediately obtain the
following continuity result:
THEOREM 3.4. There exists a constant C' independent of v such that

a(u, p;v,q) < Cllw, pl| {[[v; 4l

for all {u,p}, {v,q} € Vx M.
A discrete infsup result is presented in the next theorem:

THEOREM 3.5. Assume that the condition (3.12) is satisfied. There exists a
constant ¢ > 0 independent of h and of v such that

a(Wn, Pr; Vi, gn)
sup —- 7 e

> cllun,pulll ¥V {un,pn} € Vi x My,
vmanyeVax i, Vi, anll

Proof. Take {up,pn} € Vi, x My, From the infsup result in theorem 3.3 it follows
that there exists z, € Vy, such that |zp|v = ||pallm and —(divzn, pr) > cllpnll3,
with ¢ > 0. Now take v;, := uyp, + czn, qn := pr. We then get

a(ufnph;uhaph) = ||uhH%/7

c 1
a(un, pr; 24, 0) > =|lpallis — Z—CHuhH%w

We multiply the second inequality by ¢ and add it to the first one. This gives

1 2
a(up, pp;ap, + czp, pp) > §Huh|\% + 5th|\%4 > ey |lun, palll* (3.19)
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with ¢; = 2 min{1,¢?}. Now note

2
ve, pulll” < 2(l[unlR + llznl3) + [lpall3,

2 2 2 2 2 (320)
=2lunlly + 2+ Dlipallar < 2(c” + Dllun, pall

Combination of (3.19) and (3.20) completes the proof. O

As for the continuous problem we get as a direct corollary that the discrete prob-
lem (3.4) has a unique solution {up,py} and the inequality

llar, palll < <= ifllv,

holds, with the constant ¢ from theorem 3.5. Moreover, if f € Ly(2)4, then using the
Cauchy inequality and the Poincare inequality (2.12) we obtain the a-priori estimate:

Ilup, pall| < ¢t Cpllv21]]. (3.21)

We refer to remark 1 for a discussion of the dependence of the Poincare “constant”
on v.

Using the continuity result in theorem 3.4 and the infsup result in theorem 3.5
we can prove a discretization error bound using standard arguments.

THEOREM 3.6. Let {u,p} be the solution of the continuous problem (1.6) and
{up,pr} be the solution of the discrete problem (3.4). Assume that the condition
(3.12) is satisfied. There exists a constant C independent of h and of v such that the
following holds:

u—u — <C i i u-— — . 3.22
Il h P — palll < vgg\f,lhq}fléljvr}h|\| Vi, D — qnll| (3.22)

Proof. For arbitrary vy € Vy,, qn € M}, define e := u— vy, ey =up — vy, g :=
D — Gn, gn := Pr — qn- The Galerkin orthogonality property yields

a(en, gn; zn,mn) = ale, g;zn,mn)  for all {zp,rp} € Vi x My, .

Using this in combination with the continuity and infsup results we obtain, for suitable
{Zh,T‘h} € Vy x Mp:

len, gnlll < c’la(eh’gh;zh’rh) S} a(e, g;zn, Th)
lzn rall llzn rall
< c'Cle, gl

Now combine this with the triangle inequality |[|[u—un, p —prll| < |llen, gnll| + |lle, gll|-
d

Based on the result in theorem 3.6 and using approximation properties of the finite
element spaces one can derive further bounds for the discretization error. For such
an analysis one needs regularity results for the continuous Stokes interface problem.
As far as we know, this regularity issue is largely unsolved.
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4. Preconditioner for the Schur complement. In this section we analyze
convergence properties of iterative solvers for the discretized problem. For this we
first introduce the matrix-vector formulation of the discrete problem.

In practice the discrete space M}, for the pressure is constructed by taking a standard
finite element space, which we denote by M ;Lr (for example, continuous piecewise linear
functions), and then adding an orthogonality condition:

My, ={pne M, | (pn,1)m =0}

Note that dim(Mj) = dim(M,") — 1. Let n := dim(Vy), m := dim(M,"). We assume
standard (nodal) bases in Vj, and M, and corresponding isomorphisms

Jv i R = Vi, Jy o R™ — ME .

Let the stiffness matrices A € R"*", B € R™*" and the mass matrix M, € Rm*m
be given by

(Ax,y) = WV Jyx,VJyy) forall x,y € R" |
(Bx,y) = (divJyx, Jyy) forall xeR" yeR™, (4.1)
<MVX, y) = (Jux, Juy)m for all x;y € R™ .

Here (-,-) denotes the standard Euclidean scalar product. We emphasize that the
matrix M,, is the mass matrix with respect to the (weighted L?) scalar product (-, -)ars
and thus may differ very much from the usual mass matrix with respect to the L?

scalar product (-,-). After finite element discretization we have a linear system of the

form
A BT (x f
(6 %) ()= 2
with f such that (f,y) = (f, Jyy) for all y € R™. The Schur complement is denoted
by S := BA7!B”. Note that both S and the matrix in (4.2) are singular and have

a one-dimensional kernel. Define the constant vector e := J;,'1 = (1,...,1)T € R™.
Then we have ker(S) = span{e}. Note that

(Juy, D =0 & (Juy, Jue)y =0 < (Myy,e) =0 < (y,Mye)=0 (4.3
Hence, with
(Mye)t :={y e R™ | (y,M,e) =0} (4.4)

we have My, = {Jyy | v € (Mye)* } and we get the following matrix-vector repre-
sentation of the discrete problem (3.4):

Find x € R", y € (Mye)™ such that (4.2) holds (4.5)

In preconditioned MINRES or (inexact) Uzawa type of iterative solvers for solving
this problem one needs preconditioners Q4 of A and Qg of S. It is known that if for
Q4 we take a symmetric multigrid V-cycle then we have (cf. [8, 9, 25])

(1-04)Qa <A <Qu4,
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with a constant 04 < 1 independent qf h and of v.
Below we show that the mass matrix M, is an appropriate preconditioner for S. From
lemma 2.1 and theorem 3.3 we obtain

div up,
Collpnllar < sup TVIRPA) o Gy for p € M, (4.6)

up€Vy HuhHV

with Cy > 0 independent of h and of v, provided the condition p; < Cp in (3.12)
is fulfilled. From the definition of the Schur complement it follows that for arbitrary
y € R™ we have

(diV up, JMy)2

(Sy,y) = sup (4.7)

wevy  ully

As a direct consequence of (4.7) and (4.3) we get:
THEOREM 4.1. Assume that pup, < Cy in (3.12) holds. For all y € (M,e)* we
have

C3(Myy,y) < (Sy,y) < d(Myy,y)
with constant Cy from (4.6).

This theorem shows that the matrix 1\71; 1S has a uniformly bounded spectral con-
dition number on the subspace (M,e)= .

One further relevant issue is how to compute of 1\71; ly efficiently. The next lemma
shows that either the matrix M, can be replaced by a cheap diagonal preconditioner
or a good approximation of M;ly can be obtained efficiently by applying a precondi-
tioned CG method with a diagonal matrix as preconditioner .

LEMMA 4.2. Define the diagonal matriz M, by (M, ); = ZTzl(Mu)ij (diagonal
lumping). Then for all y € R™ we have

03 <MVYa Y> < <MVYa Y> < 04 <MVYa Y>

with constants Cs > 0 and Cy independent of v and h.

Proof. To show the result it is sufficient to estimate the eigenvalues of (M, |, )~ 'M,,|,
with the local mass matrices 1\7IV|T and MV|T on each element 7 of triangulation. On
every element v is constant and thus we can use the result from [24], which yields v
and h - independent bounds on each element. [

A further elementary observation is

M,e=M,e (4.8)

We briefly discuss two known iterative methods for solving the linear system in (4.2).
For these methods we will present numerical results in section 5.

A basic method for saddle point problems is the Uzawa method. Applying a block
Gaussian elimination step to the system (4.2) yields the equivalent system

o *s") 0) = (i)
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This system can be solved by block backward substitution, which yields the Uzawa
method:

1. Solve Az =f (4.9)
2. Solve Sy=Bz, ye (Me)t (4.10)
3. Solve Ax=z-Bly (4.11)

For the systems in steps 1. and 3. we apply a standard multigrid solver. For the
system Sy = Bz we apply a preconditioned CG method (PCG). In each matrix-
vector multiplication with S we solve the linear system with A using the multigrid
method. For the iterands y',y?,..., that are computed using the PCG method with
preconditioner denoted by M and with startvector y°, we have

yF—y0e span{MflseO, ceey (Mfls)keo}, eV i=y—y0.

And thus (y* — y% Me) = 0 for k > 1, ie, y* —y° € (Me)* for k > 1. If for the
preconditioner we take M € {M,, M, } then it follows, using (4.8), that

yPe (Mye)t for k>1, if y*e (Mye)* (4.12)

This means that for both preconditioners the iterands remain in the subspace (I\A/L,e)J-,
if the starting vector y° is in this subspace. Since the solution y is also sought in this
subspace (cf. 4.10)) this implies that the errors e¥ := y — y* remain in this subspace
if y9 € (M,e)*. Hence, only the spectral condition number of the preconditioned ma-
trix on this subspace is relevant. The results in theorem 4.1 and lemma 4.2 yield that
both M;; 'S and M} 'S have optimal (i.e., independent of h and v) spectral condition
numbers on this subspace.

In practice the Uzawa method is not very attractive because one has to solve the
A-systems accurately. In this paper we consider the Uzawa method to illustrate the
robustness of the multigrid solver and of the preconditioners for the Schur comple-
ment (cf. section 5). In practical applications variants of the Uzawa method that are
much more efficient are used (cf., for example, [3, 7, 15, 22, 26]). Here we consider a
preconditioned MINRES method. For this we consider a symmetric positive definite

preconditioner
~ Qa O ) A BT
K= ( 0 Qs for K:= B 0

Define the norm |w|; = (Kw,w)? for w € R™™. Given a starting vector w
with corresponding error €? := w* —w?, then in the preconditioned MINRES method
one computes the vector w* € w® + span{K~1Ke°, ..., (K7'K)"e?} which minimizes

0

the preconditioned residual |[K~'K(w* — w)||gz over this subspace. For an efficient
implementation of this method we refer to the literature.

If we take Qg € {1\7[,,, M, }, then again we have that the approximations (and errors)
of the pressure remain in the subspace (1\A/I,,e)L if the starting approximation y° is in
this subspace. From the literature (cf. [21, 22]) it is known that the convergence of
the preconditioned MINRES method is fast if we have good preconditoners Q4 of A
and Qg of S (on the subspace (M,e)1). In the numerical experiments in section 5 we
take a standard multigrid method for Q4 and Qg = M,,.
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5. Numerical experiments. In this section we present results of a few numeri-
cal experiments to illustrate the behaviour of the Uzawa and preconditioned MINRES
method applied to the Stokes interface problem. We consider a problem as in (1.1)-
(1.3) with

1

Q= (07 1)37 Qg = (07 5)3

For the discretization we start with a uniform tetrahedral grid with h = % and we
apply regular refinements to this starting triangulation. The resulting triangulations
satisfy the conformity condition (3.1). For the finite element discretization we used
the LBB stable pair of Hood-Taylor P, — Py, i.e. continuous piecewise quadratics for
the velocity and continuous piecewise linears for the pressure. We performed com-
putations for the cases h = 1/16, h = 1/32 and with varying € € (0,1]. Note that
for h = 1/32 we have approximately 7.5-10% velocity unknowns and 3.3-10% pressure
unknowns (n ~ 7.5-10°, m =~ 3.3:10*). We consider the linear system as in (4.2)
with solution (x,y) = 0. We take a fixed arbitrary starting vector (x°,y?), with
y0 € (M,)*.

To test the robustness of the Schur complement preconditioning and of the multi-
grid solver we first consider the Uzawa method (4.9)-(4.11). The linear systems of
the form Ax = r that occur in the steps 1,2 and 3 are all solved using a standard
multigrid V-cycle with one pre- and one post-smoothing iteration with a symmetric
Gauss-Seidel method. The starting vector is x” and the iteration is stopped when for
the result after k iterations, x*, the scaled residual satisfies

D~ (Ax? — )] ~10 .

= <10 D := diag(A 5.1

[D-1(Ax0 —1)|| — ’ iag(4) (5-1)
Here || - || denotes the standard Euclidean norm. The system with the Schur comple-

ment in (4.10) is solved using a PCG method with preconditioner M,. The systems
M,y = w are solved approximately using a PCG method with preconditioner M,, and
starting vector y° and accuracy

Vi (Bt
I, (gt =)y 52
M5 (50 = w)|

The PCG method for the Schur complement system Sy = c has starting vector y°
and is stopped when

M—l k _
|| " lil(syo C)H S 10—6 (53)
ML (Sy? — ¢

In table 5.1 we present results for different h and e values. Here #-MG denotes the
average number of multigrid iterations needed to satisfy (5.1), #-PCG-M the average
number of PCG iterations needed to satisfy (5.2) and #-PCG-S the average number
of PCG iterations needed to satisfy (5.3).

These results clearly show the robustness of the multigrid solver for the velocity
systems, of the preconditioner M, for S and of the preconditioner M, for M, with
respect to variation of A and of e. We now consider the effect of using the lumped mass
matrix M, instead of M, as a preconditioner for the Schur complement. In the PCG
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TABLE 5.1 R
Uzawa method, preconditioner M,

h 1/16 1/32
€ 1 1072 100* 10% 1 102 100* 10°°
#-MG 13 13 14 14 |14 14 14 14
#-PCG-M | 24 25 25 26 || 24 25 25 25
#PCG-S |22 29 31 34 |21 29 30 34

TABLE 5.2 B
Uzawa method, preconditioner M,

h 1/16 1/32
e 1 102 10% 100 1 102 10% 10°
#PCG-S |40 48 48 58 |39 50 52 59

method we use a stopping criterion as in (5.3). Note that in this PCG method the
preconditoner is now a diagonal matrix. In table 5.2 we present results for different
h and ¢ values. As expected, the lumped mass matrix M, is a robust preconditioner
for the Schur complement S. In the final experiment we consider the preconditioned
MINRES method. For the preconditioner Q4 we take one iteration of the multigrid
method described above and we take the lumped mass matrix M, as preconditioner
for the Schur complement. In table 5.3 we show the number of iterations k (denoted
by #-PMINRES), such that

B k 5 0
i (3 =0 (),
Yy K y K

(recall that the right handside is 0). Note that for h = 1/32 one needs less iterations

TABLE 5.3 B
MINRES with preconditioner M,

h 1/16 1/32
e 1 102 10% 100 1 102 10% 10°
#PMINRES | 62 68 98 157 | 50 58 85 116

than for h = 1/16.

6. Analysis in the space Hj(Q)? x LZ(Q2). Instead of the pressure space M
one may want to use the standard space

Q:=Lj(Q) ={pe L*(Q) | (n,1)=0} .

In this section we consider the variational formulation of the interface problem (1.1)-
(1.3) in the space V x Q. It turns out that the analysis then requires different
norms to obtain optimal estimates. These optimal estimates are v-independent for
the continuous problem. For the corresponding Galerkin discrete problem, however,
opposite to the results in section 3 we now observe a v-dependence in the estimates.
A numerical experiment shows that in a certain sense the results are still sharp. The
main ideas of the analysis are the same as in the sections 2 and 3. However, some
further technicalities, like a mesh-dependent norm (cf. (6.5)) in the pressure space,
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are needed. We decided to present only the main results of this analysis here. The
proofs (and some further related results) will be presented in a separate paper.

Consider the following variational problem: given f € V' find {u,p} € V x Q
such that

{ (vVu,Vv) — (divv,p) z(()f, v) for veVv, (6.1)

(divu, q) for g€ @ .

We introduce a decomposition of Q. Let p = v~!p with p from (2.1). Then (p,1) =0
and thus p € Q. Consider the one-dimensional subspace Qo := span{p} of @ and an
L2-orthogonal decomposition Q = Qg ® Q. For p € Q) we use the notation

p=po+py, Po€ Qo py € Qp (6.2)

One easily checks that

Qé = {pe Q | (pal)Ql = (p71)92 = O}a

hence, Q3 = M. For functions in Qf we use the M-norm from (1.8). On Q we
introduce the norm

1
lplle == (lpoll® + Py II7,) *-

On V we use the same norm as in (1.7). In these norms we have uniform continuity
and infsup results for the bilinear form (div-,-):

LEMMA 6.1. Assume that (2.13) or (2.14) holds. There ezists a constant C
independent of v such that

(diva,p)| < Cllullvlple forall ueV, peQ

THEOREM 6.2. There exists a constant C' > 0 independent of v such that

)
up (v 17)

= Clpllq  forall peQ.
uev  [[ullv

From these results it follows that we have uniform (w.r.t. v) well-posedness of the
continuous variational interface Stokes problem in the spaces V, Q with the norms
I Ilv and || - ||, respectively.

We now consider the Galerkin discretization in a pair V;, C V, @, C @ of LBB
stable finite element spaces. The discrete problem is as folows: Find {un,pp} €
V5, X @Qp, such that

a(uh,ph;vh,qh) = (f, Vh) for all {Vh,qh} S Vh X Qh . (63)
(a(-,-) as in (3.3)). Let Py € Qp, be the L2-orthogonal projection of § on Qy,
(D —Pn,qn) =0 forall gn € Qn

and define the one-dimensional subspace Qo := span(pp) of Qp. This induces an
L2-orthogonal decomposition of Q: @ = Qo.n ® Qg ,, and for any p € Q we write

P=Doh+DPon  Pon € Qon, Pop € Quip- (6.4)
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Related to this decomposition we introduce an h-dependent norm on @:

1
Iplon = (lponll® + Iposllis)® for pe@ (6.5)
We define

5l
H

)

which is very similar to the quantity pp, in (3.8). In particular, fip, = 0 if Q}, contains
piecewise constant finite elements. In general we have ji, = O(h2), where h is the
maximal diameter of the elements in 7, that have a nonempty intersection with I'.
We will assume i, < %

With respect to the norms ||-||v and ||-||g,, one can prove the following continuity
and discrete infsup results:

LEMMA 6.3. Assume that (2.13) or (2.14) holds. There exists a constant C
independent of h and v such that for all uw € V, pp € Qp the following inequalities
hold

~2
. Ky, 2
d < 2 _
(v pa)] < Clally (Ipnl + ot o)

|(divu, pr)| < Clullv + finl[Vul]) [pr]l Q.- (6.7)

N[=

(6.6)

THEOREM 6.4. There exists a constant C > 0 independent of h and v such that

divuh, h
sup M > Cllpnllon  for all pn € Qn
wev,, lunllv

Based on the continuity and infsup result one can derive, using standard argu-
ments as in section 3, a continuity and discrete infsup result for the bilinear form a(-, -)
in the product norm (|| - I3, + | - 13, ,)%. This then yields the following discretization
error bound.

THEOREM 6.5. Let {u,p} be the solution of the continuous problem (6.1) and
{up,pr} the solution of the discrete problem (6.3). Assume that (2.13) or (2.14) is
satisfied. The following holds:

[a— w3 + Ip = pllgyn <

<o mig (lu=vald + @IV —vi)[?) + min [p—al2,)
The righthand sides in the continuity results in lemma 6.3 contain terms depending
on ¢ and fip. This dependence resulted in sub-optimal (compared to the result in
theorem 3.6) error bound in theorem 6.5. It also results in a nonuniform estimate
for the preconditioned Schur complement for the corresponding discrete problem.
Theorem 6.4 and estimate (6.6) imply for any p, € Qn

2

(divup, pp) o 1
rlpnllon < sup Gvuno) ) 68)

< (lpnllpn +
S Tl (Pl

with ¢; > 0, ¢o independent of v and h. Let G the mass matrix of Qp, w.r.t. the scalar
product (pn, qn)o.n = (péjh, qéjh)M + (po,hs 90,1) and M the mass matrix of Qj w.r.t.
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the L? scalar product (-,-). Furthermore, the vector representation of py, is denoted
by p. i.e., Jup = pn. Note that Qn = { Jury | y € (Me)* } (recall: e = (1,...,1)7T).
From (6.8) one obtains the following result:

THEOREM 6.6. The spectral equivalences

G (Gy,y) < (Sy,y) < c3(1+ %)(Gy,w for all y € (Me)* (6.9)

A(Gy,y) < (Sy,y) < 3(Gy,y) for all y € (Me)* N (Mp)* (6.10)
hold with c1,c2 as in (6.8).

In contrast to theorem 4.1 the result in (6.9) is not robust w.r.t. €. A simple nu-
merical experiment shows that the upper bound in (6.9) is sharp. For this we consider
a 1D Stokes problem with Q = (0,1), Qs = (1, 2) and PyisoP; — P finite elements
on a uniform grid. In this case we have i ~ h. In table 6.1 we show the values of
(Sy,y)/(Gy,y) for y = p.

This shows that the analysis is sharp and that if we consider the space Q, C L3(Q)
instead of M}, C M (as in section 3) and use the norm || ||g,5 in Q) then the estimates
in general can not be uniform with respect to h and e.

Finally we note that the deterioration of the upper bound in (6.9) is not a serious prob-
lem, because it is caused by the one-dimensional subspace span(p) (cf. (6.10)). If we
apply a Krylov subspace solver then already after a few iterations this one-dimensional
subspace does not influence the effective spectral condition number anymore.

TABLE 6.1
Estimates for upper bound in (6.9).

h
€ /16 1/32  1/64
102 5.0 35 2.7

1074 | 3.1102 1.610% 8.110*
1076 | 3.110* 1.610* 7.910°
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