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Abstra
tIn this note we 
onsider dis
rete linear rea
tion-di�usion problems.For the dis
retization a standard 
onforming �nite element method isused. For the approximate solution of the resulting dis
rete problema multigrid method with a damped Ja
obi or symmetri
 Gauss-Seidelsmoother is applied. We analyze the 
onvergen
e of the multigrid V-and W-
y
le in the framework of the aproximation- and smoothingproperty. The multigrid method is shown to be robust in the sensethat the 
ontra
tion number 
an be bounded by a 
onstant smallerthan one whi
h does not depend on the mesh size or on the di�usion-rea
tion ratio.AMS Subje
t Classi�
ation: 65N22, 65N30, 65N55.Key Words: rea
tion-di�usion, multigrid1 Introdu
tionIn this paper we 
onsider the linear rea
tion-di�usion boundary-value prob-lem: Given 0 < " < 1 and fun
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�nd u su
h that ( �"� u+ d(x) u = f in 
;u = 0 on �
; (1)where 
 is a 
onvex polyhedral domain in RN , N = 2; 3. For the dis
retiza-tion of the variational formulation of this problem a standard �nite elementmethod is applied based on a quasi-uniform family of nested triangulations of
, with mesh size parameter denoted by h, and 
onforming �nite elements.In [7, 8℄ a 
onvergen
e analysis of this �nite element method applied to theproblem (1) is presented in whi
h lo
al and global error estimates are derivedand their possible dependen
e on the parameter " is studied. In general thesolution of (1) has exponential boundary layer behaviour and a dis
retizationmethod with polynomial �nite elements on a quasi-uniform family of parti-tions will result in large dis
retization errors in these boundary layers. Theanalyses in [7, 8℄, however, show that this dis
retization method is stable (for" # 0) and that the pollution e�e
ts are not severe in this problem: Outsidethe boundary layer error estimates whi
h are uniform w.r.t. " and of optimalorder (as a fun
tion of the mesh size parameter) are shown to hold. Hen
efor the numeri
al solution of (1) a dis
retization method based on a Galerkinte
hnique with standard �nite element spa
es 
an be useful in pra
ti
e.For the approximate solution of the resulting dis
rete problem we applya multigrid method with 
anoni
al intergrid transfer operators and dampedJa
obi or symmetri
 Gauss-Seidel smoothing. An interesting topi
 related tothe eÆ
ien
y of this multigrid solver is the dependen
e of its 
onvergen
e rateon the parameter ". In this paper we present a 
onvergen
e analysis whi
hshows that the multigrid method is robust in the sense that the 
ontra
tionnumber 
an be bounded by a 
onstant smaller than one whi
h does not de-pend on the mesh size parameter h or on ". Both the multigrid W-
y
le andmultigrid V-
y
le will be 
onsidered. The analysis will use the frameworkof the smoothing- and approximation property as introdu
ed by Ha
kbus
h(
f. [5, 6℄). For the proof of the approximation property we use regular-ity estimates and �nite element error bounds from [7, 8℄. The smoothingproperty will be proved using a standard te
hnique from [5℄. The smoothingproperty and approximation property that will be proved in this paper 
anbe 
ombined with results from [5, 6℄ for the 
onvergen
e of the multigrid W-or V-
y
le. The analysis shows that the deterioration of the approximationproperty for " # 0 (
aused by the boundary layer) is 
ompensated by an im-2



proved smoothing property. The 
ombined e�e
t is su
h that the multigridmethod 
an be shown to be robust.In the literature we did not �nd a theoreti
al analysis of the smoothingand approximation property whi
h shows the robustness of 
lassi
al multi-grid applied to rea
tion-di�usion problems. In the literature on subspa
ede
omposition (
f. [10, 11℄) we also did not �nd theoreti
al results on therobustness of 
lassi
al multigrid applied to (1). In [9℄ it is noted that theBPX-pre
onditioner [2℄ and the hierar
hi
al basis multigrid method [1℄ arenot robust for a �nite element dis
retization of the problem (1). In [9℄ ahierar
hi
al basis pre
onditioner is introdu
ed whi
h is shown to be robustfor the problem (1) dis
retized with linear �nite elements on uniform two-dimensional meshes. In [3℄ a multilevel method based on subspa
e splitting ispresented whi
h is robust for the problem (1). This method, however, is re-stri
ted to re
tangular domains and dis
retization methods of tensor produ
ttype.2 PreliminariesThroughout the paper we use the notation (�; �)0 and k � k0 for the s
alarprodu
t and norm in L2(
). The s
alar produ
ts and 
orresponding normsin the Sobolev spa
es Hk(
), k = 1; 2, are denoted by (�; �)k and k � kk, re-spe
tively. We also use the notation (ru;rv) = R
ru �rv for u; v 2 H1(
)and juj1 = (ru;ru) 12 for u 2 H10(
).We assume d 2 L1(
) with 0 < d0 � d(x) � d1 a.e. in 
 and f 2 L2(
).
 is assumed to be a 
onvex polyhedral domain in RN , N = 2; 3. Thevariational formulation of (1) reads: Find u 2 U := H10 (
) su
h thata(u; v) = (f; v)0 for all v 2 U; (2)with the symmetri
 bilinear forma(u; v) = "(ru;rv) + (d u; v)0 for u; v 2 U:Note that a(�; �) is 
ontinuous and ellipti
 on U. Thus the problem (2)has a unique solution. Using standard regularity theory the following a prioriestimates 
an be proved. 3



Lemma 1 Let u be the solution to (2). Then u 2 H2(
) andkuk0 � 
kfk0 ; (3)kuk1 � 
p"kfk0 ; (4)kuk2 � 
"kfk0 ; (5)with 
onstants 
 that are independent of " and f .Proof. From (2) we obtain using Young's inequality" juj21 + d0kuk20 � " juj21 + (d u; u)0 = a(u; u) = (f; u)0 � 12d0kfk20 + d02 kuk20:(6)Now (3) follows. The result (6) in 
ombination with the Friedri
hs inequalitykuk1 � 
juj1 yields (4). Set ~f = 1" (f � u); then u 
learly solves the weakformulation of the Poisson problem: (ru;rv) = ( ~f; v)0 for all v 2 U . Sin
e~f 2 L2(
) and the domain 
 is 
onvex it follows from regularity results forthe Poisson problem (e.g. Theorem 4.3.1.4 and x8.2 in [4℄) that u 2 H2(
)and kuk2 � 
k ~fk0 � 
1"(kfk0 + kuk0): (7)Hen
e (5) follows from (3) and (7).For the dis
retization of (2) we introdu
e a quasi-uniform family of nestedtriangulations of 
 (triangles in 2D, tetrahedra in 3D) based on global regularre�nement . We use 
onforming �nite elements with pie
ewise polynomialfun
tions. This results in a hierar
hy of nested �nite element spa
esU0 � U1 � � � � � Uk � � � � � U :The 
orresponding mesh size parameter is denoted by hk and satis�es
02�k � hk=h0 � 
12�kwith positive 
onstants 
0 and 
1 independent of k.The dis
rete problem on level k is given by: Find uk 2 Uk su
h thata(uk; vk) = (f; vk)0 for all vk 2 Uk: (8)4



The next lemma provides error bounds for the �nite element solution. ForN = 2 the result was proved in [7℄. However, the arguments used in [7℄ arealso appli
able for the 
ase N = 3. For 
ompleteness we present a proof herewhi
h follows the arguments in [7, 8℄.Lemma 2 Let u be the solution of (2) and uk be the 
orresponding �nitesolution of (8). Then ku� ukk0 � 
min�1; h2k" � kfk0 (9)holds with a 
onstant 
 independent of f; "; k.Proof. In the proof we use 
onstants 
 whi
h are independent of f; "; k.De�ne ek = u� uk. Noting that a(ek; vk) = 0 for all vk 2 Uk, one obtainsd0kekk20 � a(ek; ek) = a(u; ek) = (f; ek)0 � kfk0kekk0and thus kekk0 � d�10 kfk0: (10)For arbitrary vk 2 Uk we have"jekj21 + d0kekk20 � a(ek; ek) = a(u� vk; ek)� "ju� vkj1jekj1 + d1ku� vkk0kekk0� ("ju� vkj21 + d21d0ku� vkk20) 12 ("jekj21 + d0kekk20) 12For vk we take the (�; �)1-proje
tion of u on Uk for whi
h the standard approx-imation results ku � vkk0 � 
 h2kkuk2 and ju � vkj1 � 
 hkkuk2 hold. Usingthis and the regularity results of Lemma 1 we get"jekj21 + d0kekk20 � 
h2k" (1 + h2k" )kfk20: (11)Now we use Nits
he's duality argument. Let w 2 U be su
h that a(w; v) =(ek; v)0 for all v 2 U. From Lemma 1 we have w 2 H2(
) and kwk2 �
"kekk0. Let wk be the (�; �)1-proje
tion of w on Uk. Then the following holds:kekk20 = a(w; ek) = a(w � wk; ek) � "jw � wkj1jekj1 + d1kw � wkk0kekk0� 
 (" hkkwk2jekj1 + d1h2kkwk2kekk0) � 
(hkjekj1 + d1h2k" kekk0)kekk0:5



Thus using (10) and (11), we get for h2k" � 1kekk0 � 
(hkjekj1 + h2k" kfk0)� 
 hkhk" �1 + h2k" � 12kfk0 + 
h2k" kfk0 � 
h2k" kfk0: (12)Combination of (10) and (12) proves the bound in (9).3 Multigrid 
onvergen
e analysisFor the approximate solution of the dis
rete problem we apply a multigridmethod. The method and its 
onvergen
e analysis will be presented in amatrix-ve
tor form as in Ha
kbush [5℄. To this end 
onsider the standardnodal basis in Uk denoted by f�ig1�i�nk and the isomorphism:Pk : Xk := Rnk ! Uk; Pkx = nkXi=1 xi�i:On Xk we use a s
aled Eu
lidean s
alar produ
t: hx; yik = hNk Pnki=1 xiyi and
orresponding norm denoted by k � k. The adjoint P �k : Uk ! Xk satis�es(Pkx; v)0 = hx; P �k vik for all x 2 Xk; v 2 Uk. Note that the following normequivalen
e holdsC�1kxk � kPkxk0 � Ckxk for all x 2 Xk; (13)with a 
onstant C independent of k. The sti�ness matrix Ak on level k isde�ned by hAkx; yik = a(Pkx; Pky) for all x; y 2 Xk: (14)For the prolongation and restri
tion in the multigrid algorithm we use the
anoni
al 
hoi
e:pk : Xk�1 ! Xk; pk = P�1k Pk�1rk : Xk ! Xk�1; rk = P �k�1(P �k )�1 = � hkhk�1�NpTk : (15)Finally, a smoother is introdu
ed. Let Wk : Xk ! Xk be a nonsingularmatrix. We 
onsider a smoother of the formxnew = xold �W�1k (Akxold � b); for xold; b 2 Xk6



with 
orresponding iteration matrix denoted bySk = I �W�1k Ak: (16)With the 
omponents de�ned above a standard multigrid algorithm with �1pre- and �2 post-smoothing iterations 
an be formulated (
f. [6℄) with aniteration matrix that satis�es the re
ursionM0(�1; �2) = 0;Mk(�1; �2) = S�2k �I � pk(I �M
k�1)A�1k�1rkAk�S�1k ; k = 1; 2; : : : :The 
hoi
es 
 = 1 and 
 = 2 
orrespond to the V- and W-
y
le, respe
tively.For the analysis of this multigrid method we use the framework of [5, 6℄based on the approximation and smoothing property. Below we derive theseproperties for the rea
tion-di�usion problem. We start with a lemma inwhi
h a few inequalities are derived that will be used in the analysis of theapproximation and smoothing property.Lemma 3 Let Ak be the sti�ness matrix from (14) and Dk := diag(Ak).The inequalities 
1( "h2k + 1) � kAkk � 
2( "h2k + 1) (17)kD�1k k � 
3kAkk (18)hold with 
onstants 
i > 0 independent of " and k.Proof. Let ei be the ith basis ve
tor in Rnk . Note that(Ak)ii = < Akei; ei >k< ei; ei >k = h�Nk a(�i; �i)� h�Nk ("j�ij21 + d0k�ik20) � 
1( "h2k + 1) (19)with a 
onstant 
1 independent of " and k. The left inequality in (17) followsfrom (19) and kAkk � (Ak)ii. Using an inverse inequality we obtain, with
onstants 
 and 
2 independent of " and k,< Akx; x >k = a(Pkx; Pkx) � "jPkxj21 + d1kPkxk20� 
( "h2k + 1)kPkxk20 � 
2( "h2k + 1)kxk2 ;7



and thus the right inequality in (17) holds. Using (19) and (17) it followsthat kD�1k k = (mini (Ak)ii)�1 � 
�11 ( "h2k + 1)�1 � 
2
1kAkk�1holds, whi
h proves the result in (18).Theorem 1 [Approximation property.℄ Let Ak be the sti�ness matrix from(14) and pk; rk the prolongation and restri
tion as in (15). Then the followingapproximation property holds with a 
onstant 
 independent of " and k:kA�1k � pkA�1k�1rkk � 
 min�1; h2k" � � 
kAkk�1Proof. Take yk 2 Xk. The 
onstants 
 that appear in the proof do notdepend on yk; k or ". Let w 2 U, wk 2 Uk, and wk�1 2 Uk�1 be su
h thata(w; v) = ((P �k )�1yk; v)0 for all v 2 U;a(wk; v) = ((P �k )�1yk; v)0 for all v 2 Uk;a(wk�1; v) = ((P �k )�1yk; v)0 for all v 2 Uk�1:Putting f = (P �k )�1yk 2 L2(
) in Lemma 2, we obtainkw � wlk0 � 
min�1; h2l" � k(P �k )�1ykk0 for l 2 fk � 1; kg:Due to hk�1 � 
hk this yieldskwk � wk�1k0 � 
min�1; h2k" � k(P �k )�1ykk0:From (14) and (15) it follows that wk = PkA�1k yk and wk�1 = Pk�1A�1k�1rkyk.Thus, using (13), we getk(A�1k � pkA�1k�1rk)ykk � 
kPkA�1k yk � Pk�1A�1k�1rkykk0 = 
kwk � wk�1k0� 
 min�1; h2k" � k(P �k )�1ykk0 � 
 min�1; h2k" � kykk ;whi
h proves the �rst inequality. The se
ond inequality follows from Lemma 3and minf1; �g � 2(1 + 1�)�1 for � > 0.8



For the smoother we 
onsider two 
ases, namely a damped Ja
obi methodand the symmetri
 Gauss-Seidel method. If we de
ompose Ak as Ak =Dk � Lk � LTk with Dk diagonal and Lk stri
tly lower triangular then thesetwo smoothing iterations have 
orresponding iteration matri
es as in (16)with Wk = !�1Dk; ! 2 (0; 1); and Wk = (Dk � Lk)D�1k (Dk � LTk ):From Lemma 3 we obtain kD�1k Akk � kD�1k kkAkk � 
3. In the dampedJa
obi method we take a �xed ! � 1 with 0 < ! � 1
3 , independent of " andk, su
h that �(!D�1k Ak) � 1 holds. Note that for the symmetri
 Gauss-Seidelmethod we haveWk = (Dk � Lk)D�1k (Dk � LTk ) = Ak + LkD�1k LTk � Ak :Hen
e, both for the damped Ja
obi method and the symmetri
 Gauss-Seidelmethod we have �(W�1k Ak) � (0; 1℄: (20)Lemma 4 Both for the damped Ja
obi method and the symmetri
 Gauss-Seidel method the inequality kWkk � 
kAkkholds with a 
onstant 
 independent of " and k.Proof. For the damped Ja
obi method this result is a dire
t 
onsequen
eof kDkk � kAkk. For the symmetri
 Gauss-Seidel method we note that, dueto the fa
t that in every row of the sti�ness matrix the number of nonzeroentries 
an be bounded by a 
onstant independent of k,kLkk2 � kLkk1kLkk1 =  maxj nXi=j+1 j(Ak)ijj! maxi i�1Xj=1 j(Ak)ijj!� 
maxi;j (Ak)2ij � 
kAkk2 ;Hen
e, using Lemma 3, we obtainkWkk = kAk + LkD�1k LTk k � kAkk+ kLkk2kD�1k k � 
kAkk :9



Corollary 1 Theorem 1 and Lemma 4 implykW 12k (A�1k � pkA�1k�1rk)W 12k k � CA (21)with a 
onstant CA independent of " and k.Theorem 2 [Smoothing property.℄ Both for the damped Ja
obi and the sym-metri
 Gauss-Seidel method the following smoothing property holds with a
onstant 
 independent of k; " and �:kAkS�kk � 
 1� + 1kAkk ; � = 1; 2; : : : : (22)Proof. Denote B := W� 12k AkW� 12k . Note that B is symmetri
 and �(B) �(0; 1℄. FurthermorekAkS�kk = kW 12k B(I �B)�W 12k k � kWkkkB(I �B)�k:Note that kB(I � B)�k � max0���1 �(1 � �)� � (� + 1)�1 (Lemma 10.6.1.in [6℄) and, due to Lemma 4, kWkk � 
kAkk with a 
onstant 
 independentof k and ". Hen
e (22) holds.Corollary 2 For the two-grid iteration matrix with �1 = � and �2 = 0 thesmoothing and approximation property implyk(I � pkA�1k�1rkAk)S�kk � CT� + 1 (23)with CT independent of " and k.For the multigrid W-
y
le Theorem 10.6.25 from [6℄ 
an be applied andyields the following result.Theorem 3 Take  2 (0; 1). Then there exists �0 > 0 independent of k and" su
h that for the 
ontra
tion number of the multigrid W-
y
le with dampedJa
obi or symmetri
 Gauss-Seidel smoothing we havekMk(�; 0)k �  for all � � �0:For the analysis of the multigrid V-
y
le the energy norm is used: kxkAk =hAkx; xik; x 2 Xk. Due to Corollary 1, (20) and Theorem 10.7.15 from [6℄we have the following 
onvergen
e result:10



Theorem 4 For the 
ontra
tion number of the symmetri
 multigrid V-
y
lewith damped Ja
obi or symmetri
 Gauss-Seidel smoothing the estimatekMk��2 ; �2�kAk � CACA + � ; � = 2; 4; : : :holds with CA as in (21).The results in Theorem 3 and Theorem 4 prove the robustness of themultigrid method both with respe
t to variation in the mesh size parameterhk and with respe
t to variation in the parameter ".Referen
es[1℄ Bank, R.E., Dupont, T., Yserentant, H.: The hierar
hi
al basis multi-grid method. Numer. Math. 52, 427{458 (1988).[2℄ Bramble, J.H., Pas
iak, J.E., Xu, J.: Parallel multilevel pre
onditioners.Math. Comp. 55, 1{22 (1990).[3℄ Griebel, M., Oswald, P.: Tensor produ
t type subspa
e splittings andmultilevel iterative methods for anisotropi
 problems. Adv. Comput.Math. 4, 171{206 (1995).[4℄ Grisvard P.: Ellipti
 problems in nonsmooth domains. Boston: Pitman,1985.[5℄ Ha
kbus
h, W.: Multi-grid Methods and Appli
ations. Berlin, Heidel-berg: Springer, 1985.[6℄ Ha
kbus
h, W.: Iterative Solution of Large Sparse Systems of Equations.New York: Springer, 1994.[7℄ S
hatz, A.H. and Wahlbin, L.B.: On the �nite element method for singu-larly perturbed rea
tion-di�usion problems in two and one dimensions.Math. Comp. 40, 47{89 (1983).[8℄ Wahlbin, L.B.: Lo
al behaviour in �nite element methods. In: Hand-book of Numeri
al Analysis II (Ciarlet, P.G. and Lions, J.L., eds.), pp.353{522. Amsterdam, New York: North-Holland, 1991.11



[9℄ Stevenson, R.: A robust hierar
hi
al basis pre
onditioner on generalmeshes. Numer. Math. 78, 269{303 (1997).[10℄ Xu, J.: Iterative methods by spa
e de
omposition and subspa
e 
orre
-tion. SIAM Review 34, 581-613 (1992).[11℄ Yserentant, H.: Old and new 
onvergen
e proofs for multigrid methods.A
ta Numeri
a 1993, 285{326.

12


