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Abstract

In this note we consider discrete linear reaction-diffusion problems.
For the discretization a standard conforming finite element method is
used. For the approximate solution of the resulting discrete problem
a multigrid method with a damped Jacobi or symmetric Gauss-Seidel
smoother is applied. We analyze the convergence of the multigrid V-
and W-cycle in the framework of the aproximation- and smoothing
property. The multigrid method is shown to be robust in the sense
that the contraction number can be bounded by a constant smaller
than one which does not depend on the mesh size or on the diffusion-
reaction ratio.
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1 Introduction

In this paper we consider the linear reaction-diffusion boundary-value prob-
lem: Given 0 < ¢ < 1 and functions f and d, with 0 < dy < d(x) < d; in ,
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find u such that
{—5Au+d(x)u = f in Q, 0

u = 0 on 09,

where € is a convex polyhedral domain in RN, N = 2, 3. For the discretiza-
tion of the variational formulation of this problem a standard finite element
method is applied based on a quasi-uniform family of nested triangulations of
), with mesh size parameter denoted by h, and conforming finite elements.
In [7, 8] a convergence analysis of this finite element method applied to the
problem (1) is presented in which local and global error estimates are derived
and their possible dependence on the parameter ¢ is studied. In general the
solution of (1) has exponential boundary layer behaviour and a discretization
method with polynomial finite elements on a quasi-uniform family of parti-
tions will result in large discretization errors in these boundary layers. The
analyses in [7, 8], however, show that this discretization method is stable (for
e ] 0) and that the pollution effects are not severe in this problem: Outside
the boundary layer error estimates which are uniform w.r.t. ¢ and of optimal
order (as a function of the mesh size parameter) are shown to hold. Hence
for the numerical solution of (1) a discretization method based on a Galerkin
technique with standard finite element spaces can be useful in practice.

For the approximate solution of the resulting discrete problem we apply
a multigrid method with canonical intergrid transfer operators and damped
Jacobi or symmetric Gauss-Seidel smoothing. An interesting topic related to
the efficiency of this multigrid solver is the dependence of its convergence rate
on the parameter . In this paper we present a convergence analysis which
shows that the multigrid method is robust in the sense that the contraction
number can be bounded by a constant smaller than one which does not de-
pend on the mesh size parameter h or on €. Both the multigrid W-cycle and
multigrid V-cycle will be considered. The analysis will use the framework
of the smoothing- and approximation property as introduced by Hackbusch
(cf. [5, 6]). For the proof of the approximation property we use regular-
ity estimates and finite element error bounds from [7, 8]. The smoothing
property will be proved using a standard technique from [5]. The smoothing
property and approximation property that will be proved in this paper can
be combined with results from [5, 6] for the convergence of the multigrid W-
or V-cycle. The analysis shows that the deterioration of the approximation
property for € | 0 (caused by the boundary layer) is compensated by an im-



proved smoothing property. The combined effect is such that the multigrid
method can be shown to be robust.

In the literature we did not find a theoretical analysis of the smoothing
and approximation property which shows the robustness of classical multi-
grid applied to reaction-diffusion problems. In the literature on subspace
decomposition (cf. [10, 11]) we also did not find theoretical results on the
robustness of classical multigrid applied to (1). In [9] it is noted that the
BPX-preconditioner [2] and the hierarchical basis multigrid method [1] are
not robust for a finite element discretization of the problem (1). In [9] a
hierarchical basis preconditioner is introduced which is shown to be robust
for the problem (1) discretized with linear finite elements on uniform two-
dimensional meshes. In [3] a multilevel method based on subspace splitting is
presented which is robust for the problem (1). This method, however, is re-
stricted to rectangular domains and discretization methods of tensor product

type.

2 Preliminaries

Throughout the paper we use the notation (,+)q and || - ||¢ for the scalar
product and norm in Ly(€2). The scalar products and corresponding norms
in the Sobolev spaces H¥(Q), k = 1,2, are denoted by (-,-); and || - ||, re-
spectively. We also use the notation (Vu, Vv) = [, Vu- Vo for u,v € H'(Q)

and |ul; = (Vu, Vu)2 for u e HL().

We assume d € Lo () with 0 < dy < d(x) < d; a.e. in Q and f € Ly(Q).
Q) is assumed to be a convex polyhedral domain in RN, N = 2,3. The
variational formulation of (1) reads: Find u € U := HZ(f2) such that

a(u,v) = (f,v)g forall veU, (2)
with the symmetric bilinear form
a(u,v) =¢e(Vu, Vu) + (du,v)y for u,v € U.

Note that a(-,-) is continuous and elliptic on U. Thus the problem (2)
has a unique solution. Using standard regularity theory the following a priori
estimates can be proved.



Lemma 1 Let u be the solution to (2). Then u € H*(Q) and

lullo < el fll . (3)
Julls < ==l (4)
lulls < ZIfll (5)

with constants ¢ that are independent of £ and f.

PROOF. From (2) we obtain using Young’s inequality

e |ulf + doflull§ < £ [uli + (du, u)o = a(u, u) = (f,u)y < QLdollfH% + %HUH%-

(6)
Now (3) follows. The result (6) in combination with the Friedrichs inequality
lully < clul, yields (4). Set f = L(f — u), then u clearly solves the weak
formulation of the Poisson problem: (Vu, Vu) = (f,v), for all v € U. Since
f € Ly(Q) and the domain Q is convex it follows from regularity results for
the Poisson problem (e.g. Theorem 4.3.1.4 and §8.2 in [4]) that u € H?()
and

. 1
lullz < ell fllo < e (/| £llo + l[ullo)- (7)
Hence (5) follows from (3) and (7). O

For the discretization of (2) we introduce a quasi-uniform family of nested
triangulations of Q) (triangles in 2D, tetrahedra in 3D) based on global regular
refinement. We use conforming finite elements with piecewise polynomial
functions. This results in a hierarchy of nested finite element spaces

UcUcCc---CcUgcC---CU.
The corresponding mesh size parameter is denoted by h; and satisfies
002_k S hk/ho S 012_k

with positive constants ¢y and ¢; independent of k.
The discrete problem on level k is given by: Find u; € Uy such that

a(uk,vk) = (f, Uk)O for all Vg € Uk (8)



The next lemma provides error bounds for the finite element solution. For
N = 2 the result was proved in [7]. However, the arguments used in [7] are
also applicable for the case N = 3. For completeness we present a proof here
which follows the arguments in [7, 8.

Lemma 2 Let u be the solution of (2) and uy be the corresponding finite
solution of (8). Then

h2
o= o < emin {1, L 7], )

holds with a constant ¢ independent of f, e, k.

PROOF. In the proof we use constants ¢ which are independent of f, £, k.
Define e, = u — uy. Noting that a(ex,vx) =0 for all v, € Uy, one obtains

dollex]|§ < alex, ex) = a(u, ex) = (f,ex)o < [ fllollexllo

and thus
lerllo < dg | fllo- (10)

For arbitrary vy € Uy we have

elex|i + dollerlls < alex, ex) = au — vy, ex)

< elu — vgli|exlr + diflu — villollexllo
d? 1 1
< (elu — v} + d—;HU — v]|3) % (elex|T + dollexlld)?

For v, we take the (-, -);-projection of u on Uy, for which the standard approx-
imation results ||u — vgllo < chi||ully and |u — vg|; < ¢ hyllullz hold. Using
this and the regularity results of Lemma 1 we get
2 2 hi hi 2
elexli + dolexlly = e (1 + )IIF[f. (11)
Now we use Nitsche’s duality argument. Let w € U be such that a(w,v) =

(ex,v)o forall v € U. From Lemma 1 we have w € H*(Q) and [Jw]js <
¢|lexllo. Let wy be the (-, -);-projection of w on Uy. Then the following holds:

lexlls = alw, ex) = alw — wg, ex) < lw —wifilex| + daflw — wellollex o

hQ
< ¢ (e hillwllafex|s + dihi|wllzllerllo) < c(helexh + dl;’“HekHo)HekHo-
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Thus using (10) and (11), we get for ha_i <1

h2
lewllo < c(helex]s + —’“||f||o)

hy h2 hi
<Chk_(1+ ) I f1lo +C—||f||o<0—||f||o

(12)

Combination of (10) and (12) proves the bound in (9). O

3 Multigrid convergence analysis

For the approximate solution of the discrete problem we apply a multigrid
method. The method and its convergence analysis will be presented in a
matrix-vector form as in Hackbush [5]. To this end consider the standard
nodal basis in Uy, denoted by {¢;}i<i<p, and the isomorphism:

ng
P Xp=R" Uy, Pa=> g

=1

On X, we use a scaled Euclidean scalar product: (z,y)y = by >.* 2;y; and
corresponding norm denoted by || - ||. The adjoint P} : Uy — Xk satisfies
(Prz,v) = (x, Pfv) for all z € Xy, v € Ug. Note that the following norm
equivalence holds

C’1||:c|| < |[Przx|lo < C||z|| for all x € Xy, (13)

with a constant C' independent of k. The stiffness matrix Ay on level £ is
defined by

(Arx,y)r = a(Pyx, Pry) for all z,y € Xy. (14)
For the prolongation and restriction in the multigrid algorithm we use the
canonical choice:

pr: Xpe1 = Xi, pe =P ' Py

Y (15)
T Xp = Xpo1, 1= Pp_(Fy) :<hkf1> P

Finally, a smoother is introduced. Let W, : X; — X, be a nonsingular
matrix. We consider a smoother of the form

eV = gold _ Wk’l(AkxOId —b), for 2° b e X;



with corresponding iteration matrix denoted by
Sp=1-W; A (16)

With the components defined above a standard multigrid algorithm with 1
pre- and v, post-smoothing iterations can be formulated (cf. [6]) with an
iteration matrix that satisfies the recursion

Mo(Vl, VQ) = 0,

Mk(l/h 1/2) == S;;Q (I _pk(] - M];y_l)AI;_llTkAk) S]l;l, k= 1, 2, e
The choices v = 1 and v = 2 correspond to the V- and W-cycle, respectively.

For the analysis of this multigrid method we use the framework of [5, 6]
based on the approximation and smoothing property. Below we derive these
properties for the reaction-diffusion problem. We start with a lemma in

which a few inequalities are derived that will be used in the analysis of the
approximation and smoothing property.

Lemma 3 Let Ay be the stiffness matriz from (14) and Dy = diag(Ay).
The inequalities

£ £
iy +1) < 4l < a5 + 1) (17)
k k

_ C3
DY < 18

hold with constants c¢; > 0 independent of ¢ and k.

PRrROOF. Let ¢; be the ith basis vector in R"*. Note that

< A €;,€6; > _
(Ap)ii = ——L 78 — e Na( gy, )
< €5, 6 > (19)
_ £
> hy, N (|l T + dollsll§) > er(o5 + 1)

hi

with a constant ¢; independent of € and k. The left inequality in (17) follows
from (19) and ||Ak|| > (Ax)i;. Using an inverse inequality we obtain, with
constants ¢ and ¢, independent of £ and £,

< Ak:c,a: >k = a(Pka:,Pk:r) S €|ka|% + d1||PkSC||g

£ £
< cly + DI Puald < oy + 1)
k k



and thus the right inequality in (17) holds. Using (19) and (17) it follows
that - ;
_ . — — — 2 —
1Dl = (min(Ay)i) ™" < e (G + 17 < =A™
7 k Cl

holds, which proves the result in (18). a

Theorem 1 [Approximation property.| Let Ay be the stiffness matriz from
(14) and py, i the prolongation and restriction as in (15). Then the following
approximation property holds with a constant ¢ independent of ¢ and k:

2

_ _ . h _
14" = peagal < cmin {1, %8} < 4y

Proor. Take y, € Xj;. The constants ¢ that appear in the proof do not
depend on yi, k or €. Let w € U, wy € Uy, and wy_1 € Ug_; be such that

a(w,v) = ((P}) 'yp,v)e forallve U,
a(w,v) = ((Pf) 'yr,v)e forall v € Uy,
a(wp_1,v) = (P) 'yr,v)y forall v € Uy_;.
Putting f = (P}) 'yr € Ly(2) in Lemma 2, we obtain
2
il
£

o= o < cmin {1, 4 1E) Ml for L€ (k- 1,8

Due to hi_1 < chy this yields

: h; .
e = el < emin {1,254 170 o

From (14) and (15) it follows that wy = Py A; 'y, and wy_y = P AL 71ys.
Thus, using (13), we get

(A" = pedi o)yl < el PeAy 'y — Pt Ay riyillo = cllwr — wi—i|lo

: h’i ) —1 : hi
< ¢ min 1,? |(Py) " " ykllo < ¢ min 1:? yell

which proves the first inequality. The second inequality follows from Lemma 3
and min{1,} < 2(1+ X)~! for a > 0. 0
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For the smoother we consider two cases, namely a damped Jacobi method
and the symmetric Gauss-Seidel method. If we decompose A, as A, =
D, — L, — L;{ with D, diagonal and Lj strictly lower triangular then these
two smoothing iterations have corresponding iteration matrices as in (16)
with

Wy =w"'Dy, we(0,1), and Wy, = (D}, — Ly)D; ' (Dy, — L}).

From Lemma 3 we obtain ||D;' Al < ||D;'||I|Ak]] < c3. In the damped
Jacobi method we take a fixed w < 1 with 0 < w < é, independent of € and

k, such that p(wD, ' A;) < 1 holds. Note that for the symmetric Gauss-Seidel
method we have

Wy = (Dy — L) D, (D, — L) = Ay + LD, 'L > A .

Hence, both for the damped Jacobi method and the symmetric Gauss-Seidel
method we have
o(W,'A;) C (0,1]. (20)

Lemma 4 Both for the damped Jacobi method and the symmetric Gauss-
Seidel method the inequality

[Will < el Axll
holds with a constant ¢ independent of ¢ and k.

Proor. For the damped Jacobi method this result is a direct consequence
of || Dg|| < ||Ax||. For the symmetric Gauss-Seidel method we note that, due
to the fact that in every row of the stiffness matrix the number of nonzero
entries can be bounded by a constant independent of &,

n i—1
12l < el Zelloe = (m;wx > <Ak>z~j|) (mng <Ak>m-)
7j=1

i=j+1
< emax(40)} < el

Hence, using Lemma 3, we obtain

Wil = [l Ak + L Dy Le || < Al + I ZelPI D < el Aell - O



Corollary 1 Theorem 1 and Lemma 4 imply
1 1
W (At = peA Lre) Wi < Ca (21)
with a constant Cy independent of ¢ and k. 0

Theorem 2 [Smoothing property.| Both for the damped Jacobi and the sym-
metric Gauss-Seidel method the following smoothing property holds with a
constant ¢ independent of k,e and v:

1

ApSY || <
| 4SE < oo

A, v=1,2,.... (22)

PROOF. Denote B := W, 24, W, ?. Note that B is symmetric and o(B) C
(0, 1]. Furthermore

[ARSEN = W B = B)We || < [Will[| B(IT = B)"|l.

Note that ||B(I — B)”|| < maxp<y<; A(1 = A)” < (v +1)"! (Lemma 10.6.1.
in [6]) and, due to Lemma 4, ||[W,|| < c[|Ax|| with a constant ¢ independent
of k and . Hence (22) holds. O

Corollary 2 For the two-grid iteration matriz with vy = v and vy = 0 the
smoothing and approximation property imply

Cr
v—+1

(T = prAy 2y Ar) SE|| < (23)

with Cr independent of € and k. ]

For the multigrid W-cycle Theorem 10.6.25 from [6] can be applied and
yields the following result.

Theorem 3 Take ) € (0,1). Then there exists vy > 0 independent of k and
g such that for the contraction number of the multigrid W-cycle with damped
Jacobi or symmetric Gauss-Seidel smoothing we have

|My(v,0)|| <9 forall v > 1. O
For the analysis of the multigrid V-cycle the energy norm is used: ||z||4, =
(Apx,x)g, © € X Due to Corollary 1, (20) and Theorem 10.7.15 from [6]

we have the following convergence result:

10



Theorem 4 For the contraction number of the symmetric multigrid V-cycle
with damped Jacobi or symmetric Gauss-Seidel smoothing the estimate

Ca
< =2.4,...
)HAk_CA"‘l/, v )

77
272

A
holds with C4 as in (21).

The results in Theorem 3 and Theorem 4 prove the robustness of the
multigrid method both with respect to variation in the mesh size parameter
hi and with respect to variation in the parameter .
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