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AbstratIn this note we onsider disrete linear reation-di�usion problems.For the disretization a standard onforming �nite element method isused. For the approximate solution of the resulting disrete problema multigrid method with a damped Jaobi or symmetri Gauss-Seidelsmoother is applied. We analyze the onvergene of the multigrid V-and W-yle in the framework of the aproximation- and smoothingproperty. The multigrid method is shown to be robust in the sensethat the ontration number an be bounded by a onstant smallerthan one whih does not depend on the mesh size or on the di�usion-reation ratio.AMS Subjet Classi�ation: 65N22, 65N30, 65N55.Key Words: reation-di�usion, multigrid1 IntrodutionIn this paper we onsider the linear reation-di�usion boundary-value prob-lem: Given 0 < " < 1 and funtions f and d, with 0 < d0 � d(x) � d1 in 
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�nd u suh that ( �"� u+ d(x) u = f in 
;u = 0 on �
; (1)where 
 is a onvex polyhedral domain in RN , N = 2; 3. For the disretiza-tion of the variational formulation of this problem a standard �nite elementmethod is applied based on a quasi-uniform family of nested triangulations of
, with mesh size parameter denoted by h, and onforming �nite elements.In [7, 8℄ a onvergene analysis of this �nite element method applied to theproblem (1) is presented in whih loal and global error estimates are derivedand their possible dependene on the parameter " is studied. In general thesolution of (1) has exponential boundary layer behaviour and a disretizationmethod with polynomial �nite elements on a quasi-uniform family of parti-tions will result in large disretization errors in these boundary layers. Theanalyses in [7, 8℄, however, show that this disretization method is stable (for" # 0) and that the pollution e�ets are not severe in this problem: Outsidethe boundary layer error estimates whih are uniform w.r.t. " and of optimalorder (as a funtion of the mesh size parameter) are shown to hold. Henefor the numerial solution of (1) a disretization method based on a Galerkintehnique with standard �nite element spaes an be useful in pratie.For the approximate solution of the resulting disrete problem we applya multigrid method with anonial intergrid transfer operators and dampedJaobi or symmetri Gauss-Seidel smoothing. An interesting topi related tothe eÆieny of this multigrid solver is the dependene of its onvergene rateon the parameter ". In this paper we present a onvergene analysis whihshows that the multigrid method is robust in the sense that the ontrationnumber an be bounded by a onstant smaller than one whih does not de-pend on the mesh size parameter h or on ". Both the multigrid W-yle andmultigrid V-yle will be onsidered. The analysis will use the frameworkof the smoothing- and approximation property as introdued by Hakbush(f. [5, 6℄). For the proof of the approximation property we use regular-ity estimates and �nite element error bounds from [7, 8℄. The smoothingproperty will be proved using a standard tehnique from [5℄. The smoothingproperty and approximation property that will be proved in this paper anbe ombined with results from [5, 6℄ for the onvergene of the multigrid W-or V-yle. The analysis shows that the deterioration of the approximationproperty for " # 0 (aused by the boundary layer) is ompensated by an im-2



proved smoothing property. The ombined e�et is suh that the multigridmethod an be shown to be robust.In the literature we did not �nd a theoretial analysis of the smoothingand approximation property whih shows the robustness of lassial multi-grid applied to reation-di�usion problems. In the literature on subspaedeomposition (f. [10, 11℄) we also did not �nd theoretial results on therobustness of lassial multigrid applied to (1). In [9℄ it is noted that theBPX-preonditioner [2℄ and the hierarhial basis multigrid method [1℄ arenot robust for a �nite element disretization of the problem (1). In [9℄ ahierarhial basis preonditioner is introdued whih is shown to be robustfor the problem (1) disretized with linear �nite elements on uniform two-dimensional meshes. In [3℄ a multilevel method based on subspae splitting ispresented whih is robust for the problem (1). This method, however, is re-strited to retangular domains and disretization methods of tensor produttype.2 PreliminariesThroughout the paper we use the notation (�; �)0 and k � k0 for the salarprodut and norm in L2(
). The salar produts and orresponding normsin the Sobolev spaes Hk(
), k = 1; 2, are denoted by (�; �)k and k � kk, re-spetively. We also use the notation (ru;rv) = R
ru �rv for u; v 2 H1(
)and juj1 = (ru;ru) 12 for u 2 H10(
).We assume d 2 L1(
) with 0 < d0 � d(x) � d1 a.e. in 
 and f 2 L2(
).
 is assumed to be a onvex polyhedral domain in RN , N = 2; 3. Thevariational formulation of (1) reads: Find u 2 U := H10 (
) suh thata(u; v) = (f; v)0 for all v 2 U; (2)with the symmetri bilinear forma(u; v) = "(ru;rv) + (d u; v)0 for u; v 2 U:Note that a(�; �) is ontinuous and ellipti on U. Thus the problem (2)has a unique solution. Using standard regularity theory the following a prioriestimates an be proved. 3



Lemma 1 Let u be the solution to (2). Then u 2 H2(
) andkuk0 � kfk0 ; (3)kuk1 � p"kfk0 ; (4)kuk2 � "kfk0 ; (5)with onstants  that are independent of " and f .Proof. From (2) we obtain using Young's inequality" juj21 + d0kuk20 � " juj21 + (d u; u)0 = a(u; u) = (f; u)0 � 12d0kfk20 + d02 kuk20:(6)Now (3) follows. The result (6) in ombination with the Friedrihs inequalitykuk1 � juj1 yields (4). Set ~f = 1" (f � u); then u learly solves the weakformulation of the Poisson problem: (ru;rv) = ( ~f; v)0 for all v 2 U . Sine~f 2 L2(
) and the domain 
 is onvex it follows from regularity results forthe Poisson problem (e.g. Theorem 4.3.1.4 and x8.2 in [4℄) that u 2 H2(
)and kuk2 � k ~fk0 � 1"(kfk0 + kuk0): (7)Hene (5) follows from (3) and (7).For the disretization of (2) we introdue a quasi-uniform family of nestedtriangulations of 
 (triangles in 2D, tetrahedra in 3D) based on global regularre�nement . We use onforming �nite elements with pieewise polynomialfuntions. This results in a hierarhy of nested �nite element spaesU0 � U1 � � � � � Uk � � � � � U :The orresponding mesh size parameter is denoted by hk and satis�es02�k � hk=h0 � 12�kwith positive onstants 0 and 1 independent of k.The disrete problem on level k is given by: Find uk 2 Uk suh thata(uk; vk) = (f; vk)0 for all vk 2 Uk: (8)4



The next lemma provides error bounds for the �nite element solution. ForN = 2 the result was proved in [7℄. However, the arguments used in [7℄ arealso appliable for the ase N = 3. For ompleteness we present a proof herewhih follows the arguments in [7, 8℄.Lemma 2 Let u be the solution of (2) and uk be the orresponding �nitesolution of (8). Then ku� ukk0 � min�1; h2k" � kfk0 (9)holds with a onstant  independent of f; "; k.Proof. In the proof we use onstants  whih are independent of f; "; k.De�ne ek = u� uk. Noting that a(ek; vk) = 0 for all vk 2 Uk, one obtainsd0kekk20 � a(ek; ek) = a(u; ek) = (f; ek)0 � kfk0kekk0and thus kekk0 � d�10 kfk0: (10)For arbitrary vk 2 Uk we have"jekj21 + d0kekk20 � a(ek; ek) = a(u� vk; ek)� "ju� vkj1jekj1 + d1ku� vkk0kekk0� ("ju� vkj21 + d21d0ku� vkk20) 12 ("jekj21 + d0kekk20) 12For vk we take the (�; �)1-projetion of u on Uk for whih the standard approx-imation results ku � vkk0 �  h2kkuk2 and ju � vkj1 �  hkkuk2 hold. Usingthis and the regularity results of Lemma 1 we get"jekj21 + d0kekk20 � h2k" (1 + h2k" )kfk20: (11)Now we use Nitshe's duality argument. Let w 2 U be suh that a(w; v) =(ek; v)0 for all v 2 U. From Lemma 1 we have w 2 H2(
) and kwk2 �"kekk0. Let wk be the (�; �)1-projetion of w on Uk. Then the following holds:kekk20 = a(w; ek) = a(w � wk; ek) � "jw � wkj1jekj1 + d1kw � wkk0kekk0�  (" hkkwk2jekj1 + d1h2kkwk2kekk0) � (hkjekj1 + d1h2k" kekk0)kekk0:5



Thus using (10) and (11), we get for h2k" � 1kekk0 � (hkjekj1 + h2k" kfk0)�  hkhk" �1 + h2k" � 12kfk0 + h2k" kfk0 � h2k" kfk0: (12)Combination of (10) and (12) proves the bound in (9).3 Multigrid onvergene analysisFor the approximate solution of the disrete problem we apply a multigridmethod. The method and its onvergene analysis will be presented in amatrix-vetor form as in Hakbush [5℄. To this end onsider the standardnodal basis in Uk denoted by f�ig1�i�nk and the isomorphism:Pk : Xk := Rnk ! Uk; Pkx = nkXi=1 xi�i:On Xk we use a saled Eulidean salar produt: hx; yik = hNk Pnki=1 xiyi andorresponding norm denoted by k � k. The adjoint P �k : Uk ! Xk satis�es(Pkx; v)0 = hx; P �k vik for all x 2 Xk; v 2 Uk. Note that the following normequivalene holdsC�1kxk � kPkxk0 � Ckxk for all x 2 Xk; (13)with a onstant C independent of k. The sti�ness matrix Ak on level k isde�ned by hAkx; yik = a(Pkx; Pky) for all x; y 2 Xk: (14)For the prolongation and restrition in the multigrid algorithm we use theanonial hoie:pk : Xk�1 ! Xk; pk = P�1k Pk�1rk : Xk ! Xk�1; rk = P �k�1(P �k )�1 = � hkhk�1�NpTk : (15)Finally, a smoother is introdued. Let Wk : Xk ! Xk be a nonsingularmatrix. We onsider a smoother of the formxnew = xold �W�1k (Akxold � b); for xold; b 2 Xk6



with orresponding iteration matrix denoted bySk = I �W�1k Ak: (16)With the omponents de�ned above a standard multigrid algorithm with �1pre- and �2 post-smoothing iterations an be formulated (f. [6℄) with aniteration matrix that satis�es the reursionM0(�1; �2) = 0;Mk(�1; �2) = S�2k �I � pk(I �Mk�1)A�1k�1rkAk�S�1k ; k = 1; 2; : : : :The hoies  = 1 and  = 2 orrespond to the V- and W-yle, respetively.For the analysis of this multigrid method we use the framework of [5, 6℄based on the approximation and smoothing property. Below we derive theseproperties for the reation-di�usion problem. We start with a lemma inwhih a few inequalities are derived that will be used in the analysis of theapproximation and smoothing property.Lemma 3 Let Ak be the sti�ness matrix from (14) and Dk := diag(Ak).The inequalities 1( "h2k + 1) � kAkk � 2( "h2k + 1) (17)kD�1k k � 3kAkk (18)hold with onstants i > 0 independent of " and k.Proof. Let ei be the ith basis vetor in Rnk . Note that(Ak)ii = < Akei; ei >k< ei; ei >k = h�Nk a(�i; �i)� h�Nk ("j�ij21 + d0k�ik20) � 1( "h2k + 1) (19)with a onstant 1 independent of " and k. The left inequality in (17) followsfrom (19) and kAkk � (Ak)ii. Using an inverse inequality we obtain, withonstants  and 2 independent of " and k,< Akx; x >k = a(Pkx; Pkx) � "jPkxj21 + d1kPkxk20� ( "h2k + 1)kPkxk20 � 2( "h2k + 1)kxk2 ;7



and thus the right inequality in (17) holds. Using (19) and (17) it followsthat kD�1k k = (mini (Ak)ii)�1 � �11 ( "h2k + 1)�1 � 21kAkk�1holds, whih proves the result in (18).Theorem 1 [Approximation property.℄ Let Ak be the sti�ness matrix from(14) and pk; rk the prolongation and restrition as in (15). Then the followingapproximation property holds with a onstant  independent of " and k:kA�1k � pkA�1k�1rkk �  min�1; h2k" � � kAkk�1Proof. Take yk 2 Xk. The onstants  that appear in the proof do notdepend on yk; k or ". Let w 2 U, wk 2 Uk, and wk�1 2 Uk�1 be suh thata(w; v) = ((P �k )�1yk; v)0 for all v 2 U;a(wk; v) = ((P �k )�1yk; v)0 for all v 2 Uk;a(wk�1; v) = ((P �k )�1yk; v)0 for all v 2 Uk�1:Putting f = (P �k )�1yk 2 L2(
) in Lemma 2, we obtainkw � wlk0 � min�1; h2l" � k(P �k )�1ykk0 for l 2 fk � 1; kg:Due to hk�1 � hk this yieldskwk � wk�1k0 � min�1; h2k" � k(P �k )�1ykk0:From (14) and (15) it follows that wk = PkA�1k yk and wk�1 = Pk�1A�1k�1rkyk.Thus, using (13), we getk(A�1k � pkA�1k�1rk)ykk � kPkA�1k yk � Pk�1A�1k�1rkykk0 = kwk � wk�1k0�  min�1; h2k" � k(P �k )�1ykk0 �  min�1; h2k" � kykk ;whih proves the �rst inequality. The seond inequality follows from Lemma 3and minf1; �g � 2(1 + 1�)�1 for � > 0.8



For the smoother we onsider two ases, namely a damped Jaobi methodand the symmetri Gauss-Seidel method. If we deompose Ak as Ak =Dk � Lk � LTk with Dk diagonal and Lk stritly lower triangular then thesetwo smoothing iterations have orresponding iteration matries as in (16)with Wk = !�1Dk; ! 2 (0; 1); and Wk = (Dk � Lk)D�1k (Dk � LTk ):From Lemma 3 we obtain kD�1k Akk � kD�1k kkAkk � 3. In the dampedJaobi method we take a �xed ! � 1 with 0 < ! � 13 , independent of " andk, suh that �(!D�1k Ak) � 1 holds. Note that for the symmetri Gauss-Seidelmethod we haveWk = (Dk � Lk)D�1k (Dk � LTk ) = Ak + LkD�1k LTk � Ak :Hene, both for the damped Jaobi method and the symmetri Gauss-Seidelmethod we have �(W�1k Ak) � (0; 1℄: (20)Lemma 4 Both for the damped Jaobi method and the symmetri Gauss-Seidel method the inequality kWkk � kAkkholds with a onstant  independent of " and k.Proof. For the damped Jaobi method this result is a diret onsequeneof kDkk � kAkk. For the symmetri Gauss-Seidel method we note that, dueto the fat that in every row of the sti�ness matrix the number of nonzeroentries an be bounded by a onstant independent of k,kLkk2 � kLkk1kLkk1 =  maxj nXi=j+1 j(Ak)ijj! maxi i�1Xj=1 j(Ak)ijj!� maxi;j (Ak)2ij � kAkk2 ;Hene, using Lemma 3, we obtainkWkk = kAk + LkD�1k LTk k � kAkk+ kLkk2kD�1k k � kAkk :9



Corollary 1 Theorem 1 and Lemma 4 implykW 12k (A�1k � pkA�1k�1rk)W 12k k � CA (21)with a onstant CA independent of " and k.Theorem 2 [Smoothing property.℄ Both for the damped Jaobi and the sym-metri Gauss-Seidel method the following smoothing property holds with aonstant  independent of k; " and �:kAkS�kk �  1� + 1kAkk ; � = 1; 2; : : : : (22)Proof. Denote B := W� 12k AkW� 12k . Note that B is symmetri and �(B) �(0; 1℄. FurthermorekAkS�kk = kW 12k B(I �B)�W 12k k � kWkkkB(I �B)�k:Note that kB(I � B)�k � max0���1 �(1 � �)� � (� + 1)�1 (Lemma 10.6.1.in [6℄) and, due to Lemma 4, kWkk � kAkk with a onstant  independentof k and ". Hene (22) holds.Corollary 2 For the two-grid iteration matrix with �1 = � and �2 = 0 thesmoothing and approximation property implyk(I � pkA�1k�1rkAk)S�kk � CT� + 1 (23)with CT independent of " and k.For the multigrid W-yle Theorem 10.6.25 from [6℄ an be applied andyields the following result.Theorem 3 Take  2 (0; 1). Then there exists �0 > 0 independent of k and" suh that for the ontration number of the multigrid W-yle with dampedJaobi or symmetri Gauss-Seidel smoothing we havekMk(�; 0)k �  for all � � �0:For the analysis of the multigrid V-yle the energy norm is used: kxkAk =hAkx; xik; x 2 Xk. Due to Corollary 1, (20) and Theorem 10.7.15 from [6℄we have the following onvergene result:10
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