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Abstract:

In the numerical solution of quasi-birth-and-death (QBD) Markov chains a
crucial step is the efficient computation of the minimal nonnegative solution
G of the quadratic matrix equation

X = A
−1 + A0X + A1X

2,

where Ai, i = −1, 0, 1, are m × m nonnegative matrices such that A
−1 +

A0 + A1 is row stochastic. Recently, some attention has been addressed
to the case where A

−1 has only few non-null columns, or A1 has only few
non-null rows. These properties are in practice satisfied when the QBD has
restricted transitions to higher (or lower) levels.
Here we assume that both the matrices A

−1 and A1 have small rank with
respect to their size m. In particular, if A

−1 and A1 have only few non-
null columns and rows, respectively, they have small rank. We show that,
under this assumption, the matrix G can be computed by using the cyclic

reduction algorithm, where the matrices A
(k)
i

, i = −1, 0, 1, generated at
the kth step of the algorithm, can be represented by small rank matrices.
In particular, if r

−1 is the rank of A
−1, and if r1 is the rank of A1, then

each step of cyclic reduction can be performed by means of O((r
−1 + r1)

3)
arithmetic operations. This cost estimate must be compared with the cost
of O(m3) arithmetic operations, needed without exploiting the structure
of A

−1 and A1. Therefore, if r
−1 and r1 are much smaller than m, the

advantage is evident. Moreover, the nonnegativity properties of the matrix
coefficients Ai, i = −1, 0, 1, are preserved by the algorithm, thus maintaining
the good numerical stability properties of cyclic reduction applied to the
original matrix equation.
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