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Abstract

We outline a new systematic approach to extracting high quality information from
HAADF–STEM images which will be beneficial to the characterization of beam sen-
sitive materials. The idea is to treat several, possibly many low electron dose images
with specially adapted digital image processing concepts at a minimum allowable spa-
tial resolution. Our goal is to keep the overall cumulative electron dose as low as
possible while still staying close to an acceptable level of physical resolution. We shall
present the main conceptual imaging concepts and restoration methods that we believe
are suitable for carrying out such a program and, in particular, allow one to correct
special acquisition artifacts which result in blurring, aliasing, rastering distortions and
noise.

1 Introduction

Modern electron microscopic imaging has reached resolutions significantly better than 100 pm
which allows for unprecedented measurements of the composition and structure of materials
[10, 6, 16]. However, one faces several severe obstacles to fully exploiting the information
provided by aberration-corrected instruments. On the one hand, one needs to constantly
remediate and reduce environmental perturbations such as air flow, acoustic noise, floor
vibrations, AC and DC magnetic fields, and temperature fluctuations. On the other hand,
high resolution and a good signal to noise ratio requires a high density of electrons per square
nanometer. Unfortunately, soft materials are very susceptible to beam damage, and can only
be visualized with low dose techniques, resulting in poor resolution and a prohibitively low
signal to noise ratio [4]. Our goal is therefore to compensate for the required lower dose by
using more sophisticated image processing techniques applied to multiple samples in order
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to raise the signal to noise ratio necessary for reliable image formation. Preliminary methods
and results were reported in [2].

The paper is organized as follows. In Section 2 we begin with briefly describing the
standard image formation process in STEM and identify certain factors that affect image
quality and resolution. In Section 3 we describe the general problems of using time series of
low dosage micrographs in order to reconstruct high quality micrographs. Section 4 has a
description of the method of nonlocal means and the variants we use in our algorithms for
analysis and processing. Here we apply our methods to a time series of low dose micrographs
of the M1 catalyst. In this case beam damage, local jitter and global drifts are relatively
small and the expected improvements from our methods are observed. In Section 5 we
consider the more challenging case of beam sensitive materials by applying the methods to
samples from the class of Zeolites. Finally, in Section 6 we summarize our results and draw
some conclusions which will guide our future studies.

2 STEM Imaging

Images produced by electron microscopes offer only an indirect reflection of reality. One
measures the distribution of the intensity of electron scattering at a detector. These inten-
sities depend upon the structure and composition of the sample, the information transfer
properties of the microscope as well as uncontrolled perturbations by external stimuli. An
example of environmental noise due to airflow in the vicinity of the microscope during im-
age acquisition is illustrated in Fig. 1 where the resulting perturbations are reflected in the
micrograph. For the image on the left side of the figure, airflow is reducing the contrast
and resolution of a dumbbell-pattern obtained by imaging Si along a crystallographic 〈110〉
direction, as well as introducing distortions during the rastering. For the image on the right
hand side, the airflow has been turned off, thereby improving the quality of the micrograph.
The distortion mainly appears as a spatial and structural change. We are also capable of
measuring the sound pressure level in the room as shown in Fig. 1 c) as well as the vibrational
and magnetic characteristics. This type of auxiliary information will be useful in developing
similarity checks in the NLM process described in later sections.

We emphasize that we do not attempt to develop techniques that aim at reaching a
resolution that is higher than the one permitted by the hardware, but instead aim to recover
the level of resolution set by the microscope by only using a time series of lower resolution
- viz. lower dose - images.

The guiding aspects for our approach can be summarized as follows: Rastering of the
beam across the sample enables certain electron imaging and spectroscopic techniques such as
mapping by energy dispersive X-ray (EDX) spectroscopy, electron energy loss spectroscopy
(EELS) and annular dark-field imaging (ADF). These signals can be obtained simultane-
ously, allowing direct correlation of image and spectroscopic data. By using a STEM and
a high-angle annular detector, it is possible to obtain atomic resolution images where the
contrast is directly related to the atomic number (≈ Z2) [5, 13, 8]. This is in contrast to
conventional high resolution electron microscopy, which uses phase-contrast, and therefore
produces results which need simulation to aid in interpretation. As for beam sensitivity,
a critical issue in electron microscopy is the amount of dose needed to produce an image.
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(a) (b)

(c)

Figure 1: (a) Si 〈110〉 zone axis HAADF STEM micrograph reflecting distortions due to
external air pressure perturbations; (b) the airflow is turned off and the location of the Si
atomic columns is represented more accurately: (c) sound pressure level (dB) at different
frequencies (Hz). Micrographs taken with an exposure of 200 µs per pixel.
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Higher dose scans can damage the specimen while lower dose scans result in very low signal
to noise ratio. In STEM mode, the electron dose onto the sample can be controlled in a
variety of ways. The number of electrons per unit time can be varied by changing the demag-
nification of the electron source through the strength of the first condenser lens. The dwell
time of the probe is typically varied between 7µs and 64µs per pixel in practice, although a
much larger range is possible. The size of the image can be varied from a very small number
of pixels in a frame (256 × 256) to over 64 million pixels per image (8192 × 8192). Finally,
the magnification of the image sets the area of the specimen exposed to the electrons and
thereby affects the dose per unit area onto the specimen.

3 Formation of High Quality Images from Low Reso-

lution/Noisy Images

Let us briefly recall the standard way of producing high quality images from a series of low
resolution/noisy frames. Several observation models that relate the original high-resolution
images to the observed low-resolution frames have been proposed in the literature [9]. These
are classically formulated as a global model (with local noise n) of the form

yt = (D ·Bt ·Mt)x + nt, (1)

where x is the desired high-resolution image of the sample which is assumed constant during
the acquisition of the multiple micrographs, except for any motion and degradation allowed
by the model. Therefore, the observed low-resolution images are regarded as the result
from warping (Mt), blurring (Bt), and subsampling (D) the original image x and corruption
by additive noise nt. Reconstructing the original image x from observations yt leads then
to an inverse, typically ill-posed problem. However, for STEM imaging this paradigm is
hardly applicable because an accurate estimation of the operator Mt is very problematic.
The scanning process takes time during which the specimen moves due to electromagnetic,
mechanical, or acoustic perturbations. The overall resulting motion may be significant, even
for a single frame, but all the more so when taking longer time series of images of the same
specimen. Moreover, this motion is very complex. A global drift is typically overlaid by
jitter as illustrated by Fig. 2, see also the description in the figure’s caption.

Finally, one has to consider the highly non-linear, even non-continuous effects due to
the rastering process, which can cause shearing between consecutive rows of pixels in the
micrograph. (This is obviously not an issue for standard photography where every pixel
value is measured at the same time.) Hence, we conclude, that tracking and estimating
the warping by a sufficiently accurate model Mt in (1) is not feasible. A new concept for
recovering high quality images from a series of noisy images is therefore required in the case
of STEM images.

In the next section we propose an alternative strategy using a variant of nonlocal means
which needs only an approximate, moderately accurate registration and motion tracking,
which basically is only needed to estimate the global, large scale drift. Due to the difficulty
of the task we see the need to validate our strategy by experiments with materials that
exhibit very little beam sensitivity. In particular, inorganic materials allow us to compare
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Figure 2: An illustration of the local frame-to-frame distortion. The distortion mapping is
first estimated from the global registration of the frames 1 and 9 of the zeolite time series
used in Section 5 and then applied to an image of a Cartesian grid to illustrate the complex
motion involved. This motion exhibits local jitter overlaid on a global drift upwards and to
the left (resulting in the gray region where frame 9 does not overlap the specimen portion
depicted by frame 1).

a reconstructed image from low resolution images with a high resolution counterpart of the
same object. These experiments are then followed by similar experiments involving more
beam-sensitive materials where higher resolution images of these materials are not available
due to the resulting beam damage.

Therefore we focus first on inorganic materials which we understand well and that have
proven to be stable under HAADF-STEM conditions (see e.g. [15]). In particular, the M1
catalyst, an Mo-V-Te-Nb-oxide, shown in Fig. 3, has various properties that lend themselves
to our initial investigations: (1) it has well-understood contrast variations along the 〈001〉
projection, (2) beam-sensitive Te contained in pores of the metal oxide framework can be used
to monitor electron beam-induced damage over time series while the surrounding structure
does not deteriorate, and (3) defects that can be used as fiducials.

For example, in Fig. 3, a white oval is drawn to show pores in the metal oxide framework
containing Te, whose evaporation can be used to monitor long term exposure to electron
beams. Thus, measuring time series of M1 at lower resolutions allows us to compare the
reconstructed images with micrographs taken at higher resolutions and thereby validate our
algorithms and theoretical approaches which guide the treatment of more and more beam
sensitive materials.

Of course, one would be able to reduce beam damage (in expectation) if the total accumu-
lated dose used to produce several low resolution images could be kept even below the dose
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Figure 3: High-resolution HAADF STEM micrograph of the M1 catalyst.

needed for a single high resolution image while still recovering the same information from
the low resolution images. But even if in both scenarios the same total dose was necessary,
the damage due to heating effects would clearly be smaller when taking successive low dose
images. Whether a temporal stretching also has a beneficial relaxation effect on the other
sources of beam damage is an open question on which the intended research may actually
shed some light. One might note, however, that such principal advantages might come at
the price of larger image aquisition times even increasing the movement of the specimen.

4 Nonlocal Means Algorithms for Sequences of Micro-

graphs

Motivated by our earlier observations, we propose an alternative strategy for micrograph
image reconstruction based on the non-local means paradigm which has been introduced in
[3].

4.1 Nonlocal Means for Time Series

As before, a high quality image is to be recovered from a time series of HAADF STEM
micrographs yt of the same object, where the “time” t is the frame index and runs through
a finite set T . Such image assembly algorithms are based on averaging the same specimen
portion appearing in different frames. As explained above it is difficult to identify such por-
tions from the noisy low dose frames. It is therefore crucial to employ an averaging technique
that is robust with respect to inaccuracies in registration and motion tracking. The concept
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of nonlocal means, developed by Buades, Coll and Morel in [3] as a denoising algorithm,
offers this property. The key point is to assign a higher weight in the averaging process to
those patches whose intensity distributions are close to each other and hence more likely
to represent the same part of the specimen. Moreover, when the images exhibit repetitive
patterns, the denoising effect of averaging can even take advantage of a high similarity of
image portions located far apart from each other. The essence of such a procedure can be
described as follows.

With every pixel position p in a frame t we associate a (search) neighborhood N(p, t)
containing p as well as a patch R(p, t) centered at p. Furthermore for every pixel p in a
frame t we make a guess which position p′ in frame t′ depicts the same specimen portion.
We wish to produce an updated (target) value z(p, t) at position p in the frame at t from
source values y(q, t′) at positions q in the neighborhoods N(p′, t′) by computing

z(p, t) =

∑
t∈Tt

∑
q∈N(p′,t′)w(p, q, t, t′)y(q, t′)∑

t∈Tt

∑
q∈N(p′,t′)w(p, q, t, t′)

(2)

where Tt denotes a “time neighborhood” of t; that is a collection of timewise neighbor-
ing frames that are to be taken into account for the averaging process. Here the weights
w(p, q, t, t′) have the form

w(p, q, t, t′) := exp
{
−

dist
(
R(p, t), R(q, t′)

)2
λ2

}
, (3)

where λ is a data dependent filtering parameter.
The weights serve to quantify the similarity between two patches; the more similar two

patches are, the more likely it is that the two patches represent the same image portion and
consequently we give these pixels higher preference in the averaging process. The similarity
is derived from the distance dist

(
R(p, t), R(q, t′)

)
between two patches. The distance notion

is a crucial parameter of such a scheme. In particular, it allows us to incorporate knowledge
about data acquisition and special artifacts and build this into the distance formulation
through corresponding transforms applied to the patches. For instance, one could formulate
distance notions which are invariant under rotations or other rigid motions of the similarity
patches or even filter out the shearing effects which are due to the rastering process, see [11].
We postpone the discussion of this issue and are content for the time being with the perhaps
simplest version which views the patch R(p, t) as a vector of intensity values and applies the
Euclidean norm to compare two patches of half-size P :

dist
(
R(p, t), R(q, t′)

)
:= ‖R(p, t)−R(q, t′)‖22 =

∑
|r|∞≤P

(y(p+ r, t)− y(q + r, t′))2. (4)

A few comments on the rationale of such schemes are in order. Obviously, in principle, the
weight assigned to a source value y(q, t′) is larger as the distance between the corresponding
intensities for the respective patches is smaller, regardless of the spatial distance between the
respective pixel positions. Thus, in contrast to conventional averaging techniques, closeness
in the range is emphasized rather than in the domain, thereby enabling tracking of local
jitter (see Fig. 4). The search for similar patches is only limited by the search neighborhood
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Np. For denoising purposes Np is often chosen as the complete frame, i.e., similar patches are
deliberately searched for even in parts of the image that are spatially far away from the pixel
to be denoised. In this way self-similarities within the frame, provided by the near-periodic
structure of the specimens we are considering, are exploited. On the other hand, averaging
over too many patches, none of which exhibit a sufficiently high level of mutual similarity,
would cause blurring effects while significantly increasing the computational cost. Hence,
for faithful image reconstruction that aims at detecting local artifacts or extra-ordinary
features it is necessary to spatially restrict the search neighborhood as much as possible and
to compare only patches corresponding to the same specimen portion. This latter aspect,
however, can only claim priority once a motion-independent denoising process has sufficiently
improved the image quality so that spatial registration becomes feasible.

(a) (b) (c)

Figure 4: (a) patch around central pixel (in red); (b) neighborhood (in blue) of central
pixel hosting comparison patches; (c) support of weight function for the comparison patches
which equals the neighborhood in (b).

While the main issue is to get rid of noise caused by low dose, a limited range of increased
spatial resolution can be incorporated in the above framework as well. Concrete algorithms
for this task have been developed in [14], but for different types of images. Of course, a con-
crete scheme based on the above algorithm requires a proper specification of all parameters
(patch size/shape, spatial neighborhood size, time neighborhood size, filtering parameter,
distance notion). Many of these parameters are found experimentally. Later, during the
description of our results, we shall discuss some heuristics.

4.2 A Multi-Stage Algorithm

The preceding discussion already suggests using the nonlocal means averaging process in
several stages.

The First Stage: Single Frame Denoising
Recall that the warping that occurs during the image acquisition in HAADF STEM

may contain global and local translations, rastering distortion, local rotations, and so on.
The overall effect may grow over time and hamper the feature identification in subsequent
images. As mentioned earlier a very low signal to noise ratio, increasing distortions or beam
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damage in time as well as an unknown complex motion, lower the chance to find sufficiently
similar patches in different frames that are timewise far apart. Therefore, at the first stage
we employ only a a small time neighborhood Tt (usually consisting only of the frame t itself)
and a relatively large spatial neighborhood Np (usually the whole image) with a simple
distance notion such as (4). Actually, this stage is more in the nonlocal spirit of the original
NLM-algorithm from [3]. The basic idea of this denoising algorithm is to make use of self-
similarities within the image itself. As a result one obtains a new time series of smoothed
frames in which, however, signals within the micrograph that are not much stronger than
the noise level are typically smeared out since the averaging takes too many candidates into
account.

The Second Stage: Registration of Denoised Frames
However, the smoothed frames are now better suited for the application of global reg-

istration algorithms because the basic structure of the specimen, for instance the positions
and shapes of the pores become clearly visible and can reliably be identified. For the exper-
iments in the current work we use the mutual-information-registration code from [7]. This
code provides us with maps (p, t)→ (p′, t′) which are highly accurate so that one can choose
very small search neighborhoods in the third stage.

The Third Stage: Multi-Frame Image Formation - Averaging
Now it makes sense to employ more subtle distance notions adapted to the specific fea-

tures of STEM imaging. Namely, one can replace now the neighborhood Np × Nt, from
which (p′, t′) is selected, by a (smaller) search domain N (p, t) that properly takes the frame-
to-frame motion into account detected in the first two stages.

Alternative Third Stage: Multi-Frame Image Formation - Median Estimation
An interesting and important alternative to the NLM-type averaging in the multi-frame

denoising stage is to determine the target value z(p, t) by computing medians of source pixel
values. Median averaging minimizes the distance of the reconstructed image to the source
images in the l1-norm instead of a (weighted) l2-norm. It has the advantage of being more
robust against outliers. Specifically, we set

z(p, t) = median {y(q, t′)|t′ ∈ Tt, q ∈ N (p′, t′)} (5)

Again it is important to choose an appropriate size of the neighborhoods that are narrowed
in space and stretched in time.

In principle the three-stage process can be iterated further with improved similarity cri-
teria. One can gradually decrease the size of spatial neighborhoods while increasing time
neighborhoods so as to average eventually only image patches that correspond to each other.
It is important to stress though that these iterative passes will always apply to the original
data, just using upgraded information concerning the registration extracted from the inter-
mediate frames. In a way, such an iterative procedure may be viewed as gradually refining
the image formation in HAADF STEM and modeling the distortions encountered during the
imaging process. Moreover, from the possible change of the weights over time one may be
able to learn more about beam damage.
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Figure 5: Two samples from a time series of M1-catalyst micrographs.

4.3 M1 Catalyst Micrograph Formation

In the following we apply the program outlined above to a time series of micrographs of
the M1 catalyst. The original micrographs have 256× 256 pixels, two samples are shown in
Fig. 5.

In the first stage we take Np as the whole frame. To demonstrate the effect of choosing
the parameter λ, we repeat this process twice, both times using a patch size P = 2 but
with λ = 70, 000, λ = 100, 000 respectively. Choosing between these parameters is done by
inspection. A good guess can usually be derived from looking at the difference between the
denoised and the noisy image. Assuming that the noise is “white” good parameter settings
should give rise to difference images almost without visible structures, see Fig. 6.

A remark concerning the information displayed in the images is in order. The “images”
(or better: the data files) contain electron counts registered at the detector after amplification
and contain integer values between 0 and about 200,000. In order to display them as images,
they are individually scaled to the range [0, 255]. Intensity changes in the images shown
here have their explanation mostly in the fact, that different images might have different
maximum values and therefore are scaled differently.

Strictly speaking, the first denoising stage would not have even been mandatory, because
the movement of the specimen is generally very small for this particular time series. Within
13 consecutive frames no portion of the specimen moves more than 4 pixels. Therefore we
leave the discussion of the registration stage to the next section.

Finally, in Figs. 7 and 8 we form higher quality images using both a similarity driven
assembly and a median assembly with a time neighborhood of 11 frames.

In the first case 3 × 3 pixel spatial neighborhoods were searched, the similarity patches
had size 5 × 5 and the filtering parameter was set to λ = 80, 000. While the result in
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(a) λ = 70, 000 (b) residual for λ = 70, 000

(c) λ = 100, 000 (d) residual for λ = 100, 000

Figure 6: The first frame of the series denoised using the NLM-algorithm with two different
sets of parameters (λ = 70, 000, 100, 000). The right column shows the differences between
the denoised images and the originals. On the bottom row the pores are still clearly visible.
Therefore we dismiss this choice of parameters which indeed corresponds to the more blurry
denoising result.
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(a) NLM assembly of image (b) estimated noise with NLM

(c) median assembly of image (d) estimated noise with nonlocal median-based ap-
proach

Figure 7: Result of assembling 11 images using NLM and a nonlocal median-based approach.
The median-based image indicates less averaging out of possibly important information, but
its residual in (d) appears to have more unincorporated structure.

12



(a) upscaled NLM assembly of image (b) estimated noise with upscaled NLM

Figure 8: Result of assembling 11 images using upscaled NLM approach. The result is
visually better than the one in Fig. 7 (a) but is more blurred than the one in Fig. 7 (c) and
eventually misses some detail by smoothing the image too much.

Fig. 7 (a) is received using the standard NLM procedure, we have applied an upscaling
technique common in the NLM concept laid out in [14] to receive a better quality image in
Fig. 8 (a). However, the upscaling procedure tents to smooth the images which might be
an undesirable feature. In the median averaging procedure (shown in Fig. 7 (c)) only 2× 2
neighborhoods from each frame were included into the set of pixel values from which to take
the median. Images (b) and (d) in the figures show the respective scaled residuals of these
methods with frame 1. It should be mentioned that the Fourier transform of the assembled
images exhibit the same characteristics as those of the originals.

In general, it seems to us that faint signals, like the ones stemming from Te-atoms con-
tained in the pores (compare with Fig. 3), are more likely be detected by median-assembled
images. However, this is subject to further work and validation.

5 Zeolite Micrograph Formation

We conclude this paper with an application of the above strategy to a time series of zeolite
micrographs recorded at 2.5 · 106 magnification and taken with a dwell time of 7µs. Zeolites
are aluminosilicate materials which contain regular arrays of pores with sizes on the order
of many molecular species. They are important materials in a number of absorbtion and
catalysis applications. Unfortunately, zeolites are well known to be susceptible to struc-
tural collapse under electron beam irradiation. Of key interest for many researchers is the
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Figure 9: Three original frames: numbers 1, 5, and 8 from the series

Figure 10: Enlarged rendering of an original zeolite frame 1
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arrangement and sizes of the pores in zeolites which are difficult to image via STEM[12].
The original frames have 1024 × 1024 pixels, but since the multilevel registration code

used in stage 2 is more efficient if the pixel width is of the form 2l + 1 we cropped the upper
left quarter of the images, so that we really work with 513×513 frames. In Fig. 9 we see the
first, fifth and eighth frame from this series, and in Fig. 10 an enlarged version of the first
frame is shown to present more details. The specimen is wedge-shaped and becomes thicker
towards the right side of the image, which expresses itself with increasing intensity values.
In the time series one sees that the specimen shifts to the right. Additionally, material is
destroyed at the boundary of the wedge.

Stage 1 - In-frame denoising: In this case, denoising before registration is indeed necessary
because the originals are too noisy to permit a reliable motion tracking and the deformations
occur on a large scale. Fig. 11 shows three denoised frames and Fig. 12 shows an enlarged
version of the denoised frame 1.

Figure 11: NLM within-frame denoised images for the frames shown in Fig. 9

Stage 2 - Registration: In the second stage we use the denoised frames to register the move-
ment between consecutive frames. For this task we use the mutual-information code by
Benjamin Berkels [1, 7]. This code returns for each pixel the information to what position
(in fractions of a pixel) in the previous frame it corresponds. The difficulty for the regis-
tration is that the rows of the pores look very similar and can easily be confused with each
other. The boundary of the specimen is also not a reliable anchor because it degenerates
from frame to frame. In Fig. 13 the registration map was used to map consecutive frames
onto each other (by some interpolation technique). These maps are also used to validate the
correctness of the registration. The images shown here are almost perfectly matched with
the frames shown in Fig. 11 if they are superimposed.

Stage 3 - Assembly and Estimation: By composing the maps generated during the registra-
tion we can deduce which pixel in the frames 2-9 corresponds to a given pixel in frame 1.
We use this information to denoise frame 1, again trying both alternatives (2) and (5).

For the similarity driven assembly we employ 3 × 3-pixel and for the median assembly
2 × 2 neighborhood windows. The results are shown in Figs. 14 and 15. Note that in the
lower right corner hardly any denoising could be done, because the corresponding pixels
have shifted out of the other frames. Here, the median assembly reveals much more details
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Figure 12: Enlarged rendering of within-frame denoised frame 1

16



Figure 13: Three examples of the registration: frame 2 mapped onto frame 1, frame 5
mapped onto frame 4 and frame 9 mapped onto frame 8.

than the similarity driven average. The primary pore structure was resolved in even the
individual noisy low-dose frames, but following the median assembly, most of the secondary
pore structure becomes visible over much of the final assemblage. The in-frame denoised
image shows more structure than the NLM time average, probably because it uses much
more suitable candidates for averaging due to the ongoing structural collapse of the material
upon continued electron irradiation.

Stage 4 - Deblurring: Ideally, it finally remains to deblur the processed images. On one hand,
one can try to bring in additional information, for instance, using advanced models for STEM
image acquisition. On the other hand, sparse recovery techniques suggest themselves for the
corresponding regularization task. Since this concerns work in progress we do not address
this issue here any further.

6 Conclusion

We have sketched a new approach to processing STEM images so as to obtain higher quality
information from time series of low resolution/low dose frames. Current research focuses
on analyzing the effects and identifying suitable choices of the involved scheme parameters.
The scheme will then be applied to more and more beam sensitive materials beginning
with zeolites. Moreover, we emphasize that the method offers various diagnostic tools.
For instance, the variation of the weights over time may shed some light on beam damage
mechanisms and their causes. Applying the weights to simple grid test patterns helps to
visualize the motion of the specimen during the imaging process for a better understanding.

Acknowledgement. The authors would like to thank Amit Singer and Yoel Shkolnisky for
interesting discussions and for introducing them to the method of nonlocal means. We are
also indebted to Benjamin Berkels for making his image registration code available to us.
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Figure 14: Enlarged rendering of NLM-denoised frame 1, in which the averaging is done only
with corresponding registered data in the series of frames.
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Figure 15: Enlarged rendering of denoised frame 1 using the alternative approach by taking
medians of registered frames in the series.
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