
Fast Computation of Adaptive Wavelet Expansions ∗

A. Barinka†, W. Dahmen†, and R. Schneider‡

August 4, 2004

Abstract

In this paper we describe and analyze an algorithm for the fast computation of sparse wavelet
coefficient arrays typically arising in adaptive wavelet solvers. The scheme improves on an ear-
lier version from [17] in several respects motivated by recent developments of adaptive wavelet
schemes. The new structure of the scheme is shown to enhance its performance while a com-
pletely different approach to the error analysis accommodates the needs put forward by the
above mentioned context of adaptive solvers. The results are illustrated by numerical experi-
ments for one and two dimensional examples.
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1 Introduction

During the past few years the design and analysis of adaptive wavelet techniques has undergone a
rapid development. In particular, this concerns the theoretical understanding of convergence and
complexity estimates for a new algorithmic paradigm [6, 7, 8, 9, 12]. These results bring now also
new demands on computational tools into focus which try to exploit to the best possible extent
the (near) sparseness of wavelet representations of functions and operators.

The central theme is the development of computational schemes that are capable of solving
a given problem at a computational expense that stays proportional to the number of degrees of
freedom that are intrinsically needed to achieve a desired target accuracy. In the context of the
above mentioned adaptive schemes this boils down to a computational task that will be outlined
next, see also [8].

1.1 Problem Formulation

The central problem treated in this paper will be explained now in a sufficiently general format
in order to accommodate later several different cases of interest. In the following H will always
denote a given Hilbert space which plays, for instance, the role of an energy space for a variational
problem. One should think of H, for instance, as L2(Ω), Ω a domain or manifold, or as a (closed
subspace of a) Sobolev space (defined e.g. by homogeneous boundary conditions) or a product of
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such spaces. The space of bounded linear functionals on H, the normed dual of H, is denoted by
H′. The dual pairing 〈·, ·〉 on H×H′ is always tacitly be assumed to be induced by the standard
L2-inner product on the underlying domain Ω. As usual we set ‖w‖H′ := sup‖v‖H≤1〈v, w〉.

Suppose now that
Ψ = {ψλ : λ ∈ J } ⊂ H

is a Riesz basis for H, which means that there exist constants cΨ, CΨ such that

cΨ‖v‖`2 ≤ ‖
∑

λ∈J

vλψλ‖H ≤ CΨ‖v‖`2 , ∀ v ∈ `2. (1.1)

Here v = (vλ)λ∈J is for any v ∈ H the array of coefficients in the unique expansion v =
∑

λ∈J vλψλ. Bases Ψ satisfying (1.1) for the above mentioned examples of H are available as
wavelet bases, see e.g. [4, 5, 15, 16, 11].

The central problem treated in this paper can be formulated as the following recovery Task
R which has two parts:

Task R1: Given g ∈ H′ and some finite subset T ⊂ J of indices, compute an array

w supported in T that approximates gT := (gλ)λ∈T := (〈ψλ, g〉)λ∈T .

Task R2: Moreover, whenever for a given target accuracy ε > 0 the truncation

error satisfies ‖g − g(T )‖`2 ≤ ε, the approximation w should satisfy for some fixed

constant C ‖g(T ) − w‖`2 ≤ Cε, i.e. the approximation error should be comparable

to a given bound for the truncation error.

To understand this task, recall that the Riesz basis property of Ψ implies the existence of a
dual basis Ψ̃ ⊂ H′ such that 〈ψλ, ψ̃µ〉 = δλ,µ. Thus, the gλ = 〈ψλ, g〉 are the expansion coefficients
of g ∈ H′ with respect to the dual basis

g =
∑

λ∈J

〈ψλ, g〉ψ̃λ.

Moreover, a duality argument yields (see e.g. [13])

C−1
Ψ ‖(〈ψλ, w〉)λ∈J ‖`2 ≤ ‖w‖H′ ≤ c−1

Ψ ‖(〈ψλ, w〉)λ∈J ‖`2 , ∀ w ∈ H′. (1.2)

Hence
‖w − gT ‖`2 ≤ CΨ‖

∑

λ∈T

wλψ̃λ −
∑

λ∈T

gλψ̃λ‖H′ , (1.3)

i.e. the accuracy of w as an approximation to gT is controlled by an approximation error for the
truncated expansion gT :=

∑

λ∈T gλψ̃λ in H′.
As will be seen later, the approximation of the finite array gT is often just a vehicle for

fabricating an approximation to the whole infinite array g. The rationale then is that, from
some background information, the set T is known to contain the most significant terms 〈ψλ, g〉
of the whole expansion. Since, due to the norm equivalences, accuracy is measured in `2, “most
significant” means here the largest in modulus. The relevant error is then controlled by

‖w − g‖`2 ≤ CΨ‖
∑

λ∈T

wλψ̃λ −
∑

λ∈T

gλψ̃λ‖H′ + ‖g − gT ‖`2 , (1.4)

which explains Task R2. In fact, ideally the approximation error of the finite expansion in the
first term should be at most of the same order as (a bound for) the prediction error in the second
term.
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1.2 Some Background and Motivation

One might think of many situations where the computation of wavelet coefficients is needed. In
particular, the problem of computing sparse wavelet expansions (or nonlinear composition of such)
has been addressed in earlier investigations, see e.g. [19, 20, 18, 3]. However, the results obtained
there (with varying level of rigor) do not quite seem to meet the requirements mentioned above.
The considerations in the present paper are guided primarily by the following two scenarios whose
brief description may help identifying the particular computational demands and motivates Task
R.

L2-approximation: The first case concerns simply H = L2(Ω) (assuming that a wavelet basis is
available). Thus H′ = H = L2(Ω) and the objective is to approximate g in L2(Ω) by some finite
expansion

∑

λ∈T wλψ̃λ (where the role of primal and dual basis does not matter). By (1.3), the
accuracy of the coefficient array is comparable to the approximation error in L2 which will later
be seen to simplify matters and is essentially the situation considered in [17].

Dual norms: The second scenario typically involves topologies where H is compactly embedded
in L2(Ω) such as a Sobolev space of positive order. A corresponding model problem may be
formulated as follows, see [8] for more details. Given Ω ⊂ Rd, consider

−div(a∇u) +G(u) = f in Ω, u = 0 on ∂Ω, (1.5)

where G : v 7→ G◦v = G(v) is a possibly nonlinear composition map and a is a (possibly variable)
uniformly positive definite matrix. For this problem to be well-posed it helps looking at the weak
formulation

〈∇v, a∇u〉 + 〈v,G(u)〉 = 〈v, f〉, v ∈ H, (1.6)

where now H is to be chosen suitably. Clearly the leading second order term suggests H = H 1
0 (Ω)

(the space of L2-functions on Ω whose first order derivatives are also in L2 and whose trace on
∂Ω vanishes). Thus we require that G maps H = H1

0 (Ω) into H′ = H−1(Ω) so that (1.6) makes
sense whenever the data f belong to H′ = H−1(Ω) as well. The general format of such problems
can be stated as follows. Given F : H → H′ and any f ∈ H′ we wish to find a u ∈ H such that

〈v, F (u)〉 = 〈v, f〉 ∀ v ∈ H, (1.7)

where this problem is assumed to be well-posed in the sense that the local linearization of F defines
in a neighborhood of a locally unique solution u an isomorphism from H onto H ′, [8, 9] (see also
[10]). In the above example it is not hard to confirm well-posedness when G is monotone so that
(1.6) is the Euler-Lagrange equation of a strictly convex minimization problem. For instance,

G(v) := v3 =⇒ G : v 7→ G(v), G : H1
0 (Ω) → H−1(Ω), for d ≤ 3. (1.8)

To explain how Task R fits into this context we briefly recall the main ideas from [8], see also
[10]. The strategy proposed there deviates from conventional approaches in that the problem is
first transformed with the aid of the basis Ψ into an equivalent one that lives now on `2. In fact,
testing both sides of F (u) = f with all basis functions ψλ, λ ∈ J generates for u =

∑

λ∈J uλψλ
the arrays F(u) = (〈ψλ, F (u)〉)λ∈J , f = (〈ψλ, f〉)λ∈J so that (1.7) is equivalent to

F(u) = f , (1.9)

where u is the array of wavelet coefficients of u with respect to the Riesz basis Ψ for H. Moreover,
one derives from the Riesz basis property and the above mentioned well-posedness that (1.9) is
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now well-posed in `2. This means that its local linearizations are boundedly invertible on `2. This
in turn, can be used to contrive an iteration

un+1 = un −Cn(F(un) − f), n = 0, 1, 2, . . . , (1.10)

where the (infinite) matrix Cn is a preconditioner, so that (for a suitable initial guess u0 with u0

in some neighborhood U of u) the error is reduced in each step by at least a fixed factor ρ < 1,
i.e.

‖u − un+1‖`2 ≤ ρ‖u− un‖`2 , n = 0, 1, 2, . . . . (1.11)

Only then one addresses a numerical realization by carrying out such an iteration approximately.
The key task is then to evaluate adaptively for a given finitely supported input array v the image
F(v) within some dynamically updated accuracy tolerance. Such an evaluation hinges on two
pillars, namely first the a-posteriori information on the given input v (i.e. the knowledge of the
significant coefficients in v) and, second, the a-priori information on the mapping F , viz. F. Aside
from the norm equivalences (1.1), at this point a second key feature of wavelet bases namely the
cancellation properties often expressed in terms of vanishing moments, come into play see [9]. This
will allow one then to predict the indices hosting the significant coefficients of the image F(v).
(The prediction set T will actually in general not be completely arbitrary but will have some tree
structure as will be explained later, see [9]). The structure of such an evaluation scheme looks
therefore as follows:

(I) Given an η-significant set of indices Tη(v) for v, i.e. ‖v − v|Tη(v)‖`2 ≤ η, predict a possibly
small set of indices T = Tη(F,v) such that for a fixed constant C

‖F(v) − F(v)|T ‖`2 ≤ Cη. (1.12)

(II) Compute an approximation wη such that

‖F(v)|T −wη‖`2 ≤ Cη. (1.13)

Thus here we have g = F (v) ∈ H′ and the set of significant coefficients identified by the index set
T is known here from the prediction in step (I). For the concrete construction of asymptotically op-
timal prediction sets for a certain class of linear and nonlinear operators F (of at most polynomial
growth at infinity) we refer to [9]. In brief it means that, given a target accuracy ε > 0, one can
predict an ε-significant tree T = Tε such that ‖g − g(T )‖`2 ≤ ε while the cardinality of Tε grows
with decreasing ε at some optimal rate. In [8] the precise requirements on the approximation of
F(v) have been identified under which the overall adaptive scheme has asymptotically optimal
complexity, see the notion of s∗-sparsity in [8]. Together with the above mentioned prediction
results these requirements are met whenever Task R is fulfilled.

Therefore we focus in this paper on step (II) which is exactly Task R. It will be important that
the accuracy in the `2-error (1.12) is here related to the accuracy of the corresponding functions
(or distributions) in H′, due to the above mentioned mapping properties of F .

Of course, in order to benefit from the ability of the above schemes to optimally track the
significant coefficients of the unknown solution, one would like to compute the entries of w in a
possibly efficient way which means at a computational cost (in terms of floating point operations
and storage manipulations) that ideally stays proportional to #T . Moreover, one has to assert
the accuracy of such computations e.g. via estimates like (1.4).

A first natural idea would be to compute each individual quantity 〈ψλ, g〉 by quadrature.
However, a quick thought confirms that this would never allow one to keep the above desirable
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computational budget. In fact, the coarse scale wavelets give rise to integration domains that are
comparable to the size of Ω and each of these entries would require a growing quadrature effort
with increasing accuracy. In addition wavelets from different scales still interact.

Instead we shall pursue a different strategy and take up an idea suggested already in [17].
There an analytic framework has been proposed that facilitates complexity estimates also for those
situations where the sparseness of wavelet expansions is significant and prohibits transformations
to more local single scale representations.

The work in this paper improves on these earlier findings in several respects. First, on the
algorithmic side, we shall develop and analyze here a new scheme which differs from that in
[17] in important points. It has a much simpler structure and offers a significant quantitative
improvement of performance and storage demands. The main point is that in [17] at some point a
full usually pessimistically large prediction index set had to be assembled and allocated. Moreover,
approximate coefficients were generated through a coarse-to-fine-to-coarse sweep. This is avoided
in the new scheme which generates the significant inner products in a single sweep from fine to
coarse. This results in an overall more simply structured algorithm with less subroutines and
reduced storage demands.

Second, we present here a different approach to the complexity analysis which addresses the
demands put forward by the above mentioned recent developments of adaptive wavelet methods.
The major deficiencies of the approach in [17] can be summarized as follows. The error analysis
relied on relating the accuracy of the computed entries to an approximation error of a function
approximation in L2. As pointed out above, in the context of adaptive schemes the role of L2 is
played by the dual H′ of an energy space, typically a Sobolev space of negative order. We shall
explain later in Section 3 in more detail why, in spite of norm equivalences induced by scaling
wavelet bases, this poses a serious obstruction. Moreover, the error analysis in [17] worked under
the assumption that local polynomial errors (caused by quadrature) are essentially equibalanced,
a fact that can generally not be guaranteed in the context of interest. Finally, the regularity
assumptions which the error analysis in [17] was based upon are not quite compatible with the
demands of the above mentioned developments.

1.3 The Layout

The layout of the paper is as follows. At first, we collect a few wavelet prerequisites and introduce
the notion of index-trees in Section 2, which will play a pivotal role for the recovery scheme.

Section 3 is devoted to an outline of the basic strategy of our approach as well as to the
introduction of our main computational scheme Recover.

Section 4 is devoted to accuracy considerations for the two scenarios indicated above. The
main focus is on the balance between the truncation and quadrature error. After indicating briefly
a range of cases where the quadrature error can (in principle) be made zero, we turn to the general
situation where quadrature effects need to be accounted for. We address briefly the first scenario
of L2-approximation and relate the results to previous work in [17]. The second scenario involving
dual norms deserves more care. We shall first explain the principal difficulties arising in connection
with an error analysis which is compatible with Task R. The subsequent discussion in Section 5
is then to identify suitable quadrature strategies satisfying Task R. The main objective here is
to understand the essential ingredients which would have to be quantified and made more precise
in any concrete application.

These asymptotic considerations are complemented by some numerical one- and two-dimensional
experiments in Section 6 that are to shed more light on the quantitative performance of the scheme.

For realization details concerning some core steps of Recover in the case of cardinal B-spline
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wavelets, we refer to an extended version of this paper [2].

2 Some Wavelet Prerequisites

Meanwhile several constructions of wavelet bases for nontrivial domain geometries are available,
see e.g. [4, 5, 15, 16, 11]. We only recall briefly the main features that are relevant in the present
context and refer to the original literature for further details.

2.1 Norm Equivalences

We shall make heavy use of the fact that rescaling a single pair of anchor bases for L2(Ω) provide
Riesz bases for a whole range of smoothness spaces. Thus, corresponding constructions aim at
providing first a dual pair of biorthogonal wavelet bases

Θ = {θλ : λ ∈ J }, Θ̃ = {θ̃λ : λ ∈ J },

which form Riesz bases in L2(Ω). Recall that this means that there exist constants cΘ, CΘ such
that for every v ∈ L2(Ω)

cΘ‖(〈θ̃λ, v〉)λ∈J ‖`2 ≤ ‖v‖L2(Ω) ≤ CΘ‖(〈θ̃λ, v〉)λ∈J ‖`2 ,

C−1
Θ ‖(〈θλ, v〉)λ∈J ‖`2 ≤ ‖v‖L2(Ω) ≤ c−1

Θ ‖(〈θ̃λ, v〉)λ∈J ‖`2 .
(2.1)

Here J is the set of indices λ which usually encode the scale j = j(λ) = |λ|, the location k = k(λ)
and type of the wavelet. Clearly, one has Θ = Θ̃ in the case of orthonormal bases. Such wavelet
bases are usually constructed with the aid of a multiresolution analysis which means (in the
case of biorthogonal wavelets) two sequences S := {Sj}j∈N0 and S̃ = {S̃j}j∈N0 of nested spaces
Sj ⊂ Sj+1, S̃j ⊂ Sj+1. These spaces are usually defined as the span of corresponding generator
bases Φj = {φλ : λ ∈ Ij}, i.e., denoting for any finite collection Θ of functions by S(Θ) their linear
span, Sj = S(Φj) and likewise S̃j = S(Φ̃j).

Nestedness of the spaces can then be expressed by a two-scale or refinement relation which
says that any coarse scale basis function can be written as a linear combination of the fine scale
basis function. Viewing the basis Φj as a vector, this can be written as

ΦT
j = ΦT

j+1Mj,Φ, Φ̃T
j = Φ̃T

j+1Mj,Φ̃, (2.2)

where the λ-th column of Mj,Φ consists of the mask of φλ. Biorthogonality of the generators, i.e.
〈φλ, φ̃µ〉 = δλ,µ, λ, µ ∈ Ij, implies

Mj,Φ
TMj,Φ̃ = I. (2.3)

One then looks for complement spaces Wj, W̃j such that Sj+1 = Sj ⊕Wj and S̃j+1 = S̃j ⊕ W̃j

with
W̃j ⊥ Sj, Wj ⊥ S̃j. (2.4)

Wavelets are now obtained as bases for these complements Wj = S(Θj) and W̃j = S(Θ̃j), where
Θj = {θλ : λ ∈ Jj}, Θ̃j = {θ̃λ : λ ∈ Jj} respectively. Again since Θj ⊂ Sj+1 and Θ̃j ⊂ S̃j+1 there
must exist (#Ij+1) × (#Jj)-matrices Mj,Θ, and Mj,Θ̃ such that

ΘT
j = ΦT

j+1Mj,Θ, Θ̃T
j = Φ̃T

j+1Mj,Θ̃. (2.5)

Again biorthogonality (2.4) gives
Mj,Θ

TMj,Θ̃ = I. (2.6)
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Now we can set
Θ = Φ0

⋃

j∈N0

Θj, Θ̃ = Φ̃0

⋃

j∈N0

Θ̃j ,

to obtain a pair of biorthogonal multiscale bases.
To describe the decomposition and synthesis operations, we need the inverses of the comple-

mented matrices Mj := (Mj,Φ,Mj,Θ), M̃j := (Mj,Φ̃,Mj,Θ̃), respectively,

Gj :=

(

Gj,Φ

Gj,Θ

)

:= Mj
−1, G̃j :=

(

Gj,Φ̃

Gj,Θ̃

)

:= M̃j
−1. (2.7)

Note that, by (2.3), (2.6),

Gj,Φ := Mj,Φ̃
T , Gj,Θ := Mj,Θ̃

T , Gj,Φ̃ := Mj,Φ
T , Gj,Θ̃ := Mj,Θ

T . (2.8)

In particular, (2.7) implies
Φ̃T
j+1 = Φ̃T

j Gj,Φ̃ + Θ̃T
j Gj,Θ̃, (2.9)

expressing fine scale generator basis function as linear combinations of coarse scale basis functions
and wavelets. In the above mentioned constructions all two scale matrices are uniformly sparse
in the sense that all rows and columns of the Mj,Gj , M̃j , G̃j have a finite uniformly bounded
number of non-vanishing entries, see [2]for details in the special case of cardinal B-spline wavelets.

Given such a dual pair of L2-anchor bases one can generate a whole scale of bases for other
function spaces reflecting for instance different scales of smoothness. The most prominent example
are Sobolev spaces Hs for some range s ∈ (−γ̃, γ) (where for s < 0 we define H s = (H−s)′ by
duality) but other variants of energy spaces such as ‖v‖2

H = ν‖∇v‖2
L2(Ω) + ‖v‖2

L2(Ω) are covered as

well [13]. Here Hs stands for Hs(Ω) or for a closed subspace of Hs(Ω) defined e.g. by homogeneous
boundary conditions. In this case a suitable diagonal scaling of an L2 basis yields one for a Sobolev
space. Therefore we shall assume in the sequel that the Riesz basis Ψ for the relevant Hilbert
space H is obtained through scaling an L2-basis, i.e.

ψλ := ωλθλ, ψ̃λ := ω−1
λ θ̃λ, λ ∈ J , (2.10)

and there exist constants cΨ, CΨ such that

cΨ‖(〈ψ̃λ, v〉)λ∈J ‖`2 ≤ ‖v‖H ≤ CΨ‖(〈ψ̃λ, v〉)λ∈J ‖`2 , v ∈ H

C−1
Ψ ‖(〈ψλ, v〉)λ∈J ‖`2 ≤ ‖v‖H′ ≤ c−1

Ψ ‖(〈ψ̃λ, v〉)λ∈J ‖`2 , v ∈ H′.
(2.11)

Note that the scaling can be easily incorporated directly in the two scale relations. Let
Dj := diag (ωλ : λ ∈ Jj). We immediately infer from (2.5) that

ΨT
j = ΦT

j+1Mj,Ψ, Mj,Ψ := Mj,ΘDj . (2.12)

Since by (2.10) Ψ̃T
j = Θ̃T

j D
−1
j we infer from (2.9)

Φ̃T
j+1 = Φ̃T

j Gj,Φ̃ + Ψ̃T
j Gj,Ψ̃, where Gj,Ψ̃ := DjGj,Θ̃. (2.13)
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2.2 Tree-Structures

What is important in our context is the fact that one can in all presently known cases associate
with J a tree structure. In general one can (not necessarily in a unique way) assign a collection
of a uniformly bounded number of wavelets on level |λ| = j + 1 to a parent wavelet on the
preceeding level |λ| = j. This can be made more specific for the above quoted constructions
based on patching together parametric liftings of tensor product bases on the unit cube. For each
parametric patch the indices have a structure similar to that for wavelets on the full Euclidean
space, i.e. λ = (|λ|,k, e) where k = k(λ) is a multi-index encoding the spatial location and
e = e(λ) ∈ {0, 1}d \ 0 refers to the type of the wavelet. The index sets Jj identify the true
wavelets ψλ, |λ| = j, e(λ) 6= 0, on level j. The type e = 0 is always reserved to the scaling
functions and we will therefore identify (j,k,0) with λ◦ = (j,k), |λ◦| = j,k(λ◦) = k. The set of
scaling function indices (j,k) on level j is denoted by Ij while I denotes the union of these sets
over all levels.

For all the constructions mentioned earlier one can associate with λ◦ = (j,k) a support cell
2λ◦ with the property 2λ◦ ⊆ suppψλ, |λ| = j, k(λ) = k. Moreover the Pj := {2λ◦ : λ◦ ∈ Ij}
shall form a hierarchy of nested partitions of Ω, i.e. Ω̄ =

⋃

λ◦∈Ij
2λ◦ and each 2λ◦ is an essentially

disjoint union of support cells of level |λ|+ 1. In the simplest case of translation invariant scaling
functions the support cells have the form 2j,k := 2−j(k + [0, 1]d).

In what follows, we will often identify λ ∈ J with the support cell 2λ◦ and by Λ◦ we will
denote the index-set of support cells associated with the set of indices in Λ ⊂ J . We will make
use of the fact, that Λ◦ ⊂ I. Note, that except for the case of Haar-wavelets, 2λ◦ ( suppψλ and
that the difference grows with the order of the wavelets.

The hierarchy of nested partitions Pj induces a natural tree structure with respect to set
inclusion. Whenever 2µ◦ ⊂ 2λ◦ we say that µ◦ is a descendant of λ◦ which we express by
µ◦ � λ◦. When equality is permitted we write µ◦ � λ◦. Conversely λ◦ is called an ancestor of µ◦,
which will be denoted by λ◦ ≺ µ◦ (or λ◦ � µ◦). When |λ◦| = |µ◦| − 1, µ◦ is called a child of λ◦

and λ◦ is referred to as the parent of µ◦.
A subset Λ ⊂ I is called a tree if for each λ◦ ∈ Λ with |λ◦| > j0 also its parent belongs to Λ.

It will greatly simplify data structures when a tree is complete in the sense that whenever λ◦ ∈ Λ
implies that all the siblings of λ◦ also belong to Λ. We shall work in what follows exclusively with
complete trees.

The tree structure of I induces a tree-like structure in J by saying that T ⊂ J has tree
structure if T ◦ is a tree in the above sense. Note that therefore λ ∈ T implies that all µ ∈ T with
|µ| = |λ| and k(µ) = k(λ). We shall again refer to this property as completeness and call also the
set T (in slight abuse of terminology) a (complete) tree.

Recall that the set of leaves of a tree T ◦ ⊂ I consists of those λ◦ ∈ T ◦ which belong to T ◦

but none of their children are in T ◦. We shall have to deal also with the set ∂T − of outer leaves
of T ◦ which consists of those λ◦ 6∈ T ◦ whose parent is in T ◦. It is easy to see that the set of outer
leaves ∂T − forms a partition of Ω consisting of support cubes. Hence the span of wavelets from
a complete tree T ⊂ J are associated in a natural way with a locally refined mesh, namely ∂T −.
Thus the adaptation potential offered by spans of wavelets whose indices form a complete tree is
comparable to trial spaces on locally refined meshes, cf. [8, 9, 10].
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3 The Recovery Scheme

We address now Task R1 from Section 1.1. Recall that T denotes always a complete finite tree.
We wish to compute a sequence w = (wλ)λ∈T with suppw ⊆ T that approximates the array

g(T ) := (〈ψλ, g〉)λ∈T .

Recall that the entries 〈ψλ, g〉 are the wavelet coefficients of g =
∑

λ∈J 〈ψλ, g〉ψ̃λ with respect

to the dual basis Ψ̃ whose projection to the span of Ψ̃T := {ψ̃λ : λ ∈ T } is denoted by gT =
∑

λ∈T 〈ψλ, g〉ψ̃λ. Since 〈ψλ, g〉ψ̃λ = 〈θλ, g〉θ̃λ it suffices to compute the array

d(T ) = (〈θλ, g〉)λ∈T = (〈θλ, gT 〉)λ∈J ,

to obtain
g(T ) = DT d(T ), DT := diag (ωλ : λ ∈ T ). (3.1)

3.1 Motivation and Main Idea

The scheme we are going to develop next is based on the coefficients 〈ψλ, g〉, λ 6∈ T , being
presumably small in a sense that will be made more precise later. Specifically, we shall at this
point only make use of the fact (to be established later) that quadrature errors are small on
supp φ̃j,k whenever 2j,k is a support cell whose index belongs to ∂T −, the set of outer leaves of
T ◦. Recall that the support cells associated with ∂T ◦, form a partition of Ω. On account of these
accuracy considerations we shall speak of safe approximations/quadrature whenever it applies to
the quantities 〈φj,k, g〉 for (j,k) 6∈ T ◦.

We shall explain next how to use this in order to compute correspondingly accurate approx-
imations of all 〈Θλ, g〉 (resp. 〈Ψλ, g〉), λ ∈ T . We deliberately postpone a detailed discussion of
accuracy issues and focus first on the computational ingredients.

We shall abbreviate in the following cj,k := 〈φj,k, g〉 for (j,k) ∈ Ij, and dλ := 〈Θλ, g〉, λ ∈ J ,
and write for any subset G of Ij or of J briefly

cj(G) := (cj,k : (j,k) ∈ G), d(G) := (dλ : λ ∈ G),

where we simply set cj = cj(Ij), dj := d(Jj). In terms of these coefficients (2.5) takes, upon
using the two-scale relations (2.2), (2.5), the form

Θ̃T
j dj = Φ̃T

j+1Mj,Θ̃dj = Φ̃T
j+1(cj+1 −Mj,Φ̃cj), (3.2)

whence we conclude that
cj+1 −Mj,Φ̃cj = Mj,Θ̃dj. (3.3)

We shall employ the canonical projectors

Pjw :=
∑

k∈Ij

〈φj,k, w〉φ̃j,k =
∑

k∈Ij

cj,kφ̃j,k (3.4)

and exploit the fact that (Pj+1 − Pj)w =
∑

λ∈Jj
〈Θλ, w〉Θ̃λ.

To point out the significance of (3.3), it will be convenient to introduce some further notation.
Let Tj := T ∩ Jj denote the set of elements in T of level j and let J = max {j ≥ j0 : Tj 6= ∅} the
highest level appearing in T . If dj is supported on Tj, (3.3) says that the array cj+1 − Mj,Φ̃cj
vanishes outside the union of the columns of Mj,Θ̃ selected by Tj.
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Remark 3.1 Denoting for λ ∈ I ∪Jj by M̃j
|λ, G̃j

λ the λ-th column of M̃j, respectively the λ-th
row of G̃j, and defining Gj+1 ⊂ Ij+1 by

Gj+1 :=
⋃

λ∈T ◦
j

suppM̃j
|λ ∪

⋃

λ∈T ◦
j

supp G̃j
λ, (3.5)

one concludes from (3.3) that, whenever suppdj ⊆ Tj, one has

(cj+1 −Mj,Φ̃cj)(Ij+1 \ Gj+1) = 0. (3.6)

Relation (3.6) means that if we approximate the values of cj+1 and cj only for a subset of indices,
such truncated arrays combined via (3.3) cause no error outside a certain finite set of indices. The
following considerations aim at exploiting this fact systematically. To this end, one derives from
(2.9) that

Φ̃T
j+1cj+1 = Φ̃T

j Gj,Φ̃cj+1 + Θ̃T
j Gj,Θ̃cj+1 = Φ̃T

j cj + Θ̃T
j dj, (3.7)

so that
cj = Gj,Φ̃cj+1, dj = Gj,Θ̃cj+1. (3.8)

We wish to compute now as few scaling function coefficients as possible in order to generate in
a reliable way the arrays d(Tj) of non-vanishing wavelet coefficients. This requires taking the
truncation effects in the two-scale relations into careful account. First, note that, by the second
relation in (3.8), we only need to know cj+1(Gj+1) to determine dj(Tj) because only the rows

G̃j
λ with λ ∈ Tj are required and they are all supported in Gj+1. Likewise, the first relation in

(3.8) says by the same reasoning that cj (T
◦
j ) is accurately determined from cj+1(Gj+1). So we can

think of cj(T
◦
j ) being obtained from accurate data on level j + 1 through (3.8). The remaining

coefficients cj(Ij \ T
◦
j ) need to be computed independently. So, splitting cj into those two parts

in (3.7), provides, upon making use of (2.2),

Φ̃T
j+1

(

cj+1 −Mj,Φ̃cj(Ij \ T
◦
j )

)

= Φ̃T
j (Gj,Φ̃cj+1)(T

◦
j ) + Θ̃T

j dj(Tj). (3.9)

As immediate consequence of (3.6), this tells us, that Relation (3.9) remains valid when the full
array cj+1 and the array Mj,φ̃cj(Ij \ T

◦
j ) are restricted to Gj+1, i.e.

Φ̃T
j+1

(

cj+1(Gj+1) − (Mj,Φ̃cj(Ij \ T
◦
j ))(Gj+1)

)

= Φ̃T
j (Gj,Φ̃cj+1)(T

◦
j ) + Θ̃Tdj(Tj). (3.10)

Applying now Gj,Φ̃ to the array cj+1(Gj+1) − (Mj,Φ̃cj(Ij \ T ◦
j ))(Gj+1) yields by (3.8) the safe

coefficients (Gj,Φ̃cj+1)(T
◦
j ) and applying Gj,Θ̃ yields dj(Tj), provided the partial array cj+1(Gj+1)

is safe. Moreover, we do not need all of cj (Ij \ T
◦
j ) but only cj(Gj \ T

◦
j ) because, by the above

reasoning these are the only relevant coefficients for the next lower level. The main point conveyed
by these observations is that, computing only the entries cj+1(Gj+1) and also a suitable truncation
of cj on the next lower level, these truncated arrays suffice to represent cj+1 −Mj,Φ̃cj exactly on
all of Ij+1 whenever dj is supported in Tj. This motivates us to express expansions in terms of
quantities like cj+1 −Mj,Φ̃cj . In fact, we can write in view of (3.9),

PT g := Pj0g +

J
∑

j=j0

(Pj+1 − Pj)g =

J+1
∑

j=j0+1

Φ̃T
j

(

cj(Ij \ T
◦
j ) −Mj−1,Φ̃cj−1(Ij−1 \ T

◦
j−1)

)

. (3.11)
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Hence, in order to derive all necessary information within suitable accuracy tolerances, we only
have to take into account G−

j := Gj \ T
◦
j , j ≤ J, and G−

J+1 = GJ+1.

Main idea: The idea now is to compute the arrays cj (G
−
j ) by quadrature. Since quadrature is

therefore applied only at places where local truncation errors are small one can hope that a fixed
quadrature order, independent of the scale, suffices. This gives rise to the scheme described in the
next section.

Note that the above reasoning remains unchanged when the sets Gj are replaced by somewhat
larger sets. We shall point out in [2] that such supersets are efficiently and easily obtained for
an important class of wavelet constructions. So employing for the purpose of analysis the exact
format of the sets G from (3.5) does not interfere with practical realizations using slightly larger
sets.

3.2 A Top–To–Bottom Scheme

We shall compute an approximation to d(T ) working from top to bottom, guided by the consider-
ations of the previous section. One main point will be that the vanishing of the coefficients dλ for
λ 6∈ T implies that the scaling function coefficients cj,k := 〈φj,k, gT 〉, (j,k) 6∈ T ◦ can be computed
by quadrature with high accuracy. At this point it does not matter yet which quadrature rule
is used. Since its choice will be intertwined with a subsequent error analysis we postpone its
specification.

As mentioned before, quadrature will only be used to approximate the arrays cj (G
−
j ) and these

approximations will be denoted by qj = qj(G
−
j ). The key is then relation (3.10) which is used

to successively decompose the representation (3.11) from top to bottom. The scaling function
coefficients produced on the next lower level are then those obtained by quadrature on the sets
G−
j complemented by those living on T ◦

j obtained from transforming safe coefficients from higher
levels. This leads to the scheme Recover that determines for a given tree T an approximation
dR(T ) supported on T to the wavelet coefficients of gT with respect to the dual basis Θ̃ as follows:

Recover — [g, T ] → dR(T )

Find minimal J ∈ N such that Tj = ∅, j > J

Determine G−
J+1 = GJ+1, compute qJ+1(G

−
J+1) and set čJ+1 := 0.

For j = J, J − 1, . . . , j0 do

Determine G−
j = Gj\Tj and qj(G

−
j )

Set
c̄j+1 := čj+1 + qj+1(G

−
j+1) −

(

Mj,Φ̃qj(G
−
j )

) (

G−
j+1) (3.12)

Compute
čj := Gj,Φ̃c̄j+1, and dR

j := Gj,Θ̃c̄j+1 (3.13)

Set dR
j0−1 := cR

j0
:= čj0

From now on we define for the sake of convenience dj0−1 := cj0 and dR
j0−1 := cR

j0
.
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Remark 3.2 Note that the support of dR

j is always contained in Tj. The scheme requires com-
puting the quantities qj,k as approximations to cj,k = 〈φj,k, g〉 only on the set

G− := G−(T ) =

J+1
⋃

j=j0

G−
j . (3.14)

Moreover, one has for some constants C,C ′

#G− ≤ C#∂T ≤ C ′#T . (3.15)

Hence, whenever the quadrature requires at most a constant cost per entry, the number of flops
needed in Recover remains uniformly proportional to #T .

Thus from the computational complexity point of view the above scheme satisfies all require-
ments put forward in the adaptive solution context described earlier in Section 1.2.

Recall that in the context of Task R2 the objective of Recover is to produce an array
w, that satisfies ‖g(T ) − w‖`2 ≤ Cε whenever ‖g − g(T )‖`2 < ε. However, when g = F(v)
is a composition, the prediction set T depends on a-posteriori information about v and priori
knowledge of F. The latter typically refers to a whole class of nonlinearities and may lead in
concrete cases to rather pessimistic predictions rendering T unnecessarily large. The top-to-
bottom structure of Recover easily accommodates individual adaptive adjustments on the fly:
As soon as the array dR(Tj) is computed in (3.13) we can replace it by an array dR

j with possibly

small support in Tj such that ‖dR(Tj)−dR
j‖`2(Tj) ≤ εj , where εj is such that

∑J
j=j0

εj = ε. This is a
typical coarsening step as described in [8] based on quasi-sorting and thresholding coefficients with
smallest modulus. In this way the complete tree T may never have to be completely assembled
which is a crucial distinction from earlier versions in [17]. We refer to [2] for more details relevant
for practical relizations of Recover. In particular the sets Gj can be replaced by somewhat larger,
symmetric supersets that can be constructed very easily.

4 Error Estimates

The scheme Recover introduced above produces for a tree T an array dR(T ) supported on T
to approximate the exact sequence d of wavelet coefficients of g with respect to Θ̃. Likewise the
scaled array gR(T ) = DT dR(T ) should approximate the sequence g of wavelet coefficients of g
with respect to Ψ̃.

Recall from Section 1.1 that in either case the total error of such an approximation has two
sources. First, there is the truncation error ‖d − d(T )‖`2 , respectively ‖g − g(T )‖`2 , which
depends on the prediction set T . Second, there is the error incurred by quadrature in the scheme
Recover when recovering the truncated array d(T ).

4.1 Exact Quadrature

In a number of relevant cases the goal in Task R2, namely that the quadrature error is dominated
by (a bound for) the truncation error, can be achieved trivially because, in principle, the quadra-
ture can be made exact. To explain this, recall the example in (1.5) with F (v) = −div a∇v+G(v)
and suppose first that G ≡ 0, i.e. the problem is linear. In this case one has to approximate the
entries cj,k = 〈φj,k, g〉 with g = F (v). In the context of adaptive schemes v is a finite wavelet
expansion v =

∑

λ∈Tv
vλψλ, with Tv the tree of significant coefficients of v. Just as done in (3.11)
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we can rewrite v in local scaling function representation v =
∑

(j,k)∈G−
v
c̄j,kφj,k. Assuming that

Tv is well-graded, which means that the transition between scales is sufficiently gradual (see (4.8)
below for a precise definition), only a uniformly finite number of scaling functions in this expansion
overlap a given point. Thus

cj,k = 〈φj,k, F (v)〉 =
∑

(j,k′)∈G−
v

c̄j,k′〈φj,k,−div(a∇φj,k′)〉

=
∑

(j,k′)∈G−
v ,

suppφj,k′∩ suppφj,k 6=∅

c̄j,k′〈∇φj,k, a∇φj,k′〉. (4.1)

By the previous remarks, the sets {(j,k′) : suppφj,k′ ∩ suppφj,k 6= ∅} have uniformly bounded
cardinality. Thus, when using piecewise polynomial scaling functions and whenever the diffusion
matrix a is piecewise polynomial, the quantities 〈∇φj,k, a∇φj,k′〉 can be computed exactly, so that
in this case qj,k = cj,k, (j,k) ∈ G−, and no quadrature error occurs. By the above reasoning, the
computational cost stays proportional to #G− so that Remark 3.2 applies.

This extends to simple nonlinearities. For instance, in the case (1.8) we have g = G(v) = v3

so that

cj,k =
∑

(jiki)∈G−
v ,i=1,2,3,

suppφ(ji,ki)
∩supp φj,k 6=∅

〈

φj,k,

3
∏

i=1

φji,ki

〉

.

Again for each (j,k) there is a uniformly bounded number of integrals involving still only piecewise
polynomials that can be calculated exactly.

Thus in such cases one can, in principle, make the scheme Recover exact so that, in view
of the relation ‖dR(T )−d(T )‖`2 <

∼ ‖d−d(T )‖`2 , and likewise ‖DT (dR(T )−d(T ))‖`2 <
∼ ‖g−

g(T )‖`2 , Task R2 is trivially fulfilled.

In general, however, one may have to accept a quadrature error or prefers to accept a quadra-
ture error, because even in the above cases the necessary exactness order of quadrature may be
fixed but rather high. Therefore we need to estimate this error part and devise ways of decreasing
this error if necessary. The subsequent sections are devoted to both issues. We present ways of
estimating this error, out of necessity in an essentially different way from [17], and derive strategies
for controlling it relative to the truncation or prediction error.

4.2 The L2-Case

We shall address first the case H = L2(Ω) which corresponds to the first scenario indicated in
Section 1.2. Let for (j,k) ∈ G−

qj,k − cj,k = ej,k (4.2)

denote the deviation of the computed value qj,k from the true one cj,k = 〈φj,k, g〉. The correspond-
ing arrays ej = (ej,k)(j,k)∈G−

j
are always supported on G−

j without further mentioning. Recall that

G−
J+1 = GJ+1. Since (3.11) involves only coefficients that will be approximated by quadrature we

can think of Recover to produce the approximation

PR
T g =

J+1
∑

j=j0

Φ̃T
j

(

qj −Mj−1,Φ̃qj−1(G
−
j−1)

)

(G−
j ) (4.3)
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to PT g, which, by (4.2), immediately yields the error representation

ET := PR
T g − PT g =

J+1
∑

j=j0

Φ̃T
j

(

ej −Mj−1,Φ̃ej−1(G
−
j−1)

)

(G−
j ). (4.4)

Of course, the approximate coefficients in dR(T ) produced by Recover arise by decomposing
PR
T g which generates as byproducts the auxiliary arrays čj , c̄j , cf. (3.12), (3.13). It will be therefore

important to understand how the quadrature errors related to G− effects those arrays and thereby
dR(T ). Inserting (2.13) into (4.4), proceeding from top to bottom, provides ET = Φ̃T

j0
Ej0−1 +

∑J
j=j0

Θ̃T
j

(

Gj,Θ̃Ej+1

)

(Tj), where for j = J, J − 1, . . . , j0

Ej+1 =
[

Gj+1,Φ̃(. . .GJ−2,Φ̃([GJ−1,Φ̃([GJ,Φ̃RJ+1](T
◦
J ) + RJ)](T

◦
J−1)

+RJ−1)(T
◦
J−2) + . . . + Rj+1)

]

(Gj+1), (4.5)

and
Rj := Rj(G

−
j ) :=

(

ej −Mj−1,Φ̃ej−1(G
−
j−1)

)

(G−
j ). (4.6)

Thus the error on level j + 1 prior to decomposing is obtained by successively decomposing error
contributions from higher levels. Here and in what follows we always assume that the multiscale
decompositions are applied exactly. Alternatively, one can describe Ej recursively as follows

Ej =
[

Gj,Φ̃(Ej+1)
]

(T ◦
j ) + Rj . (4.7)

Thus the error on level j consists of a part living inside the tree obtained from decomposing higher
level contributions plus a remainder situated on G−

j that is newly introduced on that level through
quadrature.

The overall `2-error in dR(T ) caused by the quadrature in Recover can be easily estimated
by exploiting the norm equivalence (2.1). To simplify matters technically we shall specify next
somewhat our requirements on the tree T . The theoretical foundation of good predictions for
significant trees T developed in [9] required the trees to satisfy the so called expansion property
which, roughly speaking means that the leaves of subsequent levels do not overlap too much, which
is familiar in this context, see also [17]. The tree T is called well-graded if one has

(
⋃

λ:λ◦∈G−
j

Mj,Φ̃
|λ) ∩ T ◦

j+1 = ∅. (4.8)

In other words, as soon as one leaves the tree on level j those scaling functions will not overlap
the safe area on level j + 1. It has been shown in [9] that the expansion property does not affect
the asymptotic growth of the ε-significant tree T = Tε when ε → 0. Since condition (4.8) can be
realized by at most a finite uniformly bounded number of subdivisions of the leaves of a tree with
expansion property, the same is true for well-graded trees. We shall always assume this property
in what follows. The main result of this section can now be stated as follows.

Theorem 4.1 There exists a constant C depending only on the wavelet bases Θ, Θ̃ and the well-
gradedness parameters so that the computed array dR(T ) satisfies

‖cj0 − dR

j0−1‖
2
`2 + ‖d(T ) − dR(T )‖2

`2 ≤ C

J+1
∑

j=j0+1

‖ej(G
−
j )‖2

`2 . (4.9)
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Proof: Recall that ∂T − denotes the set of outer leaves of the tree T ◦, i.e. λ◦ ∈ ∂T − means that
λ◦ does not belong to T ◦, yet its parent does. As the support cubes associated with ∂T − form a
partition of Ω, by (2.1) we have with cR

j0
= dR

j0−1

‖cj0 − cR
j0‖

2
`2 + ‖d(T ) − dR(T )‖2

`2 ≤ c−1
Θ ‖ET ‖

2
L2(Ω) = c−1

Θ

∑

λ◦∈∂T −

‖ET ‖
2
L2(2λ◦). (4.10)

The well-gradedness of T implies that for every λ◦ ∈ ∂T −
j one has that (Φ̃T

l Rl)|2λ◦ 6≡ 0 holds
only for a uniformly bounded number of levels |l − j| ≤ K. Since the two scale matrices define
uniformly bounded mappings on `2, the assertion follows. �

Note that the main difference from earlier results in [17] lies in the fact that the estimate
involves no assumptions e.g. concerning the equilibration of local polynomial approximation errors
of g, or in the case g = G ◦ v, of v.

In fact, suppose the qj,k have the form qj,k = 〈Qj,k(g), φj,k〉 where Qj,k(g) is a polynomial
approximation of g on the support Sj,k of φj,k of some order m, say. Suppose that e.g. a discrete
least squares fit to g on a fixed sufficiently dense sample set in Sj,k even assures (for the give
g) that ‖g − Qj,k(g)‖L2(Sj,k) ≤ C infP∈Pm ‖g − P‖L2(Sj,k) =: ηj,k(g). Moreover suppose that the
tree T is essentially balanced with respect to the ηj,k. This means that for some δ > 0 and all
(j, k) ∈ ∂T − we have ηi,k(g) ≤ δ while for a subset Λ of ∂T with #Λ ≥ c#∂T one has ηj,k(g) ≥ δ,
(j, k) ∈ Λ. Then, whenever g ∈ Bs

q(Lp) with 1/p < s/d+ 1/2 for some s ≤ m one has (see [17])





∑

(j,k)∈∂T −

η2
j,k





1/2

≤ C(#T )−s/d|g|Bs
q (Lp), (4.11)

see e.g [21] for the definition of the Besov spaces Bs
q(Lp) and their semi-norms. One immediately

derives from (4.9) and (4.11)

(

‖cj0 − cR
j0‖

2
`2 + ‖d(T ) − dR(T )‖2

`2

)1/2
≤ C(#T )−s/d|g|Bs

q (Lp). (4.12)

The interest in estimates of this type lies in the following points. The right hand side of (4.12)
involves measuring smoothness of g in Lp which for the above admissible range of p imposes much
weaker conditions than measuring smoothness in L2. Thus a proper choice of a tree can make up
for the lack of smoothness so as to retain an optimal order relating accuracy to the number of
degrees of freedom even in the presence of singularities. Moreover, under the above assumptions
the truncation error can be shown to be also bounded by the right hand side of (4.12) (although
it could actually happen to be smaller), so that at least for the class of functions g ∈ B s

q(Lp) one
obtains optimal error estimates. However, the line of argument of [17] works only under certain
assumptions on the distribution of local errors and does not quite meet the demands arising in the
context of adaptive solution schemes, see Section 1.2 and the notion of s∗-sparsity in [8]. Recall
from Task R2 that ideally one would like to relate the errors created by Recover directly to
the truncation error ‖g − PT g‖L2(Ω) or equivalently to ‖d−d(T )‖`2 (or bounds for those terms).
Note that one has

‖d − d(T )‖2
`2 =

∑

λ◦∈∂T

∑

µ:µ◦�λ◦

|dµ|
2. (4.13)

Recall that µ◦ � λ◦ means that µ◦ is a descendant of (not equal to) λ◦. Clearly, the “local
remainders”

rλ◦ = rλ◦(d, T ) := (
∑

µ:µ◦�λ◦

|dµ|
2)1/2, λ◦ ∈ ∂T , (4.14)
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are just local L2-errors of the approximation PT g to g. Thus it would be ideal if the quadrature
errors eλ◦ (see (4.2)) could be estimated in terms of rλ◦ , or at most by a finite number of nearby
local remainders, which would entail ‖d− dR(T )‖`2 <

∼ ‖d − d(T )‖`2 .

4.3 Dual Norms

As indicated before, when dealing with adaptive schemes for operator equations such as PDE’s
the relevant function space is most often not L2 but some other Hilbert space H′, typically a
Sobolev space of positive order, see Section 1.2 and [8]. What will matter here is that the primal
norms can be localized, i.e. restrictions of f ∈ H to sub-domains Ω′ ⊂ Ω (of suitable regularity)
belong to a localized version H(Ω′) and that one has for any partition P of Ω into cells ∆

∑

∆∈P

‖f‖2
H(∆)

<
∼ ‖f‖2

H, f ∈ H. (4.15)

This is, for instance, the case for H = H t with t ≥ 0. Under the assumption (2.10) that a Riesz
basis Ψ is obtained from an L2-Riesz basis Θ through scaling we can still apply the above scheme
Recover to obtain

gR(T ) := DT dR(T ) (4.16)

as an approximation to the desired array g(T ) = (〈ψλ, g〉)λ∈T , cf. 3.1. Of course, this scaling is
incorporated in the loop of Recover, i.e. (3.13) is replaced by dR

j := DTj
Gj,Θ̃c̄j+1. Again our

objective is to estimate ‖g(T ) − gR(T )‖`2 and ultimately ‖g − gR(T )‖`2 .

4.3.1 Main obstruction and inherent problems

Estimating ‖g(T ) − gR(T )‖`2 poses a certain principal difficulty which is perhaps worth pointing
out first. The above estimate in Theorem 4.1 provides a bound in terms of local L2-errors resulting
from approximating the function g in L2. The relevant function space here, however, is H′. So
in order to estimate the accuracy of the scaled array in (4.16) one would have to relate it to the
error in H′. This is not straightforward as Sobolev norms of negative order do not localize in a
simple way.

At the first glance an easy remedy is offered by the norm equivalences (2.1). In fact, we recall
that one can deduce from (2.1), (2.10) and (2.11) that for some ĉ, Ĉ one has

ĉ‖
∑

λ∈J

〈ψλ, w〉ψ̃λ‖H′ ≤ ‖‖
∑

λ∈J

ωλ〈θλ, w〉θ̃λ‖L2 ≤ Ĉ‖
∑

λ∈J

〈ψλ, w〉ψ̃λ‖H′ . (4.17)

This tells us that approximation of some expansion w =
∑

λ∈J 〈ψλ, w〉ψ̃λ in H′ is equivalent to

approximating the scaled expansion Σ(w) :=
∑

λ∈J ωλ〈θλ, w〉θ̃λ in L2, which by (2.1) yields an
estimate for the approximations to 〈ψλ, w〉 in terms of an L2 error for the approximant. For
simplicity we shall assume that the scaling weights ωλ depend only on the scale |λ|, ωλ = ω|λ|.
Accordingly, it is suggested in [22] to approximate

Σ(g)T :=
∑

λ∈T

ωλ〈θλ, g〉θ̃λ = ωj0Pj0g +

J
∑

j=j0

ωj(Pj+1 − Pj)g

in L2 and then use the above error estimation. However, that would require approximating the
inner products 〈Σ(g), φj,k〉. This, in turn, would require knowing the coefficients 〈Σ(g), φj′,k′〉 for
all (j′, k′) such that the support of φ̃j′,k′ intersects that of φj,k, as the level dependent scaling
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factor ωj prevents cancellation inside the tree. This difficulty could be seen as a ’lacking locality’
which, due to the negative norm, is inherent to the problem. Thus the approximate scaling
function coefficients qj,k cannot be computed by just sampling g locally on the support of φj,k and
a related approach (see [22]) therefore does not seem to be computationally feasible.

In order to get around this difficulty and use only computationally feasible approximations to
〈g, φj,k〉 for indices in G−, one could attempt to employ the same decomposition strategy as before
trying to “hollow” the tree. To this end, note first that one has

gT = ωj0Pj0g +
J

∑

j=j0

ωj(Pj+1 − Pj)gT

=

J+1
∑

j=j0+1

Φ̃T
j

(

[ωj−1 − ωj]cj(T
◦
j ) + ωj−1

(

cj −Mj−1,Φ̃cj−1(G
−
j−1)

)

(G−
j )

)

, (4.18)

where we have used (3.6), see Section 3.1. In order to turn this into an approximation one needs
approximations to the arrays cj(T

◦
j ) and cj(G

−
j ). These approximations are already produced by

the scheme Recover. Thus, we are led to define

PT g :=
J+1
∑

j=j0+1

Φ̃T
j

(

[ωj−1 − ωj]čj(T
◦
j ) + ωj−1

(

qj −Mj−1,Φ̃qj−1(G
−
j−1)

)

(G−
j )

)

=

J+1
∑

j=j0+1

Φ̃T
j

(

ωj−1c̄j(Gj) − ωj čj(T
◦
j )

)

. (4.19)

The main difference from the previous situation, reflected by (4.3) and (4.4), lies now in the
additional term [ωj−1 − ωj]čj(T

◦
j ) due to the new scaling in front of the telescoping summands.

This means that the error terms will no longer live only on G− but that multiscale decompositions
of higher level error components are transported into the interior of T . It does not seem to be clear
how this will effect the overall error. These observations seem to indicate that error estimation
for L2 does not simply carry over to more general norms. Thus, in summary, the computational
complexity of the approach proposed in [22] is therefore not clear to us.

4.3.2 A general estimate

On account of the remarks brought up in the previous section, we prefer to stay here with the
original order of operation, namely to apply Recover to g and then scale the resulting coefficients,
see (4.16), as opposed to scaling g first into Σ(g) and then applying Recover. It is now less
obvious though how to estimate the resulting array in a proper way and, based on such estimates,
how to realize Task R2. One probably cannot expect a complete analysis that works in the
generality considered so far. Therefore the objective of this section is to further explore some
basic aspects of Task R2 and to derive from these considerations suitable algorithmic ingredients.
This is to identify more specific requirements on the quadrature that may lead to the desired
asymptotically optimal computational performance. In particular, it will be seen that, in a strict
sense, this requires generally more than just accuracy bounds for the individual coefficients qj,k.

For technical simplicity we shall continue assuming in what follows that the scaling weights
in (2.10) depend only on the scales, i.e. ωλ = ω|λ|. The following reasoning, however, can be
extended to more general situations. One easily concludes from (2.11) that then for (well behaved
sub-domains Ω′ of Ω)

inf
vj∈Sj

‖v − vj‖L2(Ω′) <
∼ ωj‖v‖H(Ω′), v ∈ H. (4.20)
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Our goal is again to estimate the scaled arrays ‖g(T )−gR(T )‖`2 in terms of the quadrature errors
eλ◦ , λ

◦ ∈ G−. One might think that the ideal estimate would be

‖g(T ) − gR(T )‖2
`2 ≤ C

J+1
∑

j=j0+1

ω2
j‖ej(G

−
j )‖2

`2 , (4.21)

i.e., the error contributions scale like wavelet coefficients. This would indeed be the case if the
error components were scaling function coefficients of some underlying error function, i.e., eλ◦ =
〈φλ◦ , ET 〉 which would entail the relations

Gj,Φ̃ej+1 = ej. (4.22)

This, in turn, is equivalent to Gj,Φ̃qj+1 = qj , which, of course, will generally not be true. So
it seems that all we can hope for is an estimate that involves the deviation from (4.22) which
then hopefully is relatively small. In order to make this more precise, we introduce the following
notation. Let

Ωj :=
⋃

(j,k)∈G−
j

supp φ̃j,k, Pj(w|G
−
j ) :=

∑

(j,k)∈G−
j

〈φj,k, w〉φ̃j,k. (4.23)

We can use (2.11) to conclude that

‖g(T ) − gR(T )‖`2 ≤ CΨ‖ET ‖H′ , (4.24)

where ET is given by (4.4). Furthermore let P ∗
j (·|G−

j ) denote the adjoint of Pj(·|G
−
j ) and

‖v‖(H(Ω′))′ := sup
w∈H̃(Ω′)

〈w, v〉Ω′

‖w‖H(Ω′)

where H̃(Ω′) consists for Ω′ ⊂ Ω of those w ∈ H(Ω′) whose extension by zero to all of Ω is still
in H. In order to develop suitable quadrature techniques, it will be convenient to employ the
mappings

Ljg :=
∑

(j,k)∈G−
j

qj,k(g)φ̃j,k, (4.25)

which always involve only indices from G−
j . As before, the coefficients qj,k(g) forming the arrays

qj on G−
j are to approximate the exact scaling function coefficients cj,k = 〈φj,k, g〉 for (j,k) ∈ G−

j .
We shall now present some general estimates for the error in the dual norm in order to obtain
upper bounds for (4.24).

Proposition 4.2 Under the above assumptions we have the following estimates of the quadrature
error ET defined in (4.4).

a) One has

‖ET ‖H′ <
∼ (

J+1
∑

j=j0

‖Φ̃T
j ej‖

2
H(Ωj)′

)1/2. (4.26)

b) Recalling the definition of Pj (3.4) we have for any Lj given by (4.25)

‖ET ‖H′ <
∼ (

J+1
∑

j=j0

‖Ljg − Pjg‖
2
H(Ωj )′)

1/2. (4.27)
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Proof: As for a), we recall the definition (4.4) and obtain, upon using (2.2) and biorthogonality
of Φj , Φ̃j several times,

‖ET ‖H′ = sup
w

〈ET , w〉

‖w‖H
= sup

w

∑J+1
j=j0+1〈Φ̃

T
j

(

ej −Mj−1,Φ̃ej−1(G
−
j−1)

)

(G−
j ), w〉Ωj

‖w‖H

= sup
w

∑J+1
j=j0+1〈Φ̃

T
j

(

ej −Mj−1,Φ̃ej−1(G
−
j−1)

)

(G−
j ), P ∗

j (w|G−
j )〉Ωj

‖w‖H

= sup
w

∑J+1
j=j0+1〈Φ̃

T
j

(

ej −Mj−1,Φ̃ej−1(G
−
j−1)

)

, P ∗
j (w|G−

j )〉Ωj

‖w‖H

= sup
w

∑J+1
j=j0+1〈Φ̃

T
j ej − Φ̃T

j−1ej−1, P
∗
j (w|G−

j )〉Ωj

‖w‖H

≤ sup
w

∑J+1
j=j0+1 ‖Φ̃

T
j ej − Φ̃j−1ej−1‖(H(Ωj ))′‖P

∗
j (w|G−

j )‖H(Ωj )

‖w‖H

<
∼ sup

w

∑J+1
j=j0+1 ‖Φ̃

T
j ej − Φ̃j−1ej−1‖(H(Ωj ))′‖w‖H(Ωj )

‖w‖H
, (4.28)

where we have also used that the P ∗
j (·|G−

j ) are bounded in H. Since ej−1 is supported in G−
j−1, we

have that ‖Φ̃j−1ej−1‖(H(Ωj ))′ = ‖Φ̃j−1ej−1‖(H(Ωj∩Ωj−1))′ ≤ ‖Φ̃j−1ej−1‖(H(Ωj−1))′ , since the dual
norm is monotone in the domain. Using this, applying Cauchy-Schwarz, bearing in mind that,
by well-gradedness, only a uniformly bounded finite number of Ωj overlap at any given point and
employing (4.15), yields the assertion a).
Concerning b), we have the representation, cf. (4.2)

ej,k = qj,k − cj,k = 〈φj,k, Ljg − Pjg〉, i.e ej = 〈Φj , Ljg − Pj(g|G
−
j )〉. (4.29)

Clearly, (4.29) says that Φ̃T
j ej = Pj(Ljg|G

−
j ) − Pj(g|G

−
j )) = Ljg − Pj(g|G

−
j ). Hence, using the

biorthogonality of Φj, Φ̃j , we can rewrite the terms in (4.26) as follows.

‖Φ̃T
j ej‖H(Ωj )′ = sup

w∈H(Ωj)

〈Φ̃T
j ej , P

∗
j (w|G∗

j )〉Ωj

‖w‖H(Ωj )
= sup
w∈H(Ωj)

〈Lj(g|G
−
j ) − Pj(g|G

−
j ), P ∗

j (w|G∗
j )〉Ωj

‖w‖H(Ωj )

= sup
w∈H(Ωj)

〈Ljg − Pjg, P
∗
j (w|G∗

j )〉Ωj

‖w‖H(Ωj )
, (4.30)

which confirms the claim b) by the same arguments as used in a). �

5 Quadrature

So far we have not specified how to compute in Recover the approximate scaling function
coefficients qj,k. So the objective of this section is to find relevant requirements on quadrature.
We will start by identifying desirable properties of Lj from (4.25).

5.1 A wishlist for the mappings Lj

In what follows we shall make frequent use of the following fact.
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Remark 5.1 For any sub-domain Ω′ of Ω one has ‖g‖2
(H(Ω′))′

<
∼

∑

λ:Sλ∩Ω′ 6=∅ |〈ψλ, g〉|
2, where

Sλ = supp ψ̃λ.

Proof: For w ∈ H̃(Ω′) one has

|〈w, g〉| = |〈w,
∑

λ∈J

〈ψλ, g〉ψ̃λ〉| = |
∑

λ:Sλ∩Ω′ 6=∅

〈w, ψ̃λ〉〈ψλ, g〉|

<
∼ ‖w‖H(Ω′)(

∑

λ:Sλ∩Ω′ 6=∅

|〈ψλ, g〉|
2)1/2,

whence the assertion follows. �

Recalling that Pjg =
∑

(j,k)∈Ij
〈φj,k, g〉φ̃j,k =

∑

(j,k)∈Ij
cj,kφ̃j,k, the subsequent discussion will

be guided by the following simple observations based on Proposition 4.2 b).

Proposition 5.2 a) If
‖Ljg − Pjg‖(H(Ωj ))′ ≤ C‖g − Pjg‖(H(Ωj ))′ (5.1)

uniformly in j, then the approximate array gR(T ) on the well-graded tree T produced by Re-

cover satisfies
‖g(T ) − gR(T )‖`2 ≤ C∗‖g − g(T )‖`2 , (5.2)

where C∗ is independent of T but depends on C from (5.1) and the constant in (4.27).
b) Suppose that T satisfies

‖g − g(T )‖`2 ≤ ε (5.3)

and that J is the highest level appearing in T . If for j0 ≤ j ≤ J + 1

‖Ljg − Pjg‖(H(Ωj ))′ ≤ Cε
√

#G−
j /#G− (5.4)

uniformly in j ≤ J , one has ‖g − gR(T )‖`2 ≤ (1 + C∗)ε, where C∗ depends on the constants in
(3.15) and (4.27), but is independent of T .

Proof: Applying Remark 5.1 to g − Pjg, (5.1) says that for gλ = 〈ψλ, g〉

‖Ljg − Pjg‖
2
(H(Ωj ))′

<
∼

∑

|λ|>j

supp ψ̃λ∩Ωj 6=∅

|gλ|
2. (5.5)

Since by well-gradedness of T only finitely many of the Ωj overlap at a given point and since by
(3.15) #G− <

∼ #T <
∼ #∂T −, we conclude that the right hand side of (4.27) can be bounded in

the following way

‖ET ‖H′<∼

(

J+1
∑

j=j0

‖Ljg − Pjg‖
2
H(Ωj )′

)1/2
<
∼

(

J+1
∑

j=j0

∑

|λ|>j

supp ψ̃λ∩Ωj 6=∅

|gλ|
2
)1/2

<
∼

(

∑

λ6∈T

|gλ|
2
)1/2

= ‖g − g(T )‖`2 ,

which confirms a). The proof of the second claim is analogous. �

Obviously, (5.1) is the stronger assumption which would yield the best possible result, namely
that the quadrature error is dominated by the prediction error. Recall, however, that the scenario
given by part b) in Proposition 5.2 is sufficient for Task R2 which warrants optimal complexity
estimates in the adaptive context described in Section 1.2. This leads us to the following definition.

Definition 5.3 We shall call a quadrature reliable for, respectively ε-reliable for g when the cor-
responding mappings Lj satisfy (5.1), respectively, when (5.4) holds whenever (5.3) is provided.
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5.2 Reliable Quadrature

We still have to detail on how to set up a reliable quadrature routine, cf. Definition 5.3. Before
going into this, we comment briefly on the fact that we are actually dealing with approximating
g in spaces on which point evaluations are generally not continuous. One should keep in mind
that the main context where Recover applies has been outlined in Section 1.2. In this case we
have g = F (v) where v is a finite wavelet expansion and where F is a local operator. Moreover, v
itself has usually the form v =

∑

λ∈Tv
vλψλ where Tv is a tree that is contained in the prediction

tree T . Since quadrature affects only terms 〈φj,k, F (v)〉 where (j,k) ∈ G− and since T is a well
graded tree φj,k “sees” only the image of lower scale wavelets in the expansion of v under the
mapping F . Thus, on the support of φj,k, F (v) is roughly speaking “finite dimensional” and
can only oscillate with a frequency comparable at most with the diameter of φj,k. Moreover, the
composition actually has some pointwise smoothness even of some positive Hölder degree. (Of
course, when ε → 0 these norms may eventually grow unboundedly because F (v) is only stable
in H′). Thus it is justified to assume always that point evaluations are well defined and that, for
any fixed T = Tε, refining quadrature locally, does provide increasing accuracy of approximations
to quantities like 〈φj,k, g〉.

The approximations qj,k(g) approximating the exact scaling function coefficients cj,k = 〈φj,k, g〉
on G−

j can be obtained, for instance, by making use of the fact that
∫

φj,k(x)f(x)dx can often be
computed exactly for certain functions f such as arbitrary other refinable functions or polynomials
of any degree, see [14]. A simple way then is to determine some local approximation Qj,k(g) on
the support of φj,k, either by interpolation or by a least squares fit using proper oversampling.
Then 〈Qj,k(g), φj,k〉 can be computed exactly providing

qj,k :=

∫

Ω

Qj,k(g)(x)φj,k(x)dx, (j,k) ∈ G−
j . (5.6)

Exactness in S̃j: By the above remarks, Qj,k(g) might be a polynomial of possibly high fixed
order, or a linear combination of high order B-splines. However, recall from (5.1) that the main
issue is to make Ljg close to Pjg in (H(Ωj))

′. This suggests to make Lj map into S̃j = span Φ̃j, cf.
Section 2.1. Especially, for fixed but sufficiently dense sampling sets Yj,k one could define Qj,k(g)
by the least squares fit

Qj,k(g) :=
∑

(j,k′):supp φ̃j,k′∩suppφj,k 6=∅

q∗j,k′φ̃j,k′ , where

q∗ = argminq̃

∑

y∈Yj,k

(g(y) −
∑

(j,k′)

q̃j,k′φ̃j,k′(y))2, (5.7)

so that, by biorthogonality, qj,k = q∗j,k. In this case the mapping Lj would be indeed exact on S̃j.

Boundedness in (H(Ωj))
′: Moreover, “ideally” the mapping Lj would be a linear projector onto

S̃j(G
−
j ) := span {φ̃j,k : (j,k) ∈ G−

j } which is bounded in (H(Ωj))
′. In fact, one could then write

Ljg − Pj(g|G
−
j ) = Lj(g − Pjg) so that the boundedness of Lj in (H(Ωj))

′ would immediately
give (5.1) hence Proposition (5.2) a) would apply and provide the desired estimate (5.2). Such
a requirement will generally not be feasible. Without any further assumptions on g this cannot
be guaranteed by any fixed rule for forming the qj,k. In fact, Lj can ultimately be based only on
discrete information on some finest resolution level. On the other hand, in the above mentioned
“locally finite dimensional case” one can expect to contrive a mechanism for improving the quality
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of the qj,k if necessary. This means, one can realize the necessary closeness of Ljg to the particular
projector Pjg in (H(Ωj))

′ required by Proposition 5.2. We shall describe next some ingredients of
such a mechanism.

To this end, denote by G−
j,r the set of those indices in Ij+r which arise from an r-fold subdivision

of the φ̃j,k, (j,k) ∈ G−
j . These indices enter local refinements of S̃j over Ωj. Let for r ≥ 0

Lrjg :=
∑

(j+r,k)∈G−
j,r

qrj+r,k(g)φ̃j+r,k

be a mapping into S̃j+r(G
−
j,r). The Lrj could be defined by any of the above ways but with respect

to higher resolution level j+ r. If Lrjg provides better approximations to g with increasing r, then

its projection back to S̃j(G
−
j ) can be expected to yield better approximations to Pjg, provided

these approximations are stable in (H(Ωj))
′. Thus, given Lrjg we then set

Ljg := Pj(L
r
jg). (5.8)

Writing Ljg = (qr)Tj Φ̃j in the form (4.25), a repeated application of (2.13) yields that the array
qj is given by

qj = qrj := Gj,Φ̃ · · ·Gj+r−1,Φ̃qrj+r. (5.9)

As indicated above, the rationale is that the closer Lrjg gets to g, due to the better resolution

offered by projecting into S̃j+r, the closer should its projection by Pj be to Pjg.
A possible obstruction that has to be taken into account is that high frequency components

of g might be picked up through the quadrature so as to render Lrj unstable in (H(Ωj))
′. We

shall discuss possible remedies under the general assumption that quadrature is feasible. More
precisely, we shall always make the following

Working Assumption (WA): Let T = Tε be the prediction tree for which ‖g −
g(T )‖`2 ≤ ε and let J = J(T ) be the highest scale occurring in T . For any ρ > 0
there exists an R ∈ N such that one has for all j ≤ J(Tε) uniformly in ε

inf
v∈S̃j+R

‖g − v‖(H(Ωj ))′ ≤ ρ‖g − Pjg‖(H(Ωj ))′ , (5.10)

i.e. the wavelet coefficients of g with respect to Ψ̃ have some fixed scale-wise

decay and best tree approximation is a near best N-term approximation.

This assumption can be verified for many operators F in the second scenario in Section 1.2 when
g = F (v) and v is a finite tree expansion where the tree for v is contained in the prediction tree
T for F (v). We shall refer to this situation, in a slight abuse of terminology, as the “locally finite
dimensional case” on every support of φj,k with (j,k) ∈ G−. This follows from the construction
of the prediction trees in [9] and the corresponding error analysis which shows how expanding the
tree decreases the error. Since

‖Ljg − Pjg‖(H(Ωj ))′ = ‖Pj(L
r
jg − g)‖(H(Ωj ))′ <

∼ ‖Lrjg − g‖(H(Ωj ))′

the condition (5.1) would be satisfied for r ≤ R provided that the mapping Lrj is exact on S̃j+r
and stable in (H(Ωj))

′. Here are some ingredients towards this aim. Any linear combination
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vj+r :=
∑

(j+r,k′)∈G−
j,r

qj+r,k′φ̃j+r,k′ can be written as

vj+r = Pjvj+r + (I − Pj)vj+r = pTj Φ̃j +

j+r−1
∑

l=j

d̄Tl Θl,

where, by (5.9)

pj = Gj,Φ̃ · · ·Gj+r−1,Φ̃qj+r, d̄l = Gl,Θ̃Gl+1,Φ̃ · · ·Gj+r−1,Φ̃qj+r. (5.11)

Now let Yj+r(G
−
j,r) be a set of sampling points in Ωj whose cardinality is larger than #G−

j,r but of
the same order. Fix a positive weight α and consider the least squares problem

q∗
j+r := argminqj+r

{α
∑

y∈Yj+r(G−
j,r

)

hd(g(y) −
∑

(j+r,k′)∈G−
j,r

qj+r,k′φ̃j+r,k′(y))2

+

j+r−1
∑

l=j

ω2
j‖Gl,Θ̃Gl+1,Φ̃ · · ·Gj+r−1,Φ̃qj+r‖

2
`2}

=: argminqj+r
{K0(qj+r) +K1(qj+r)}, (5.12)

where h measures the spacing between the sampling points. First of all, for suitable Yj+r(G
−
j,r)

(5.12) has a unique solution. Moreover, if g ∈ S̃j(G
−
j ) the minimum of the quadratic functional

is zero and Pj(L
r
jg) = g on Ωj. In fact the first part K0(qj+r) of the functional can be made

zero through the proper fit and the second part vanishes since the wavelet coefficients of g vanish.
In general, we have K1(qj+r) ∼ ‖(I − Pj)vj+r‖

2
(H(Ωj ))′ controls the dual norm of the fit whose

quality is ensured by K0(qj+r). In fact, K0(qj+r) can be viewed as a weighted L2-approximation,
especially in the above mentioned locally finite dimensional case. For instance, with α ∼ ω2

j ,

K0(qj+r)
1/2 becomes then a good upper bound for ‖g − vj+r‖(H(Ωj ))′ .

In practical terms it is not essential to solve (5.12) exactly. What matters is that K1(qj+r) is
controlled thereby stabilizing the (H(Ωj))

′ approximation. Therefore one can proceed as follows.

(i) For (j,k) ∈ G−
j determine qj,k according to (5.7).

(ii) Set qj+r := Mj+r−1,Φ̃ · · ·Mj,Φ̃qj so that the corresponding d̄l, l = j, . . . , j + r − 1, vanish,
see (5.11).

(iii) With this qj+r as an initial guess one carries out a few gradient descent steps to drive
K0(qj+r) +K1(qj+r) towards the minimum.

Again, when g ∈ S̃j(G
−
j ) one already has (up to round off) K0(qj+r)+K1(qj+r) = 0, i.e. exactness

is ensured. Step (iii) provides the desired (H(Ωj))
′-stability where one could vary the weight α in

the course of the iteration. Clearly, for fixed r the overall computational work remains proportional
to #G−

j .
In order to guarantee the desired accuracy of the approximation one could solve (5.12) for

several increasing values of r (always using the result of the previous step as initial guess). This
procedure is stopped when either some fixed upper bound for r is exceeded or when the following
criteria are fulfilled for some r′ > r and some fixed constant c < 1

‖qr
′

j − qrj‖`2 ≤ cε(#G−
j /#G−),

(5.13)

(

j+r′−1
∑

l=j+r

ω2
j ‖Gl,Θ̃Gl+1,Φ̃ · · ·Gj+r−1,Φ̃qj+r′‖

2
`2)

1/2 ≤ cε(#G−
j /#G−).
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An alternative criterion is to increase r until

(K0(q
∗
j+r) +K1(q

∗
j+r))

1/2 ≤ Cε(#G−
j /#G−), (5.14)

where now C could be a fixed (larger) constant. To explain these criteria note that, under
Assumption WA, ‖g−Lrjg‖(H(Ωj ))′ gets small compared with ‖g−Pjg‖(H(Ωj ))′ for increasing r so
that the qrj become stationary for increasing r while the higher order wavelet coefficients become
negligible. Thus the stopping criteria (5.13) are met after a finite number of steps depending only
on the choice of the constants c in (5.13), (5.14). As for (5.14), a prediction error ‖g−g(T )‖`2 ≤ ε
suggests to expect a portion like ε(#G−

j /G
−) to be attributed to G−

j . On account of the norm

equivalence (1.2) one expects that ‖g − Pj(g|G
−
j )‖(H(Ωj ))′ <

∼ ε(#G−
j /G

−). Thus the value of

(K0(q
∗
j+r) + K1(q

∗
j+r))

1/2 would be of the order ε(#G−
j /G

−) for q∗
j+r := Mj+r−1,Φ̃ · · ·Mj,Φ̃cj .

Hence, when (5.14) is met one has an H′-stable sufficiently good approximation to Pj(·|G
−
j ).

Remark 5.4 Recall that Recover works from top to bottom, i.e., G− is not known beforehand
and is in fact never assembled. However, on account of (3.15) we can replace #G− in (5.13),
(5.14) by the known quantity #T ◦.

Thus, in principle, for a wide range of cases an asymptotically optimal work count, as required
by Remark 3.2, can be achieved. Nevertheless, the quantitative performance of a strategy outlined
above may still be unacceptable. It is therefore important to see whether the full scope of such a
strategy is generally necessary. The numerical experiments in the next section are to shed some
light on this issue.

6 Numerical Experiments

Referring primarily to the second scenario in Section 1.2, we shall apply now the recovery scheme
Recover to compositions g = (F ◦ v) as a simple representative of a nonlinear operator. Here
F is just a smooth nonlinear scalar valued function and v is some finite wavelet expansion that
approximates some function u referred to as the original function. Thus g is always pointwise
defined. We are not interested in any specific application but in a quantitative validation of the
above theoretical investigations which guides the selection of u, F . In order to be able to access
true errors the role of the original function u will actually be played by some fixed highly accu-
rate approximation uJ of u, namely its (approximate) projection to S(ΦJ). This is done by first
computing the scaling function coefficients by (highly accurate) quadrature on a uniform grid.
The standard wavelet transform yields then the finite array of wavelet coefficients uJ of uJ with
maximal level J . Likewise we compute a highly accurate approximation gJ ′ to F ◦ uJ for some
J ′ ≥ J . uJ and gJ ′ will serve as fully known reference quantities. The test routine reads as follows:

• For a sequence of decreasing parameters ε ∈ {εi, i = 1, 2, . . .} determine approximations
v = uε to uJ by thresholding the wavelet coefficients in uJ yielding uε = u(Λε) to uJ .

• Construct the prediction set T ε = T (Λε) for g based on Λε according to the methods de-
scribed in [17, 9].

• Execute Recover and validate the results by comparing the reference g(T ε) with gR =
gR(T ε) and with gRt which is obtained by the top-to-bottom thresholding on the fly as
described at the end of Section 3.2.

All computation were carried out on an AMD Athlon(Tm)XP 2000+ processor with 1.26GHz and
512MB of memory, and we always used Cardinal B-spline wavelet bases. In all cases, CPU times
scaled linearly with the cardinality, see [2] for more details.
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6.1 The L2 case

We shall treat first approximation in L2 and consider the example

u1 =

{

exp(x) x ∈ (−1, 1)
0 x ∈ (−2, 2) \ (−1, 1)

, F (·) = 4sin(2·). (6.1)

We employ simple Gauss-type formulas according to [1] for the computation of a uniform scaling
function approximation to u1 on level J = 13 (32769 coefficients). The composition is approx-
imated on (−2, 2) in this case on level J ′ = 15 (131073 coefficients). Due to the jumps of u1 at
−1, 1 we expect significant wavelet coefficients with spatial indices near these points in uJ , and
therefore also in Λε and T ε.

To unify the representation we shall denote the arrays of wavelet coefficients always by g,g(T ),
etc. where it is understood that in the L2-case the diagonal matrix in (4.16) is just the identity.
The task of the recovery scheme is to compute approximations gR to g that are - up to a constant C
- as accurate as g(T ε). In the next table we exemplarily display cardinalities and errors, where we
used the biorthogonal cardinal B-spline systems N(m,m∗) according to the spline of order m = 2
and its dual m∗ = 2. Concerning the cardinalities of the involved sets, note that as expected, the
prediction set #T ε is significantly larger then the set of actually relevant coefficients and hence
the set resulting from Recover (including top-to-bottom thresholding as described in Section
3.2) #ΛR, yet the difference decreases with growing size of #T . Recall that, according to Task
R, the reference accuracy is given by ‖g − gε‖, with gε = g(T ε), where here and below we write
‖ · ‖ := ‖ · ‖`2 .

#T ε 104 332 3664 13908 23256 27040

‖g − gε‖ 2.90e-3 7.41e-5 2.93e-7 4.40e-9 1.57e-11 2.60e-13

‖g − gR‖ 2.90e-3 7.92e-5 3.21e-7 4.51e-9 1.60e-11 2.61e-13

‖g − gRt ‖ 2.92e-3 7.92e-5 3.3e-7 4.56e-9 1.71e-11 2.61e-13

#ΛR 25 112 1585 8771 15711 18527

‖g − gR‖/‖g − gε‖ 1.0 1.06 1.1 1.02 1.1 1.0

#T ε/#ΛR 4.16 2.96 2.31 1.58 1.48 1.45

The following graphs show the log-log plots of the approximation gε to g in comparison with
the result gR of the recovery of gε for the bases according to m = 2, m∗ = 2 and m = 3, m∗ = 3.
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(b) Error rates using N(3, 3)

Figure 6.1: 1D-Tests of Recover: g = F ◦ u = 4sin(2u1)

The expected error rate for these tests, i.e. the theoretical slope in the log-log graph is m,
which is well reflected by our experiments as soon as the problem reaches a certain size. For
smaller problems, we observe a tune-in behavior. However, the asymptotic (optimal order) regime
is entered at a relatively early stage. CPU times scaled linearly. As a two dimensional test
example, we choose u2 defined by

u2(x1, x2) := exp(−100 ∗ (x2
1 + x2

2)), (6.2)

and retain the nonlinearity F (·) = 4sin(2·). The results concerning Recover are similar to the
one dimensional case including the constant C. The expected asymptotical error rate is s = m−d/2,
which is matched fairly well. The plots (b), (d) in Figure 6.2 confirm that the CPU-time indeed
scales linearly with the size of the problem.
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(b) CPU time for recovery with N(2, 2)
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(d) CPU time for recovery with N(4, 4)

Figure 6.2: 2D-Tests of Recover: g = F ◦ u = 4sin(2u2)

6.2 Dual norms

In the following tests, the original function u is subject to a nonlinear mapping (of polynomial
type) F : H t → H−t. As before the examples are designed in such a way that F ◦ u is in L2 and
pointwise smooth, yet the H t- and L2-norms are very large compared to the (dual) H−t-norm
where the recovery is supposed to take place.

6.2.1 Gauss quadrature

We use again first the Gauss-type formulas from [1] for quadrature. One of our goals here is
to illustrate, that this suffices in practical applications involving pointwise smooth or piecewise
smooth objects. The test (2D) will be concerned with the nonlinearity F (·) = ·5 and u4(x1, x2) :=
u3(x1)u3(x2).

The next figures show the result of our tests executed in (H, H̃) = (H0.667,H−0.667) in a similar
fashion as before and, though dealing with larger constants, also show the expected behavior. Note
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that in Rd according to [9], F : u→ up maps Ht into H−t for t < d/2 if

p < p∗ =
d+ 2t

d− 2t
. (6.3)

For t = 0.667 and d = 2 respectively, F (·) = ·5 is therefore close to the limit case. These choices
have no practical meaning but are merely to test the dual norm case in a regime where the
nonlinear mapping affects the norms in a visible way. The size of the various norms are record as
follows ‖u4‖L2 = 0.501, ‖u4‖H0.667 = 10.548 and ‖F (u4)‖L2 = 57.395, ‖F (u4)‖H−0.667 = 0.399.
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Figure 6.3: 2D-Tests of Recover: g = F ◦ u = (u4)
5, (H, H̃) = (H0.667, H−0.667).

6.2.2 Least squares quadrature

Next we will be concerned with the pointwise smooth but oscillatory function

u5(x) = (exp(−100 ∗ (x− 0.5)) ∗ sin(500x))3,

which is to be recovered for test reasons inH−1. Concerning the H−1 norm we have H−1 ≈ 0.0877,
again determined by the weighted sum of a (finite) reference wavelet approximation obtained by
means of a scaling function representation on a uniform grid (level 15). In order to validate the
results, the inner products for this reference are computed exactly by means of automatic, symbolic
integration using MAPLE 9.0.

For the above setting, we will compare the recovery scheme using two different quadratures,
namely the Gauss-quadrature by [1] and the following quadrature method which is a simplification
of (5.12). Given an overall target accuracy ε > 0, for each level j do:

(i) Let r=1.

(ii) Determine qrj as described in (5.9) and compute drj(g) := Gj,Θ̃ · · ·Gj+r−1,Ψ̃qrj+r.

(iii) If

(

j+r′−1
∑

l=j+r

ω2
j‖Gl,Θ̃Gl+1,Φ̃ · · ·Gj+r−1,Φ̃qj+r′‖

2
`2)

1/2 > ε(#Λj/#Λ). (6.4)

set r → r + 1 and go to i) else accept qrj , cf. (5.13). Here we take r′ ∈ {r + 1, r + 2}.
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The following graphs show the results of our computations with N(2, 2) and N(3, 3). We used
Gauss quadratures with two points, the number of sampling points for the least-squares formula
is |Y (N(2, 2))| = |Y (N(3, 3))| = 4. The observed average refinement parameter is r = 2.

Note, that the error of the recovery scheme using the Gauss quadrature, labeled (F ◦ u)R,G in
the plot, does not show the desired behavior. It stagnates from time to time and even though we
can observe an overall error decay, the rate is certainly insufficient. The reason is, that the error
stemming from the Gaussian quadrature dominates the error of the recovery scheme. On the other
hand, the performance of the recovery scheme using the least-squares method described above,
labeled (F ◦ u)R,LS is satisfactory as (6.4) ensures, that the quadrature error does not dominate.
On the right hand side, we displayed the CPU-times referring to to least-squares computation.
More than 70% of the CPU time is consumed by checking the error criterion (6.4), namely to
apply Gj,Θ̃ and to compute the norm in (6.4), yet CPU time again scales linearly with N .
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(d) CPU time for recovery with N(3, 3)

Figure 6.4: 1D-Tests of the recovery using least-squares quadrature, u = u5, F ◦ u = (u5)
3
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6.3 Conclusions

We have described and analyzed a new scheme for the fast computation of sparse arrays of wavelet
coefficients. The design of the algorithm is tailored to the needs of recent adaptive wavelet concepts
addressing the main obstructions encountered in this context. First numerical tests, dealing
with compositions as simple representers of nonlinear operators, are presented to illustrate the
quantitative behavior of the scheme, in particular with regard to requirements on the quadrature
routines.
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