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ABSTRACT

This chapter highlights recent developments concerning adaptive wavelet methods for time dependent
and stationary problems. The first problem class focusses on hyperbolic conservation laws where
wavelet concepts exploit sparse representations of the conserved variables. Regarding the second
problem class, we begin with matrix compression in the context of boundary integral equations
where the key issue is now to obtain sparse representations of (global) operators like singular integral
operators in wavelet coordinates. In the remainder of the chapter a new fully adaptive algorithmic
paradigm along with some analysis concepts are outlined which, in particular, works for nonlinear
problems and where the sparsity of both, functions and operators, is exploited.
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1. Introduction

Increasingly realistic models in computational mechanics and the search for more and more
accurate simulations place continuously growing demands on computation that surpass the
ongoing increase of computing power. Thus, paradoxically, these finer models might be
of limited use in the absence of new computational strategies. One promising emerging
strategy is to dynamically adapt discretizations in the course of the computational solution
process. Adaptive strategies of this type have been observed to reduce the complexity of
computational problems arising in large scale numerical simulation. Therefore adaptivity
provides an enormeous potential for advancing the frontiers of computability. By bringing
more and more complex tasks into reach it offers in the long run better and better access to
physical phenomena through a powerful numerical microscope. On the other hand, to advance
these techniques to their natural fruition requires an understanding of the power of adaptivity
vis a vis traditional methods of computation. This includes clarifying the optimal performance
that can be expected from adaptive methods and how this compares with the performance
using non-adaptive techniques.
This chapter describes adaptive numerical strategies in the context of multiscale

decompositions using wavelet bases. In addition to formulating adaptive strategies to be used
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2 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

in a variety of settings, the chapter will provide an a priori analysis of the computational
efficiency of adaptive methods. This will dilineate the advantages of adaptive strategies versus
standard computational methods.

Adaptivity takes a variety of forms distinguished by their principal goals. In many
applications one is not interested in the full solution of given problem but only in certain
local functionals of an object that may be globally defined like the solution of a boundary
value problem. In this case an adaptive discretization reflects how much has to be paid to the
global character of the object when trying to recover local information about it. However, this
is not the direction of the present chapter. Instead, this chapter focuses on recovering the whole
object in question. In the context of fluid mechanics, this may mean recovering the vortices in
the wake of an airfoil, or the interaction of shocks even at some distance of the airfoil, or the
recovery of a full stress field or, eventually, to understand more about developing turbulence.
The objective is to develop numerical techniques that are able to extract information within
desired error tolerances at minimal cost. This means that searched for quantities like pressure
or velocity are to be recovered within some accuracy tolerance, e.g. with respect to some norm.
This should be done at the expense of a number of degrees of freedom that remains proportional
to the minimal number of degrees of freedom (in a certain discretization framework) needed
to approximate the object based on full information within the desired target accuracy. From
the mathematical point of view, it is not clear beforehand at all whether this is possible solely
based on a–posteriori information acquired during a solution process. We shall indicate in this
chapter an affirmative answer for a wide range of problems arising in engineering applications,
see Cohen, Dahmen and DeVore, 2001; Cohen, Dahmen and DeVore, 2002a; Cohen, Dahmen
and DeVore, 2002b; Cohen, Dahmen and DeVore, 2002c.

Our approach involves expansions of functions into wavelet bases. In such expansions, the
wavelet coefficients encode detail information that has to be added when progressing to
higher levels of resolution of the underlying function. These coefficients convey local structural
information such as the regularity of the expanded function. The decomposition naturally
breaks the function into different characteristic length scales. A central question in many
dynamical simulation tasks concerns the interaction of these different scales. As we shall
show, wavelet analysis offers a promising way to describe the behavior of contributions from
different length scales under nonlinear mappings. We shall see that wavelet expansions offer
quantitative ways of estimating nonlinear effects that appear for example in the Navier Stokes
equations. Moreover, we shall point out how such an analysis aids the adaptive solution process.
This already indicates the close marriage between the analysis and numerical resolution of a
problem facilitated by wavelet concepts. Therefore the understanding of these concepts and
their potential requires a certain amount of functional analysis as will be described in this
chapter.

We do not attempt to give an exhaustive overview of wavelet analysis pertinent to
computational mechanics issues. Nor will the topics presented here be treated in a selfcontained
way. Both would be far beyond the scope of this chapter. Rather we shall focus on presenting
some concepts and ideas which in our opinion best reflect the potential of wavelets, thereby
offering some orientation that could be complemented by the extensive list of references. The
following surveys and text books are recommended as sources of more detailed expositions
Cohen, 2000; Cohen, 2003; Dahmen, 1997; Dahmen, 2001; DeVore, 1998.

The organization of the material is in some sense “two dimensional”. Most simulation tasks
are based on continuous mathematical models formulated in terms of integral or (partial)
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ADAPTIVE WAVELET TECHNIQUES IN NUMERICAL SIMULATION 3

differential equations. The “first dimension” is to group the different concepts with respect to
the following two major problem classes. The first one concerns evolution problems

∂tu = E(u) (1)

together with initial and boundary conditions. The second class concerns stationary problems

R(u) = 0, (2)

which are usually given in variational form. The scope of problems covered by (2) will be
illustrated by a list of examples including mixed formulations and nonlinear problems. Of
course, there is no clear dividing line. For instance, an implicit time discretization of a parabolic
evolution problem leads to a family of problems of the type (2). The problems grouped under
(2) are typically elliptic (in the sense of Agmon–Douglis–Nirenberg) for which Hilbert space
methods are appropriate. In contrast, we focus under (1) on nonlinear hyperbolic problems.
It will be seen that the respective concepts are quite different in nature. The nature of the
relevant function spaces, e.g. L1 which admits no unconditional basis, causes an impediment
to exploiting the full potential of wavelets.
The “second dimension” of organization concerns the way wavelet features are exploited. In

Section 2 we review briefly the main features that drive wavelets as analysis and discretization
tools. Aside from transform mechanisms these are the locality (in physical and frequency
domain), the cancellation properties and the norm equivalences between function and sequence
spaces. The latter facilitate a stable coupling of the continuous and the discrete world. Together
with the first two features this is also fundamental for a fast numerical processing.
In Section 3 these features are applied to (1). The primary focus of adaptivity here is the

sparse approximation of the unknown solution, mainly thanks to the cancellation properties.
In this context wavelets are not used as stand alone tools but are rather combined with
conventional finite volume discretizations. The numerical approximation represented by arrays
of cell averages is compressed in a manner similar to image compression. This amounts to a
perturbation analysis where one seeks a significant data compression while preserving essentially
the accuracy of the underlying reference discretization for a fixed level of resolution. The
approach and the performance of such schemes are illustrated by some numerical examples
concerning aerodynamical applications.
The remainder of the chapter is concerned with the problem class (2). Section 4 deals

with global operators represented here by the classical boundary integral equations. Now the
above mentioned main features of wavelets are used mainly to obtain sparse approximations
of operators. This time the elliptic nature of the problem allows one to formulate stable
Galerkin discretizations. When using finite elements or boundary elements the resulting
stiffness matrices are densely populated and, depending on the operator, are increasingly ill–
conditioned when the mesh size decreases. In wavelet formulations, the norm equivalences
and cancellation properties are used to show that the stiffness matrices can be replaced by
sparse well–conditioned ones without sacrificing discretization error accuracy. This allows one
to solve such problems in linear time. Again this is essentially a perturbation approach where
this time sparse approximations apply to the operator not to the function. Adaptivity refers
here primarily to the quadrature used to compute the compressed stiffness matrices with a
computational effort that stays proportional to the problem size. As for the current state of the
art we refer to Dahmen, Harbrecht and Schneider, 2002; Harbrecht, 2001 and the references
cited there.
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4 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

In Section 5 we introduce a new algorithmic paradigm that emerges form exploiting both,
the sparse approximation of functions and the sparse representation of operators together. It
aims at intertwining in some sense the analysis and resolution aspects of wavelet concepts as
much as possible. Here are the main conceptual pillars of this approach:

A transform point of view:Many studies of wavelet methods for the numerical solution of PDEs
are very similar in spirit to classical finite element discretizations where the trial spaces are
spanned by finite collections of wavelets. This has so far dominated the use of wavelets in the
context of boundary integral equations and is the point of view taken in Section 4. However, this
does not yet fully exploit the potential of wavelets. In fact, similar to classical Fourier methods,
wavelets can be used to formulate transform methods that are best explained in the context
of variational formulations of (linear or nonlinear) operator equations like boundary value
problems or boundary integral equations. Unlike finite volume or finite element schemes wavelet
bases can be used to transform the original variational problem into an equivalent problem
over `2 the space of square summable sequences indexed by the wavelet basis. Moreover, when
the wavelets are correctly chosen in accordance with the underlying problem, the transformed
(still infinite dimensional) problem is now well-posed in a sense to be made precise later. We
shall point out now the main principles along these lines.

Staying with the infinite dimensional problem: In many cases, the underlying infinite
dimensional problem, e.g. a PDE, is fairly well understood. In mathematical terms this means,
when formulated as an operator equation, the operator is known to be boundedly invertible
as a mapping from a certain function space into its dual, which is another way of saying that
the problem is well posed in a certain topology - there exists a unique solution which depends
continuously on the data in the topology given by that function space. When transforming to
the wavelet domain, the properties of the operator are inherited by the transformed operator
which now acts on sequence spaces. The main point we wish to stress is that the original infinite
dimensional problem is often better understood than specific discretized finite dimensional
versions and therefore there is an advantage in delaying as long as possible the movement
to finite discretizations. A classical example of this is the Stokes problem where a positive
definite quadratic functional is minimized under the divergence constraint and thus has saddle
point character. The Stokes problem is well-posed in the above sense for the right pairs of
functions spaces for the velocity and pressure component, see e.g. Brezzi and Fortin, 1991;
Girault and Raviart, 1986. It is well-known that Galerkin discretizations, however, may very
well become unstable unless the trial spaces for velocity and pressure satisfy a compatibility
condition called the Ladyšhenskaya-Babuška-Brezzi (LBB) condition. For the Stokes problem
this is well understood but in other situations, as in many physically very appropriate mixed
formulations, finding stable pairs of trial spaces is a more delicate task. So in some sense one
may run into self-inflicted difficulties when turning to finite discretizations even though the
original problem is well behaved. Is there an alternative?

Stabilizing effects of adaptivity: The very fact that, unlike conventional schemes, a suitable
wavelet basis captures the complete infinite dimensional problem and puts it into a well
conditioned format over `2, can be used to avoid fixing any finite dimensional dicretization.
Instead the well-posedness offers ways of formulating an iterative scheme for the full infinite
dimensional problem that converges (conceptually) with a fixed error reduction per step.
Only after this infinite dimensional analysis is complete do we enter the numerical stage by
applying the involved infinite dimensional (linear and also nonlinear) operators adaptively
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ADAPTIVE WAVELET TECHNIQUES IN NUMERICAL SIMULATION 5

within suitable stage dependent dynamically updated error tolerances. Roughly speaking, this
numerical approach inherits the well-posedness of the original problem and allows us to avoid
imposing compatibility conditions such as LBB.

Adaptive evaluation of operators: A central issue is then to actually realize concrete adaptive
evaluation schemes for relevant operators and to analyze their computational complexity.
We shall engage this issue for both linear and nonlinear examples. While at the first glance
nonlinear operators seem to interfere in an essential way with wavelet concepts (as they do with
regard to the Fourier techniques) we claim that they offer particularly promising perspectives
in this regard. In conventional discretizations the image of a current adaptive approximation
under a nonlinear mapping is usually discretized on the same mesh. However, a singularity,
which may cause an adaptive local refinement, is often severely affected by a nonlinearity so
that this mesh might no longer be optimal. In the present framework the adaptive evaluation
will be seen to generate at each stage the right choice of degrees of freedom for the image of
the nonlinearity, see 6.2. This is based on quantitative estimates on the interaction of different
length scales under nonlinear mappings.

It would be far beyond the scope of this chapter to address any of the above issues in
complete detail. Instead, our presentation will be more of an overview of this subject which
should serve to orient the reader to the essential concepts and point of views. The interested
reader will then find extensive references for further reading.

2. Wavelets

In this section we give a brief overview of those features of wavelets and multiresolution that
are important for our presentation. There are many different ways of viewing and motivating
wavelet expansions, see e.g. Daubechies, 1992. Our point of view in the present context is
conveniently conveyed by the following example.

2.1. The Haar Basis

The starting point is the box function
φ(x) = χ[0,1)(x), which takes the value one
on [0, 1) and zero outside. The normalized
dilates and translates φj,k = 2

j/2φ
(
2j · −k

)
,

k = 0, . . . , 2j − 1, of φ are readily seen
to be orthonormal, i.e., 〈φj,k, φj,l〉[0,1] :=
1∫

0

φj,k(x)φj,l(x)dx = δk,l. Hence

10

Pj(f) :=

2j−1∑

k=0

〈f, φj,k〉φj,k

is for each j ∈ N0 a simple orthogonal projector from L2([0, 1]) onto the space Sj of piecewise
constant functions subordinate to the dyadic mesh of size 2−j . This projection resolves the
function f up to scale j while finer details are averaged out, see Figure 1
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x

Figure 1. Piecewise constant approximation

If the resolution is found to be insufficient, one has to discard previous efforts and recompute
with a larger j.
In contrast

f =

∞∑

j=0

(Pj − Pj−1)f, (P−1 := 0) (3)

is a multiscale representation of the function f . Each term (Pj − Pj−1)f represents the detail
in f at the scale 2−j . Moreover, the layers of detail at each scale are mutually orthogonal.

0 1 0 1 0 1

Figure 2. different levels of resolution of f

As can be seen from Figure 2, to encode the difference information one can use in place of the
averaging profile φ(x) an oscillatory profile ψ(x) - the Haar wavelet - given by

1

0
1

1

0

-1-1

ψ(x) := φ(2x)− φ(2x− 1) which implies

φ(2x) = (φ(x) + ψ(x))/2 and therefore

φ(2x− 1) = (φ(x)− ψ(x))/2.

Hence, the fine scale averaging profiles can be recovered from a coarse scale average and an
oscillatory profile. Thus, defining again φj,k := 2

j/2φ(2j ·−k), ψj,k := 2j/2ψ(2j ·−k) one easily
verifies the two–scale relations

φj,k =
1
√
2
(φj+1,2k + φj+1,2k+1), ψj,k :=

1
√
2
(φj+1,2k − φj+1,2k+1)

φj+1,2k =
1
√
2
(φj,k + ψj,k), φj+1,2k+1 =

1
√
2
(φj,k − ψj,k), (4)
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ADAPTIVE WAVELET TECHNIQUES IN NUMERICAL SIMULATION 7

which give rise to a change of basis

2j+1−1∑

k=0

cj+1,kφj+1,k =

2j−1∑

k=0

cj,kφj,k +

2j−1∑

k=0

dj,kψj,k, (5)

where

cj,k =
1
√
2
(cj+1,2k + cj+1,2k+1), dj,k =

1
√
2
(cj+1,2k − cj+1,2k+1)

cj+1,2k =
1
√
2
(cj,k + dj,k), cj+1,2k+1 =

1
√
2
(cj,k − dj,k). (6)

Thus the representation in terms of fine scale averages can be obtained from the oarse scale
averages already in hand by simply adding the detail (lost through the coarse projection)
encoded in terms of the oscillatory profiles. The translated dilations ψj,k(x) := 2

j/2ψ(2j · −k)
are easily seen to be pairwise orthonormal

〈ψj,k, ψj′,k′〉R = δ(j,k),(j′,k′), j, j′, k, k′ ∈ Z. (7)

Here and in the following we use the notation 〈f, g〉Ω =
∫

Ω

fgdx but suppress at times the

subscript Ω when the reference to the domain is clear from the context.
Obviously, the above change of basis (5) can be repeated which gives rise to a cascadic

transform - the fast wavelet transform. It transforms a linear combination of fine scale box
functions with an array of averages cJ into a linear combination of coarse scale box functions
with coefficient array c0 and Haar wavelets with arrays of detail coeffcients dj for each dyadic

level j < J . This decomposition transform T : cJ → dJ := (c0,d0,d1, . . . ,dJ−1) looks
schematically as follows:

cJ → cJ−1 → cJ−2 → · · · → c1 → c0

↘ ↘ ↘ ↘

dJ−1 dJ−2 · · · d1 d0.

(8)

In other words, from cJ we determine cJ−1, and dJ−1 by using (6), and so on. By (7) T
is represented by a unitary matrix whose inverse is given by its transpose. Therefore the
transform T−1 : dJ := (c0,d0, . . . ,dJ−1) → cJ , that takes the detail coefficients into the
single scale average coefficients, has a similar structure that can also be read off from the
relations (6):

c0 → c1 → c2 → · · · → cJ−1 → cJ

↗ ↗ ↗ ↗

d0 d1 d2 · · · dJ−1 .

(9)

Thus, starting with c0 and the wavelet coefficients d0,. . .dJ−1, we can use (9) to find cJ . Due
to the cascadic structure and the fact that the relations in (6) involve only finite filters or
masks, the number of operations required by both transforms is O(2J ), i.e. stays proportional
to the size of the arrays cJ .
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8 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

In summary, there is a convenient and fast way of switching between different representations
of a given projection PJ(f) =

∑
k cJ,kφj,k, each having its advantages, as we shall see in

subsequent discussions. From the theoretical point of view, since the wavelets allow us to
encode the jth dyadic level of detail of a function f as

(Pj+1 − Pj)f =
2j−1∑

k=0

dj,k(f)ψj,k, dj,k(f), := 〈f, ψj,k〉,

the telescoping expansion (3) yields

f = P0f +

∞∑

j=1

(Pj − Pj−1)f =
∞∑

j=−1

2j−1∑

k=0

dj,k(f)ψj,k =: d(f)
TΨ. (10)

The convergence of this expansion in L2 follows from the convergence of the orthogonal
projections in L2.
A wavelet decomposition of a function f ∈ L2 is analogous in spirit to the decimal

representations of a real number. The wavelet coefficients play the role of digits; receiving
more wavelet coefficients gives us progressively better accuracy in representing f . Of course,
the classical Fourier transform of periodic functions and also Taylor expansions do, in principle,
the same. The particular advantages of wavelet representations rely to a large extent on the
following fact. First of all, the orthonormality of the ψj,k gives

‖f‖L2 =




∞∑

j=0

‖(Pj − Pj−1)f‖
2
L2




1/2

= ‖d(f)‖`2 , (11)

i.e. there is a tight relation between the function and coefficient norm. Thus perturbing the
digits, which will happen in every computation, in particular, discarding small digits, will
change the function norm only by the same small amount. Clearly, the convergence of the
series implies that the digits will eventually have to become arbitrarily small. However, which
digits become how small can easily be inferred from local properties of f . In fact, since the
ψj,k are orthogonal to constants - they have first order vanishing moments - one has for
Sj,k := suppψj,k = 2

−j [k, k + 1]

|dj,k(f)| = inf
c∈R
|〈f − c, ψj,k〉| ≤ inf

c∈R
‖f − c‖L2(Sj,k) ≤ 2

−j‖f ′‖L2(Sj,k), (12)

where the last estimate follows e.g. from Taylor’s expansion. Thus dj,k(f) is small when f |Sj,k
is smooth.

2.2. Biorthogonal Wavelets on R

The Haar basis is, of course, not suitable when, for instance, higher regularity of the
approximation system is required. The discovery by I. Daubechies, Daubechies, 1992, of a
family of compactly supported orthonormal wavelets in L2(R) of arbitrary high regularity
opened the door to a wide range of applications. Of perhaps even more practical relevance
was the subsequent construction of biorthogonal wavelets put forward by Cohen, Daubechies
and Feauveau, 1992. The biorthogonal approach sacrifices L2-orthogonality in favor of other
properties such as symmetry of the basis functions and better localization of their supports.
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The construction of biorthogonal wavelets starts with a dual pair of compactly supported
scaling functions φ, φ̃, i.e.

〈φ, φ̃(· − k)〉 = δ0,k, k ∈ Z, (13)

that satisfy the two scale relations

φ(x) =
∑

k∈Z

akφ(2x− k), φ̃(x) =
∑

k∈Z

ãkφ̃(2x− k) (14)

with finitely supported masks (ak)k∈Z, (ãk)k∈Z, see (4). Each of the functions

ψ(x) =
∑

k∈Z

(−1)kã1−kφ(2x− k), ψ̃(x) =
∑

k∈Z

(−1)ka1−kφ̃(2x− k) (15)

generates by means of shifts and dilates a biorthogonal basis for L2(R). Each f ∈ L2(R) has
the following unique expansions:

f =
∞∑

j=−1

∑

k∈Z

〈f, ψ̃j,k〉Rψj,k =
∞∑

j=−1

∑

k∈Z

〈f, ψj,k〉Rψ̃j,k, (16)

where we have used the notation ψ−1,k; = φ0,k, ψ̃−1,k; = φ̃0,k. One thus has 〈ψj,k, ψ̃l,m〉R =
δ(j,l),(k,m).
Each of these systems is a Riesz basis, which means ∗

‖f‖2L2(R) ∼
∞∑

j=−1

∑

k∈Z

|〈f, ψ̃j,k〉|
2 ∼

∞∑

j=−1

∑

k∈Z

|〈f, ψj,k〉|
2. (17)

The inequalities (17) ensure a tight relation between the function norm and the coefficient
norm.
Cohen, Daubechies and Feauveau, 1992 construct a family of biorthogonal pairs with each

of ψ, ψ̃ of compact support. Given any desired order r of differentiability, one can find a
biorthogonal pair in this family with ψ having r continous derivatives. Moreover, one can also
require that a suitable linear combination of (φ(· − k))k∈Z (respectively (φ̃(· − k))k∈Z) will
represent any given polynomial of order ≤ m, (respectively m̃). The biorthogonality relations
then imply that the wavelets ψj,k, ψ̃j,k (for j ≥ 0) are orthogonal to all polynomials of order

m̃, m respectively. An analogous argument to (12) then shows that the coefficients 〈f, ψ̃j,k〉,

〈f, ψj,k〉 decay like 2−mj , 2−m̃j when f has bounded derivatives on the supports of ψ̃j,k, ψj,k
of order m, m̃, respectively, in L2. Thus higher local smoothness results in a stronger size
reduction of corresponding wavelet coefficients.
The setting of biorthogonal wavelets is particularly appealing from a practical point of

view since the primal generator φ can be chosen as any B-spline, and in turn the primal
wavelet generator ψ is also a spline function with an explicit - piecewise polynomial - analytical
expression.

∗Throughout this chapter we sometimes write A <∼ B to indicate the existence of a constant c such that

A ≤ cB independent of any parameters on which A and B may depend. Moreover A ∼ B means that A <∼ B

and B <
∼ A.
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2.3. Wavelets on Domains

Biorthogonal wavelets provide a beautiful and conceptually simple multiscale decomposition
of functions. They offer great versatility in the choice of the basis and dual elements including
compact support, smoothness, and even piecewise polynomial structure. Meanwhile they
maintain the essential features of orthogonal wavelet decompositions such as norm equivalences
and cancellation properties. Moreover, in connection with differential equations the space L2
often plays only a secondary or artificial role. Therefore, dispensing with L2-orthogonality is,
in general, not even a quantitative drawback.
That is the good news. The bad news is that the above wavelet constructions are inherently

made on R, Rd or a torus. In numerical applications, the setting is typically on a finite domain
or manifold Ω. Such domains and manifolds do not maintain the dilation and translation
structure of the full Euclidean space or the torus. † Fortunately, there are constructions
of multiscale bases tailored to general domains and manifolds. Albeit, these come at some
expense of a certain level of technicality. In order not to destroy the main flow of this chapter,
we shall only give an overview of some of the ideas used for these constructions. The reader
can consult Dahmen, 1997 and the references quoted there for a more detailed description of
the construction of multiscale bases on (bounded) domains and manifolds.
The starting point of these constructions is again multiresolution. By this we mean a

hierarchy of (now finite dimensional) subspaces Sj of some function space X

S0 ⊂ S1 ⊂ S2 ⊂ . . .X ,
⋃

j

Sj = X ,

that are spanned by single-scale bases Sj = spanΦj =: S(Φj), Φj = {φγ : γ ∈ Ij}. The space
X is typically an Lp or Sobolev space. It is important that the bases Φj are scalewise stable
with respect to some discrete norm ‖ · ‖ in the sense that

‖(‖cγφγ‖X )γ∈Ij‖ ∼ ‖
∑

γ∈Ij

cγφγ‖X , (18)

with constants that do not depend on the level j. In the case where X = Lp orW s
p , the discrete

norm ‖ · ‖ is typically the `p norm. For instance, Φj could be a finite element nodal basis on a
j-fold refinement of some initial mesh for Ω. In this example the indices γ may represent the
vertices in the mesh. One then looks for decompositions

Sj+1 = Sj
⊕

Wj , Wj = spanΨj , Ψj = {ψλ : λ ∈ Jj}.

The multi-scale basis

Ψ :=

∞⋃

j=−1

Ψj =: {ψλ : λ ∈ J } (Ψ−1 := Φ0)

is then a candidate for a wavelet basis. At this point a word on notation is in order. The index
set has two component subsets: J = Jφ ∪ Jψ. The index set Jφ has a finite cardinality and

†There is at least one strategy for maintaining the Euclidean structure by employing fictitious domain
techniques; appending, for instance, essential boundary conditions by Lagrange multipliers, Dahmen and
Kunoth, 2001; Kunoth, 1995.
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ADAPTIVE WAVELET TECHNIQUES IN NUMERICAL SIMULATION 11

labels the basis functions in S0 of “scaling function” type. The true wavelets correspond to
the indices in Jψ. These indices absorb different types of information such as the scale j = |λ|,
the spatial location k(λ) or, when dealing with a spatial dimension d > 1, the type e(λ) of
ψλ. An example is ψλ(x, y) = 2

jψ1,0(2j(x, y) − (k, l)) = 2j/2ψ(2jx − k)2j/2φ(2jy − l) where
λ↔ (j, (k, l), (1, 0)).

Of course, there is a continuum of possible complements Wj and the question arises
as to what are “good complements”. The previous section already indicates the role of
biorthogonality in this context. So a typical strategy is to split the multiresolution spaces
Sj in such a way that there exists a biorthogonal or dual collection Ψ̃, corresponding to a dual

multiresolution sequence (S̃j), that belongs to the dual X ′ in such a way that

〈ψλ, ψ̃ν〉 = δλ,ν , λ, ν ∈ J and hence f =
∑

λ∈J

〈f, ψ̃λ〉ψλ. (19)

The classical situation is X = X ′ = L2(Ω) so that one has in this case the alternate
representation f =

∑
λ∈J 〈f, ψλ〉ψ̃λ, see Carnicer, Dahmen and Peña, 1996; Cohen, Daubechies

and Feauveau, 1992; Dahmen, 1994; Dahmen, 1996.

When no global smoothness is required the concept of multiwavelets (Alpert, 1993) offers
a convenient way of generalizing the Haar basis to higher order accuracy and cancellation
properties, see e.g. von Petersdorff, Schneider and Schwab, 1997 for an application to second
kind integral equations.

We describe now one concrete approach (see Canuto, Tabacco and Urban, 1999; Canuto,
Tabacco and Urban, 2000; Cohen and Masson, 1997; Dahmen and Schneider, 1999a; Dahmen
and Schneider, 1999b) based on domain decomposition that works for X = L2(Ω) and realizes
at least global continuity. Suppose that

Ω =
⋃̇
1≤m≤M

κm(2), κm : 2→ Ωm,

where each κi is a regular mapping from a parameter domain such as the unit d-cube, into a
subdomain Ωi of Ω. A wavelet basis Ψ

Ω is then constructed along the following lines:

• Start with biorthogonal wavelet bases ΨR, Ψ̃R on R and adapt them to biorthogonal
wavelet bases ΨI , Ψ̃I on I = [0, 1].

• Use tensor products to obtain bases Ψ2 on the unit cube 2 = [0, 1]d.
• Use parametric liftings to derive bases ΨΩi = Ψ2 ◦ κ−1i on Ωi = κm(2) which then
have to be glued together to produce e.g. globally continuous bases Ψ = ΨΩ on Ω, see
e.g. Canuto, Tabacco and Urban, 1999; Canuto, Tabacco and Urban, 2000; Cohen and
Masson, 1997; Dahmen and Schneider, 1999a. An alternative approach leads to wavelets
of arbitrary regularity permitted by the regularity of the domain, Dahmen and Schneider,
1999b.

The following Figure 3 has been provided as a courtesy by H. Harbrecht. It displays an example
of a globally continuous primal and dual wavelet on a two dimensional patchwise defined
manifold where the supports cross the patch boundaries.
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12 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Figure 3. a) primal wavelet b) dual wavelet

Alternatively, hierarchies of uniform refinements of an arbitrary initial triangulation can
be used to construct finite element based wavelets, see e.g. Dahmen and Stevenson, 1999;
Stevenson, 2000.
All these constructions aim to realize (19). However, biorthogonolatity by itself is not quite

sufficient in general to guarantee relations like (17). It is shown in Dahmen, 1996 that if in
addition the multiresolution spaces Sj and S̃j each satisfy a (quite general form of a) direct
(sometimes referred to as a Jackson) estimate which quantifies their approximation properties,
and in addition satisfy an inverse (referred to as Bernstein) estimate, which quantifyies the
regularity of these spaces, then an L2(Ω)- norm equivalences of the form (17) hold. One
actually obtains norm equivalences for a whole range of smoothness spaces, (possibly weighted)
Sobolev spaces, around L2; a fact that is actually more important for the intended applications,
Dahmen, 1996; Dahmen and Stevenson, 1999.
The above approach, in particular Dahmen and Stevenson, 1999, can be viewed as a special

realization of the following general strategy. To describe this approach, it is now convenient
to view a (countable) collection Θ of functions, such as a wavelet basis or a basis of scaling
functions, as a column vector based on some fixed but unspecified ordering of its elements.
Refinement relations of the form (14) take then the form ΦTj = Φ

T
j+1Mj,0 where the columns

of the matrix Mj,0 consist of the mask coefficients in each two-scale relation for the elements
of the scaling functions on level j. For instance, in the case of the Haar basis on [0, 1], (4)
says that each column in Mj,0 has at two successive positions the value 2

−1/2 as the only
nonzero entry. This format persists in much wider generality and can be used to represent
two–scale relations for any hierarchy S of nested spaces spanned by scaling function bases
Sj = spanΦj . In the same way, a basis Ψj spanning some complement Wj of Sj in Sj+1,
has the form ΨTj = Φ

T
j+1M1,j . It is easy to see that Mj,1 completes Mj,0 to an invertible

operator Mj := (Mj,0,Mj,1) if and only if Sj+1 = Sj ⊕Wj and that the complement bases
are uniformly scalewise stable in the sense of (18) if and only if the condition numbers of the
Mj with respect to the corresponding norms are uniformly bounded, Carnicer, Dahmen and
Peña, 1996. Of course, in the case of orthonormal bases one has Gj =M

T
j .

One can now define multiscale transformations that change, for instance, the representation
of an element in SJ with respect to ΦJ into the representation with respect to Φ0 and the
complement bases Ψj , j < J , in complete analogy to (8) and (9). In fact, the refinement
relations imply that

cj+1 =
(
Mj,0c

j +Mj,1d
j
)
. (20)

The refinement matrixMj,0 can be viewed as a prediction operator. When the detail coefficients
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ADAPTIVE WAVELET TECHNIQUES IN NUMERICAL SIMULATION 13

are zero it provides an exact representation of the data on the next higher level of resolution.
It is also sometimes called a subdivision operator, see e.g. Arandiga, Donat and Harten, 1998;
Arandiga, Donat and Harten, 1999; Carnicer, Dahmen and Peña, 1996. It follows from (20)
that the transformation T−1J , taking the detail coefficients into the single scale coefficients c

J ,
uses the matrices Mj in each cascadic step of (9).

Conversely, setting Gj :=M
−1
j =

(
Gj,0
Gj,1

)
, one has

cj = Gj,0c
j+1 and dj = Gj,1c

j+1. (21)

Hence the transformation TJ that decomposes c
J into details dj and coarse scale coefficients

c0 has the same cascadic structure as (8), now based on the filter matrices Gj .
Furthermore, one can show that the transformations TJ have uniformly bounded spectral

condition numbers independent of J if and only if the corresponding union Ψ of the complement
bases Ψj and the coarse scale basis Φ0 forms a Riesz basis for L2, Dahmen, 1994; Carnicer,
Dahmen and Peña, 1996.
While it is often difficult to directly construct a Riesz basis for the space of interest, in

many cases, it is easy to find for each level j some initial complement bases Ψ̌j . For instance,
when working with a hierarchy of nodal finite element bases, complement bases are provided
by the hierarchical basis consisting of those nodal basis functions at the nodes of the next
higher level of resolution, see e.g. Yserentant, 1986. As a second step one can then generate
from this initial multiscale decomposition another one that has certain desirable properties,
for instance, a higher order of vanishing moments. The important point to be made in this
regard is that all of this can be done completely on a discrete level. To this end, suppose that
an initial completion M̌j,1 of the refinement matrix Mj,0 (and Ǧj) is known. Then all other
stable completions have the form Carnicer, Dahmen and Peña, 1996

Mj,1 =Mj,0L+ M̌j,1K (22)

with inverse blocks

Gj,0 = Ǧj,0 − Ǧj,1(K
T )−1LT , Gj,1 = Ǧj,1(K

T )−1. (23)

In fact, this follows from the identity

I = M̌jǦj = M̌j



 I L

0 K







 I −LK−1

0 K−1



 Ǧj =:MjGj .

The special case K = I is often referred to as Lifting Scheme, Sweldens, 1996; Sweldens,
1998. The parameters in the matrices L,K can be used to modify the complement bases. Such
modifications of stable completions are used for instance in the construction of wavelets on an
interval (see e.g. Dahmen, Kunoth and Urban, 1999) and hence in the above mentioned domain
decomposition approach, Canuto, Tabacco and Urban, 1999; Canuto, Tabacco and Urban,
2000; Cohen and Masson, 1997; Dahmen and Schneider, 1999a, as well as in the construction
of finite element based wavelets through coarse grid corrections, Carnicer, Dahmen and Peña,
1996; Dahmen, 1997; Dahmen and Kunoth, 1992; Dahmen and Stevenson, 1999; Stevenson,
2000; Vassilevski and Wang, 1997. A further important application concerns raising the order
of vanishing moments: Choose K = I and L such that

∫

Ω

ΨTj Pdx =

∫

Ω

ΦTj+1Mj,1Pdx =

∫

Ω

ΦTj LP + Ψ̌
T
j Pdx = 0, P ∈ Pm∗ . (24)
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14 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

The significance of the above formulations lies in the versatility of handling multiscale
decompositions entirely on a discrete level. This allows one to circumvent (at least to some
extent) the explicit construction of complicated basis functions, see Harten, 1996. However,
statements about stability are often based on explicit knowledge of the underlying multiscale
bases.

2.4. The Key Features

The ideas put forward in the previous section allow one to construct multiscale bases for a
variety of domains and even closed surfaces. In this section we collect the main properties of
these constructions that are valid on a domain Ω of spatial dimension d. We shall assume these
properties in our subsequent applications. These key properties can be summarized as follows:

• Locality (L) • Cancellation Properties (CP) • Norm Equivalences (NE).

Locality: (L) means that the elements of Ψ all have compact support Sλ := suppψλ that scales
properly, i.e.

diam (Sλ) ∼ 2
−|λ|. (25)

Locality is crucial for applications on bounded domains and for the efficiency of associated
multiscale transforms.

Cancellation Properties: (CP) generalizes our earlier observation (12). It means that integrating
a wavelet against a locally smooth function acts like differencing. Assume for example that
the wavelets are normalized in L2, i.e. ‖ψλ‖L2 ∼ 1. Cancellation will then mean that

|〈v, ψλ〉| <∼ 2
−|λ|(m̃+ d2−

d
p )|v|W m̃

p (Sλ)
, λ ∈ Jψ, (26)

where |v|Wn
p (G)

is the usual nth order seminorm of the corresponding Sobolev space on the

domain G. Analogous relations can of course be formulated for the dual basis Ψ̃.
The integer m̃ signifies the strength of the cancellation properties because it says up to which

order the local smoothness of the function is rewarded by the smallness of the coefficients (in
this case of the dual expansion). Obviously, when Ω is a Euclidean domain, (26) implies that
the wavelets have vanishing polynomial moments of order m̃, i.e.,

〈P, ψλ〉Ω = 0, P ∈ Pm̃, λ ∈ Jψ. (27)

Conversely, as in (12), the vanishing moments imply that for 1
p
+ 1

p′
= 1

|〈v, ψλ〉| = inf
P∈Pm̃

|〈v − P,ψλ〉| ≤ inf
P∈Pm̃

‖v − P‖Lp(Sλ)‖ψλ‖Lp′ ,

<
∼ 2−|λ|(

d
2−

d
p ) inf

P∈Pm̃
‖v − P‖Lp(Sλ),

where we have used that

‖ψλ‖Lp′ ∼ 2
|λ|( d

p′
− d2 ) ∼ 2|λ|(

d
2−

d
p ) when ‖ψλ‖L2 ∼ 1. (28)

Now standard estimates on local polynomial approximation (see e.g. DeVore and Sharpley,
1984) tell us that

inf
P∈Pk

‖v − P‖Lp(G) <∼ (diamG)
k|v|Wk

p (G)
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ADAPTIVE WAVELET TECHNIQUES IN NUMERICAL SIMULATION 15

which yields (26). We refer to (26) as the cancellation property of order m̃ rather than to (27),
since it makes sense for domains where ordinary polynomials are not defined.

Norm Equivalences: The cancellation properties tell us under what circumstances wavelet
coefficients are small. One expects to have only relatively few significant coefficients when
the expanded function is very smooth except for singularities on lower dimensional manifolds.
This helps to recover a function with possibly few coefficients only if small perturbations in
the coefficients give rise to perturbations of the function that are also small with respect to
the relevant norm. Recall that for function spaces X with local norms it is usually easy to
construct multiscale bases Ψ that are uniformly scalewise stable, i.e.

‖
∑

|λ|=j

dλψλ‖X ∼ ‖(‖dλψλ‖X )|λ|=j‖, (29)

uniformly in j, where ‖ · ‖ is some appropriate discrete norm.
In some cases this stability property can be extended to the whole array Ψ over all scales.

In the particular case when X = H is a Hilbert space, this is expressed by saying that, with
the normalization ‖ψλ‖H ∼ 1, the family Ψ is a Riesz basis for the whole function space H, i.e.
every element v ∈ H possesses a unique expansion in terms of Ψ and there exist finite positive
constants cΨ, CΨ such that

cΨ‖(vλ)‖`2 ≤ ‖
∑

λ

vλψλ‖H ≤ CΨ‖(vλ)‖`2 , ∀ v = (vλ) ∈ `2. (30)

Thus, while relaxing the requirement of orthonormality, a Riesz basis still establishes a
strong coupling between the continuous world, in which the the mathematical model is often
formulated, and the discrete realm which is more apt to computational realizations. Therefore,
it should not be a surprise that the availability of such bases for function spaces may be
exploited for numerical methods.
We shall exploit norm equivalences for the problem class (2) where the relevant spaces are

Sobolev spaces or tensor products of them. Recall that for n ∈ N the space Hn(Ω) consists of
those elements of L2(Ω) whose nth order weak derivatives are also in L2(Ω). More generally,
for 1 ≤ p ≤ ∞ we have

Wn
p (Ω) := {f : ∂

αf ∈ Lp(Ω), |α| ≤ n}, (31)

and the corresponding (semi-)norms are given by |f |Wn
p (Ω)

:=
(∑

|α|=n ‖∂
αf‖p

Lp(Ω)

)1/p
and

‖v‖p
Wn
p (Ω)

:=
∑n
m=0 |f |

p
Wm
p (Ω)

. Dealing with traces of functions on boundary manifolds, for

instance, forces one to consider also non-integer smoothness orders t ∈ R. For t > 0 these
spaces can be defined either by interpolation between spaces of integer order (see e.g. Bergh
and Löfström, 1976) or directly through intrinsic norms of the form

‖v‖W t
p(Ω)
=



‖v‖p
Wn
p (Ω)

+
∑

|α|=n

∫

Ω

∫

Ω

|∂αv(x)− ∂αv(y)|p

|x− y|d+(t−n)p
dxdy




1/p

, n := btc.

Moreover, for Lipschitz domains Ω and Γ ⊂ ∂Ω we denote by Ht
0,Γ(Ω) the closure of those C

∞

functions on Ω with respect to the Ht-norm that vanish on Γ. We briefly write H10 (Ω) when
Γ = ∂Ω. We refer to Adams, 1978 for more details on Sobolev spaces.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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16 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

In the sequel for t ≥ 0, Ht will denote some closed subspace of Ht(Ω) either of the form
Ht
0(Ω) ⊆ H

t ⊆ Ht(Ω) or with finite codimension in Ht(Ω). For t < 0 we define Ht as the dual
space Ht = (H−t)′. Starting with a suitable wavelet Riesz basis Ψ for H = L2(Ω), a whole
family of realizations of (30) can be formulated as follows. There exist positive constants
γ, γ̃ > 0 (depending on the regularity of the wavelet basis) with the following property: For
s ∈ (−γ̃, γ) there exist positive constants cs, Cs, such that every v ∈ Hs possesses a unique
expansion v =

∑
λ∈J vλ2

−s|λ|ψλ such that

cs‖(vλ)λ‖`2 ≤ ‖
∑

λ∈J

vλ2
−s|λ|ψλ‖Hs ≤ Cs‖(vλ)λ‖`2 . (32)

Thus properly scaled versions of the wavelet basis Ψ for L2 are Riesz bases for a whole range
of smoothness spaces, including of course s = 0 as a special case. This range depends on the
regularity of the wavelets. In many constructions one has γ = 3/2 corresponding to globally
continuous wavelets, Canuto, Tabacco and Urban, 1999; Canuto, Tabacco and Urban, 2000;
Cohen and Masson, 1997; Dahmen and Schneider, 1999a; Dahmen and Stevenson, 1999.
Establishing (32) works actually the other way around. It is usually easier to verify (32)

for positive s. This can be derived from the validity of Bernstein and Jackson estimates for
the primal multiresolution sequences only. If one can do this, however, for the primal and
for the dual multiresolution sequences associated with a dual pair of multiscale bases Ψ, Ψ̃,
(32) follows for the whole range of regularity indices s by an interpolation argument, see e.g.
Dahmen, 1996; Dahmen and Stevenson, 1999. In particular, this says that the Riesz basis
property for L2(Ω) follows from that of scaled versions of Ψ, Ψ̃ for positive Sobolev regularity,
see also Cohen, 2000; Cohen, 2003; Dahmen, 1997; Dahmen, 2003.

Remark 2.1. We emphasize the case (32) because it implies further relations that will be
important later for robustness. To describe these, recall our convention of viewing a collection Θ
of basis functions sometimes as a vector whose entries are ordered in a fixed but unspecified way.
Ordering the wavelet coefficient arrays in a natural way, we can write

∑
λ∈J vλ2

−s|λ|ψλ =:

vTD−sΨ where
(
Dt :=

(
2t|λ|δλ,ν

)
λ,ν

)
and v := (vλ)λ∈J . In the problem class (2) one often

encounters Hilbert (energy) spaces endowed with a norm of the type ‖v‖2Hε := ε〈∇v,∇v〉+〈v, v〉.
The performance of multilevel preconditioners for such problems often depends on ε. It will be
seen that a remedy for this can be based on robust equivalences of the following form that can
be derived from (32) for s = 0 and s = 1, Cohen, Dahmen and DeVore, 2001; Dahmen, 2001
: assume that γ > 1 and define the diagonal matrix
Dε :=

(
(1 +

√
ε2|λ|)δλ,µ

)
λ,µ∈J

. Then

(
2(c−20 + c

−2
1 )
)−1/2

‖v‖`2 ≤ ‖v
TD−1ε Ψ‖Hε ≤

(
C20 + C

2
1

)1/2
‖v‖`2 . (33)

We wish to conclude this section with the following remarks concerning duality, see e.g.
Dahmen, 2003 for more details. As indicated before, the known constructions of a wavelet basis
Ψ, that satisfy norm equivalences of the form (32), involve to some extent the simultaneous
construction of a dual basis Ψ̃. Conversely, the existence of such a dual basis is actually a
consequence of the Riesz basis property in the following sense. It is not hard to show that the
validity of (30) implies the existence of a collection Ψ̃ ⊂ H′ such that 〈ψλ, ψ̃ν〉 = δλ,ν , where

〈·, ·〉 is the duality pairing that identifies the representation of H′. Moreover, Ψ̃ is a Riesz basis
for H′, i.e.

C−1Ψ ‖w‖`2 ≤ ‖w
T Ψ̃‖H′ ≤ c

−1
Ψ ‖w‖`2 , w ∈ `2. (34)
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c© 2004 John Wiley & Sons, Ltd.
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This will mainly be used in the equivalent form

C−1Ψ ‖〈Ψ, v〉‖`2 ≤ ‖v‖H′ ≤ c
−1
Ψ ‖〈Ψ, v〉‖`2 , (35)

where we have abbreviated 〈Ψ, v〉 := (〈ψλ, v〉 : λ ∈ J )T .
In particular, if we want to construct a Riesz basis for L2 then the dual basis (with respect to

the L2–inner product as a dual pairing) must also be a Riesz basis in L2, in agreement with the
above remarks concerning (32). This rules out the practically convenient so called hierarchical
bases induced by interpolatory scaling functions since the dual basis is essentially comprised of
Dirac distributions. An important further example is H = H10 (Ω) for which, according to (32),
a Riesz basis is obtained by renormalizing the functions ψλ with the weight 2

−|λ|, which also
amounts to redefining Ψ as D−1Ψ. In this case, (35) offers a convenient way of evaluating the
H−1-norm which is usefull for least squares formulations of second order elliptic problems or
their mixed formulations, Dahmen, Kunoth and Schneider, 2002. Note that in this particular
case, unlike the situation in Remark 2.1, Ψ need not be a Riesz basis for L2.

2.5. Wavelets and Linear Operators

So far we have focussed on wavelet representations of functions. For the problem class (2),
in particular, it will be important to deal with wavelet representations of operators. In this
section we collect a few important facts concerning linear operators that follow from the above
features. As a simple guiding example consider Poisson’s equation on some bounded domain
Ω ⊂ Rd

−∆u = f in Ω, u = 0 on Γ := ∂Ω. (36)

It will be crucial to interpret this equation properly. Multiplying both sides of (36) by smooth
test functions that vanish on Γ, and integrating by parts, shows that the solution u satisfies

〈∇v,∇u〉 = 〈v, f〉 for all smooth v, (37)

where 〈v, w〉 :=
∫

Ω

vwdx. However, this latter form makes sense even when u belongs only to the

Sobolev spaceH10 (Ω) (recall Section 2.4) and when the test functions also just belong to H
1
0 (Ω).

Moreover, the right hand side makes sense whenever f is only a distribution in the dualH−1(Ω)
of H10 (Ω). Here 〈·, ·〉 is then understood to be the dual form on H

1
0 (Ω)×H

−1(Ω) induced by
the standard L2-inner product. Thus, defining the linear operator A by 〈∇v,∇u〉 = 〈v,Au〉
for all v, u ∈ H10 (Ω), the boundary value problem (36) is equivalent to the operator equation

Au = f, (38)

where, roughly speaking, A is in this case the Laplacian (with incorporated homogeneous
boundary conditions), taking H10 (Ω) into its dual H

−1(Ω).

The Standard Wavelet Representation: Suppose now that as in the Laplace case
described above, we have a linear operator A : H 7→ H′ and that Ψ is a Riesz-basis for
H i.e. (30) holds. Then for any v =

∑
λ vλψλ ∈ H one has

Av =
∑

λ

〈ψλ,Av〉ψ̃λ =
∑

λ

〈ψλ,A(
∑

ν

vνψν)〉ψ̃λ =
∑

λ

(
∑

ν

〈ψλ,Aψν〉vν

)

ψ̃λ

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Thus the coeffcient array w of Av ∈ H′ with respect to the dual basis Ψ̃ is given by

w = Av where A := (〈ψλ, Aψν〉)λ,ν , v = (vν)ν . (39)

The above example (36) is a typical application where Ψ and Ψ̃ are biorthogonal Riesz bases
in the Sobolev space H = H10 (Ω) and its dual H

′ = H−1(Ω), respectively.
A is often referred to as the standard wavelet representation of A. Note that in conventional

discretizations such as Finite Elements and Finite Differences, the operators can usually only
be approximated. A basis allows one to capture, at least conceptually, all of the full infinite
dimensional operator, a fact that will later be seen to have important consequences.

Well–Posedness and an Equivalent `2–Problem: We say that an operator equation of
the form (38) is well-posed if (either A maps H onto H′ or f ∈ range (A) and) there exist
positive constants cA, CA such that

cA‖v‖H ≤ ‖Av‖H′ ≤ CA‖v‖H for all v ∈ H. (40)

Here H′ is the dual of H endowed with the norm

‖w‖H′ := sup
v∈H

〈v, w〉

‖v‖H
(41)

and 〈·, ·〉 is a dual form on H×H′ (which is induced as before by the standard inner product
in some pivot L2 space).
Clearly (40) means that for any data f in the dual H′ – the range of A – there exists a

unique solution u which depends continuously on the data f . Thus well–posedness refers to
continuity with respect to a specific topology given by the energy space H. It is not hard to
show that in the case of Poisson’s problem (36), (40) is a consequence of H1–ellipticity

〈∇v,∇v〉 ≥ c‖v‖2H1(Ω) := ‖v‖
2
L2(Ω)

+ ‖∇v‖2L2(Ω), |〈∇v,∇w〉| ≤ C‖v‖H1(Ω)‖w‖H1(Ω), (42)

which in turn follows from Poincaré’s inequality. While in this special case the right space
H = H10 (Ω) is easily recognized, the identification of a suitable H such that (40) holds is
sometimes a nontrivial task, an issue that will be taken up again later.
An important observation is that, once the mapping property (40) has been established, the

Riesz basis property (30) for the energy space allows one to transform the original problem
into an equivalent one which is now well–posed in the Euclidean metric. This is of particular
importance in parameter dependent cases such as the Hilbert space Hε considered in the
previous section.

Theorem 2.2. Suppose that A : H 7→ H′ satisfies (40) and that Ψ is a Riesz basis for H,
i.e. (30) holds. Let A denote the standard representation of A with respect to Ψ. Then (38)
is equivalent to Au = f , where u =

∑
λ∈J uλψλ, f = (〈ψλ, f〉)λ∈J . Moreover, A is boundedly

invertible on `2, i.e.

c2ΨcA‖v‖`2 ≤ ‖Av‖`2 ≤ C
2
ΨCA‖v‖`2 , for all v ∈ `2. (43)

Proof: By (30) one has for any v =
∑
λ vλψλ

‖v‖`2 ≤ c
−1
Ψ ‖v‖H ≤ c

−1
Ψ c−1A ‖Av‖H′ ≤ c

−2
Ψ c−1A ‖(〈ψλ,Av〉)λ∈J ‖`2 = c

−2
Ψ c−1A ‖Av‖`2 ,

where we have used (34). The reverse estimate follows analogously. 2
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c© 2004 John Wiley & Sons, Ltd.



ADAPTIVE WAVELET TECHNIQUES IN NUMERICAL SIMULATION 19

3. Evolution problems – compression of flow fields

We shall now address the problem class (1) of evolution equations. In many relevant instances,
the evolution of the quantity u(x, t) expresses a conservation law in the sense that for any test
volume V in the domain Ω of interest,

∂t

∫

V

udx+

∫

∂V

f(u) · nds = 0, (44)

where f(u) is the flux function and n denotes the outward normal on the boundary ∂V . When
the solution is sufficiently smooth, (44) leads to a first order system of partial differential
equations of the form

∂tu+ divxf(u) = 0, (45)

which is said to be hyperbolic when the Jacobian matrix Df(x) has for all x real eigenvalues
with a full basis of eigenvectors. Hyperbolic systems of conservation laws are used to model
phenomenon as diverse as traffic, information and fluid flows. Perhaps the most well-known
example is the system of Euler equations which model compressible fluid flow in terms of
balance equations for mass, momentum and energy. Such system have to be complemented
by suitable initial/boundary conditions. For simplicity we shall assume pure initial data
u0(x) = u(x, 0) with compact support.
Numerical methods for solving (44) are typically based on evolving cell averages ūC(t) :=

(
∫

C

u(x, t)dx)/|C|, where C runs over a partition P of the domain Ω into disjoint cells. In fact,

the balance relation (44) also reads

ūC(t+∆t) = ūC(t) +
∆t

|C|
BC(t), BC(t) :=

1

∆t

t+∆t∫

t

∫

∂C

f(u) · ndxdt. (46)

A finite volume scheme will mimic this time evolution by replacing the exact flux balance
BC(t) by a numerical approximation computed from the current approximation of the exact
cell-average. More precisely, given a time step ∆t, the scheme computes approximate values
unC ≈ uC(n∆t) according to

un+1C = uC(t) +
∆t

|C|

∑

C′∩C 6=∅

FnC,C′ , (47)

where FnC,C′ is the numerical flux across the common boundary of C and an adjacent cell C
′

for the time interval [n∆t, (n + 1)∆t]. This numerical flux typically depends on the values
unC and u

n
C′ , and possibly on other neighboring values. We shall always assume that the

scheme is conservative, i.e. FnC,C′ = −F
n
C′,C . The initialization of the scheme uses the exact

(or approximately computed) averages u0C := (
∫

C

u0(x)dx)/|C| of the initial data u0.

Denoting by un = (unC)C∈P the array of cell averages, the finite volume scheme is thus
summarized by a one step relation

un+1 = Eun, (48)

where E is a nonlinear discrete evolution operator. The computationally expensive part of this
numerical method is the evaluation of the numerical fluxes FnC,C′ , which is typically based
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on the (approximate) solution of local Riemann problems. An a–priori error analysis of these
classical numerical methods is only available to a limited extent. It refers to scalar problems,
not to systems, and is rigorously founded only for uniform meshes. The proven error estimates
are of low approximation orders like h1/2 where h is the mesh size, i.e. the maximal diameter
of the cells.

It is well-known that the solutions of hyperbolic conservation laws exhibit a highly
nonhomogeneous structure. Discontinuities in the solution can develop after finite time even
for arbitraily smooth initial data. So the solution exhibits regions of high regularity separated
by regions of discontinuities (shocks). To capture the singular effects in the solution by using
classical discretizations based on uniform (or even quasi-uniform) partitions into cells would
require a very fine resolution near the singularities and thus lead to enormous problem sizes. We
see that the nature of the solution begs for the use of adaptive methods which would give finer
resolution in the regions of shock discontinuities and maintain coarser resolution otherwise.
The usual numerical approach is to generate such partitions adaptively. The difficulties in such
an approach are to determine these regions and properly perform the time evolution on these
inhomogeneous discretizations.

The analytic structure of solutions to (45) also points to possible advantages in using
multiscale decompositions of the solution u in a numerical procedure. Because of the
cancellation property (26), the coefficients of u would be small in those regions where the
solution is smooth and would have significant size only near shocks. Thus, a multiscale
decomposition would be excellent at identifying the regions of discontinuities by examining the
size of the coefficients, and providing economical representations of the approximate solution
at time n∆t by an adapted set of wavelet coefficients (dnλ)λ∈Λn . The approximate solution
would therefore be given by

uΛn =
∑

λ∈Λn

dnλψλ, (49)

where the set Λn is allowed to vary with n. The main difficulty in this approach is how
to perform the evolution step strictly in terms of the wavelet coefficients. In other words,
given Λn and the coefficients (d

n
λ)λ∈Λn , how would we evolve on these data to obtain a good

approximation at the next time step? This has led to the introduction of dynamically adaptive
schemes in Maday, Perrier and Ravel, 1991, in which the derivation of (Λn+1, uΛn+1) from
(Λn, uΛn) typically goes in three basic steps:

(i) Refinement: a larger set Λ̃n+1 with Λn ⊂ Λ̃n+1 is derived from an a-posteriori analysis
of the computed coefficients dnλ, λ ∈ Λ

n.
(ii) Evolution: a first numerical solution uΛ̃n+1 =

∑
λ∈Λ̃n+1 d

n+1
λ ψλ is computed from un

and the data of the problem.
(iii) Coarsening: the smallest coefficients of ũn+1 are thresholded, resulting in the numerical

solution uΛn+1 =
∑
λ∈Λn+1 d

n+1
λ ψλ supported on the smaller set Λ

n+1 ⊂ Λ̃n+1.

A few words are in order concerning the initialization of the scheme: ideally, we can obtain
an adaptive expansion uΛ0 of the intial value data u0 into a linear combination of wavelets by
a thresholding procedure on its global expansion, i.e.

uΛ0 =
∑

λ∈Λ0

d0λψλ, Λ
0 := {λ s.t. ‖d0λψλ‖X ≥ η}, (50)
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where X is some prescribed norm in which we target to measure the error, η a prescribed
threshold and d0λ := 〈u0, ψ̃λ〉 are the wavelet coefficients of u0. In practice, we cannot compute
all the values of these coefficients, and one thus needs a more reasonable access to a compressed
representation. This is typically done through some a-priori analysis of the initial value u0.
In particular, if u0 is provided by an analytic expression, or if we have some information on
the local size of its derivatives, estimates on the decay of wavelet coefficients, such as (26),
can be used to avoid the computation of most details which are below threshold. With such a
strategy, we expect to obtain Λ0 and (u0λ)λ∈Λ0 with a memory and computational cost which
is proportional to #(Λ0).

Then, assuming that at time n∆t the approximate solution uΛn has the form (49) for some
set Λn of coefficients, the problem is thus both to select a correct set of indices Λn+1 and to
compute the new coefficients dn+1λ for λ ∈ Λn+1. As we already explained, this is done by (i)

refining Λn into an intermediate set Λ̃n+1 which is well fitted to describing the solution at
time (n+1)∆t, (ii) computing uΛ̃n+1 supported by Λ̃

n+1 and (iii) deriving (uΛn+1 ,Λ
n+1) from

uΛ̃n+1 by a thresholding process. The selection of the intermediate set Λ̃
n+1 should thus take

into account the effect of the evolution operator E on the sparse expansion (49), integrated
between n∆t and (n + 1)∆t. Once a procedure for the refinement of Λn into Λ̃n+1 has been
prescribed, several strategies are available for computing uΛ̃n+1 from uΛn , such as Petrov-
Galerkin methods in Maday, Perrier and Ravel, 1991 or collocation methods in Bertoluzza,
1997. All these strategies are based on the computation of the inner products 〈E(uΛn), ψ̃λ〉
for λ ∈ Λ̃n+1 up to some precision. In the case where the evolution operator E is linear,
this amounts to a matrix-vector product, and one can make use of the sparse multiplication
algorithm which will be discussed in § 6. However, in many cases of interest, the evolution
operator E is nonlinear, making this computation more difficult and costly. Generally speaking,
the discretization of nonlinear operators is a less simple task in the wavelet coefficient domain
than in the physical domain.

In the following, we shall present a systematic approach which allows us to solve this problem,
by a suitable combination of the representations of the numerical solution by its wavelet
coefficients and its physical values such as cell-averages. This approach was first advocated by
Ami Harten, Harten, 1993; Harten, 1995. The idea of Harten is to use multiscale decompositions
where they do well - namely in finding the discontinuities in the solution at a given time, and to
use classical finite volume solvers, based on cell averages for the evolution step according to (47)
and (51), since the properties of these solvers are well understood. To accomplish this, we need
to build cell averages into our multiscale structure. This is easily accomplished (as is detailed
below) by using multiscale bases that use characteristic functions of cells as the dual scaling
functions. This means that at any given time step one can view the numerical solution through
one of two microscopes. The one is the decomposition as a sum of characteristic functions of
cells (on the finest level of decomposition); the other is the multiscale decomposition. The first
is good for the evolution; the second is good for identifying shocks and regions of smoothness.
As described in §2.3, there are fast methods for transforming between the two sets of coefficients
(scaling coefficients and multiscale coefficients).

Let us first amplify on our claim that cell averages lend themselves naturally to
multiresolution techniques based on multilevel bases as described in Section 2.3. In fact, given
a hierarchy of nested meshes and corresponding partitions (Pj)j≥0 of the flow domain, the
cell averages uC correspond directly to inner products 〈u, χC〉/|C| which suggests that the
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L1–normalized functions χC/|C| for C ∈ Pj play the role of the dual scaling functions φ̃j,k.
In complete analogy to (4) the indicator functions χC/|C| satisfy two–scale relations. The
prediction operators have then the form (20) based on the refinement matricesMj,0. Similarly
to (4) one can construct Haar–like orthogonal bases ψλ. Here, as we have described in §2.3,
one has a choice in the construction of the complement bases. We shall see that there is
an advantage in having more vanishing moments in the dual basis then is provided by the
classical Haar decomposition. Since Haar type bases have only first order vanishing moments,
recall (12), one cannot expect a significant data compression. Therefore, one can use (22), (23)
(with K = I) to raise the order of vanishing moments of the dual wavelets ψ̃λ as explained in
(24) at the end of Section 2.3, see Dahmen, Gottschlich-Müller and Müller, 2001; Müller, 2003.
This amounts to changing the primal multiresolution spaces and in turn the primal wavelets
ψλ while the dual scaling functions remain defined as χC/|C|.
Given any array vJ = (vC)C∈PJ of cell averages on the partition PJ , we can transform

this vector into the multiscale format dJ := (v0,d0, . . . ,dJ−1), where the arrays dj encode
detail information needed to update the coarse cell averages in vj to vj+1 on the next level
of resolution. Thus the d vectors correspond to the multiscale coefficients. It is important to
note that in generating the multiscale coefficients, we do not need explicit information on the
multiscale basis functions. The transformation TJ that maps a cell average vector vJ on to
its multiscale decomposition dJ , can be executed in an entirely discrete way as in the cascade
algorithm of §2.3 (see also Arandiga, Donat and Harten, 1998; Arandiga, Donat and Harten,
1999; Carnicer, Dahmen and Peña, 1996; Sweldens, 1996; Sweldens, 1998). To go the other
way, from multiscale coefficients to the scaling coefficients, we again use the cascade structure.
Recall that scaling coefficients vj+1, for a resolution level j + 1, are obtained from the scaling
coefficients vj at the coarser level in a two step process. The first is to predict vj+1 by some
rule (the lifting rule) and the second is to correct for the deviation in the prediction from the
actual values. The deviation of the true coefficients vj+1 from the true coefficients is given by
the detail dj+1.
Our adaptive numerical scheme will be designed as a combination of a reference finite volume

scheme which operates at the finest resolution level J according to

un+1J = EJu
n
J , (51)

and of the transformation TJ and T
−1
J that relate the cell-average vector u

n
J and its multiscale

coefficients (dnλ)|λ|≤J−1. In an adaptive context, we want to encode only a small relevant portion
of this vector corresponding to the adaptive set Λn. Ideally, this set would correspond to the
indices λ such that

‖dnλψλ‖X > η, (52)

where ‖ · ‖X is the norm in which we plan to measure the error and η is some prescribed
threshold. In practice, we precisely want to avoid the encoding of unJ and of the full multiscale
vector, and therefore we cannot invoke a thresholding procedure applied to the reference
numerical solution. Therefore, we shall develop an adaptive strategy that iteratively computes
some η–significant sets Λn and multiscale coefficients (dnλ)λ∈Λn which might differ from those
obtained by thresholding unJ . One of our goals is to keep track of the error between u

n
J and

the adaptive solution vnJ which is defined as the reconstruction on the finest partition PJ from
the details (dnλ)λ∈Λn .
At this stage, a key observation is that a restricted multiscale vector (dλ)λ∈Λ exactly encodes

the cell averages on an adaptive partition P(Λ) which includes cells of different resolution levels
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j = 0, · · · , J as illustrated in Figure 4, provided that the set Λ has a graded tree structure. Such
a tree structure ensures that all the detail coefficients which are necessary to reconstruct the
exact average on a cell C ∈ P(Λ) are contained in Λ. Note that a graded tree structure is not
guaranteed on an adaptive set Λ produced by a thresholding procedure, yet it can be ensured
by a suitable enlargement of Λ. In addition, it can be seen that the graded tree structure induces
a grading property on the partition P(Λ) which essentially means that two adjacent cells differ
at most by one resolution level. The concepts of tree structure and grading will also serve
in §6 in the context of nonlinear variational problems. Another key observation is that the
cost of the transformation TΛ which maps the cell-averages (uC)C∈P(Λ) onto the restricted
multiscale vector (dλ)λ∈Λ is of the order #(Λ) and similarly for the inverse transformation
T−1Λ . A detailed description of such techniques and the design of appropriate data structures
can be found in Müller, 2003.

Figure 4. a) Adaptive mesh b) Tree

Based on this observation, we can propose the following adaptive scheme which follows the
same principles as the dynamically adaptive scheme introduced in Maday, Perrier and Ravel,
1991:

(i) Initial values: Apply the multiscale transform TJ to the initial cell averages u
0
J to obtain

the array of detail or wavelet coefficients (d0λ)|λ|≤J (including the cell averages on the coarsest
level) for the time level n = 0. Choose a threshold parameter η > 0 and set Λ0 to be the
smallest graded tree containing those λ such that ‖d0λψλ‖X > η.

(ii) Predicting the significant indices on the next time level: Given the η–significant tree Λn

for the time level n and the details (dnλ)λ∈Λn , predict a set Λ̃
n+1 that should contain the η–

significant graded tree for time level n + 1. We extend the detail vector by setting dnλ = 0

for λ ∈ Λ̃n+1 \ Λn and we derive the cell-averages (vnC)C∈P(Λ̃n+1) by applying the adaptive

multiscale transform T−1
Λ̃n+1
.

(iii) Time evolution step: Compute the evolved cell-averages (vn+1C )C∈P(Λ̃n+1) at time n + 1,
by some discrete evolution operator to be specified later. Of course it is important that this
evolution can be done at less cost than would be necessary to evolve the uncompressed data.

(iv) Reverse transform and thresholding: Apply the localized transform TΛ̃n+1 to
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(vn+1C )C∈P(Λ̃n+1) which yields an array of detail coefficients (d
n+1
λ )λ∈Λ̃n+1 . Set Λ

n+1 to be the

smallest graded tree containing those λ such that ‖dn+1λ ψλ‖X > η. Set n+1 to n and go to (ii).

Any concrete realization of this scheme has to address the following issues.

(1) Choice of the norm ‖ · ‖X and of the threshold parameter η;
(2) Strategy for predicting the set Λ̃n+1;
(3) Specification of the evolution operator.

Regarding (1), since the norm ‖ ·‖X will typically measure the deviation between the reference
and adaptive solution unJ and v

n
J , a relevant choice for this norm should be such that we

already have at our disposal an error estimate between the reference solution unJ and the exact
solution at time n∆t in the same norm. As we shall see further, it will also be important that
the reference scheme is stable with respect to such a norm. In the context of conservation laws,
this limits us to the choice X = L1. For a discrete vector uJ indexed by the finest partition
PJ , we define ‖uJ‖L1 as the L1 norm of the corresponding piecewise constant function on PJ ,
i.e.

‖uJ‖L1 :=
∑

C∈PJ

|C| |uC |. (53)

Assuming that the ψλ are normalized in L1, it follows from the triangle inequality that the
error eη produced by discarding those multiscale coefficients of u

J satisfying ‖dλψλ‖L1 ≤ η is
bounded by

eη ≤
∑

‖dλψλ‖L1≤η

η = η#{λ : ‖dλψλ‖L1 ≤ η}. (54)

Since the above sum is limited to |λ| ≤ J − 1, we can derive the estimate

eη ≤ #(PJ)η <
∼ 2

dJη, (55)

where d is the spatial dimension of the problem. It follows that a prescribed thresholding error
δ can be obtained by using a threshold of the order

η ∼ 2−dJδ. (56)

Since the dual scaling functions and wavelets are normalized in L1, the primal scaling functions
and wavelets are normalized in L∞ so that ‖ψλ‖L1 ∼ 2

−d|λ|. Therefore, the above strategy
corresponds to applying to the coefficients dλ a level dependent threshold η|λ| with

ηj ∼ 2
d(j−J)δ. (57)

Note however that the estimate (55) is somehow pessimistic since some thresholded coefficients
dλ could actually be much smaller than η|λ|.
Concerning (2), an ideal prediction should take into account the action of the reference

scheme EJ on the adaptive solution in the sense that the detail coefficients of EJv
n
J which are

not contained in Λ̃n+1 are guaranteed to be below the threshold. A strategy for constructing
Λ̃n+1 was proposed by Harten, based on a heuristic argument concerning the finite propagation
speed of information in hyperbolic problems. Basically, Λ̃n+1 is formed as the union of certain
fixed neighborhoods (on the same or at most one higher scale) of the elements in Λn. Recently,
at least for scalar problems a rigorous analysis has been presented in Cohen, Kaber, Müller and
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Postel, 2002 which gives rise to sets Λ̃n+1 that are guaranteed to fullfill the above prescription.
In this case the neighborhoods are allowed to depend in a more precise way on the size of the
elements in Λn. In practical experiments Harten’s simpler choice seems to have worked so far
well enough though.
Turning to (3), several strategies are available for evolving the cell averages (vnC)C∈P(Λ̃n+1)

into (vn+1C )C∈P(Λ̃n+1). The first one consists in computing the effect on these averages of the
exact application of the reference scheme EJ to the adaptive solution v

n
J reconstructed on

the fine grid. A key observation is that since we are only interested in the averages of EJv
n
J

on the adaptive partition P(Λ̃n+1), the numerical fluxes which need to be computed are only
those between the adjacent fine cells such that their interface lies on the edge of a cell of
the adaptive partition. In the original concept proposed by Harten, this idea was exploited in
order to obtain CPU savings on the number of flux evaluation, with the solution encoded in
its non-adaptive form vnJ . In Cohen, Kaber, Müller and Postel, 2002, it was shown that the
computation of the needed fluxes can be performed from the adaptive data (vn+1C )C∈P(Λ̃n+1)
without the need of performing the reconstruction of the entire vnJ . This information can
indeed be acquired by local reconstruction. However, in several space dimensions the resulting
computational complexity, although still lower than that for the fully refined partitions, is
suboptimal. A second more economical strategy is to employ the finite volume stencil of the
uniform partition but for the currently local level of resolution. This makes use of the local
quasi–uniformity of the mesh which can be made locally uniform by subdividing neighboring
cells of lower generation. The gradedness of the partitions ensures that the subdivisions need
only have depth one. In numerical experiments this strategy turns out to work well when using
higher order finite volume schemes in connection with corresponding higher order multiscale
decompositions, here corresponding to the higher order vanishing moments, see e.g. Müller,
2003.
One of the nice features of the adaptive approach that we have described is the possibility to

monitor the error between the reference and adaptive numerical solution by a proper tuning of
the threshold parameter. Here, we consider the evolution strategy that amounts in computing
exactly the averages of EJv

n
J on the adaptive partition P(Λ̃

n+1). It follows that we can write

‖un+1J − vn+1J ‖L1 = ‖EJu
n
J −EJv

n
J‖L1 + pn + tn, (58)

where
pn :=

∑

λ/∈Λ̃n+1

‖dλ(EJv
n
J )ψλ‖L1 (59)

and
tn :=

∑

λ∈Λ̃n+1\Λn+1

‖dλ(EJv
n
J )ψλ‖L1 (60)

respectively denote the errors resulting from the restriction to the predicted set Λ̃n+1 and
to the set Λn+1 obtained by thresholding. According to our previous remarks, these errors
can be controlled by some prescribed δ provided that we use the level dependent threshold
ηj ∼ 2d(j−J)δ. Assuming in addition that the reference scheme is L1-stable in the sense that
for all uJ and vJ ,

‖EJuJ −EJvJ‖L1 ≤ (1 + C∆t)‖uJ − vJ‖L1 , (61)

we thus obtain
‖un+1J − vn+1J ‖L1 ≤ ‖EJu

n
J −EJv

n
J‖L1 + 2δ, (62)
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c© 2004 John Wiley & Sons, Ltd.



26 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

which yields the estimate at time T = n∆t

‖unJ − v
n
J‖L1 ≤ C(T )nδ. (63)

Therefore, if the reference numerical scheme is known to provide accuracy ε = εJ on level J ,
it is natural to choose δ such that nδ ∼ ε. In many practical instances, however, this estimate
turns out to be too pessimistic in the sense that thresholding and refinement errors do not
really accumulate with time, so that δ and the threshold η can be chosen larger than the value
prescribed by this crude analysis. A sharper analysis of the error between the adaptive and
reference solution is still not available.

Figure 5. a) Pressure distribution b) Adaptive mesh
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Figure 6. Adaptive mesh – close up

An adaptive solver based on the above concepts has been developed and implemented by S.
Müller. It also incorporates implicit time discretizations. A detailed account can be found in
Müller, 2003. The recently developed new flow solver QUADFLOW for hyperbolic conservation
laws and for the Navier Stokes equations for compressible flows is based on these adaptive
multiresolution techniques, on a finite volume discretization that can cope with hanging nodes
and on a mesh generator based on block partitions. Each block corresponds to a B-spline based
parametric mapping that allows a flexible mesh refinement through point evaluations of the
B-spline representation. An outline of the scheme and extensive numerical tests can be found
in Bramkamp, Gottschlich-Müller, Hesse, Lamby, Müller, Ballmann, Brakhage and Dahmen,
2001; Ballmann, Bramkamp and Müller, 2000. The numerical examples provided by S. Müller
and F. Bramkamp should give an impression of the performance of such techniques. The first
example in Figure 5 shows the results for an Euler computation concerning a flow at Mach
0.95 at an angle of attack α = 0 around a bench mark NACA00012 profile. Here the main
objective is to test the resolution of shock interactions even at a large distance from the airfoil.
The mesh has appr. 5 × 104 cells as opposed to an estimated number of 7 × 107 cells needed
by a uniformly refined mesh for a comparable target accuracy.

Figure 7 shows a series of adaptive refinements again for an Euler computation for a flow
around a BAC 3-11/RES/30/21-Profile at M = 0.85 and an angle of attack α = 0◦. This
test illustrates the reliable detection even of small shocks here in the lower region of the nose.
Further detailed numerical studies for instationary problems such as moving wings, shock-
bubble interactions, analogous studies for viscous flows and boundary layer resolution can
be found in Bramkamp, Gottschlich-Müller, Hesse, Lamby, Müller, Ballmann, Brakhage and
Dahmen, 2001; Ballmann, Bramkamp and Müller, 2000; Müller, 2003.
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1024 cells, Lmax = 1

7405 cells, Lmax = 4

28288 cells, Lmax = 9

Figure 7. Adaptive mesh refinement

3.1. Concluding Remarks

The above framework is an example where multiscale bases for realistic geometries are
conveniently realized. In spite of the promising numerical results it should be stressed though
that many principal questions remain open, due to a number of obstructions. First, the current
understanding of error analysis for hyperbolic problems is much less developed than for elliptic
problems, partly due to the nature of the relevant function spaces. On one hand, there are
only poor a-priori estimates that could serve as a bench mark. The central point of view is
a perturbation analysis. The overall attainable accuracy is fixed by the a–priori choice of a
highest level J of spatial resolution. All subsequent attempts aim at preserving the accuracy
offered by a uniformly refined discretization with that resolution at possibly low cost. Thus
whatever information is missed by the reference scheme cannot be recovered by the above
adaptive solver.

On the other hand, the multiscale techniques did not unfold their full potential: one makes
use of the cancellation properties of wavelet bases but not of the norm equivalences between
wavelet coefficients and functions. Thus the primary focus here is on the compression of
the conserved variables, i.e. on the sparse approximation of functions based on cancellation
properties. This does so far not provide any estimates that relate the achieved accuracy ε to
the size of the η–significant trees. This question will be addressed later again in a different
context where stronger basis properties allow one to exploit not only the sparse approximation
of functions but also of the involved operators.
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4. Boundary Integral Equations – Matrix Compression

A variety of problems in elasticity, fluid flow or electro-magnetism lead to a formulation in
terms of boundary integral equations falling into the category (2). In principle, this is a feasible
approach when the Green’s function of the underlying (linear) partial differential equation is
known explicitly. This is a particularly tempting option when the original formulation via a
PDE refers to an exterior and hence unbounded domain since the corresponding boundary
integral formulation lives on a compact manifold of lower spatial dimension. Wavelet concepts
have had a significant impact on this problem area, see Dahmen, Harbrecht and Schneider,
2002; Dahmen, Prößdorf and Schneider, 1994; Harbrecht, 2001; Lage and Schwab, 1998;
Lage, 1996; von Petersdorff and Schwab, 1996; von Petersdorff and Schwab, 1997; Schneider,
1998, primarily in finding sparse and efficient approximations of potential operators. We shall
describe this in the following simple setting.

4.1. Classical Boundary Integral Equations

Let Ω− be again a bounded domain in Rd (d ∈ {2, 3}) and consider Laplace’s equation

−∆w = 0, on Ω, (Ω = Ω− or Ω+ := R3 \ Ω−), (64)

subject to the boundary conditions

w = f on Γ := ∂Ω− (w(x)→ 0, |x| → ∞ when Ω = Ω+). (65)

Of course, the unbounded domain Ω+ poses an additional difficulty in the case of such an
exterior boundary value problem. A well-known strategy is to transform (64), (65) into a
boundary integral equation that lives only on the manifold Γ = ∂Ω. There are several ways
to do that. They all involve the fundamental solution E(x, y) = 1/4π|x− y| of the Laplace
operator which gives rise to the single layer potential operator

(Au)(x) = (Vu)(x) :=

∫

Γ

E(x, y)u(y)dΓy, x ∈ Γ. (66)

One can then show that the solution u of the first kind integral equation

Vu = f on Γ (67)

provides the solution w of (64) through the representation formula

w(x) =

∫

Γ

E(x, y)u(y)dΓy, x ∈ Ω. (68)

An alternative way uses the double layer potential

(Kv)(x) :=

∫

Γ

∂

∂ny
E(x, y)v(y)dΓy =

∫

Γ

1

4π

nTy (x− y)

|x− y|3
v(y) dΓy, x ∈ Γ, (69)

where ny is the outward normal to Γ at y ∈ Γ. Now the solution of the second kind integral
equation

Au := (
1

2
±K)u = f (Ω = Ω±) (70)

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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gives the solution to (64) through

w(x) =

∫

Γ

K(x, y)u(y)dΓy. (71)

One way of reformulating (64) with Neuman boundary conditions ∂w/∂n = g on Γ,
where

∫

Γ

g(x)dΓx = 0, is offered by the so called hypersingular operator (Wv)(x) :=

− ∂
∂nx

∫

Γ

∂
∂ny
E(x, y)dΓy. Now the solution of

Au =Wu = g on Γ (72)

leads to the solution of the Neuman problem for Laplace’s equation through the representation
formula (71), where the constraint

∫

Γ

u(x)dΓx = 0 is imposed in the case of an interior problem

to ensure uniqueness.

4.2. Quasi–Sparsity of Wavelet Representations

We have encountered so far two classes of operators. The first case such as (36) concerns
differential operators which are local in the sense that 〈ψλ,Aψν〉 = 0 whenever Sλ ∩ Sν = ∅.
Note that the wavelet representation A is not sparse in the classical sense since basis functions
from different levels may overlap. In fact, it is easy to see that the number of entries in
a principal section of A of size N contains O(N logN) entries. However, we shall see that
many of these entries are so small in modulus that they can be neglected in a matrix vector
multiplication without perturbing the result too much. The point of focus in this section is
that this even holds true for the second class of global operators, which are roughly speaking
inverses of differential operators such as the above boundary integral operators. They all share
the property that they (or at least their global part) is of the form

(Au)(x) =

∫

Γ

K(x, y)u(y) dΓy, (73)

where for a given domain or manifold Γ the kernel K(x, y) is smooth except on the diagonal
x = y and satisfies the decay conditions.

∣∣∂αx ∂βyK(x, y)
∣∣ <
∼ dist(x, y)−(d+2t+|α|+|β|) (74)

By (39), the entries of A are in this case given by

Aλ,ν = 〈K,ψλ ⊗ ψν〉Γ×Γ =

∫

Γ

∫

Γ

K(x, y)ψλ(x)ψν(y)dΓxdΓy. (75)

Although none of the entriesAλ,ν will generally be zero many of them are very small in modulus
as specified by the following classical estimate, see e.g. Dahmen, Prößdorf and Schneider, 1994;
von Petersdorff and Schwab, 1996; von Petersdorff and Schwab, 1997.

Theorem 4.1. Suppose that the kernel K is of the above form and that D−sΨ is a Riesz-
basis for Hs for −γ̃ < s < γ (see (32)) and has cancellation properties (see (26)) of order m̃.
Moreover, assume that A given by (73) has order 2t and satisfies for some r > 0

‖Av‖H−t+a <
∼ ‖v‖Ht+a , v ∈ Ht+a, 0 ≤ |a| ≤ r. (76)

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Then, for any σ > 0 such that 0 < σ ≤ min {r, d/2 + m̃+ t}, t+ σ < γ, and t− σ > −γ̃, one
has

2−(|ν|+|λ|)t|〈ψλ,Aψν〉| <∼
2−||λ|−|ν||σ

(1 + 2min(|λ|,|ν|) dist(Sλ, Sν))d+2m̃+2t
. (77)

Thus the entries of the wavelet representation of operators of the above type exhibit a
polynomial spatial decay, depending on the order of cancellation properties, and an exponential
scalewise decay, depending on the regularity of the wavelets.
For a proof of such estimates one distinguishes two cases. When dist(Sλ, Sν) <∼ 2

−min(|λ|,|ν|)

one can use the continuity properties (76) in combination with the norm equivalences (32) to
show that

|〈ψλ,Aψν〉| ≤ 2
t(|λ|+|ν|)2σ(|ν|−|λ|), (78)

see Dahlke, Dahmen, Hochmuth and Schneider, 1997 for more details.
On the other hand, when dist(Sλ, Sν) >∼ 2

−min(|λ|,|ν|), the wavelets are integrated against
smooth parts of the kernelK. One can then exploit the cancellation properties for both wavelets
to obtain the bound

|〈ψλ,Aψν〉| <∼
2−(|λ|+|ν|)(d/2+m̃)

(dist(Sλ, Sν))d+2m̃+2t
, (79)

see e.g. Dahmen, Prößdorf and Schneider, 1994; Dahmen and Stevenson, 1999; von Petersdorff
and Schwab, 1996; von Petersdorff and Schwab, 1997 for more details. The decay estimate (77)
follows then from (78) and (79).
However, the above argument for the case of overlapping supports is rather crude. Instead

one can use the so called second compression due to Schneider, Schneider, 1998. In fact, when
|λ| � |ν| and when Sλ does not intersect the singular support of ψν then Aψν is smooth on
the support of ψλ and one can again use the cancellation property of ψλ. Denoting by S

′
ν the

singular support of (the lower level wavelet) ψν , this leads to

|〈ψλ,Aψν〉| <∼
2|λ|/22−|ν|(m̃+d/2)

dist (S′ν , Sλ)
2t+m̃

. (80)

Estimates of the type (77), (78) and (80) provide the basis of matrix compression strategies
that aim at replacing the wavelet representation of a operator by a sparsified perturbation
which can be used to expedite the numerical solution of corresponding linear systems.

4.3. Weak Formulations and Galerkin Schemes

As in the case of Poisson’s equation (36) we are dealing again with an operator equation

Au = f (81)

this time of the type (66), (70) or (72). A classical approach to solving such an equation
numerically is to return again to a proper weak formulation on which to base a Galerkin
discretization. As before, the key is to identify first a suitable (Hilbert) space H such that the
variational formulation

a(v, u) := 〈v,Au〉 = 〈v, f〉 for all v ∈ H, (82)

is well–posed in the sense of (40). In terms of the operator A this can be rephrased by saying
that A is boundedly invertible as a mapping from H onto H′ which will often be referred to
as mapping property.
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All the above examples can be shown to fall into this framework, see e.g. Kress, 1989. The
single layer potential is symmetric positive definite on the Sobolev space H := H−1/2(Γ) whose
dual is H′ = H1/2(Γ), i.e.,

a(v, v) = 〈v,Vv〉 >∼ ‖v‖H−1/2(Γ) for all v ∈ H
−1/2(Γ), (83)

which is easily seen to imply (40).
The double layer potential is known to be compact when Γ is a C2 manifold in which case

the kernel is weakly singular. In general, the approriate energy space is H = L2(Γ) = H′.
Despite the lack of symmetry one can show that the bilinear form a(·, ·) is coercive and that
(40) holds with H = L2(Γ).
The hypersingular operator W, in turn, is strongly singular with energy space H = H1/2(Γ)

(i.e. H′ = H−1/2(Γ)), respectively H = H1/2(Γ)/R in the case of an interior problem. Again
since it is then symmetric positive definite and (40) follows.
According to the shifts caused by these operators in the Sobolev scale, A : Ht(Γ)→ H−t(Γ),

the single layer potential, double layer potential and hypersingular operator have order
2t = −1, 0, 1, respectively.
The (conforming) Galerkin method (for any operator equation (64)) consists now in choosing

a finite dimensional space S ⊂ H and determining uS ∈ S such that

a(v, uS) = 〈v, f〉 for all v ∈ S. (84)

Such a scheme is called (H–)stable (for a family S of increasing spaces S ∈ S) if (40) holds on
the discrete level, uniformly in S ∈ S. In other words, denoting by PS anyH-bounded projector
onto S, we need to ensure that (40) holds with A replaced by P ′SAPS , uniformly in S ∈ S,
where P ′S is the adjoint of PS . This is trivially the case for any subsapce S ⊂ H when A is
symmetric positive definite. In the coercive case, one can show that Galerkin discretizations are
stable for families S of trial spaces that satisfy certain approximation and regularity properties
formulated in terms of direct and inverse estimates, whenever the level of resolution is fine
enough, see e.g. Dahmen, Prößdorf and Schneider, 1994.
Once this homework has been done, it remains to choose a basis for S by which (84) is

turned into a linear system of equations. The unknowns are the coefficients of uS with respect
to the chosen basis.
The obvious advantage of the boundary integral approach is the reduction of the spatial

dimension and that one has to discretize in all cases only on bounded domains. On the other
hand, one faces several obstructions:

(i) Whenever the order of the operator is different from zero (e.g. for A = V), the problem of
growing condition numbers arises because the operator treats high frequency components
differently from slowly varying ones. In general, if an operator has order 2t, the spectral
condition numbers of the stiffness matrices grow like h−2|t|, where h reflects the spatial
resolution (e.g. the mesh size) of the underlying discretization.

(ii) Discretizations lead in general to densely populated matrices. This severly limits the
number of degrees of freedom when using direct solvers. But iterative techniques are also
problematic, due to the fact that the cost of each matrix/vector multiplication increases
with the square of the problem size.

One possible strategy to overcome these obstructions will be outlined next.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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4.4. Wavelet–Galerkin Methods

We adhere to the above setting and consider the operator equation (81), where A has the form
(73), (74) and satisfies (40) for H = Ht(Γ). Suppose now that we have a wavelet basis Ψ which
is a Riesz basis for Ht(Γ), constructed along the lines from Section 2.3, with the corresponding
multiresolution sequence of spaces Sj spanned by all wavelets ψλ, |λ| < j, of level less than j.
We point out next how the use of the spaces Sj as trial spaces in Galerkin discretizations can

help to cope with the above obstructions. To this end, let Aj := (〈ψλ,Aψν〉)|λ|,|ν|<j denote
the stiffness matrix of A with respect to the (finite) wavelet basis of the trial space Sj . Thus
(84) takes the form

Ajuj = fj , fj := (〈ψλ, f〉)|λ|<j . (85)

The first observation concerns obstruction (i) above, see e.g. Dahmen and Kunoth, 1992;
Dahmen, Prößdorf and Schneider, 1994.

Remark 4.2. If the Galerkin discretizations are Ht–stable for S = {Sj}j∈N0 , then the spectral
condition numbers of Aj are uniformly bounded.

In fact, when the bilinear form a(·, ·), defined in (82), is symmetric and Ht–elliptic, so that
A is symmetric positive definite, the spectrum of Aj is contained in the convex hull of the
spectrum of A, so that the assertion follows immediately from Theorem 2.2. Since under this
assumption Galerkin discretizations are always stable for any choice of subspaces this is a
special case of the above claim. In the general case the argument is similar to that in the proof
of Theorem 2.2. In fact, Galerkin stability means that ‖A−1j ‖`2→`2 <

∼ 1 which ensures the
existence of a constant c̄ such that c̄‖vj‖`2 ≤ ‖Ajvj‖`2 for any vj ∈ Sj with coefficient vector
vj . Moreover, by (43),

‖Ajvj‖`2 = ‖(〈ψλ,Avj〉)|λ|<j‖`2 ≤ ‖Avj‖ ≤ C
2
ΨCA‖vj‖,

which confirms the claim.

This observation applies to all our above examples of boundary integral operators. In fact,
V and W are elliptic and the coercivity in the case (70) of the double layer potential ensures
that (for j ≥ j0 large enough) the Galerkin discretizations are also stable in this case, see e.g.
Dahmen, Prößdorf and Schneider, 1994.
Thus, a proper choice of wavelet bases for the respective energy space deals with obstruction

(i) not only for the second kind integral equations with zero order operators but essentially for
all classical potential operators. This is, for instance, important in the context of transmission
problems.
Of course, the preconditioning can be exploited in the context of iterative solvers for (85) only

if the cost of a matrix/vector multiplication can be significantly reduced below the square of the
problem size. First, note that, due to the presence of discretization errors, it is not necessary to
compute a matrix/vector multiplication exactly but it would suffice to approximate it within
an accuracy tolerance that depends on the current discretization error provided by Sj . Thus,
one faces the following central

Task: Replace as many entries of Aj as possible by zero so as to otain a perturbed matrix Ãj
with the following properties for all the above operator types:

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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(i) The Ãj have still uniformly bounded condition numbers when the level j of resolution
grows.

(ii) The solutions ũj of the perturbed systems Ãjũj = fj have still the same order of accuracy
as the solutions uj of the unperturbed systems (85), uniformly in j.

(iii) Find efficient ways of computing the nonzero entries of Ãj .

These issues have been addressed in a number of investigations, see e.g. Dahmen, Prößdorf
and Schneider, 1994; Dahmen, Harbrecht and Schneider, 2002; von Petersdorff and Schwab,
1996; von Petersdorff and Schwab, 1997; von Petersdorff, Schneider and Schwab, 1997;
Harbrecht, 2001; Schneider, 1998. We shall briefly outline the current state of the art as
reflected by Harbrecht, 2001; Dahmen, Harbrecht and Schneider, 2002. The key is a suitable
level–dependent thresholding strategy based on the a–priori estimates (79) and (80). It
requires a sufficiently high order of cancellation properties, namely m̃ > m − 2t where m
is the approximation order provided by the multiresolution spaces Sj . Thus, whenever A has
nonpositive order (such as the single and double layer potential operator), one must have
m̃ > m, ruling out orthonormal wavelets (in L2). Given that Ψ meets this requirement, and
considering a fixed highest level J of resolution, fix parameters a, a′ > 1 and m′ ∈ (m, m̃+ 2t)
and define the cut-off parameters (see Dahmen, Harbrecht and Schneider, 2002; Harbrecht,
2001; Schneider, 1998)

cl,j := a max
{
2−min{l,j}, 2

2J(m′−t)−(j+l)(m′+m̃)
2(m̃+t)

}

(86)

c′l,j := a′ max
{
2−max{l,j}, 2

2J(m′−t)−(j+l)m′−max{j,l}m̃
m̃+2t

}
.

Then the a–priori compression of AJ is given by

(ÃJ )λ,ν :=






0, dist(Sλ, Sν) > c|λ|,|ν| and |λ|, |ν| ≥ j0,

0, dist(Sλ, Sν) <
∼ 2−min{|λ|,|ν|} and

dist(S′λ, Sν) > c′|λ|,|ν| if |ν| > |λ| ≥ j0 − 1,

dist(Sλ, S
′
ν) > c′|λ|,|ν| if |λ| > |ν| ≥ j0 − 1,

(AJ )λ,ν , otherwise.

(87)

The first line is the classical “first compression” based on (79) when the wavelets have disjoint
supports with a distance at least the diameter of the larger support. The number of nonzero
entries that remain after this compression is of the order NJ logNJ where NJ := dimSJ ∼
2(d−1)J when d − 1 is the dimension of Γ. The second line reflects the “second compression”
due to Schneider which discards entries for wavelets with overlapping support, Schneider, 1998.
More importantly this affects also those entries involving the scaling functions on the coarsest
level j0. It has a significant effect when, due to a complicated geometry, the coarsest level
already involves a relatively large number of basis functions. Asymptotically, it removes the
log factor in the count of the nonzero entries of ÃJ .
A sophisticated perturbation analysis, whose main ingredients are the a–priori estimates

(79), (80) based on the cancellation properties of Ψ, the norm equivalences (30), and suitable
versions of the Schur lemma, yields the following result, Dahmen, Harbrecht and Schneider,
2002; Harbrecht, 2001.
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Theorem 4.3. The compressed matrices ÃJ , given by (87), have uniformly bounded condition
numbers. The number of nonzero entries in ÃJ is of the order NJ , uniformly in J . Moreover,
the solution ũJ exhibits optimal discretization error estimates in the energy norm

‖u− ũJ‖Ht(Γ) <
∼ 2

J(t−m)‖u‖Hm(Γ), J →∞. (88)

This result says that the above compression strategy is asymptotically optimal. In
comparison with earlier versions the removal of log–factors even offers a strictly linear
complexity. Note that for operators of negative order the relatively high computational efforts
for Galerkin discretizations, due to the double integrals, pay off through the high order m+ |t|.
The remaining crucial question concerns the complexity of computing the compressed

matrices ÃJ . A detailed analysis of this issue can be found in Harbrecht, 2001, see also Dahmen,
Harbrecht and Schneider, 2002. The main facts can be summarized as follows.
Of course, the entries of ÃJ cannot be computed exactly but one has to resort to quadrature.

The following nice observation from Harbrecht, 2001 tells us how much computational effort
can be spent on the entry (AJ)λ,ν so as to keep the overall complexity of computing an

approximation to ÃJ proportional to the system size NJ .

Theorem 4.4. The complexity of approximately computing the nonzero entries of ÃJ is
O(NJ), provided that for some α > 0 at most O

(
(J − (|λ|+ |ν|)/2)α

)
operations are spent on

the computation of a nonzero coefficient (ÃJ)λ,ν .

Next, in analogy to the compression estimates one can ask which further perturbation is
allowed for the approximate calculation of the entries of ÃJ so as to retain the above optimal
convergence rates, Harbrecht, 2001; Dahmen, Harbrecht and Schneider, 2002.

Theorem 4.5. If the quadrature error for (ÃJ)λ,ν is bounded by

δ min
{
2−

(d−1)||λ|−|ν||
2 , 2−(d−1)(J−

|λ|+|ν|
2 )m

′−t
m+t

}
22Jt2−2m

′
(
J− |λ|+|ν|2

)

for some fixed δ < 1, then the (perturbed) Galerkin scheme is stable and converges with optimal
order (88)

The main result now is that the accuracy bounds in Theorem 4.5 can be met by a
sophisticated adapted quadrature strategy whose computational complexity remains also in the
operations budget given by Theorem 4.4. Thus, in summary one obtains a fully discrete scheme
that exhibits asymptotically optimal computational complexity that remains proportional to
the problem size. This is illustrated below by some numerical examples.

Remark 4.6. Another approach to matrix compression, first pointed out in Beylkin, Coifman,
and Rokhlin, 1991, uses the so called nonstandard form of the operator AS := P ′SAPS, which
involves a telescoping expansion for AS but is not a representation of AS in the strict sense.
It consists of blocks whose entries involve only basis functions (wavelets and scaling functions)
of the same level, which may simplify their computation in comparison to the standard form.
On the other hand, the nonstandard form does not support preconditioning when dealing with
operators of order different from zero and is therefore restricted to problems of the type (70).
Due to the presence of scaling function coefficients it also does not allow us to combine matrix
compression together with function compression. We shall point out later that this is indeed
supported by the standard form.
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4.5. Numerical Tests

The following example has been provided by H. Harbrecht. An interior Dirichlet problem for
the Laplacian is solved by the indirect approach. We use both, the Fredholm integral equation
of the first kind based on the single layer operator and the Fredholm integral equation of the
second kind based on the double layer potential operator. Both approaches yield a density u,
from which one derives the solution in the domain via potential evaluation, i.e. by applying
the single layer operator and double layer operator, respctively, to the density, see (68), (71).
The domain Ω under consideration is the gearwheel shown in Figure 8. It has 15 teeth and

is represented using 180 patches. As Dirichlet data we choose the restriction of the harmonic
function

U(x) =
(a, x)

‖x‖3
, a = (1, 2, 4),

to Γ. Then, U is the unique solution of the Dirichlet problem. We discretize the given boundary
integral equation by piecewise constant wavelets with three vanishing moments.

Figure 8. The surface mesh and the evaluation points xi of the potential.

In order to measure the error produced by the method, we calculate the approximate solution
UJ = AuJ at several points xi inside the domain, plotted in Figure 8. The last column in the
tables below reflects the effect of an a–posteriori compression applied to the computed entries
of the stiffness matrix. The discrete potentials are denoted by

U := [U(xi)], UJ := [(AuJ)(xi)],

where A stands for the single or double layer operator.
We list in Tables I and II the results produced by the wavelet Galerkin scheme. For the

double layer approach, the optimal order of convergence of the discrete potential is quadratic
with respect to l∞-norm over all points xi. For the single layer approach, this order is cubic.
But one should mention that one cannot expect the full orders of convergence, due to the
reentrant edges resulting from the teeth of the gearwheel.
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J NJ ‖U−UJ‖∞ cpu-time a-priori (%) a-posteriori (%)

1 720 4.8e-1 1 27 7.9

2 2880 2.7e-1 (1.8) 10 8.7 2.3

3 11520 7.6e-2 (3.6) 107 3.4 0.6

4 46080 2.4e-2 (3.1) 839 1.0 0.2

5 184320 6.0e-3 (4.1) 4490 0.2 0.0

Table I. Numerical results with respect to the double layer operator.

J NJ ‖U−UJ‖∞ cpu-time a-priori (%) a-posteriori (%)

1 720 4.9e-1 1 28 21

2 2880 5.7e-2 (8.6) 12 10 7.4

3 11520 1.2e-2 (4.5) 116 4.2 2.0

4 46080 2.8e-3 (4.5) 1067 1.3 0.5

5 184320 1.0e-3 (2.9) 6414 0.4 0.1

Table II. Numerical results with respect to the single layer operator.

4.6. Concluding Remarks

The above results show how to realize, for any (a–priori fixed) level J of resolution, a numerical
scheme that solves a boundary integral equation with discretization error accuracy in linear
time. As for the quantitative performance, the above examples indicate that accuracy is not
degraded at all by the compression and quadrature errors. Moreover, the robustness with
respect to the underlying geometry is surprisingly high. The experiences gained in Harbrecht,
2001 show that the number of basis functions on the coarsest level may go up to the square
root of the overall problem size without spoiling the complexity significantly. Due to the built
in preconditioning, the actual iterative solution of the linear systems is still by far dominated
by the efforts for computing ÃJ .

The concept is strictly based on a perturbation of the operator but makes no use of adaptivity
with respect to the discretization. First tests in this direction have been made in Harbrecht,
2002. However, this is somewhat incompatible with the basic structure where all computations
are tuned to an a-priori fixed highest level J of spatial resolution. Finite subsets of the wavelet
basis serve to formulate a Galerkin discretization in the same way as classical settings so that
no direct use is made of the full wavelet transformed representation of the boundary integral
equation.

Thus, incorporating adaptivity may require an alternative to the entrywise computation of
ÃJ which we shall comment on later.
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There are other ways of accelerating the calculation of matrix/vector products in the
above context such as panel clustering (Hackbusch and Nowak, 1989), multipole expansions
(Greengard and Rokhlin, 1987) or hierarchical matrices (Hackbusch, 1999). These concepts
offer an even better robustness with respect to the geometry since they exploit the smoothness
of the integral kernel in Rd and not of its trace on the manifold. However, these approaches
do not allow one to build in preconditioning in such a straightforward way as above and
adaptivity is even harder to incorporate. A combination of the different concepts has recently
been proposed in Schmidlin, Lage and Schwab, 2002, combining the advantages of clustering
and wavelet techniques.

5. A New Adaptive Paradigm

So far we have sketched essentially two different directions where the key features of wavelets
listed in Section 2.4 played an essential role. In the context of boundary integral equations it was
utilized that corresponding operators possess well–conditioned sparse wavelet representations.
When dealing with hyperbolic conservation laws the typical piecewise smooth nature of
solutions permits the compression of the flow field based on suitable thresholding strategies
applied to multiscale representations of approximate solutions. In both cases an arbitrary but
fixed level of resolution was considered and wavelet concepts were used to precondition or
accelerate the numerical processing of the resulting fixed finite dimensional problem.

We shall now turn to recent developments that deviate from this line and aim at combining
in a certain sense both effects, namely the sparse representation of functions and the sparse
representation of (linear and nonlinear) operators. The subsequent developments are based on
the results in Cohen, Dahmen and DeVore, 2001; Cohen, Dahmen and DeVore, 2002a; Cohen,
Dahmen and DeVore, 2002b; Cohen, Dahmen and DeVore, 2002c; Dahlke, Dahmen and Urban,
2002

5.1. Road Map

Recall that the classical approach is to utilize a variational formulation of a differential or
integral equation mainly as a starting point for the formulation of (Petrov-) Galerkin scheme
which gives rise to a finite dimensional system of linear or nonlinear equations. The finite
dimensional problem has then to be solved in an efficient way. As we have seen before, one
then faces several obstructions such as ill–conditioning or the instability of the disretizations,
for instance, due to the wrong choice of trial spaces. For instance, in the case of the double
layer potential operator, stability of the Galerkin scheme is only guaranteed for sufficiently
good spatial resolution, i.e. sufficient closeness to the infinite dimensional problem. As we
shall see below, more severe stability problems are encountered when dealing with non–coercive
problems such as saddle point problems. In this case, the trial spaces for the different solution
components have to satisfy certain compatibility conditions known as Ladyšhenskaja-Babuška-
Brezzi (LBB) condition. In brief, although the underlying infinite dimensional problem may be
well–posed in the sense of (40), the corresponding finite dimensional problem may not always
share this property.

In contrast we propose here a somewhat different paradigm that tries to exploit the well–
posedness of the underlying continuous problem to the best possible extent along the following
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line:

(I) Establish well–posedness of the underlying variational problem;
(II) transform this problem into an equivalent infinite dimensional one which is now well–

posed in `2;
(III) devise a convergent iteration for the infinite dimensional `2-problem;
(IV) only at that stage realize this iteration approximately with the aid of an daptive

application of the involved (linear or nonlinear) operators.

5.2. The Scope of Problems – (I)

We describe first the scope of problems we have in mind. We begin with a general format
which will then be exemplified by several examples.

For a given (possibly nonlinear) operator F the equation

F(u) = f (89)

is always understood in a weak sense, namely to find u in some normed space H such that for
given data f

〈v,F(u)〉 = 〈v, f〉, ∀ v ∈ H. (90)

This makes sense for any f ∈ H′, the dual of H (recall (41)) and when F takes H onto its dual
H′. In principle, the conservation laws fit into this framework as well. They will be, however,
excluded from major parts of the following discussion, since we will assume from now on that
H is a Hilbert space.
The operator F is often given in a strong form so that the first task is to identify the right

space H for which (90) is well–posed. We have already seen what this means when F is linear,
see (40). The classical Dirichlet problem with H = H10 (Ω) and the single layer potential
equation (67) with H = H−1/2(Γ) are examples. When dealing with nonlinear problems
one may have to be content with locally unique solutions and it is natural to require that
corresponding local linearizations are used to define well–posedness. Thus we assume that the
Frechét–derivative DF(v) of F at v, defined by

〈z,DF(v)w〉 = lim
t→0

1

t
〈z,F(v + tw)−F(v)〉, ∀ z ∈ H, (91)

exists for every v in a neighborhood U of a solution u of (90) as a mapping from H onto H′.
In analogy to (40), well–posedness now means that there exist for every v ∈ U positive finite
constants cF,v, CF,v such that

cF,v‖w‖H ≤ ‖DF(v)w‖H′ ≤ CF,v‖w‖H, ∀ w ∈ H. (92)

We have already seen several examples in Sections 2.5 and 4.1 which, however, are all
coercive. We shall therefore briefly review several further examples as models for different
problem types. They also indicate that, as an additional practical obstruction, the topology
for which the problem is well–posed involves norms that are usually difficult to deal with
computationally. Most of the examples are actually linear but they may as well play the role
of a (local) linearization.
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5.2.1. Transmission Problem The following example is interesting because it involves both
local and global operators, see Costabel and Stephan, 1990

−∇ · (a∇u) = f in Ω0,

−∆u = 0 in Ω1,

u|Γ0 = 0

H := H10,ΓD (Ω0)×H
−1/2(Γ1).

 Ω

Ω
0

�

1

             

    

Γ

Γ0
�

1

Both boundary value problems are coupled by the interface conditions:

u− = u+, (∂n)u
− = (∂n)u

+.

A well-posed weak formulation of this problem with respect to the above H is

〈a∇u,∇v〉Ω0 + 〈Wu− ( 12I − K
′)σ, v〉Γ1 = 〈f, v〉Ω0 , v ∈ H10,ΓD (Ω0),

〈( 12I − K)u, δ〉Γ1 + 〈Vσ, δ〉Γ1 = 0, δ ∈ H−1/2(Γ1),

where K,V,W are the double, single layer potential and hypersingular operator, see Dahmen,
Kunoth and Schneider, 2002.
Note that, as an additional obstruction, the occurrence and evaluation of difficult norms like

‖ · ‖H1/2(Γ), ‖ · ‖H−1/2(Γ), ‖ · ‖H−1(Ω) arises.

5.2.2. Saddle Point Problems All the above examples involve coercive bilinear forms. An
important class of problems which are no longer coercive are saddle point problems. A classical
example is

The Stokes System The simplest model for viscous incompressible fluid flow is the Stokes
system

−ν∆u+∇p = f in Ω,

div u = 0 in Ω, (93)

u|Γ = 0,

where u and p are the velocity, respectively pressure, see Brezzi and Fortin, 1991; Girault and
Raviart, 1986. The relevant function spaces are

X := (H10 (Ω))
d, M = L2,0(Ω) := {q ∈ L2(Ω) :

∫

Ω

q = 0}. (94)

In fact, one can show that the range of the divergence operator is L2,0(Ω). The weak formulation
of (93) is

ν〈∇v,∇u〉L2(Ω) + 〈 div v, p〉L2(Ω) = 〈f, v〉, v ∈ (H10 (Ω))
d

〈 div u, q〉L2(Ω) = 0, q ∈ L2,0(Ω),
(95)
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i.e., one seeks a solution (u, p) in the energy space H = X ×M = (H10 (Ω))
d × L2,0(Ω), for

which the mapping property (92) can be shown to hold.

First Order Systems One is often more interested in derivatives of the solution of an
elliptic boundary value problem which leads to mixed formulations. Introducing the fluxes
θ := −a∇u, (36) can be written as a system of first order equations whose weak formulation
reads

〈θ, η〉 + 〈η, a∇u〉 = 0, ∀ η ∈ (L2(Ω))d,

−〈θ,∇v〉 = 〈f, v〉, ∀v ∈ H10,ΓD (Ω).
(96)

One now looks for a solutiom (θ, u) ∈ H := (L2(Ω))d ×H10,ΓD (Ω). For a detailed discussion
in the finite element context, see e.g. Bramble, Lazarov, and Pasciak, 1997. It turns out that
in this case the Galerkin discretization inherits the stability from the original second order
problem.

The General Format The above examples are special cases of the following general problem
class. A detailed treatment can be found in Brezzi and Fortin, 1991; Girault and Raviart, 1986.
SupposeX,M are Hilbert spaces and that a(·, ·), b(·, ·) are bilinear forms onX×X, respectively
X ×M which are continuous

|a(v, w)| <∼ ‖v‖X‖w‖X , |b(q, v)| <∼ ‖v‖X‖q‖M . (97)

Given f1 ∈ X ′, f2 ∈M ′, find (u, p) ∈ X ×M =: H such that one has for all (v, q) ∈ H

〈(v, q),F(u, p)〉 :=





a(u, v) + b(p, v) = 〈v, f1〉,

b(q, u) = 〈q, f2〉.
(98)

Note that when a(·, ·) is positive definite symmetric, the solution component u minimizes the
quadratic functional J(w) := 1

2a(w,w)− 〈f1, w〉 subject to the constraint b(u, q) = 〈q, f2〉, for
all q ∈M , which corresponds to

inf
v∈X
sup
q∈M

(
1

2
a(v, v) + b(v, q)− 〈f1, v〉 − 〈q, f2〉

)
.

This accounts for the term saddle point problem (even under more general assumptions on
a(·, ·)).
In order to write (98) as an operator equation, define the operators A, B by

a(v, w) =: 〈v,Aw〉, v ∈ X, b(v, p) =: 〈Bv, q〉, q ∈M,

so that (98) becomes

F(u, p) :=



 A B′

B 0




(
u

p

)
=

(
f1

f2

)
=: f. (99)

As for the mapping property (92), a simple (sufficient) condition reads as follows, see Brezzi
and Fortin, 1991; Girault and Raviart, 1986. If a(·, ·) is elliptic on

kerB := {v ∈ X : b(v, q) = 0, ∀ q ∈M},
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i.e.,

a(v, v) ∼ ‖v‖2X , v ∈ kerB, (100)

and if b(·, ·) satisfies the inf-sup condition

inf
q∈M

sup
v∈X

b(v, q)

‖v‖X‖q‖M
> β (101)

for some positive β, then (97) is well-posed in the sense of (92). Condition (101) means that
B is surjective (and thus has closed range). Condition (100) is actually too strong. It can be
replaced by requiring bijectivity of A on kerB, see Brezzi and Fortin, 1991.
Aside from leading to large ill conditioned systems the additional obstructions are the

indefiniteness of this type of problem and that the well–posedness of the infinite dimensional
problem is not automatically inherited by Galerkin discretizations, say. In fact, the trial spaces
in X and M have to be compatible in the sense that they satisfy the inf-sup condition (101)
uniformly with respect to the resolution of the chosen discrtetizations. This is called the
Ladyšhenskaya-Babuška-Brezzi-condition (LBB) and may, depending on the problem, be a
delicate task.

5.2.3. A Nonlinear Model Problem A wide range of phenomena involve the interaction of a
(linear) diffusion with a nonlinear reaction or advection part. We therefore close the list of
examples with the simple class of semilinear elliptic boundary value problems. On one hand, it
permits a rather complete analysis. On the other hand, it still exhibits essential features that
are relevant for a wider scope of nonlinear problems. In this section, we follow Cohen, Dahmen
and DeVore, 2002b and suppose that a(·, ·) is a continuous bilinear form on a Hilbert space H
endowed with the norm ‖ · ‖H, which is H-elliptic, i.e., there exist positive constants c, C such
that

c‖v‖2H ≤ a(v, v), a(v, w) ≤ C‖v‖H‖w‖H, ∀ v, w ∈ H. (102)

The simplest example is

a(v, u) := 〈∇v,∇u〉+ κ〈v, u〉, κ ≥ 0, 〈v, w〉 =

∫

Ω

vw, (103)

and H = H10 (Ω) endowed with the norm ‖v‖
2
H := ‖∇v‖

2
L2(Ω)

+ κ‖v‖2L2(Ω).
Suppose that G : R→ R is a function with the following property:

P1 the mapping v 7→ G(v) takes H into its dual H′ and is stable in the sense that

‖G(u)− G(v)‖H′ ≤ C(max {‖u‖H, ‖v‖H})‖u− v‖H, u, v ∈ H, (104)

where t→ C(s) is a nondecreasing function of s.

The problem: Given f ∈ H′ find u ∈ H such that

〈v,F(u)〉 := a(v, u) + 〈v,G(u)〉 = 〈v, f〉, ∀ v ∈ H, (105)

is of the form (90) with F(u) = Au+G(u). Note that with the bilinear form from (103), (105)
may also arise through an implicit time discretization of a nonlinear parabolic equation.
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The unique solvability of (105) is easily ensured when G is in addition assumed to be
monotone, i.e., (x − y)(G(x) − G(y)) ≥ 0 for x, y ∈ R. In this case F(u) = f is the Euler
equation of a convex minimization problem, Cohen, Dahmen and DeVore, 2002b.
A simple example is

〈v,F(u)〉 =

∫

Ω

∇vT∇u+ vu3dx, H = H10 (Ω), H
′ = H−1(Ω). (106)

That (at least for d ≤ 3) H = H10 (Ω) is indeed the right choice can be seen as follows.
The fact that H1(Ω) is continuously embedded in L4(Ω) for d = 1, 2, 3, readily implies that
G(v) ∈ H−1(Ω) for v ∈ H10 (Ω). Moreover, 〈z,F(v + tw) − F(v)〉 = t〈∇z,∇w〉 + 〈z, t3v2w +
t23vw2 + t3w3〉 so that 〈z,DF(v)w〉 = 〈∇z,∇w〉+ 3〈z, v2w〉 and hence

DF(v)w = −∆w + 3v2w. (107)

Therefore, again by the embedding Hs ↪→ Lp if
1
2 <

s
d
+ 1

p
, i.e. ‖v‖L4 <

∼ ‖v‖H for d < 4 with

H = H10 (Ω), we see that

‖DF(v)w‖H′ = sup
z∈H

〈∇z,∇w〉+ 3〈z, v2w〉

‖z‖H
<
∼ ‖w‖H + ‖v‖

2
H‖w‖H.

On the other hand,

‖DF(v)w‖H′ ≥
〈∇w,∇w〉+ 3〈w, v2w〉

‖w‖H
≥
‖∇w‖2L2
‖w‖H

≥(1 + c(Ω)2)−1‖w‖H,

where we have used Poincaré’s inequality in the last step. Hence we obtain

(1 + c(Ω)2)−1‖w‖H ≤ ‖DF(v)w‖H′ <∼ (1 + ‖v‖
2
H)‖w‖H, w ∈ H, (108)

which is (92).
The scope of of problems is actually not limited at all to the variational formulation of

integral or partial differential equations but covers, for instance, also optimal control problems
with PFEs as constraints, see Dahmen and Kunoth, 2002; Kunoth, 2001.

5.3. Transformation into a Well–Posed `2–Problem – (II)

Suppose that (90) is well–posed with respect to the energy space H. In all previous examples
H was a (closed subspace of a) Sobolev or a product of such spaces. As indicated in Section 2
it is known how to construct wavelet bases for such spaces. In the following, we will therefore
assume that Ψ is a Riesz basis for H.
The transformation of (90) into wavelet coordinates is analogous to the linear case (see

Theorem 2.2 in Section 2.5). In fact, testing in (90) with v = ψλ for all λ ∈ J , defines
through F(v) := (〈ψλ,F(v)〉)λ∈J a sequence valued nonlinear mapping F which depends on
the array v ∈ `2 via the wavelet expansion v =

∑
λ∈J vλψλ. Similarly, the Jacobian of F at

v acting on w ∈ `2 is defined by DF(v)w = (〈ψλ, DF(v)w〉)λ∈J . Finally, setting as before
f := (〈ψλ, f〉)λ∈J the following fact can be derived by the same arguments as in Theorem 2.2.

Theorem 5.1. Assume that (92) and (30) hold. Then the variational problem (90) is
equivalent to F(u) = f where u =

∑
λ∈J uλψλ. Moreover, when the latter problem is well-

posed in `2, i.e. for v =
∑
λ∈J vλψλ in some neighborhood U of the locally unique solution u

of (90)
c−2Ψ c−1F,v‖w‖`2 ≤ ‖DF(v)w‖`2 ≤ C

2
ΨCF,v‖w‖`2 , w ∈ `2. (109)
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As for the special case (105), note that the monotonicity of G implies the monotonicity of
G(·), defined by G(v) := (〈ψλ,G(v)〉)λ∈J and hence the positive semidefiniteness of DG(v),
see Cohen, Dahmen and DeVore, 2002b for details.

5.4. An Iteration for the Infinite dimensional Problem – (III)

Once the problem attains a well–conditioned form in `2, it makes sense to devise an iterative
scheme for the full infinite dimensional problem F(u) = f that converges with a guaranteed
error reduction rate. These iterations will take the form

un+1 = un −Cn(F(u
n)− f), n = 0, 1, 2, . . . , (110)

where the (infinite) matrix Cn is possibly stage dependent. It can be viewed a a fixed point
iteration based on the trivial identity u = u−C(F(u)− f). We shall indicate several ways of
choosing Cn, depending on the nature of the underlying variational problem (90).

Gradient Iterations: In the above case of elliptic semilinear problems, the transformed
problem still identifies the unique minimum of a convex functional. Thus, it makes sense to
consider gradient iterations, i.e. Cn = αI

un+1 = un − α(F(un)− f), n = 0, 1, 2, . . . , (111)

In fact, one can estimate a suitable positive damping parameter α > 0 from the constants in
(30), (92) and (104), see Cohen, Dahmen and DeVore, 2002b for details, so that (111) converges
for u0 say with a fixed reduction rate ρ < 1,

‖un+1 − u‖`2 ≤ ρ‖u
n − u‖`2 , n ∈ N0. (112)

For instance, in the linear case G ≡ 0, one can take any α < 2/(C2ΨCA) (see (43)) and verify
that ρ = max {1− αc2ΨcA, |1− C

2
ΨCA|} works.

Least Squares Iteration: Of course, when dealing with indefinite Jacobians the above
scheme will in general no longer work. However, the well–posedness in `2 offers, in principle,
always a remedy which we explain first in the linear case Au = f , where this may stand for
any of the well-posed problems discussed in Section 5.2. Since then (109) reduces to (43) one
can again find a positive α so that Cn = αA

T leads to an iteration

un+1 = un − αAT (Aun − f), n = 0, 1, 2, . . . , (113)

that satisfies (112) with some fixed ρ < 1. Clearly this is simply a gradient iteration for the
least squares formulation ATA = AT f in the wavelet coordinate domain, see also Dahmen,
Kunoth and Schneider, 2002 for connections with least squares finite element methods.
This is interesting because it suggests an analog also in the general nonlinear case even when

DF(v) is indefinite but (92) (or equivalently (109)) holds. In fact, the role of AT is played by
DF(un)T . Setting

R(v) := F(v)− f , (114)

and noting that

R(v) = F(v)− F(u) =
(
1∫

0

DF(u+ s(v − u))ds
)
(v − u), (115)
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one can derive from (109) that the iteration

un+1 = un − αDF(un)TR(un), (116)

can be made to satisfy (112) for a suitable positive damping factor α, depending on the
constants in (109) and a sufficiently good initial guess u0 (which is always needed in the
case of only locally unique solutions). Moreover, when being sufficiently close to the solution
Cn = αDF(un)T can be frozen to C = DF(u0) so as to still realize a strict error reduction
(112), see Cohen, Dahmen and DeVore, 2002b for details.

Uzawa Iteration: Of course, in the above least squares iterations (113) and (116) the
damping factor α may have to be chosen rather small which entails a poor error reduction rate
ρ. Whenever A or the linearization DF(v) corresponds to a saddle point operator (98) or (99),
the squaring of the condition number caused by the least squares formulation can be avoided
with the aid of an Uzawa iteration, see Dahlke, Dahmen and Urban, 2002; Dahmen, Urban
and Vorloeper, 2002. We indicate this only for the linear case. Instead of working directly with
the wavelet representation F(u,p) = f , one can first eliminate the solution component u, the
velocity in the case of the Stokes problem, on the infinite dimensional operator level. Recall
from (99) that F takes the form

F(u,p) =



 A BT

B 0



 = f :=
(
f1
f2

)
, f1 := (〈ψX,λ, f1〉)λ∈JX , f2 := (〈ψM,λ, f2〉)λ∈JM ,

(117)
where for given Riesz bases ΨX ,ΨM of the component spaces of H = X×M ,A := a(ΨX ,ΨX),
B := b(ΨM ,ΨX) are the wavelet representations of the operators A,B in (99), respectively.
Recall also that A need only be invertible on the kernel of B. To eliminate u one may first
have to modify the system as explained in Dahlke, Dahmen and Urban, 2002 so as to make
the modification of A an automorphism on all of `2(JX). Without loss of generality we may
therefore assume that this is already the case and that A satisfies (43). Then from the first
system Au + BTp = f1 we conclude that u = A

−1f1 − A−1BTp which, by the second
equation in (117), gives Bu = BA−1f1 − BA−1BTp = f2. Hence (117) is equivalent to the
Schur complement problem

Sp = BA−1f1 − f2, S := BA−1BT . (118)

Once (118) has been solved the eliminated component can be recovered from (the elliptic
problem)

Au = f1 −B
Tp. (119)

From the well–posedness of (117) on `2 one easily derives that S is also boundedly invertible
on `2(JM ). So one can find a positive α such that the gradient iteration pn+1 = pn−α(Spn−
(BA−1f1− f2)) satisfies (112) for some ρ < 1. (Actually, the residual may have to be modified
again when, as in the case of the Stokes problem, the Lagrange multiplier spaceM is a subspace
of finite codimension in a larger space for which a wavelet Riesz basis is given. For simplicity,
we suppress this issue here and refer to Dahlke, Dahmen and Urban, 2002 for details). The
problem is that the Schur complement is generally not easily accessible, due to the presence
of the factor A−1. However, note that Spn − (BA−1f1 − f2) = f2 − Bun whenever un is
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the solution of the elliptic problem Aun = f1 − BTpn. The gradient iteration for the Schur
complement problem then takes the form

pn+1 = pn − α(f2 −Bu
n), where Aun = f1 −B

Tpn, n = 0, 1, 2, . . . . (120)

Thus, the iteration is again of the form we want but each step requires as an input the solution
of a subproblem.

Newton Iteration: Finally, the choice Cn := (DF(u
n))−1 in (110) gives rise to the Newton

scheme
un+1 = un +wn, DF(un)wn = f − F(un) = −R(un), (121)

where each step requires the solution of a linear subproblem. While all previous examples
have convergence order one, the Newton scheme, in principle, offers even better convergence
behavior. We shall address this issue later in more detail.

5.5. Perturbed Iteration Schemes – (IV)

We have indicated several ways of forming an (idealized) iteration scheme on the full infinite
dimensional transformed system F(u) = f . We have made essential use of the fact that the
transformed system is well posed in `2 in the sense of (109). Recall that this hinges on the
mapping property (92) induced by the original continuous problem and the availability of a
Riesz basis Ψ for the corresponding energy space H, (30). The final step is to realize the
idealized iteration numerically. We shall do so not by choosing some fixed finite dimensional
space on which the problem is projected, as was done in previous sections, but rather by
approximating at each step the true residual rn := Cn(F(u

n) − f) = CnR(un) within a
suitable dynamically updated accuracy tolerance. Again we wish to avoid choosing for this
approximation any a-priori fixed finite dimensional space but try to realize the required
accuracy at the expense of possibly few degrees of freedom. The whole task can then be
split into two steps:

(a) Assuming that, in each case at hand, a computational scheme is available that allows
us to approximate the residuals within each desired target accuracy, determine first for
which dynamic tolerances the iteration will converge in the sense that for any given
target accuracy ε, the perturbed iteration outputs a finitely supported vector u(ε) such
that ‖u− u(ε)‖`2 ≤ ε. Thus on the numerical side all approximations will take place in
the Euclidean metric. Note however,that due to (30) this implies that

‖u−
∑

suppu(ε)

(u(ε))λψλ‖H ≤ CΨε. (122)

(b) Once this has been clarified, one has to come up with concrete realizations of the residual
approximations appearing in the idealized iteration. It is clear from the above examples
that the crucial task is to approximate with possibly few terms the sequence F(un) in
`2. Moreover, we will have to make precise what we mean by “possibly few terms”, i.e.
we have to analyze the computational complexity of the numerical schemes.

We shall address frst (a) under the assumption that we are given a numerical scheme
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c© 2004 John Wiley & Sons, Ltd.



ADAPTIVE WAVELET TECHNIQUES IN NUMERICAL SIMULATION 47

Res[η,C,F, f ,v] → rη: which for any positive tolerance η and any finitely
supported input v outputs a finitely supported vector rη satisfying

‖CR(v)− rη‖`2 ≤ η. (123)

The second ingredient is a routine

Coarse[η,w] → wη: which for any positive tolerance η and any finitely
supported input vector w produces a finitely supported output wη with possibly
few entries (subject to constraints that will be specified later) such that

‖w −wη‖`2 ≤ η. (124)

This routine will be essential later to control the complexity of the overall perturbed iteration
scheme.
Next we need some initialization, i.e., an initial guess u0 and an error bound

‖u− u0‖`2 ≤ ε0. (125)

In general, such an estimate depends on the problem at hand. In the case of semi–linear elliptic
problems, such a bound is, for instance, ε0 = c

−2
Ψ c−1A (‖G(0)‖`2 + ‖f‖`2) for u

0 = 0, see Cohen,
Dahmen and DeVore, 2002b for details.
As a final prerequisite, one can find, again as a consequence of (109), for each of the above

iteration schemes (110) a constant β such that

‖u− v‖`2 ≤ β‖CR(v)‖`2 (126)

holds in a neigborhood of the solution u. The perturbed iteration scheme may now be
formulated as follows.

Solve[ε,C,R,u0]→ ū(ε)

(i) Choose some ρ̄ ∈ (0, 1). Set ū0 = u0, the corresponding initial bound ε0
according to the above initialization, and j = 0;

(ii) If εj ≤ ε stop and output ū(ε) := ūj; else set v0 := ūj and k = 0

(ii.1) Set ηk := ρ̄
kεj and compute

rk = Res[ηk,C,F, f ,v
k], vk+1 = vk − rk.

(ii.2) If
β
(
ηk + ‖r

k‖`2
)
≤ εj/(2(1 + 2C

∗)), (127)

set ṽ := vk and go to (iii). Else set k + 1→ k and go to (ii.1).

(iii) Coarse[
2C∗εj
2(1+2C∗) , ṽ]→ ū

j+1, εj+1 = εj/2, j + 1→ j, go to (ii).

The constant C∗ depends on the particular realization of the routine Coarse and will be
specified later.
Note that step (ii) is just an approximation of the updates in (110). This applies until

the stopping criterion (127) is met. This is a–posteriori information based on the numerical
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residual. The fact that there is actually a uniform bound K for the number of updates in step
(ii), independent of the data and the target accuracy, until (127) is satisfied and a coarsening
step (iii) is carried out, relies on (126) and the underlying well–posedness (109). The parameter
ρ̄ is actually allowed here to be smaller than the true error reduction rate ρ in (112) for which
only a poor or a possibly too pessimistic estimate may be available.
One can show by fairly straightforward perturbation arguments that the choice of accuracy

tolerances in Solve implies convergence, Cohen, Dahmen and DeVore, 2002b.

Proposition 5.2. The iterates ūj produced by the scheme Solve satisfy

‖u− ūj‖`2 ≤ εj , (128)

so that in particular ‖u− ū(ε)‖`2 ≤ ε. By (30), this means

‖u−
∑

λ∈Λ(ε)

ū(ε)λψλ‖H ≤ CΨε, (129)

where CΨ is the constant from (30) and Λ(ε) := suppu(ε).

6. Construction of Residual Approximations and Complexity Analysis

It remains to construct concrete realizations of the routines Res and Coarse. It turns out
that the development of such routines is closely intertwined with their complexity analysis.
Since the conceptual tools are probably unfamiliar in the context of numerical simulation we
highlight some of them in the next section.

6.1. Best N–Term Approximation

A lower bound for the computational complexity of Solve is, of course, the growth of the
supports of outputs in step (ii.1), which determines how the overall number of degrees
of freedom grows until the target accuracy is reached. Therefore a lower bound for the
computational complexity of Solve is given by the number of terms needed to recover the
true solution u in `2 within accuracy ε. This is the issue of best N–term approximation in
`2. Thus the question arises whether, or under which circumstances, Solve can actually
attain this lower bound, at least asymptotically. Since best N–term approximation limits
what can be achieved at best we briefly review some relevant features concerning best N–term
approximation.
There are two intimately connected ways of looking at an error analysis for N -term

approximation. In the first, we can specify the target accuracy ε and ask what is the smallest
number N(ε) of terms needed to recover a given object? The second view is to assume we
are given a budget N of terms and ask what accuracy ε(N) can be achieved with the best
selection of N terms? The process of selecting such N terms is obviously nonlinear. This can
be formalized by defining the following error of approximation:

σN,`2(v) := inf
#suppw≤N

‖v −w‖`2 . (130)

Obviously, σN,`2(v) is attained by w = vN comprised of the N largest terms of v in
modulus. Note that this is not necessarily unique since several terms may have equal modulus.
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Analogously one can define σN,H(v) by looking for the best approximation of v in H by a
linear combination of at most N wavelets. One easily infers from (30) that

cΨσN,`2(v) ≤ σN,H(v) ≤ CΨσN,`2(v). (131)

Best N -term approximations in the Euclidean metric yield therefore near best N -term
approximations in H. Hence an element in H can be approximated well with relatively few
terms if and only if this is true for its coefficient array in `2.
We shall proceed with identifying classes of sequences in `2 for which ε(N) decays like N

−s

since these are the rates that can be expected from approximations based on spatial refinements
(h-methods). To this end, consider the classes

As(H) := {v ∈ H : σN,H(v) <∼ N−s}, As(`2) := {v ∈ `2 : σN,`2(v) <∼ N−s}. (132)

These are normed linear spaces endowed with the norms

‖v‖As(H) := sup
N∈N

NsσN,H(v), ‖v‖As(`2) := sup
N∈N

NsσN,`2(v).

Thus to achieve a target accuracy ε, the order of N(ε) ∼ ε−1/s terms are needed for v ∈ As(H)
or v ∈ As(`2). Hence the larger s > 0 the less terms suffice.
Which property makes a function v or its coefficient sequence v sparse in the above sense

is best explained when H is a Sobolev space H = Hs over some domain in Rd. One can then
show that for any positive δ (cf. DeVore, 1998; Bergh and Löfström, 1976; Cohen, 2000)

`q ⊂ A
s(`2) ⊂ `q+δ, Bα+sdq (Lq) ⊂ A

s(Hα) ⊂ Bα+sd−δq (Lq),
1

q
= s+

1

2
. (133)

Here `q consists of the q-summable sequences while B
α
q (Lq) denotes a Besov space consisting

roughly of functions with smoothness αmeasured in Lq, see DeVore, 1998; Bergh and Löfström,
1976; Cohen, 2003 for precise definitions. For a certain smoothness range, depending on the
regularity of the wavelet basis these spaces can also be characterized through wavelet bases.
In fact for 0 < q ≤ ∞ one has

‖v‖q
Bαq (Lq)

∼ ‖v‖qLq +
∑

λ∈J

2αq|λ|‖〈v, ψ̃λ〉ψλ‖
q
Lq
, (134)

which, due to the equivalence Hs = Bs2(L2), covers (32) as a special case, see e.g. Cohen, 2000;
Cohen, 2003; DeVore, 1998. It is important to note here that the smaller q the weaker is the
smoothness measure. By the Sobolev embedding theorem, the value of q given by (133) gives
the weakest possible measure so that smoothness of order sd + α in Lq guarantees Sobolev
regularity of order α corresponding to the anchor spaceH = Hα (a Sobolev space of order α or a
closed subspace defined e.g. by homogeneous boundary conditions). This is illustrated in Figure
9 below. Each point in the (1/q, s)–plane corresponds to a smoothness space (actually to a class
of smoothness spaces) describing smoothness s measured in Lq. In our case we have X = H

α

and p = 2. The spaces located left of the line with slope d emanating from X are embedded in
X. The spaces of smoothness α + sd on the vertical line above X are essentially those whose
elements can be approximated with accuracy O(N−s) by approximants from quasi–uniform
meshes, i.e. with equidistributed degrees of freedom. In the present terms this means just
keeping all wavelets up to some scale J say (or equivalently working with uniform meshes), so
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that N ∼ 2Jd would require the function v to belong to Bt+sd∞ (L2) which is very close to the
Sobolev space Ht+sd. The spaces on the critical embedding line, however, are characterized
by nonlinear approximation like best N–term approximation. Thus, while the spaces obtained
when moving to the right away from the vertical line on the same smoothness level grow
and admit increasingly stronger singularities, this loss of regularity can be compensated by
judiciously placing the degrees of freedom so as to retain the same convergence rates in terms
of degrees of freedom N . Since Ht+sd is a much smaller space than Bt+sdq (Lq) this indicates
the possible gain offered by nonlinear approximation schemes like best N -term approximation
over simpler schemes based on a-priori fixed discretizations.

1/p 1/q=1/p+t/d

s

s+t O(NO(N -t/d

Linear Nonlinear

(Slope d)

p L  spaces

X : measurement of the error
p

(s derivatives in L  )

s
C   spaces

Embedding

in X

No embedding 

in X

  )   )-t/d

Figure 9. Topography of smoothness spaces

Of course, it remains to see whether this potential can be exploited by adaptive schemes.

Tree Structures: The above notion of best N–term approximation puts no constraints on
the distribution of significant coefficients. In the context of conservation laws it was important
that the significant coefficients were arranged in tree like structures which corresponds to local
mesh refinements. Thus interrelating the selection of wavelets with locally refined meshes is one
reason for imposing some sort of constraint on the distribution of wavelet coefficients. Another
reason arises when approximating the quatities F(v) when v is some finitely supported vector.
Intuitively, one might expect that the nonlinearity in F makes the effect of a term vλ with
large |λ| cascade down to lower levels in a neighborhood of the support Sλ, which also gives
rise to tree like structures.
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Let us first explain what we mean by a tree-structure associated to the set of wavelet indices.
In the simplest case of a one dimensional basis ψλ = ψj,k = 2

j/2ψ(2j · −k), this structure is
obvious: each index (j, k) has two children (j+1, 2k) and (j+1, 2k+1). A similar tree structure
can be associated to all available constructions of wavelet bases on a multidimensional domain:
to each index λ one can be assign m(λ) ≥ 2 children µ such that |µ| = |λ| + 1, where m(λ)
might vary from one index to another but is uniformly bounded by some fixed K. We shall
use the notation µ ≺ λ (µ � λ) in order to express that µ is a descendent of λ (or equals λ)
in the tree. We also have the property

µ ≺ λ⇒ Sµ ⊂ Sλ, (135)

where we recall that Sλ := suppψλ. A set T ⊂ J is called a tree if λ ∈ T implies µ ∈ T
whenever λ ≺ µ.
If the tree T ⊂ J is finite, we define the set L = L(T ) of outer leaves as the set of those

indices outside the tree whose parent belongs to the tree

L := {λ ∈ J : λ 6∈ T , λ ≺ µ =⇒ µ ∈ T }. (136)

The set L(T ) plays the role of a (locally refined) mesh. In fact, one readily confirms that

‖v − v|T ‖
2
`2
=
∑

λ/∈T

|vλ|
2 =

∑

λ∈L(T )

∑

ν:ν�λ

|vλ|
2, (137)

which suggests considering the quantities

ṽλ :=
∑

ν:Sν⊂Sλ

|vν |
2. (138)

These quantities measure in some sense a local error associated with the spatial location of
ψλ. To see this, suppose that the wavelets have the form ψλ = ωλθλ where ωλ are some
positive weights (see (33)) and Θ is a Riesz basis for L2 (which is the case for all constructions
considered in Section 2). Then, by (30)

‖
∑

λ∈J

vλψλ‖H ∼ ‖v‖`2 ∼ ‖
∑

λ∈J

vλθλ‖L2 ,

so that
‖v −

∑

λ∈T

vλψλ‖H ∼ ‖
∑

λ 6∈T

vλθλ‖L2 . (139)

Note that the right hand side can be localized. In fact, for µ ∈ L(T )

‖
∑

λ6∈T

vλθλ‖
2
L2(Sµ)

= ‖
∑

|ν|≥|µ|:Sν∩Sµ 6=∅

vνθν‖
2
L2(Sµ)

<
∼

∑

|ν|≥|µ|:Sν∩Sµ 6=∅

v2ν

<
∼

∑

λ∈L(T ),Sλ∩Sµ 6=∅

ṽ2λ. (140)

It has been shown in Cohen, Dahmen and DeVore, 2002c that any tree T can be expanded to
a tree T̃ such that #(T̃ ) <∼ #(T ) but for any µ ∈ L(T̃ ) only for a uniformly bounded finite

number of λ ∈ L(T̃ ) one has Sλ ∩ Sµ 6= ∅. Hence a finite number of the terms ṽλ bound the
local error on Sµ.
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c© 2004 John Wiley & Sons, Ltd.



52 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

A natural idea for constructing “good” meshes – or equivalently “good trees” identifying
spans of wavelets – is to equilibrate these local errors. However, it turns out that this
will not necessarily minimize the error ‖v − v|T ‖`2 over all trees of a fixed cardinality
N = #(T ), see Cohen, Dahmen and DeVore, 2002c. To formalize this, we define an error
for N -term tree approximation which is the exact tree analog of the best (unconstrained)
N–term approximation defined in (130).

σtreeN,`2
(v) := min {‖v −w‖`2 : T := suppw is a tree and #T ≤ N}. (141)

Any minimizing tree will be denoted by TN (v). We define now in analogy to (131) the sequence
space

Astree(`2) := {v ∈ `2 : σ
tree
N,`2
(v) <∼ N−s}, (142)

endowed with the quasi–norm

‖v‖Astree(`2) := sup
n∈N

NsσtreeN,`2
(v). (143)

Analogously, we can define the counterpart Astree(H) in H. As in (131) the error of tree
approximation of v ∈ Astree(`2) decays like the error of the corresponding tree approximations
to v in H.
In spite of the conceptual similarity there is an important difference between best tree and

best unconstrained N–term approximation. At least for any finitely supported v the latter
one is easily determined by (quasi–) sorting by size – thresholding. Determining the best
tree however, is much harder. However, since one obtains a near best approximation in the
energy norm anyway we can be content with near best tree approximation in `2 as well. More
precisely, given a fixed constant C∗ ≥ 1, a tree T (η,v) is called an (η, C∗)–near best tree for
v if ‖v− v|T (η,v)‖`2 ≤ η and whenever any other tree T satisfies ‖v− v|T ‖`2 ≤ η/C

∗ one has
#(T (η,v)) ≤ C∗#(T ). It is remarkable that, according to Binev and DeVore, 2002, such near
best trees can be constructed in linear time. This can be achieved with the aid of modified
thresholding strategies working in the present setting with the quantities ṽ2λ (138) as local
error functionals. We shall invoke this method to construct near best trees.
Since the selections of terms are constrained by the imposed tree structure one always has

σ#Tη(v),`2(v) ≤ ‖v − v|Tη(v)‖`2 . (144)

However, for a wide class of functions in H one actually does not loose too much with regard to
an optimal work/accuracy rate. To explain this we consider again the above scenario H = Ht.
The following fact has been shown in Cohen, Dahmen and DeVore, 2002c.

Remark 6.1. For H = Ht one has Bt+sdq (Lq) ↪→ Astree(H) whenever q
−1 < s+ 1/2.

Thus as soon as the smoothness space is strictly left of the Sobolev embedding line its elements
have errors of tree approximations that decay like (#TN (v))−s, see Figure 9. Moreover, this
rate is known to be sharp, i.e.

sup
‖v‖

B
t+sd
q (Lq)

=1

inf
N
NsσN,Ht(v) >∼ 1, (145)

which means that on the class Bt+sdq (Lq), under the above restriction of q, tree approximations
give the same asymptotic error decay as best N–term approximations. The smaller the
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discrepancy δ := s+ 12−
1
q
> 0, the larger the space Bt+sdq (Lq) admitting stronger singularities.

In fact, when sup {s : u ∈ Ht+sd} is strictly smaller than sup {s : u ∈ Bt+sdq (Lq)} the
asymptotic work/accuracy rate achieved by meshes corresponding to the trees TN (·) is strictly
better than that for uniform mesh refinements. This is known to be the case, for instance,
for solutions u of elliptic boundary value problems on Lipschitz domains when δ is sufficiently
small, see Dahlke and DeVore, 1997.
Thus the question that guides the subsequent discussion can be formulated as follows: Can

one devise the routines Res and Coarse in such a way that the computational work and
storage needed to produce the output u(ε) of Solve, stays proportional to ε−1/s, uniformly in
ε, whenever the unknown solution u belongs to Astree(H), or even to A

s(H)?

6.2. Realization of Residual Approximations

We shall always assume that we have full access to the given data f . Depending on some target
accuracy one should therefore think of f as a finite array that approximates some “ideal” data
accurately enough. Moreover, these data are (quasi-)ordered by their modulus. Such a quasi-
ordering, based on binary binning can be realized in linear time, see e.g Barinka, 2003. In
particular, this allows us to obtain coarser approximations fη, satisfying ‖f − fη‖`2 ≤ η with
the aid of the simplest version of the routine Coarse, realized by adding |fλ|2 in direction
of increasing size until the sum exceeds η2, see Cohen, Dahmen and DeVore, 2001 for details.
As a central task one further has to approximate the sequence F(v) for any given finitely
supported input v which we shall now describe.

Linear Operators: It will be instructive to consider first the linear case F(v) = Av when
A is the wavelet representation of the underlying operator. We shall describe an algorithm for
the fast computation of Av. So far, the only property of A that we have used is the norm
equivalence (30). Now the cancellation properties (26) come into play. We have seen in Section
4.2 that they imply the quasi-sparsity of a wide class of linear operators. The relevant notion
can be formulated as follows (Cohen, Dahmen and DeVore, 2001). A matrix C is said to be
s∗-compressible – C ∈ Cs∗ – if for any 0 < s < s∗ and every j ∈ N there exists a matrix
Cj with the following properties: For some summable sequence (αj)

∞
j=1 (

∑
j αj < ∞) Cj is

obtained by replacing all but the order of αj2
j entries per row and column in C by zero and

satisfies

‖C−Cj‖ ≤ Cαj2
−js, j ∈ N. (146)

Specifically, wavelet representations of differential and also the singular integral operators from
Sections 4.2 and 4.1 fall into this category for values of s∗, that depend, in particular, on the
regularity of the wavelets, see Cohen, Dahmen and DeVore, 2001; Dahlke, Dahmen and Urban,
2002; Stevenson, 2003.
In order to describe the essence of an approximate application scheme for compressible

matrices, we abbreviate for any finitely supported v the best 2j-term approximations by
v[j] := v2j (v[−1] ≡ 0) and define

wj := Ajv[0] +Aj−1(v[1] − v[0]) + · · ·+A0(v[j] − v[j−1]), (147)

as an approximation to Av. Obviously this scheme is adaptive in that it exploits directly
information on v. In fact, if A ∈ Cs∗ , then the triangle inequality together with the above

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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compression estimates yield for any fixed s < s∗

‖Av −wj‖`2 ≤ c




‖v − v[j]‖`2︸ ︷︷ ︸
σ2j ,`2

(v)

+

j∑

l=0

αl2
−ls ‖v[j−l] − v[j−l−1]‖`2︸ ︷︷ ︸

<
∼ σ

2j−l−1,`2
(v)




. (148)

One can now exploit the a-posteriori information offered by the quantities σ2j−l−1,`2(v) to
choose the smallest j for which the right hand side of (148) is smaller than a given target
accuracy η and set wη := wj . Since the sum is finite for each finitely supported input v such
a j does indeed exist. This leads to a concrete multiplication scheme (see Cohen, Dahmen
and DeVore, 2001; Barinka, Barsch, Charton, Cohen, Dahlke, Dahmen and Urban, 2001 for a
detailed description, analysis and implementation) which we summarize as follows:

Apply [η,A,v] → wη: determines for any finitely supported input v a finitely
supported output wη such that

‖Av −wη‖`2 ≤ η. (149)

Depending on the compressibility range s∗ this scheme can be shown to exhibit the same
work/accuracy rate as the best (unconstrained) N–term approximation in `2 as stated by the
folloing result, Cohen, Dahmen and DeVore, 2001.

Theorem 6.2. Suppose that A ∈ Cs∗ and that for some 0 < s < s∗, v ∈ As(`2). Then,
Av is also in As(`2). Moreover, for any finitely supported v the output wη = Apply [η,C,v]
satisfies:

(i) ‖wη‖As(`2) <
∼ ‖v‖As(`2);

(ii) #suppwη <
∼ ‖v‖

1/s
As(`2)

η−1/s, #flops <∼ #suppv + ‖v‖
1/s
As(`2)

η−1/s,

where the constants in these estimates depend only on s when s is small.

The above work count is based on the tacit assumption that the entries ofA can be computed
with sufficient accuracy on average at unit cost. This can be verified for constant coefficient
differential operators and spline wavelets. In general, the justification of such an assumption
is less clear. We shall return to this point later.

The Nonlinear Case – Prediction of Significant Coefficients: In this case the point
of view changes somewhat. The question to be addressed first is the following:

Given any η > 0 and an (η, C∗)–near best tree T (η,v) of v, find a possibly small tree Tη such
that for some constant C

T ∗(Cη,F(v)) ⊆ Tη, (150)

where T ∗(Cη,F(v)) is a smallest tree realizing accuracy Cη.

Thus we are asking for quantitative estimates concerning the effect of a nonlinearity on
contributions with different length scales, a question of central importance in several areas
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c© 2004 John Wiley & Sons, Ltd.



ADAPTIVE WAVELET TECHNIQUES IN NUMERICAL SIMULATION 55

of applications such as turbulence analysis. Using trees now already anticipates the need for
taking the (quasi-local) effect of higher frequency on lower ones into account.
Of course, tight estimates of that sort must incorporate some knowledge about the character

of the nonlinearity. Nonlinearities of at most power growth have been studied recently in Cohen,
Dahmen and DeVore, 2002c and we briefly review some of the main findings. For instance,
when the operator involves a local composition operator G as in (105) “power growth” means
that for some p > 0 |G(n)(x)| <∼ (1 + |x|)

(p−n)+ . In fact, one can show that for H = Ht (on
some domain of spatial dimension d) one has G : H → H′ provided that

p < p∗ :=
d+ 2t

d− 2t
when t < d/2, p > 0 when t ≥ d/2, (151)

see Cohen, Dahmen and DeVore, 2002c. The analysis in Cohen, Dahmen and DeVore, 2002c
covers a much wider class of nonlinear operators including those that depend on several
components involving also derivatives of the arguments G(Dα1v1, . . . , D

αlvl). For instance,
the convective term in the Navier Stokes equations is covered. In order to convey the main
ideas while keeping the exposition as simple as possible we confine the subsequent discussion to
the above special situation. Using the locality of the nonlinearity, the cancellation properties
of the wavelets as well as certain norm equivalences for Besov spaces in terms of weighted
sequence norms for the wavelet coefficients, one can derive estimates of the form

|F(v)λ| <∼ sup
Sµ∩Sλ 6=∅

|vµ|2
−γ(|λ|−|µ|), (152)

where for H = Ht a typical value for γ is γ = t + m̃ + d/2. It measures in some sense the
compressibility of the nonlinear map.
How to predict good trees for F(v) from those for v for the above mentioned type of

nonlinearities can be sketched as follows, cf. Cohen, Dahmen and DeVore, 2002c. For a given
target accuracy ε, j = 0, 1, · · · and a given v, we consider the near best trees

Tj := T (
2jε

1 + j
,v), (153)

and the corresponding expanded trees T̃j mentioned before. By construction, these trees are
nested in the sense that T̃j ⊂ T̃j−1. We shall use the difference sets

∆j := T̃j \ T̃j+1. (154)

in order to build a tree which will be adapted to w = F(v). They represent the “energy” in v
reflecting the next higher level of accuracy. Now we introduce the parameter

α :=
2

2γ − d
> 0, (155)

where γ is the constant in (152) and for each µ ∈ ∆j , we define the influence set

Λε,µ := {λ : Sλ ∩ Sµ 6= ∅ and |λ| ≤ |µ|+ αj}. (156)

Thus the amount αj by which the level |µ| is exceeded in Λε,µ depends on the “strength” of
vµ expressed by the fact that µ ∈ ∆j . We then define Tε as the union of these influence sets

Tε := Jφ ∪
(
∪µ∈T̃0Λε,µ

)
. (157)

The main result can then be stated as follows, Cohen, Dahmen and DeVore, 2002c.
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Theorem 6.3. Given any v and Tε defined by (157), we have the error estimate

‖F(v)− F(v)|Tε‖`2 <
∼ ε. (158)

Moreover, if v ∈ Astree(`2) with 0 < s < 2γ−d
2d , then we have the estimate

#(Tε) <∼ ‖v‖
1/s
Astree(`2)

ε−1/s +#(Jφ). (159)

We therefore have F(v) ∈ Astree(`2) and

‖F(v)‖Astree(`2) <
∼ 1 + ‖v‖Astree(`2). (160)

The constants in these above inequalities depend only on ‖v‖, the space dimension d, and the
parameter s.

This result provides the basis for the following evaluation scheme.

Eval [ε,F,v] → w(ε) produces for any finitely supported vector v a finitely
supported vector w(ε) such that ‖w(ε)−F(v)‖`2 ≤ ε using the following steps:

(1) Invoke the algorithm in Binev and DeVore, 2002 to compute the trees

Tj := T (
2jε

C0(j + 1)
,v), (161)

where C0 = C0(‖v‖) is the constant involved in (158), for j = 0, . . . , J ,
and stop for the smallest J such that TJ is empty (we always have
J <
∼ log2(‖v‖/ε)).

(2) Derive the expanded trees T̃j, the layers ∆j and the outcome tree Tε
according to (157).

(3) Compute F(v)|Tε (approximately within accuracy ε).

Clearly any finitely supported v belongs to Astree(`2) for every s > 0. Moreover, the trees
Tj will be empty for j ≥ J and some J ∈ N. Thus the scheme terminates after finitely many
steps. We postpone some comments on step (3) to § 6.4. The following theorem summarizes
the properties of Algorithm Eval.

Theorem 6.4. Given the inputs ε > 0, a nonlinear function F such that F (satisfying
assumptions of the type mentioned before), and a finitely supported vector v, then the output
tree Tε has the following properties: One has ‖F(v) − F(v)|Tε‖`2 ≤ ε. Furthermore, for any
0 < s < 2γ−d

2d (see Theorem 6.3), one has

#(Tε) ≤ C‖v‖
1/s
As ε

−1/s +#(Jφ) =: Nε (162)

with C a constant depending only on the constants appearing in Theorem 6.3. Moreover, the
number of computations needed to find Tε is bounded by C(Nε+#T (v)), where Nε is the right
hand side of (162) and T (v) is the smalles tree containing suppv.

Finally, we need a praticular coarsening strategy that respects tree structures.
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Coarse [η,w] → w̄η determines for a fixed constant C∗ ≥ 1, any finitely
supported input w, and any tolerance η > 0 an (η, C∗)-near best tree T (η,w)
and sets w̄η := w|T (η,w).

The realization of Coarse is based on the results in Binev and DeVore, 2002, which ensure
linear complexity. This version of Coarse can also be used in the linear case. As such it can
be used to show that Theorem 6.2 remains valid for compressible matrices when the spaces
As(`2) are replaced by Astree(`2) (see Cohen, Dahmen and DeVore, 2002b).
The above results allow one to show that the scheme Res, in all the above examples satisfies

the following:
Whenever the exact solution u of (90) belongs to Astree(H) for some s < s∗, then one has for
any finitely supported input v and any tolerance η > 0 that the output rη := Res [η,C,F, f ,v]
satisfies

#supp rη ≤ Cη−1/s
(
‖v‖1/sAstree(`2)

+ ‖u‖1/sAstree(`2)
+ 1
)
,

‖rη‖Astree(`2) ≤ C
(
‖v‖Astree(`2) + ‖u‖Astree(`2) + 1

)
,

(163)

where (in addition to the dependence given in the previous theorems) C depends only on s
when s→ s∗. Moreover, the number of operations needed to compute wη stays proportional to
#supp rη.

One can show that the number of perturbed updates in step (ii) of Solve executed before
branching off into a coarsening step (iii), remains uniformly bounded independent of the data
and of the target accuracy ε. Therefore the s∗-sparsity of the rountine Res ensures that
the Astree(`2)-norms of the approximations v

k remain bounded in each update block (ii). The
coarsening step is applied exactly in order to prevent the constants in these estimates from
building up over several subsequent update blocks (ii). This is the consquence of the following
Coarsening Lemma, Cohen, Dahmen and DeVore, 2002b.

Proposition 6.5. If v ∈ Astree(`2) and ‖v − w‖`2 ≤ η with #suppw < ∞. Then w̄η :=
Coarse [w, C∗η] satisfies

#supp w̄η <
∼ ‖v‖

1/s
Astree(`2)

η−1/s, ‖v − w̄η‖`2 ≤ (1 + C
∗)η,

and

‖w̄η‖Astree(`2) <
∼ ‖v‖Astree(`2),

where C∗ is the constant from the near best tree construction scheme in Binev and DeVore,
2002.

One can then use the above building blocks to show that Solve is optimal in the following
sense, Cohen, Dahmen and DeVore, 2002b.

Theorem 6.6. If the exact solution u =
∑
λ∈J uλψλ belongs to A

s
tree(H), for any

s < s∗(F,Ψ), then, for any target accuracy ε > 0, the approximations u(ε) produced by
Solve satisfy

‖u−
∑

λ

ū(ε)λψλ‖H ≤ CΨε,
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c© 2004 John Wiley & Sons, Ltd.



58 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

and
#supp ū(ε), comp. work <

∼ ε−1/s.

The above results cover the examples from Section 5.2, in particular the mixed formulations.
Note that there is no restriction on the choice of wavelet bases for the different solution
components such as velocity and pressure in the Stokes problem. In contrast, in the classical
approach a compatible choice verifying the LBB condition is essential. In the adaptive
context such constraints become void. In addition to these qualitative asymptotic results,
the experiments in Dahlke, Dahmen and Urban, 2002; Dahmen, Urban and Vorloeper, 2002
show that also quantitatively the performence of the adaptive scheme stays the same even
when wavelet bases for velocity and pressure are used that, in connection with an a–priori
choice of finite dimensional trial spaces, would violate the LBB condition.

6.3. The Newton Scheme

The scheme Solve is based on an ideal iteration of order one. The choice Cn := (DF(u
n))−1

offers in principle a better convergence behavior of the outer iteration. In fact, for problems
of the type (105) one can show that the Newton iteration (121) converges quadratically for
a sufficiently good initial guess u0. On the other hand, it is not clear what the cost of each
linear subproblem

DF(un)wn = −(F(un)− f) (164)

will amount to. A detailed analysis is given in Cohen, Dahmen and DeVore, 2002b where
it is shown that the perturbed Newton iteration still retains a quadratic convergence while
preserving an overall asymptoticaly optimal complexity in the sense of Theorem 6.6. It is
perhaps worth stressing the following two points. The well–posedness (109) ensures that
the problem (164) is well conditioned which suggests employing Solve for its approximate
solution. Nevertheless, this raises two questions. First, the scheme Apply needed to realize the
residual approximation in Solve would require assembling in some sense the matrix DF(un)
in each update step with sufficient accuracy, which could be prohibitively expensive. However,
the result of the application of DF(un) to a vector w can be interpreted as the array of dual
wavelet coefficients of a nonlinear composition with two wavelet expansions, since

DF(un)w = (〈ψλ, DF (u
n)w〉)λ∈J =: (〈ψλ, Q(u

n, w)〉)λ∈J =: Q(u
n,w).

The approximation ofQ(un,w) can be realized again with the aid of the scheme Eval without
assembling the Jacobian which in this sense leads to a matrix free Newton scheme. In fact, in
Cohen, Dahmen and DeVore, 2002b Eval is described for functions of several components.
Further remarks on the related computational issues will be given in the next Section.
Secondly, the complexity analysis is not completely straightforward because one cannot

directly infer from the sparseness of u to the sparseness of the Newton systems (164). However,
one can show that these systems may be viewed as perturbations of another system whose
solution is sparse whenever u is sparse. This, however, limits the target accuracy for (164).
Nevertheless, one can show that this still suffices to ensure second order convergence of the
outer iteration (121), see Cohen, Dahmen and DeVore, 2002b.

6.4. Computational Issues

The above complexity analysis works under the assumption that in the linear case the entries
of A are computatble at unit cost in order to invoke Apply. Likewise in the nonlinear case, the
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entries of F(v) in the predicetd sets Tε have to be computed. Under fairly general assumptions
both tasks can be handled by the following strategy. By definition, one has

F(v) =
∑

λ∈J

〈ψλ,F(v)〉ψ̃λ =
∑

λ∈J

(F(v))λψ̃λ,

where Ψ̃ is the dual basis for Ψ and hence a Riesz basis for H′. The idea is now to use an
efficient recovery scheme, as desribed in Dahmen, Schneider and Xu, 2000; Barinka, Dahmen,
Schneider and Xu, 2003, that produces for a given target accuracy ε an approximation
g =

∑
λ∈Λε

gλψ̃λ ∈ H′ to F(v) such that ‖F(v) − g‖H′ ≤ ε at a computational cost that
stays proportional to the size of the prediction set Tε from Eval. The norm equivalence now
guarantees that the corresponding coefficient arrays exhibit essentially the same accuracy
‖F(v) − g‖`2 ≤ c−1Ψ ε. The important point is that individual coefficients are never computed
but, solely based on the knowledge of the prediction set Tε, quadrature is always used to
generate on the function side an approximation to the whole object F(v) by local quasi-
interpolant techniques to be able to keep the computational work proportional to the number
of current degrees of freedom. This strategy justifies the above assumptions in a wide range of
cases, see Barinka, 2003; Dahmen, Schneider and Xu, 2000; Barinka, Dahmen, Schneider and
Xu, 2003 for details.

6.5. Concluding Remarks

The primary goal of this section was to bring out the essential mechanisms and the potential
of wavelet based multiscale techniques and to understand under which circumstances optimal
complexity can be achieved. A crucial role was played by the mapping properties of the
underlying variational problem in conjunction with the availability of a wavelet Riesz basis
for the corresponding energy space. This also revealed where principal difficulties may arise.
Depending on the nature of H or when dealing with complex geometries the construction
of a good basis Ψ may be very difficult or even impossible. Poor constants in (30) would
spoil the quantitative performance of Solve significantly. Likewise poor constants in (92)
would have the same effect. In fact, these constants may be parameter dependent and further
work in this direction is under progress. But at least, the analysis reveals what one should be
looking for in each concrete case which might certainly require much more additional work.
More information on first computational studies for elliptic but also indefinite problems can
be found in Barinka, Barsch, Charton, Cohen, Dahlke, Dahmen and Urban, 2001; Dahlke,
Dahmen and Urban, 2002; Dahmen, Urban and Vorloeper, 2002.

The quantitative improvement of evaluation schemes like Eval in conjunction with the
strategies in Barinka, 2003; Dahmen, Schneider and Xu, 2000; Barinka, Dahmen, Schneider
and Xu, 2003 certainly plays an important role. But already the pure prediction result in
Theorem 6.3 at least gives rigorous bounds on the effect of certain nonlinearities concerning
the interaction of fine and coarse scales – a problem that is at the heart of many multiscale
phenomena in technology and science.

Finally, the difficulties of finding stable pairs of trial functions in many mixed formulations
may help one to appreciate the principal merits of techniques that inherit the stability
properties of the original problem. In this context the above multiscale techniques incorporate
a natural stabilization effect.
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