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Summary. An exact Riemann solver is developed for the investigation of non-
classical wave phenomena in BZT fluids and fluids which undergo a phase transition.
Here we outline the basic construction principles of this Riemann solver employing a
general equation of state that takes negative nonlinearity and phase transition into
account. This exact Riemann solver is a useful validation tool for numerical schemes,
in particular, when applied to the aforementioned fluids. As an application, we
present some numerical results where we consider flow fields exhibiting non-classical
wave phenomena due to BZT fluids and phase transition.

1 Introduction

The dynamics of compressible flows has a strong influence on the design of
aircraft and turbomachinery. In many applications the fluid is modeled by
a perfect gas. In the range of perfect gas theory only two types of waves
are possible and allowed by the entropy inequality, the compression shock
and the centered expansion fan or rarefaction wave. A compression shock is
a discontinuity where the pressure of the fluid increases while the shock is
passing, whereas in a rarefaction wave the pressure decreases and the wave
shape forms a fan.

However, the perfect gas model is no longer appropriate when dealing
with so-called BZT fluids characterized by a large heat capacity, e.g., high
molecular fluorcarbons and hydrocarbons. These fluids exhibit a region in
the phase space where the isentropes in the pressure-volume plane are non-
convex, see Figure 2. It is also referred to as region of negative nonlinearity.
From experiments, see [BBKNS83], it is known that there may occur non-
classical effects such as expansion shocks and compression fans, as well as
waves composed of adjacent shocks and rarefaction parts. In short, most of
the classical inequalities and effects are reversed. In addition, below the critical
point in the phase space, see Figure 2, liquid and vapor co-exist in a so-called
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mizture region. One well known example is the heating of water, where at
a certain temperature and pressure the water starts to vaporize and further
heating does not result in hotter water but in more vapor. The temperature
of the steam increases again, when all water has vaporized.

Due to the phase change at the phase boundary new phenomena such as
liquefaction shocks, shock splitting, rarefaction shocks, complete evaporation
shocks and liquid-evaporation waves have been observed, cf. [DTMS79, TK83,
TCK86, TCM*87]. In this range we need an equation of state (EOS) which
is able to model the negative nonlinearity of BZT fluids as well as phase
transition.

In order to investigate these phenomena analytically, we consider the exact
solution to a Riemann problem for compressible fluid flow where we employ
a general EOS. ’Exact’ means, the Riemann solution is based on wave curve
analysis rather than on numerical approximations. Such an exact Riemann
solver is helpful in many respects. First of all, it may serve as a validation
tool for numerical schemes. Moreover, it can be used to determine initial con-
ditions for experiments exhibiting effects such as, for instance, a liquefaction
shock.

The general concept of constructing an exact Riemann solution is well-known,
namely to construct the nonlinear wave curves corresponding to the nonlinear
characteristic fields and to determine the intersection states in the pressure-
velocity plane, cf. [MP89]. However, it has been an open problem so far how
to construct the wave curves itself in this general setting including phase tran-
sition. If only negative nonlinearity is taken into account, their construction
is well-known due to Wendroff [Wen72b] and Liu [Liu75]. In case of phase
transition the wave curves are no longer smooth curves but they suffer kinks
at the phase boundaries. These kinks cause jumps in the characteristic speeds
which makes the construction of the waves much more difficult. Within the
present project we extend for the first time the general concept of the wave
composition and construction to this nonsmooth case. Here we confine to some
basic principles motivated by a characteristic example. More details as well
as analytical results concerning this subject can be found in [Vof3a).
Realizing an exact Riemann solver for the Euler equations equipped with an
EOQOS, including phase transition, requires a number of modules also needed
for numerical schemes, such as an efficient evaluation of physical quantities,
e.g., temperature and energy, for states inside the mixture region. For this
purpose the C++-library xrms has been developed, see [Voib]. This library
has been incorporated into the QUADFLOW solver, cf. [BGMH*03].

The outline of the paper is as follows. First of all, we introduce retrograde
and BZT fluids in Section 2 and summarize some characteristic features. In
order to model these fluids we present a simplified real gas model in Section 3,
based on the van der Waals EOS where we incorporate Maxwell’s construction
principle to resolve the unphysical region of ellipticity. Here the states in the
mixture region are modeled in thermodynamical equilibrium. In Section 4 we
outline the basic construction principles of the Riemann solver employing a
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general EOS, taking negative nonlinearity and phase transition into account.
Finally, we present some numerical results in Section 5 where we consider flow
fields in BZT fluids exhibiting non-classical wave phenomena.

2 Retrograde and BZT Fluids

The material properties are characterized by the EOS. Certain constraints on
the EOS are imposed by the principle of thermodynamics. Here, we confine
ourselves to thermodynamical equilibrium, i.e., the internal specific energy
e = e(v, s) of an equilibrium state is related to the specific entropy s and the
specific volume v.

According to the fundamental thermodynamic identity the internal specific
energy is characterized by

de = —pdv + Tds, (1)

where the pressure p and the temperature T are defined by the partial deriva-
tives of e

P(Va S) = _eV(Va S)a T(Va S) = eS(Va S)' (2)

In contrast to regular fluids such as air, non-regular fluids exhibit anoma-

lies in the T-s diagram and in the p-v diagram. These fluids are character-

ized by a large molar heat capacity, e.g., high-molecular hydrocarbons and

fluorcarbons. In the literature, we distinguish between retrograde fluids and
BZT-fluids.

2.1 Retrograde Fluids

Retrograde fluids are characterized by an overhang of the saturated-vapor
curve in the T-s-diagram. For a regular fluid the entropy increases with de-
creasing temperature along the saturated-vapor curve. In contrast to this,
retrograde fluids exhibit some part of the saturated-vapor curve where the en-
tropy decreases with decreasing temperature, see Figure 1. This implies that
for regular fluids condensation takes place on isentropic erpansion whereas
for retrograde fluids it takes place on isentropic compression, at least in these
particular regions.
By means of the characteristic heat capacity

0
Ev — CV(TC)
R

retrograde fluids can be distinguished from regular fluids. Here &, is defined
by the ideal-gas heat capacity at the thermodynamic critical temperature T,
normalized by the gas constant R. It was found by Lambrakis [Lam72] that
fluids exhibit the overhang whenever the characteristic heat capacity exceeds
g, > 11.2.
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Ficure 1. Clausius-Rankine-cycles.

2.2 BZT Fluids

BZT fluids are a subgroup of retrograde fluids. They are named after Bethe
(1942), Zel’dovich (1946), Thompson (1971). For BZT fluids the curvature of
the saturation curve is so intense that it leads to a concave bending of the
isentropes near the critical point in the p-v-diagram, see Figure 2, i.e., the
isentropes are locally non-convex.
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Fig. 2. Isentropes of a BZT Fluid in p-v diagram
This is in contrast to the behavior of the most common fluids where isen-

tropes are convex. A measure for the bending is the fundamental derivative
of gas dynamics
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which becomes negative in a region near the critical point. Here, c denotes
the speed of sound defined by

c? := —v2py(v,s). (4)

Note, that the so-called region of negative nonlinearity, i.e., I' < 0, is located
in the vapor phase at the curve of saturated vapor, see Figure 2.

Another feature of BZT fluids is that isentropes inside the mixture region
may cross the curve of saturated vapor such that the isentropes suffer a non-
convex kink. This is different for other fluids whose isentrope will never cross
the saturated vapor curve. For more details on BZT fluids see, for instance,
Thompson [Tho91].

3 Physical Model

For our investigations the fluid is modeled by the van der Waals EOS. This
gives a qualitatively good representation of the fluid in various important
regions, namely the regimes of high compression, the area with negative non-
linearity near the critical point regarding BZT fluids and the mixture region
to allow for phase transition.

3.1 Van der Waals Equation of State

A vital assumption of the ideal gas model is that the particles are non-
interacting mass points, i.e., an appreciable force acts on them only during a
collision. Furthermore, the volume of the particles is negligible compared to
the total volume occupied by the gas. This is no longer valid if the density is
so high that the distance between two particles is of the order of their inter-
action diameter. Such extreme densities can be reached during the collapse of
a bubble. In this case, the range of validity of the ideal gas model is exceeded.

The van der Waals EOS is an extension of the ideal gas model with two
material parameters a and b to take into account the attraction of particles
and the reduction of free volume. The thermal EOS is determined by

RT a

v—b v2

p(v,T) = (5)
with pressure p, temperature T, specific volume v, specific gas constant R,
internal pressure a/v? and covolume b. The internal pressure is subtracted
from the pressure to take into account that the attraction of particles dimin-
ishes the pressure. The covolume b reduces the volume v to the available free
volume v — b. The caloric EOS reads
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e(v,T) =e¢ + /T cy(T)dT — 2 (6)

To v

where c, denotes the heat capacity at constant volume and e the internal en-
ergy. Together with the fundamental identity of gas dynamics (1) we conclude

T
1
s(v,T) = eg +/ T cy(T)dT

To

with eg the heat of formation.

3.2 Mixture Region

Since we want to apply the van der Waals EOS to gases and liquids as well,
there is a need for describing what happens in the region of phase transition. In
Figure 3 three isotherms are plotted in the p-v diagram, corresponding to (i)
a temperature above the critical temperature T,, (ii) the critical temperature
(the critical isotherm) and (iii) a temperature below T..
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Fig. 3. Isotherms of a BZT-Fluid in p-v diagram

In the mixture region, liquid and gas are present in a continuously chang-
ing fraction where the fraction of liquid increases when the volume decreases.
However, the original van der Waals equation shows an unphysical inclina-
tion in this area. This can be seen if we consider an isotherm for a tem-
perature below the critical one. We observe two local extrema, called spinodal
points. They correspond to the endpoints of supersaturated vapor (maximum)
and overexpanded liquid (minimum), respectively. Between these two points
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the derivative py(v,T) is positive and, hence, physically excluded. In order
to provide physically meaningful data, we calculate the equilibrium pressure
p = p(T), see Figure 3, as a function of the temperature using the Mazwell’s
construction principle:

v2
| e mav=p(m-w), p,T = =>.
Vi

By means of this system we determine for any T < T, the equilibrium pressure
p and the corresponding specific volumes v; and vs characterizing the phase
boundary corresponding to saturated vapor and saturated liquid, respectively.
In order to determine internal energy and entropy inside the mixture region
we assume equilibrium. Hence, the corresponding states can be calculated by
the convex combination of the equilibrium states at the phase boundary, see
[VoB3a], [VoB8b] for details on the implementation. Note, that by this ansatz,
we exclude the possibility of so-called metastable states.

4 The Riemann Problem of Gas Dynamics

In order to investigate analytically nonclassical wave phenomena such as ex-
pansion shocks and compression waves as well as wave splitting, we consider
the Riemann problem for gas dynamics. In Lagrangian coordinates this prob-
lem can be formulated as

qt +£(q)e =0

with piecewise constant initial data

_Ja:z<0
a(0,2) = {qr x>0°
Here the vector of conserved quantities q and the flux £(q) are determined by
T T
q= (Vaua E) ’ f(q) = (—u,p,pu) ’

with the specific volume v, the velocity u, pressure p, the total energy E =
e + 0.5u? and the internal energy e. This system is closed by a general EOS

p=p(v,s), pu(v,s) <O0. (7)

Here we assume that the isentrope is a strictly monotone function in order
to ensure strict hyperbolicity of the underlying system of equations. Accord-
ing to standard assumptions of equilibrium thermodynamics we may express
equivalently the pressure also in terms of specific volume and internal energy.

By now, the Riemann problem is well understood for the Euler equations
that model equilibrium hydrodynamics. For an overview we refer to the re-
view article by Menikoff and Plohr [MP89]. The general construction principle
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for the Riemann solution is essentially based on the scale-invariance of the
solution and the hyperbolicity of the governing equations of fluid motion.
These properties require the solution to be composed of different waves in the
time—space continuum which correspond to different characteristic velocities.
Moreover, there exists a one-to—one correspondence between a single wave in
the t—z diagram and the states in the phase space which can be connected by
this wave. All of these states are lying on one-parametric curves and the solu-
tion of the Riemann problem is determined by the intersection points of the
different curves each corresponding to a characteristic field in the phase space
connecting the two initial states. Hence, the most crucial point in solving the
Riemann problem analytically is the construction of the curves in phase space.
To distinguish the respective settings in the course of the discussion we will
consistently refer to one—parameter families of states in phase space as curves
while speaking of waves in the x—t plane.

4.1 Characterization of Wave Curves

In order to characterize the different curve types we first introduce the char-
acteristic speeds Agx(q), k = 1,2, 3, as the kth eigenvalue of the Jacobian of
£(q) which turn out to be

M =—v/=po(¥,8) = —c/v < X = 0< A3 = +y/~py(v,5) = ¢/v

where c denotes the sound speed defined in (4). The corresponding right
eigenvectors are given by

1
Iy = _(_I;Akap"')‘ku)Ta k:173
Ak
T
ry = (—Pe(ve),0,pv(v,e))
Then the corresponding characteristic k-field is characterized by the variation

of the characteristic velocity Ay in the direction of the corresponding kth right
eigenvector of the Jacobian of £(q), i.e.,

af = V)\k Iy, k= 1,2,3.
These are determined by
a1=a3=1"/v, 042:0

where I' denotes the fundamental derivative of gas dynamics defined in (3).
Obviously, for a convex EOS, i.e., I' > 0, we distinguish between two cases,
namely, the k-field is linearly degenerated, i.e., ay(q) = 0 for all q, or the
k-field is genuinely nonlinear, i.e., ar(q) # 0 for all q. In case of a non-convex
EOS the nonlinear fields may locally degenerate, i.e., there are states g in
phase space such that a;(q) = 0.
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4.2 Construction of an Exact Riemann Solution.

Next we give an idea on how to construct a Riemann solution for the Euler
equations if non-genuine nonlinear fields and phase transition come into play.
To focus on the main principles we restrict our characterization to some special
cases, clarified by means of a comprehensive example. A complete description
containing all cases for the Euler equations augmented with an EOS of van
der Waals-type can be found in [Vofia]. In particular, we skip a discussion on
uniqueness and existence and assume, that there is always a unique entropy
solution.

4.3 Wave Curves

In general, the entropy solution of a Riemann problem for a hyperbolic system
of m conservation laws can be constructed by considering the so-called wave
curves Wi : R — R™ k =1,...,m. These are parameterized curves connecting
some initial state q; = Wx(0) with all “reachable” states.

Then the solution for a Riemann problem with initial data q; and q, is found,
if there is a vector of parameters &, k = 1,...,m, connecting q; and q,, here
from left to right, by means of the m wave curves, i.e.,

wm( - -w2(w1(ql7§1)7€2)7 .- Jé-m) =qr-

In other words, each wave curve except the first one, starts at some interme-
diate state of the previous one and the crucial point is to find these states q,
respectively the parameters &, cf. Figure 4.

’

EW( )

YA;=W(ay &)

\
\
\

da.=q S

Fig. 4. Construction of the Riemann solution by means of wave curves.

In case of the Euler equations the problem can be reduced to the 1- and
the 3-curve, because the 2-wave is always a contact discontinuity, where the
pressure p and velocity u are constant. Therefore, the construction principle
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in this case simplifies as follows: Compute the 1-wave, i.e., collect all states
which can be reached from q;. Simultaneously compute the 3-wave backwards,
i.e., collect all possible intermediate states from where one can reach the end
state q,-. The intersection point of the two waves projected onto the p-u plane
is the origin of W3. Thus the parameters &; and &3 and the solution respectively,
are known. !

4.4 Computation of Wave curves

At this point it remains to compute the wave curves. Using a convezr EOS like
the ideal gas law leads to wave curves composed of exactly one rarefaction
and one shock branch. Here either side of the wave curve is referred to as a
wave branch.

By changing the EOS to a non-convex one, for instance, to the van der Waals
EOS, applied to BZT fluids, regions in phase space arise where the sign of
the fundamental derivative becomes negative and the nonlinear k-fields de-
generate. Regarding the wave branches this may cause the break-down of the
classical curve types rarefaction and shock and implies various facts: firstly,
a wave branch can be composed of so-called wave parts, that is a section of
the wave branch with one wave type. Then the parameter range of the branch
[0,&] is partitioned into smaller parts [£],&1"]. The situation is shown in
Figure 5. Secondly, the classical wave types are not sufficient to continue the

E::Ek q::qk+1

Fig. 5. Wave curve partitions of Wg.

wave curves in an admissible way. Therefore, a new part type composite has to
be introduced, taking sonic shocks and rarefactions (see below) into account.
The concept of composite waves was introduced first by Wendroff [Wen72a],
[Wen72b] and Liu [Liu75]. Thirdly, in case of composites away from the phase
boundaries, the wave curves are no longer twice but only once differentiable
and at phase boundaries only continuous.

! For the sake of completeness, the parameter £; can be reconstructed from the
known intermediate states.
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4.5 Wave parts

A wave curve, or, more precisely, a wave branch may be composed of several
wave parts. Each part is of either the type rarefaction R, shock H or composite
C. They are defined, in short, as follows.

Rarefaction Curves

For the nonlinear fields, here & = 1,3, we define the parameterized curve Ry
as the solution to the ODE

P (4,6) = re(Be(6)),  Re(@,0) =4,

o€

i.e., as integral curve along the right eigenvector through a state q. If A is not
decreasing along these curve, i.e., dA;/d€ > 0, it is equivalent to the classical
rarefaction curve. Such a curve is called admissible and it collects all states
which can be connected to g by a centered rarefaction fan.
Note, that when )\; decreases along a wave part being part of a Riemann
solution, thus would lead to (prohibited) folding of the solution in the z-t
plane. Similarly, the usual parameterization £ = z/t is not appropriate when
d\r,/d€ vanishes along Ry,

In case of the Euler equations a rarefaction curve parameterized by the
pressure is obtained by solving

dq = )\ikrk dp,
from a given state q.
Using the fundamental identity of gas dynamics (1), we conclude that the
entropy is constant along Ry, as long as it is admissible. Hence, a projection
of R; onto the p—v plane depicts the isentropes.
It can be shown, that the admissible branch of the rarefaction curve Ry corre-
sponds to the expansion branch (dv > 0, dp < 0) in case of positive nonlinear-
ity (I > 0) and the compression branch (dv < 0, dp > 0) in case of negative
nonlinearity (I" < 0). The roles of positive and negative nonlinearity are re-
versed for the 3-field. Moreover, pressure and velocity are monotone functions
inside the compression (expansion) branch of the rarefaction curve.

We emphasize that the above conclusions hold true as long as the rare-
faction curve stays smooth. However, if the isentrope crosses the phase bound-
ary, see Figure 2, then the rarefaction curve suffers a convex kink at the
saturated-liquid curve and, in addition, in the case of BZT fluids a non-
convex kink at the saturated-vapor curve. Hence, the sound speed and the
characteristic speed, respectively, jump at the phase boundary.

2 As a technical remark: it is important for the construction principle to know the
sign of the characteristic fields behind such a state with d\;/d€ = 0. Hence the
parameterization must not depend on £ = z/t.
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Shock Curves

The set of discontinuities satisfying the Rankine-Hugoniot conditions is given
by the Hugoniot locus

He(@) :={q : 3o €R sit. £(q)-£(3 =0(a—-a)},

where 0 = 0(q,q) denotes the shock speed.
For the Euler equations in Lagrangian coordinates the Rankine-Hugoniot
conditions for the nonlinear k-fields read

2__Ap
Av’

Ae + (& +p)Av=0. (8)

g 2

Here, we use the notation AA = A — A for an arbitrary quantity A. In
particular, o # 0 or, equivalently, Au # 0, Ap # 0.

In order to determine the admissible branch of the Hugoniot curves, we
consider the entropy jump. For a weak shock the entropy jump As is propor-
tional to the third power of the pressure jump Ap, i.e.,

2
Cc S
As = WTF(APP + 0 ((4p)*),

see [Tho72]. According to the second law of thermodynamics, the entropy
jump has to be positive, i.e., As > 0, when the shock passes.

Hence, the pressure jump has to be positive (I" > 0) and negative (I" < 0),
respectively, to fulfill the entropy condition. From this we conclude that for
I > 0 a compression shock (Ap > 0, Av < 0) is admissible and for I" < 0 an
expansion shock (Ap < 0, Av > 0).

In order to analyze the uniqueness of the Riemann problem Smith [Smi79]
introduced several conditions on the EQOS referred to as strong, medium and
weak condition, respectively. Menikoff and Plohr [MP89] verified that they are
also important for discussing monotonicity of thermodynamic and hydrody-
namic quantities along the Hugoniot locus. In particular, they proved that the
following holds at a point on the compression branch of the Hugoniot locus, in
the direction of increasing shock strength: (i) v decreases monotonically if the
strong condition holds; (ii) e and u increase monotonically if the medium con-
dition holds and (iii) p increases monotonically if the weak condition holds. So
far, all materials known satisfy the weak condition. Therefore it makes sense
to parameterize the wave curves by the pressure.

Moreover, it can be proven that the entropy s is an extremum, if and only if
the shock speed o is an extremum. This does hold true at a point on a shock
curve where it is smooth, see [MP89], Theorem 4.2. A variant is true even at
points where the Hugoniot locus intersects the phase boundary. In the latter
case the entropy s increases with shock strength if and only if the shock speed
o increases with shock strength, provided that the weak condition holds at a
point on the compression branch of a shock curve, see [MP89], Theorem 4.5.
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Hence, the entropy as well as the shock speed vary monotonically along the
admissible branch as is predicted by Liu’s extended admissibility relations in
[Liu76]. It is extremal, if and only if the shock becomes sonic. This coincides
with the state where the second law of thermodynamics is violated marking
the end of the admissible branch. Hence, we can use the variation of the shock
speed as admissibility criterion of the shock.

Composite Curves

As we discussed above the nonlinear fields may degenerate at states where
the fundamental derivative of gas dynamics vanishes, i.e., I' = 0. Beyond this
state the rarefaction curve is no longer admissible. In order to continue the
wave curve, Wendroff [Wen72b] introduced the notion of a composite curve.
Later on, Liu extended this concept to general hyperbolic conservation laws,
see [Liu75]. Following Liu’s definition, the composite locus is determined by

Ct(Rx,@) ={q : 3q* €R,q € H(q") and q is the
first state onH(q*) with Ax(q*) = o(q*,q) }.
Since the shock is as fast as the characteristic speed of state q*, each state q on

Cr, represents a wave in the z-t plane combined of a rarefaction up to q* and
an adjacent shock from q* to q, see Figure 6. This locus is a one parameter

T R(q)

FIC
‘T =0

qi

Fig. 6. Composite curve

family of states. In case that g corresponds to a state where I" vanishes, it can
be proven that the composite curve is tangentially attached to the rarefaction
curve Ry, at g, see [MVO01]. The corresponding curve is admissible as long as
(i) o(a*,q) # Ak(q) and (ii) g* is not the origin of Rg, cf. [Liu75].

4.6 Admissible conditions

Knowing the construction principle, as well as the mathematical conditions
on the wave parts, we want to collect the conditions for changing the wave
types during the computation of the wave branch, or, raise the question, how
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long is a wave part admissible? We shall see, that due to phase transition
additional conditions arise.

No Phase transition. As mentioned before, a necessary condition for a
rarefaction part to be admissible is that the wave speed Ay increases along
the wave part. Otherwise the solution would fold in the z-t plane. Increasing
Ak is tantamount to a fixed sign of the fundamental derivative I' and if the
rarefaction part never crosses a region where I" changes its sign, the wave type
does not change. At a state with vanishing derivative of Ay, i.e., I' = 0, the
rarefaction part ends and a new composite part begins.

A similar speed condition has to hold along the shock part, namely, the shock
speed o has to decrease along the Hugoniot curve, which is the extended Liu-
condition. It reduces to the well-known Lax criteria in case of a convex EOS.
As mentioned before, if o, does not decrease anymore, the wave curve must
have entered a region of negative nonlinearity before. Then the shock part
ends here and the wave branch can be smoothly continued by a rarefaction
part. The shock is called sonic because it travels with the same speed as the
first state on the following rarefaction.

The new type composite is a set of shock states. In the current context such a
wave part starts at a state @ where I' = 0, and the wave part before must be a
rarefaction part. Like a shock part, the composite part is admissible as long as
the shock speed along the composite part is decreasing. If this is violated the
next wave part is a rarefaction part again and the situation is similar to a sonic
shock. It is known that the associated states at the preceding rarefaction part
R are moving towards the origin of the rarefaction part. This leads to the other
terminating condition for the composite part, i.e., the associated rarefaction
state is the origin of R. Then the wave curve can be continued with a shock
part where the shock origin is the origin of R.

Including Phase transition. So far we described the non-convex situa-
tion where the wave curves are smooth. It becomes even more complicated
if the wave curves crosses a phase boundary. The good news is that, like in
the smooth non-convex case, three types of wave parts suffice to construct a
Riemann solution. The bad one is that the discontinuity of the characteristic
speed Aj, as well as the possible change of the sign of nonlinearity across a
phase boundary causes additional terminating conditions for wave parts. This
is directly related to the question how to continue the wave branch. These
topics are treated in mathematical detail in [Vofib]. Here we can only give a
summary of the results by means of a table containing the different cases and
terminating conditions, see Table 1.

As we mentioned above the monotonicity of the wave speed, denoted by s’,
i.e., A}, or oy, along the curve, is one of the main criteria to continue or termi-
nate a wave part. One can find it in the first part of Table 1, the admissible
criteria. They are in effect while a wave part is computed.

In some cases the wave speed s or its derivative s’ jumps while crossing the
phase boundary and it makes sense to speak of a quantity before (-)~ and
behind (-)* the boundary, depending on the parameterization. In the end
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there is a final terminating condition. It emerges if a wave takes over another
wave. This happens, for instance, if a shock wave crosses a phase boundary,
the jump in shock speed is positive and behind the boundary the wave curve
continues with a second shock part, see case HI™). Since the jump is positive
and the shock speed is decreasing along the second part, it may happen, that
the speed coincides with the last shock speed of the first shock part. In this
case the solution cannot consist of two shocks anymore but the first shock
part will be continued and it takes over the second one. Otherwise it would
result in a folding of the second shock in the z-t plane.

This means, there are terminating conditions depending on the history of the
wave curve, respectively on wave speeds passed on previous wave parts. To
handle these speeds appropriately the idea of a stack is helpful. Such a stack
works like a book pile. One can put some book on top of it (push) or remove
some from the top (pop). Now some conditions, namely, the one where the
wave speed jumps, push speed on the stack while all overtaking cases pop speed.
Consequently, the current shock and composite speeds have to be compared
to the speeds on the stack, and this is denoted by s # s[o147 in the first part
of the table and by s = s4147 in the second part.

types of wave parts and conditions in effect

R s’ >0, curve is smooth
H s'<0,s# sl
C s'<0,s # st origin of corresponding R is not reached

abbreviations for terminating conditions succ. remark
R monotonicity (m) of s broken, i.e., s’ =0 C
R phase boundary crossed, st > 0, st > s~ R push s~
R phase boundary crossed, st > 0, sT < s~ c
RE* phase boundary crossed, s't < 0, st > s~ H pushs™
RU phase boundary crossed, s't < 0, st < s~ c
Rl external (e) condition fulfilled, i.e., a given

state is reached or a maximum number of

states is computed.
H™ monotonicity (m) broken, i.e., s’ =0 R push s~
H™ phase boundary crossed, s't > 0 R push s~
H phase boundary crossed, s't < 0 H pushs~
H® overtaken by R, i.e., s = s[°1d C pop
HE overtaken by H, i.e., s = sl H pop
HY overtaken by C, i.e., s = sl C pop
H'! external (e) condition fulfilled
¢} monotonicity (m) broken, i.e., s’ =0 R push s~

C¢™ phase boundary crossed, s'* > 0 R push s~
¢! phase boundary crossed, s'* < 0 H pushs™



16 Wolfgang Dahmen, Siegfried Miiller, and Alexander Vof§

[o1d]
[o1ld]

C! overtaken by H, i.e., s = s H pop
ct® overtaken by C, i.e., s =s C pop
C™) begin (b) of corresponding R reached H

ctel external (e) condition fulfilled

Table 1: Terminating conditions for wave parts.

4.7 Example

We would like to give an example to demonstrate the interaction between
different wave parts along one wave curve. Since in case of the Euler equations
both nontrivial waves are treated similarly, we can confine the discussion to
only one family, here k¥ = 1. The EOS used is the van der Waals one and
the fluid is the BZT fluid PP10. The wave curves are parameterized by the
pressure.
Figure 7(a) shows the wave curve projected into the phase diagram, i.e., the
p-v plane. Here we can see which physical regions are crossed and which
types of phases and nonlinearities are present at every state and part of the
curve. Figure 7(b) specifies the wave speed along the curve. This clarifies
the terminating condition for a wave part and in which way the wave curve
is continued. Figure 8 reflects the evolution of the solution structure (here:
pressure) along the wave curve in space at a constant time. Note, that the
solution can consist only of one shock, even if the wave curve is composed
of various wave parts of different type. To this end we fix one part of initial
Riemann data, q;, and vary the right state q, = qi. In each case, we calculate
the exact solution, and compare it with a numerical one, obtained by the
WAF method.

The wave curve starts at &) near the critical point in the liquid phase and
is calculated with decreasing pressure as the curve parameter, cf. Figure 7(a).
The first part is the rarefaction part R;. Here the wave speed increases along
the curve, cf. Figure 7(b), up to the point &} . It terminates, because the wave
curve crosses the saturated-liquid phase boundary, that can be seen at best
in the small zoomed window in Figure 7(a). Hence, the solution in the z-t
plane, corresponding to the right state q, = q; taken from Ry, is a rarefaction
wave, cf. Figure 8(a). The wave is very fast and looks like a shock because the
isentropes are very steep in this region, but it is still smooth.
At the phase boundary the corresponding eigenvalue is discontinuous. Thus
the speed jumps, cf. Figure 7(b), but to a higher value, implying that the wave
curve is continued with a second rarefaction wave, Re. Figure 8(b), calculated
for q, = q2, shows, that the discontinuity in the wave speed leads to a splitting
of the two rarefaction parts. Inside the mixture region the isentrope remains
convex and the rarefaction part Ry lasts up to the saturated-vapor boundary,
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that is at &

Now the wave speed is decreasing and the next wave part is the composite
part Co corresponding to the rarefaction part Ry from inside the mixture. We
expect a Riemann solution for data q, = qs3 to split into two waves and the
right one to be composed of a rarefaction and an adjacent shock, like in Figure
8(c). The composite part ends at the state £, because we reach the beginning
of the rarefaction part Re with the corresponding rarefaction states. It can
be seen from the wave speed diagram that this is exactly the case when the
speed at & is equal to the speed of the first state on Ro.

In a certain sense the gap in the speed is by-passed with a shock part H; from
& to &. This is in agreement with to the observation that along the last
composite part Cz the exact solutions of the type as shown in Figure 8(c) are
combined of a shock with increasing strength and a vanishing rarefaction part.
Here the shock part continues this evolution. In the z-t plane, the solution
to qr = qq is still split into two waves, but the splitting itself decays, i.e.,
the wave speeds are approaching, cf. Figure 8(d). In the end the speed of the
shock part reaches the speed of the first rarefaction part Ry at &, cf. Figure
7(b).

Now, if not terminated, the shock would be faster than the last rarefaction
states, and this means a folding in the x-t plane. Hence we continue the
wave curve with a composite part again, C;, now corresponding to the first
rarefaction part R;. Such a solution is given for the Riemann data q, = g5 in
Figure 8(e).

Like before, the corresponding rarefaction Ry is eaten up by the composite
states and we continue the wave curve from the point, where the speed of the
first state of the rarefaction is reached, here at £}, with a new shock part Hp.
The speed is decreasing and a solution to one of these shock states q, = q¢ is
provided by Figure 8(f).

Since the wave curve crossed the region of negative nonlinearity before, the
shock may become sonic. This happens at .52. The following rarefaction part Rg
is adjacent to the last shock state and because there are no further anomalies
in phase space the wave curve remains a rarefaction part for all parameter
greater than £&. Hence, the last possible wave curve type is shown in Figure

8(g)-

parameter range wave part terminating condition figure

(€2, €] Ry R+ 8(a)
(&4, &7 Ro RC 8(b)
[&2 Ig] C2 c[b] 8(C)
[§I§: lzi] Hl H[R] S(d)
€4 ¢2) ¢ o™ 3(e)
€2, €0) Hy e 8(6)
[gl(cja IZ] R3 R[e] S(g)

Table 2: Wave parts, Example 1.
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FIGURE 7. Wave characteristics, Example 1.
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FIGURE 8. Pressure in space for different Riemann problems at constant time.

5 Numerical Results

We consider two types of numerical experiments where phase transition occurs
in the flow field. First, we investigate a liquefaction shock expanding from a
shock tube into an observation chamber. Another configuration concerns the
collapse of a planar bubble near a rigid wall. The two configurations are shown
in Figure 9.

The numerical simulations are performed by the solver QUADFLOW, see
[BGMH*03]. This is a finite volume solver for block-structured grids. In each
block we perform grid adaptation by means of a multiscale analysis. The
convective fluxes are determined by solving quasi—one dimensional Riemann
problems at the cell interfaces. Here we use the Roe Riemann solver adapted
to real gas. The spatial accuracy is increased by a linear, multidimensional
reconstruction of the conservative variables. In order to avoid oscillations in
the vicinity of local extrema and discontinuities, limiters with TVD property
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are used. The time integration is performed by an explicit multistage Runge—
Kutta scheme.

— 0.08
Rigid Wall o] r 2
y [m]
[ radius:0.01m L
0.06 distance to wall: 0.0005m v
Mn, = 1.86 [ Pay=573"10" N/m? L
- [ Poy = 200 kg/m -
p,= 1285600 [Pa] p, = 321400 [Pa] [ T"=900K #
- — 0.04f
T,= 463 K] T, =430 [K] L p.= %0553;197 . L
- FoPn= g/m =
u, = 148 [m/s] U, =0 [mis] [ T, =595K ” E
L L =
0.02|- L 5
F -
Rigid Wall — -
0 L L L
0 0.02 0.04 x [m] 0.06 0.08

(a) Expanding liquefaction shock (b) Planar bubble collapse
FIGURE 9. Initial configurations.

5.1 Expansion of a Liquefaction Shock

The setting of this configuration is sketched in Figure 9 (a). The fluid un-
der consideration is the high-molecular fluorcarbon FC75. In a shock tube of
radius r = 0.288 m a “liquefaction shock” is generated. Here the pre-shock
state qo and the post-shock state qo are chosen such that they are lying on
the same Hugoniot curve which crosses both phase boundaries connecting the
state g2 in the liquid phase by the state qg¢ in the vapor phase. In Figure 10
the wave curve and the initial states are shown in the p-v-diagram. The lig-
uefaction shock is running to the right and is expanding into the observation
chamber. This results in a diffraction of the planar shock wave. It has been
investigated experimentally, see [Tho91]. According to Section 3 we apply the
van der Waals EOS with Maxwell’s construction principle. The critical values
of the fluid FC75 are v, = 0.0017 kg/m?, T. = 500.21 K, p. = 0.1607 x 107
Pa.

Notable features of the axisymmetric, unsteady flow are the strong vortex
and the Prandtl-Meyer expansion characteristics. An internal shock originates
near the vortex center. This is depicted in Figure 15. The structure of the
extreme expansion fan is referred to as the “Mach trumpet”, see [Tho91].
The main compression shock forms the front of the trumpet whereas the sides
are formed by a rarefaction shock. The rarefaction shock is of the mixture-
evaporation type. It is associated to the kink of the isentropes at the saturated-
vapor boundary. To validate this we extract data along a particle path crossing
the shock front and project the corresponding states in the p-v diagram, see
Figure 11. The streamline is depicted from Figure 15. In addition, we present
in Figure 16 the different regions in the flow field where the fluid undergoes
a phase transition. At the phase boundaries the sound speed jumps due to
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the kink of the isentropes in the p-v diagram. These discontinuities can be
depicted from the Mach contours in Figure 14.

5.2 Bubble Collapse near a rigid Wall

We consider a cylindrical bubble filled with water steam surrounded by water
near a planar solid wall. The water is at high pressure and high temperature.
The fluid inside the bubble is at low pressure (below vapor pressure) and
lower temperature corresponding to wet steam, i.e., the state lies inside the
mixture region. Both states are at constant volume. This configuration is
sketched in Figure 9 (b). Here the fluid water is modeled by the van der
Waals EOS applying Maxwell’s construction principle modeling the mixture
region. The critical values are v. = 0.0018016 kg/m?, T, = 647.4 K, p. =
0.2212 x 10® Pa. The initial conditions correspond to a Riemann problem
where three types of waves occur: an inward running compression shock, an
outward running rarefaction wave and a contact discontinuity. The outward
running rarefaction is visible in the pressure as well as the density whereas
the contact discontinuity is only seen in the density. At time ¢t = 3.01 us
the rarefaction wave is reflected at the rigid wall. Due to a superposition of
the rarefaction wave and the reflected rarefaction wave a low pressure region
develops between the bubble and the wall. The reflected rarefaction wave is
running over the contact discontinuity and the shock wave. Due to the pressure
drop behind the reflected rarefaction wave the fluid is accelerated towards the
wall and, hence, the bubble starts moving towards the wall and the bubble
surface is deformed, see Figure 17 (c)—(h). Since the acoustic impedance is
about three times higher in the water phase than in the wet steam phase the
rarefaction wave is running faster than the shock wave. At time ¢t = 13.93 us
the inward running shock has reached the center of the bubble and is reflected,
see Figure 17 (g), (h). Behind the shock the pressure increases above vapor
pressure and the wet steam vaporizes. The reflected shock wave is running
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over the contact discontinuity, see Figure 17 (i), (j), and the fluid behind the
shock is accelerated in outward direction. Therefore mass is transported away
from the bubble center and a low pressure region develops near the bubble
center, see Figure 17 (k), (1). At time ¢ = 28.30 us parts of the reflected shock
are reflected at the wall. Due to the curved shock front the angle condition
is violated and, hence, a Mach stam is developing. The Mach stem becomes
stronger with increasing time propagating away from the symmetry line, see
Figure 17 (k)—(r). Again the reflected shock wave is running over the bubble
and the mass behind the wave accelerated in the direction of the moving shock
front. Therefore the fluid is accelerated away from the wall which leads to an
additional deformation of the bubble shape compensating for the previous
deformation. Finally, the bubble shape becomes almost symmetric again. In
particular, the bubble does not interact with the wall and we do not observe
a collapse of the bubble.
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FIGURE 17. to be continued
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FIGURE 17. Bubble collapse.
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