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We propose a new method for the solution of discretised elliptic PDE eigen-
value problems. The new method combines ideas of domain decomposition, as
in the automated multi-level substructuring (short AMLS), with the concept of
hierarchical matrices (short H-matrices) in order to obtain a solver that scales
almost optimal in the size of the discrete space. Whereas the AMLS method
is very effective for PDEs posed in two dimensions, it is getting very expensive
in the three-dimensional case, due to the fact that the interface coupling in the
domain decomposition requires dense matrix operations. We resolve this problem
by use of data-sparse hierarchical matrices. In addition to the discretisation error
our new approach involves a projection error due to AMLS and an arithmetic
error due to H-matrix approximation. A suitable choice of parameters to balance
these errors is investigated in examples.
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1 Introduction

A very efficient approach to solve an elliptic PDE eigenvalue problem is the so-called auto-
mated multi-level substructuring (short AMLS) method. AMLS is a substructuring method
which was mainly developed by Bennighof and co-authors [4, 6, 25] and is based on the
classical component mode synthesis (short CMS).
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The CMS is as well a substructuring method which was already developed in the 1960s
to solve large scale eigenvalue problems in structural engineering analysis. The method was
firstly described by Hurty [24] and further improved by Craig and Bampton [11]. During
the years CMS became very popular and was studied by many researchers, e.g. in [8, 9, 10]
a mathematical analysis of CMS is given and in [32] an overview over different versions of
CMS.

The single-level substructuring performed in CMS is extended in AMLS to a multi-level
version. The idea in AMLS is to partition the spatial domain of the PDE eigenvalue prob-
lem recursively into several subdomains. On each of these subdomains similar eigenvalue
problems are defined which are typically small and easy to solve. From each of these sub-
problems suitable solutions are selected which are meant to represent the global problem on
the subdomain. All selected solutions together form a subspace. The global eigenvalue prob-
lem is projected onto this subspace and a reduced eigenvalue problem is obtained which is
typically of much smaller size than the original problem and correspondingly much easier to
solve. Finally, the eigenpairs of the reduced eigenvalue problem deliver the sought eigenpair
approximations of the global eigenvalue problem.

In [5, 25, 28] AMLS has proven to be very effective for solving large-scale eigenvalue prob-
lems arising in structural engineering analysis. Especially when a large number of eigenpair
approximations is required AMLS is more effective than classical approaches using algebraic
eigensolvers which are coupled with a preconditioner or a linear solver (cf. [23]). The big
advantage of AMLS is that it computes several eigenpairs at once whereas the computa-
tional costs of classical approaches are at least linear in the number of sought eigenpairs. A
very popular of such a classical approach is the shift-invert block Lanczos (short SIL) algo-
rithm [18] which is commonly used in structural engineering. Kropp and Heiserer presented
breakthrough calculations in [28]. They benchmarked the AMLS method against SIL within
a vibro-acoustic analysis of an automobile body and could show that AMLS running on a
commodity workstation is several times faster than SIL running on a supercomputer.

When AMLS is applied to a discrete eigenvalue problem it computes only eigenpair ap-
proximations whereas SIL computes numerically almost exact eigenpairs. This seems to be
disadvantageous, however, in our setting a discrete eigenvalue problem results always from
a finite element discretisation of a continuous eigenvalue problem. Correspondingly all com-
puted eigenpairs of the discrete problem are related to a discretisation error. As long as
the projection error caused by AMLS is of the same order as the discretisation error the
computed eigenpair approximations of AMLS are of comparable quality as the eigenpairs
computed by SIL or some other classical approach.

Although AMLS has proven to be very effective, one problem is the computation of the
interface eigenvalue problem via dense matrix operations. In the three-dimensional case the
complexity is dominated by this part.

In this paper we introduce a new approach called H-AMLS which is a combination of the
AMLS method and H-matrices. H-matrices [20, 21] are a data-sparse approximation of dense
matrices which e.g. result from the inversion [3, 13] or the LU-factorisation [2, 13, 16, 29]
of the stiffness matrix from the finite element discretisation of an elliptic partial differential
operator. The big advantage of H-matrices is that they allow matrix algebra in almost
linear complexity [15, 17]. In the new method this fast H-matrix algebra is used to setup the



reduced eigenvalue problem and thus H-AMLS is well-suited for three-dimensional problems.
In the three dimensional case it is essential to keep the size of the reduced problem small.
We achieve this by a new recursive formulation of AMLS. Eventually it turns out that all
previously expensive steps of AMLS can be performed in almost linear complexity (linear
up to logarithmic factors) in the size N of the discrete problem. The remaining bottleneck
is more of a theoretical nature: the setup of the reduced problem and the extraction of the
eigenvectors from the solutions of the reduced problem require n?, scalar products of length
N, where n,, is the number of sought eigenvectors. Due to the very small constant involved
in these computations, their effect on practical computations is hardly visible.

The remainder of the paper is organised as follows: In Section 2 the elliptic eigenvalue
problem and the underlying problem setting is introduced. After this, in Section 3, we give
a description of the classical AMLS method. We explain and motivate the method first in a
continuous setting and then describe it in an algebraic setting to show how AMLS is applied
in practice. In Section 4, we outline why the classical AMLS method is getting expensive in
the three-dimensional case and give in Section 5 a short introduction to H-matrices. Finally,
in Section 6, we present the new H-AMLS method and provide in Section 7 numerical results
of H-AMLS applied to a three-dimensional problem.

2 Problem Description

In this paper we want to solve the continuous eigenvalue problem

Lu = Au in Q,
{ (1)

u=0 on 0N
where Q is a d-dimensional domain (d = 2,3) with a Lipschitz boundary 02 and L is a
uniformly elliptic second order partial differential operator in divergence form

d

: 0 0
Lu=—div (AVu) = —”2221 6_x1 (aija_xju>
with L*(Q)-functions a;;, i.e. for z € Q the matrix A(x) := (aij($)>jj:1
positive definite and the eigenvalues of A(z) are uniformly bounded from below by a positive
constant. In weak formulation (1) can be expressed as

is symmetric

{ find (A, u) € R x HA(Q) such that )

a(u,v) = A(u,v)g VYve HH Q)

where a(u,v) := [, Vu AV dx is a symmetric coercive bilinear form and (u,v)o := [, uwv dz
is the inner product of L?*(Q).

According to [19] the continuous eigenvalue problem (2) possesses a countable family of
eigensolutions

(o), € Reg x H(Q) (3)



with eigenvalues \; ordered such that A\; < Aj4q.
We approximate solutions of the continuous eigenvalue problem by discretisation. Using
an N-dimensional finite element space denoted by Vy C H}(Q) and spanned by its basis

functions (cpEN))ijil the continuous eigenvalue problem (2) is discretised by

(4)

find ()\ ), zM) € R x RN with
KW = XN Af (V)

where the stiffness matrix

N
K — < (SOEN)7S0§ ))>Z,j_1 c RNXN (5)

and the mass matrix N
M (N) (N) RNXN 6
(05797 )o), ., € (6)

are both sparse, symmetric and positive definite. The eigenvalues of (4) are positive and the
N

) T ))N € Rog x RY can be arranged in such a way that

corresponding eigenpairs ()‘( : j=1

A < A holds.
From eigenvalue approximation theory it follows that the discrete eigenpairs of (4) are

approximating the continuous eigensolutions of (2). More precisely, cf. [19], it holds )\E-N) —
Aj for N — oo and — assuming that (ugN),ugN))o =1—a subsequence of ( g-N))jVO 1
converging in H, 1(Q) to an eigenfunction v € E();) where u ) € Vy is defined by u =

Ziil(xg-m) gpz ) and E(X\;) C Hy(f) is the eigenspace of the continuous eigenvalue \;

which is defined by

1S

E(\;) = span{u € Hy(Q) | alu,v) = Xj(u,v)g Vv e HS(Q)}

Here it has to be noted that only the smaller eigenvalues A; and their corresponding
eigenfunctions u; can be approximated by the finite element space Vi, cf. [1, 31|, because
the approximation error increases with increasing eigenvalue.

Correspondingly we are only interested in computing a portion of the eigenpairs of (4),
e.g., the first

Ney =CNY*eN or n,=CN/"?eN

eigenpairs, for some constant C' > 0.

Because we are interested in a large number of eigensolutions, the AMLS method is used
to solve the eigenvalue problem (2), respectively (4). If the number of sought eigensolutions
Ney 18 rather small, e.g. n., = 5, other approaches like the subspace iteration are better
suited. Also, if the number of sought discrete eigenvalues approaches N, it is advisable to
use either a cubic scaling direct method or an iterative method like SIL with a good shift
strategy and an efficient solver for the arising shifted linear systems.
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Figure 1: Partitioning of the domain {2 into two non-overlapping subdomains.

3 The AMLS Method

Although AMLS can be described in a purely algebraic way without any geometry informa-
tion of the underlying partial differential equation we explain the method first in a continuous
setting. In the continuous setting it is easier to understand the idea behind AMLS and why
the method is working. After this we will describe AMLS in an algebraic setting to show
how the method is used in practice. For ease of understanding we start with the description
of a single-level version of AMLS which is extended to a multi-level version afterwards.

3.1 Single-Level Version: Continuous Setting

The single-level version of AMLS is actually a generalisation of the classic CMS. The initial
point of AMLS in the continuous setting is the eigenvalue problem (2) which will be denoted
as global eigenvalue problem in this particular section. In the first step of AMLS the domain
() is partitioned into two non-overlapping subdomains €2; and €2, which share the interface
I' =0, N Q. In Figure 1 an example of such a partitioning is given for a two-dimensional
domain.

After this suitable subspaces of H{(€2) are defined which are associated with the subdo-
mains ; (i = 1,2) and the interface I". For the subdomains 2; we define

built of all admissible functions which are equal to zero on 2\ €2;, and for I" we define
Vo= {EQT | r e HééQ(P)}.

Here H&f(F) denotes the trace space of H}(2) on the interface I' and Eq7 € H} () is the

extension of the trace function 7 € H&O/Z(F) which is defined as the unique solution of the
Dirichlet problem

find Eqr € H}(Q) such that
a(Eqr,v) = 0 Vv e {ue H}Q) | ulr =0},
Eqr =7 onl.

For the three subspaces the following theorem holds:



Theorem 1 The direct sum
VQl D VQ2 & Vr

is an a-orthogonal decomposition of H}(S2).
Proof: A proof can be found in [6] in the context of an eigenvalue problem from linear elas-

todynamics. However, this proof can be applied as well for generic H'(Q)-elliptic bilinear
forms.

In the second step of AMLS we define for each subspace separate eigenvalue problems; for
Va, (i =1,2) the so-called fized-interface eigenvalue problem

{ find (A% uf%) € R x Vg, such that )

a(u v) = A% (W v)y Vo e Vg,

and for Vi the so-called coupling mode eigenvalue problem

{ find (A\',u") € R x Vp such that @)

a(ut,v) = AV (u',v)y  Vover.

Note that the only difference to the global eigenvalue problem (2) is that the functions u and
vin (7) and (8) are elements of Vg, or Vr instead of H}(Q2). Each of these problems possess
a countable family of eigensolutions which are given by

()\j .y )j=1 € Roo x Vo,  with AJ* < A)H

for the fixed-interface eigenvalue problem (7) and by

(s ui) ) € Rog x Vo with A} < A,

for the coupling mode eigenvalue problem (8). The eigenfunctions (7) and (8) form a basis

of Vg, and V. According to Theorem 1 these functions are a-orthogonal to each other and
form a basis of H}(Q2) with

2
HY(Q) = U span{u?i

i=1

J€ N} U span{ujr- | je N}. 9)

We remark that even if the eigensolutions of the problems (7) and (8) are known the global
eigenvalue problem (2) is not solved. However, the eigenfunctions of (7) and (8) belonging to
the smallest eigenvalues are well suited to approximate the sought eigensolutions (\;, u;)7< of
(2). This issue is reasoned by various numerical studies (see, e.g., [6]) and is motivated by the
error analysis done in [9, 10] for a quite similar method. Correspondingly, to approximate the
sought eigensolutions, in the third step of AMLS the finite dimensional subspace U, C H{ (£2)
is defined by

2
Up = U span{u?i
i=1

jzl,...,ki}Uspan{u?}jzl,--.,kr} (10)



which is obtained by applying a modal truncation in (9) and selecting only those eigenfunc-
tions which belong to the smallest ki, ks and kr eigenvalues for given ki, ko, kr € N and
k= kl + kQ + ]ﬂr.

Furthermore, we note that only the first p(IN) < N eigenfunctions can be well approxi-
mated by a finite element space using N degrees of freedom (short DOF), where p(N) is for
example p(N) = N3 or p(N) = N2, which motivates the modal truncation performed in
(10) from another point of view.

Using the finite dimensional subspace U, the so-called reduced eigenvalue problem

(11)

find (A® u®) € R x U, such that
a(u® v) = A® Wk )y Yo e U,

is defined with the eigensolutions

k) (k)\k . k k
(A uf) e Rog x Uy with AT < AT, (12)
which is the Ritz-Galerkin approximation of the original global eigenvalue problem (2).

Correspondingly in the fourth and last step of the AMLS method the first n., eigensolu-
tions (12) are computed (with n., < k) which are approximating the sought eigensolutions
(g y)2% of (2).
Theorem 2 The coupling mode eigenvalue problem (8) is equivalent to the eigenvalue prob-
lem

{ find (A, u) € R x HY/*(T') such that 13

(Su,v) = MMu,v) Vo e Hy*(T)

where S and M are operators acting on the trace space Héf(F) which are given in strong
form by

2 2

St = Z((AVEQiT)~ni )‘F and MrT = Z_((Avgi(EQiT»'ni )‘F

i=1 i=1

for T € H(%Q(F). Here n' denotes the outward normal unit vector on T for the subdomain
Q;; Eq, is the subdomain extension operator defined by FEqo, 7 := (EqT)|q,; and G;(f) is the
solution of the Dirichlet problem

(14)

find Gi(f) € Vo, such that
a(Gi(f),v) = (f,v)o Vv ey,

i.e., G; is the Green’s function of problem (14).

Proof: The proof of the theorem can be found in [6] in the context of an eigenvalue problem
from linear elastodynamics, however, it can be applied for generic H'({)-elliptic bilinear
forms. The operator M is derived according to [6] and the operator S according to [30].



Remark 3 i) S is the so-called Steklov-Poincaré operator associated to the bilinear form
a(-,-) which is symmetric, continuous and coercive in HSéZ(F) (cf. [30]). M is the
so-called mass operator associated to the bilinear form a(-,-) (cf. [6]).

ii) The fized-interface eigenvalue problem (7) is equivalent to the eigenvalue problem
find (A\,u) € R x H}(;) such that (15)
a(u,v) = AMu,v)o Yo € Hy(Q).

iii) The benefit of the representation (15) and (13) compared to (7) and (8) is that the
eigenvalue problems are solely solved and evaluated on the subdomains €); respectively
the interface I'.

In this section we have seen that, in order to solve the global eigenvalue problem, the
domain 2 is partitioned into two subdomains which are separated by an interface. On the
subdomains and on the interface suitable eigenvalue problems are defined which, however,
do not solve the global problem but whose eigenfunctions are well suited to approximate the
sought eigensolutions of the global problem. In particular eigenfunctions belonging to the
smallest eigenvalues are selected from each subproblem to form a suitable subspace which
is used for a Ritz-Galerkin approximation of the global problem. Finally, we obtain from
the resulting reduced eigenvalue problem approximations of the sought eigensolutions of the
global problem.

3.2 Single-Level Version: Algebraic Setting

In this section we describe AMLS in the algebraic setting to show how the method is applied
in practice. The initial point is the discretised eigenvalue problem (4). For reasons of
convenience we leave out in this particular section the upper index of A" and ™) in (4)
— indicating the number of DOF of the finite element discretisation — and the following
eigenvalue problem
N
{ find (\,2) € R x RY with (16)

K= \Mzx

is considered with the eigenpairs ()\j, xj)].\[:l € Rog x RY and \; < A\ji1.

Because the matrices K and M in (16) result from a finite element discretisation each row
and column index is associated with a basis function which has typically a small support.
Using the substructuring of Q = Q; Uy with I' = Q; N Q, from the section before, in the

first step of AMLS the row and column indices are reordered in such a way that

Qs r O Q r
Ql Kll K13 Ql Mll M13
K = QQ Kgg K23 and M = QQ M22 M23 (17)
I K31 K32 K33 I M31 M32 M33



holds with Kj;, M;; € RN*Ni and Ny + Ny + N3 = N. The labels Q,Q5 and I in (17) are
indicating to Wthh subset the indices are associated, i.e., if the supports of the corresponding
basis functions are inside {2; or intersecting I'.

Performing a block LPLT—decomposition in the next step of AMLS the matrix K is block
diagonalised by K = LK LT with

Id
L= Id and K:diag[Kll,KQQ,Kgg].
Ky K' KpKy 1d

The submatrix K. 33 given by
[?33 = K33 — K51 K K13 — K32 K3, Kog

is the Schur complement of diag|K, Ks] in K and it is typically dense. The matrix M is
transformed correspondingly by computing M := L=*ML~T with

N My ]ZB
M = N %22 %23
Mz Mszy Mg

where the submatrices of M are given by
My = My — KoK ;' My, Mig = M, fori=1,2

and
2

Mag = Mg — D (Ko, Mig + My I, i — KB MK i)
i=1
A part of the sparsity structure is lost in K and M. All submatrices K;; and Z\A/[/ij whose row
or column indices are associated with the interface I' are now typically dense.

The eigenvalue problems (K, M) and (K, M) are equivalent, i.e., the eigenvalues of both
problems are equal and if 7 is an eigenvector of (K M ) then z = L T is an eigenvector of
(K, M).

At first glance, the reason for the applied eigenvalue problem transformation from (K, M)

o (K, M) is not obvious. But it can be shown, cf. [6] and [30], that the eigenvalue problem
(IN( 33, Mgg) is the discrete equivalent of the continuous coupling mode eigenvalue problem (13),
and the eigenvalue problems (K71, My;) and (Ka, Myy) are the discrete equivalents of the
continuous fixed-interface problems (15) As in the continuous setting the global eigenvalue
problem (K, M), respectively (K M ) is not solved just by computing the eigensolution of
the subproblems (K71, M11), (K22, Mas) and ([?33, ]\733). However, the eigenvectors of these
three subproblems are well suited to approximate the sought eigenvectors of (K, M) and
(K, M ). As in the continuous setting, cf. (10), only those subproblem eigenvectors are of
interest which belong to the smallest eigenvalues.



Correspondingly in the next step of AMLS partial eigensolutions of the subproblems are
computed, i.e., only those eigenpairs of (K71, Mi1), (Ko, Mas) and (K33, M33) are computed
which belong to the smallest k; € N eigenvalues for given k; < N; and ¢ = 1,2,3. In the
following these partial eigensolutions are

Kii Sz = Mn Sl Dz for i = 1, 2 and kgg 53 = Mgg Sg D3 (18)

where the diagonal matrix D; € R¥>* contains the k; smallest eigenvalues and the matrix
S; € RYixki column-wise the associated eigenvectors (i = 1,2, 3). Furthermore, the eigenvec-

tors of the subproblems are normalised by STM;;S; = 1d (i = 1,2) and ST M;395 = Id.

Remark 4 (Mode Selection) How many eigenvectors have to be selected in (18) from each
subproblem is not easy to answer. On the one hand enough spectral information has to be kept
to obtain sufficiently good eigenpair approximations from the reduced problem. Selecting all
(discrete) eigenvectors from each subproblem would lead to exact eigenpairs of the discrete
global eigenvalue problem (K, M). On the other hand k; should be small to obtain in the
further proceeding of AMLS a reduced problem of small size which can be easily solved.

In the literature [12, 33] several heuristic approaches have been derived on how to select
eigenpairs.  These heuristics are based purely on the analysis of the algebraic eigenvalue
problem (K M ) without using any geometry information of the underlying partial differential
equation (1). One possible strategy for the eigenpair selection in (18) is as follows: Select in
each subproblem only those eigenpairs whose eigenvalues are smaller than a given truncation
bound w> 0.

We pursue a different approach here. The three subproblems (Ky1, My1), (Kag, Mas) and
(lN(gg, Mgg) correspond to finite element discretisations of the continuous problems (15) and
(13) (cf. [6, 30]). Therefore and because of the remark regarding the approximation property
of finite element spaces in Section 2, all eigenvectors in (18) are computed which still lead to
reasonable approximations of the corresponding continuous eigenfunctions. Correspondingly
only the eigenvectors belonging, e.q., to the smallest

ki=CN*eN o k=CN"?eN
eigenvalues are computed, for a constant C' > 0 that will be specified in Section 7.
In the next step the block diagonal matrix
S := diag [Sy, Sy, S3] € RV*F

with k := ki + ko + k3 < N is defined which is built of all selected subproblem eigenvectors.
The k-dimensional subspace spanned by the columns of the matrix S respectively of the
matrix L~=7S is well suited to approximate the sought eigenvectors of (K, M) respectively
(K, M). More precisely, the columns of L=7S are the discrete equivalent of the selected
eigenfunctions contained in subspace (10) from the continuous setting (cf. [6, 30]).

In order to approximate the sought eigenpairs of (K, M) in the next step of AMLS the

matrices K := ST K S € R¥* and M := ST M S € RF*F are computed where it holds

Id M3
K= dlag [Dl, DQ, Dg] and M = Id M23 5
Mz Mz 1d

10
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Figure 2: Extending the single-level substructuring of €2 to a two-level substructuring.

and a reduced eigenvalue problem
x
: (19)

with eigenpairs (Xj,fj)le € R.y x R¥ and Xj < Xjﬂ is obtained. Here we note that the
reduced eigenvalue problem (19) is the discrete equivalent of the reduced problem (11) from
the continuous setting.

At the end of AMLS the smallest n,, eigenpairs of (19) are computed. The vectors
gy =LTS7;, withj=1,...k (20)

are Ritz-vectors of the original eigenvalue problem (K, M) respective to the subspace spanned
by the columns of the matrix L=7'S, and \; are the respective Ritz-values. Finally, the pairs

(/):j,/y\j)?jl are approximating the sought smallest n., eigenpairs of the original eigenvalue

problem (K, M).

Remark 5 (Reduced Eigenvalue Problem) Because the eigenpairs of the reduced eigen-
value problem (I/(\' , M ) are primarily used to approximate the eigensolutions of the continuous
problem (2) and not the eigenpairs of the discretised problem (K, M), the approrimation
error of AMLS is influenced by the finite element discretisation and the modal truncation
applied in (18). As long as the error caused by the modal truncation is of the same order
as the discretisation error, the eigenpair approzimations deried from the reduced problem
(K, M) are of comparable quality as the eigenpair approximations derived from the problem
(K, M).

The reduced eigenvalue problem (IA(, ]/\4\) 15 much easier to solve than the original eigenvalue
problem (K, M) because the number of selected eigenpairs in (18) is typically quite small and
therefore the order of the reduced problem is much smaller than the order of the original
problem. If for example the mode selection strategy described in Remark 4 is used then the
size of the reduced problem can be bounded by O(N'/3) and the problem can be solved by dense
linear algebra routines in O(N).

3.3 Multi-Level Version: Algebraic Setting

The single-level version of the AMLS method explained in the previous section can easily
be extended to a multi-level version. Using the substructuring from the single-level version

11



we further subdivide the subdomains €2; and €25 each into two non-overlapping subdomains
which share some interface as it is illustrated in Figure 2. This substructuring can be applied
again recursively to the resulting subdomains until a certain level is exceeded or the size of
the subdomains falls below some given limit.

The further proceeding of AMLS in the multi-level version is analogous to the single-level
version. As in (17) the row and column indices of the matrices K and M are reordered
to achieve a matrix partitioning according to the performed domain substructuring. For
example the matrix partitioning of K corresponding to the domain substructuring applied
in Figure 2 is

Qip o Ty Qog Qoo Iy r

Qi [ K K3 K7
12 Ko Ko3 Ko7
Iy | K1 Kz K K37
K= Qgﬁl K44 K46 K47 . (21)
Qa9 Kss  Kse  Ksr
[y Kes Kos Koo Koy
I' | Kn K K Ky Ko Ko Kip
K;; € RY>Ni is the submatrix of K in block row i and block column j with i,7 =1,...,m

where m is equal to the number of subdomains and interfaces contained in the substructured
domain €2. Here we want to note that the multi-level version of AMLS does not correspond
to a recursive call of the single-level version. Instead the different matrix operations, done in
the single-level version, are applied analogously to the matrices from the multi-level version,
i.e., to matrices of the form (21) for example.

In the next step the eigenvalue problem (K, M) is transformed equivalently to (K, M ), i.e
K is block diagonalised via K = L]i LT by performing a block LD L*-decomposition and M
is transformed correspondingly by M = L*ML™T, Due to the transformation a part of the
sparsity structure is lost in K and M. All submatrices K;; and M;; are now typically dense
if their respective row or column indices are associated Wlth an mterface In the next step
the partlal eigensolutions of the subproblems (K”, Mu) are computed. Note that Km = Ky
and Mu M;; if their row indices are associated with one of the subdomains. Let the partial
eigensolution be given again by

for i = 1,...,m, where the diagonal matrix D; € R¥** contains the k; < N; smallest
elgenvalues and S; € RNixki column-wise the associated eigenvectors. In the next step the
reduced eigenvalue problem (K, M ) is obtained by computing K := STKS and M := STMS
with S := diag [Sl, ceey Sm}. Finally, the n., smallest eigenpairs of the reduced eigenvalue
problem are computed where eigenpair approximations of the original eigenvalue problem
(K, M) are obtained by (20).

For further illustration we refer to [14] where a two-level version of AMLS in the algebraic
setting is described, and for the description of the multi-level version in the continuous setting
we refer to [6]. To summarise the AMLS method an overview of all necessary operations is
given in Table 1 where the different tasks of the method are denoted by (T1)—(T8).

12



The benefit of the multi-level approach is that the substructuring of the domain or respec-
tively the partitioning of the matrices K and M can be applied recursively until eventually
in (18) the size of the subproblems (Km, Mm) is small enough to be solved easily. If more and
more levels are used in the multi-level approach of AMLS, then the size of the reduced eigen-
value problem increases as k = Y. | k; grows with the number m of subproblems. Although
the reduced problem is partially structured (the structure is inherited from the block-sparsity
of K and M), eventually the total complexity is dominated by this part. As a consequence,
the number of levels has to be controlled so that at most O(n.,) eigenvectors are used from
all subproblems together. This can be achieved by using only a few levels and recursively
applying AMLS for the non-interface subproblems.

3.4 Recursive AMLS

In our new recursive version of (multi-level) AMLS the subdomain eigenvalue problems are
solved recursively by the AMLS method. In each of the subdomains €2; there are k; < ne,
eigenvectors that can be represented well in the finite element space Vy,. If the number
of subdomains (from the multilevel substructuring) is in O(1) then clearly the size of the
reduced problem is at most O(n.,) and can be handled by standard dense linear algebra
solvers.

However, neither the recursive approach nor the multi-level approach of AMLS affect the
size of interface problems, they affect only the size of subproblems related to subdomains.
When the spatial domain 2 is three-dimensional this is a bottleneck.

4 Efficiency Problems in the Three-Dimensional Case

In the following we refer to submatrices whose row or column indices are associated with
an interface as interface matrices. In the three-dimensional case these interface matrices are
getting relatively large in AMLS which leads to very high computational costs. In contrast
to submatrices which are associated only with subdomains the size of the interface matrices
cannot be reduced by further substructuring as discussed in the previous section.

To illustrate this we take a look at the initial eigenvalue problem (2) with the domain
Q = (0,1)%. To solve the problem with AMLS it has to be discretised first. This can be done
for example by decomposing 2 = (0, 1)? into n + 1 equispaced subintervals in each direction
and using standard P1 finite elements, cf. Figure 3(b). The resulting eigenvalue problem is
given in (4) where the matrices K and M are of size N x N with N = n3. Assuming that a
two-level substructuring is used in AMLS we obtain a matrix partitioning like in (21). The
number of rows or columns of the interface matrices are O(N%?) as it is illustrated in Figure
3(c). These interface matrices are relatively large and their size cannot be reduced by further
substructuring.

During the AMLS method a couple of matrix operations have to be performed on these
interface matrices, e.g., computing the inverse, the matrix product or the partial eigenso-
lution. Beside that the interface matrices are relatively large they are dense as well. For
example in the two-level version of AMLS the inverse of the interface matrices K33 and Kgg
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n
(a) Domain Q = (0,1)3. (b) Discretised domain with n? (c) Two-level substructuring of the
DOF; DOF are indicated by small discretised domain leading to inter-
dots and only the grid associated to faces of the size O(n?).

the DOF is marked.

Figure 3: Discretisation of the domain © = (0,1)? and performing a two-level substructur-
ing.

has to be computed when the block LDL"-decomposition is performed to block diagonalise
K = LKL". These operations alone lead to costs of O((N%3)3) = O(N?). A way to help
out here are so-called hierarchical matrices which are introduced briefly in the next section.

5 Hierarchical Matrices

H-matrices [20, 21] are data-sparse but possibly dense matrices. The underlying idea is to
reorder the rows and columns of a matrix such that certain submatrices can be represented
or approximated by low rank matrices. To represent such a fully populated but data-sparse
matrix of size N x N only O(N log® N) data is necessary instead of storing N? entries where
a=1,...,4 (cf. [15, 17]). Moreover, H-matrices provide exact matrix-vector multiplication
and approximated matrix(-matrix) operations (e.g. multiplication, addition, inversion, LU-
factorisation) which are performed in almost linear complexity O(N log® N).

The stiffness matrix resulting from the finite element discretisation of an elliptic partial
differential operator is sparse. However, its inverse and its LU-factors are fully populated. In
[3, 13] and [2, 13, 16, 29] it is shown that the inverse and the LU-factors can be approximated
by H-matrices and that these approximations can be computed with almost linear complexity.
This motivates to use the fast H-matrix algebra in the AMLS method to compute the block
diagonalisation K = LK LT and the matrix transformation M = L=*ML™T.

To do this the sparse matrices K and M have to be converted into H-matrices. For this
purpose a suitable H-matrix format has to be provided which is based on the geometry data
of the underlying partial differential equation. To introduce this H-matrix format and the
basic concept of H-matrices we first explain how the inverse of a stiffness matrix is approxi-
mated by an H-matrix.

Assume A € RV*V is the stiffness matrix resulting from the finite element discretisation
of an elliptic partial differential operator. The matrix A is sparse, however, its inverse A~1 is
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fully populated. Recalling the definition of the stiffness matrix in (5) each row and column
index i € I := {1,..., N} of A and respectively of A™! is associated with a basis function

goEN) of the underlying finite element space V. For each index set t C I we define its support

by
N
Q= U supp(gpg )).
ict
Correspondingly each submatrix

Ail‘sxt = ((Ail)l]) with S,t cl

ies,jet
of A=! is associated with geometry information. Based on the geometric separation of the
index sets s and t certain subblocks s x ¢ C [ x I can be identified that allow a low rank
approximation of the respective submatrices A~'|,,;. More precisely, submatrices A1,
whose index sets s and ¢ fulfil the so-called admissibility condition

min{diam(€2), diam(Q;) } < n dist(s, Q) (22)

are well suited for a low rank approximation (cf. [3]). The parameter n > 0 controls the
number of admissible subblocks s x ¢ and is typically set to n = 1 (see, e.g., [15]). However,
we obtained better results in our numerical tests according to the computational time using
larger n and correspondingly having many admissible subblocks. In [22] better results have
been obtained as well when even subblocks s x ¢t with s # t were accepted as admissible. In
our numerical tests 1 := 50 has been a good choice and this value is used in the rest of the
paper. The quantities

diam () := max{||lz—yll> | z,y € A} and dist(Q, Q) := min{[lz—y|. | 2 € Qs,y € U}

are the diameter and the distance of the supports of s and ¢t. Subblocks s x t fulfilling the
admissibility condition (22) are called admissible and the corresponding submatrices A|gx;
are approximated by so-called Rk-matrices which are defined as follows.

Definition 6 (Rk-matrix) Let k,m,n € Ny. The matriz R € R"™ is called Rk-matriz if
it 1s factorised by

R=UVT for suitable matrices U € R™*¥ and V € R™**,

When the rank & is small compared to n and m the representation of an Rk-matrix R € R™*™
is much cheaper than in full-matrix representation because only k(n + m) entries have to be
stored instead of nm. Furthermore, the product and the sum of two Rk-matrices can be
evaluated much more efficiently than in full-matrix representation when k is small.

To exploit the low rank approximation property of submatrices fulfilling (22) we reorder
the row and column indices of A~!. For this purpose the index set I is divided according to
a geometric bisection of its support into two disjoint index sets s,t C I with [ = sUt. In
this context s and ¢ are denoted as sons of I and S(I) := {s,t} as the set of sons of I. This
geometric bisection is applied recursively to the son index sets until the cardinality of an
index set falls below some given limit n,,;, € N. Such a partitioning is illustrated in Figure
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I=1{1,2,3,4,56,7,8,9,10,11,12,13,14,15,16}

— T
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(a) Disjoint partitioning of the index set I corresponding to the applied geometric bisection.
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(b) Geometric bisection of the domain Q = (0,1)? (c) H-Matrix format of A=1 € R*16 according
using nymin, = 1. The indices i € I = {1,...,16} of  to the applied partitioning of I using admissibility

the nodal points of the basis functions are enumer- condition (22) and n,;, = 1; admissible blocks are
ated from 1 in the lower left to 16 in the upper right coloured green, inadmissible ones are red.
corner.

Figure 4: Construction of the H-matrix format for the inverse of the stiffness matrix result-
ing from a finite element discretisation of an elliptic partial differential operator on 2 = (0, 1)?
using standard P1 finite elements on an equispaced grid with 16 DOF.

4(a) and 4(b) for a two-dimensional problem. The described geometric bisection results in a
disjoint partition of the index set I where the obtained subsets of the partitioning tend to
be geometrically separated.

Given the admissibility condition (22) and the partitioning of the index set I the H-matrix
format of A~! is constructed by applying algorithm 1 to I x I. Using this algorithm I x I
is recursively subdivided into subblocks s x ¢ until the subblock gets admissible or the size
of the subblock falls below the limit n,,;, as it is illustrated in Figure 4(c). Submatrices
A7, of admissible blocks s x t are represented in the Rk-matrix format and submatrices
of inadmissible blocks are represented in the full matrix format. To control the approximation
quality of the Rk-matrix approximation the fixed rank is replaced by an adaptive rank. For a
desired approximation accuracy € > 0 each submatrix A~!|,; corresponding to an admissible
subblock s x t can be approximated by an Rk-matrix R such that

| A ot — R |l
< e 23
Ao s = (23)

where the rank k € Ny is as small as possible (cf. [15]).
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Algorithm 1 H-Matrix Construction

procedure CONSTRUCTHMATRIX(A™Y, &, Nypin, 8 X 1)
if s x t is admissible then
approximate A~!|s; by Rk-matrix with accuracy e;
else if min{#s, #t} < ny, then

represent A~!| ¢ by a full matrix; > Numin affects the minimal size of the submatrices
else
S(sxt):={s xt'|seS8(s), t' €St} > S(t) denotes the set of sons of t C T

for all s’ x ' € S(s x t) do
CONSTRUCTHMATRIX( A7L, &, ynin, 8" x t');
end for
end if
end procedure

The H-matrix format and the H-matrix approximation of A~! have been introduced using
Algorithm 1. However, this algorithm requires that A=! is explicitly available. Fortunately
the H-matrix algebra provides an efficient algorithm, requiring only the matrix A and the
used H-matrix format, to compute the H-matrix approximation of A~!. Using a recursive
approach applied block-wise to the matrix structure, exploiting the Rk-matrix representation
of submatrices fulfilling (22), and applying the inexpensive addition and multiplication of
Rk-matrices this algorithm computes the H-matrix approximation of A~! in O(N log® N),
cf.[15]. Let (A7)~! denote the H-matrix approximation computed by this efficient algorithm.
We have to remark that (A%)~! slightly differs from the result obtained by algorithm 1 due
to applied approximative matrix operations. Nevertheless, the error ||[A~! — (A%)~!|| can be
controlled by the chosen accuracy ¢ in (23).

Figure 5: H-matrix format of A= € RV*Y with N = 2500
using admissibility condition (22) and n,;, = 100 where A is
the stiffness matrix resulting from a finite element discretisa-
tion of an elliptic partial differential operator on 2 = (0,1)2.

To compute the block diagonalisation K = LKLT and the matrix transformation M =
L=*ML~T by the fast H-matrix algebra we slightly change the described H-matrix format,
cf. [17]. First we apply a nested dissection as in the classical AMLS method, i.e., the domain
() is recursively partitioned into several subdomains which are divided by interfaces. The
row and column indices of K and M are reordered according to the performed partitioning
of Q and a matrix partitioning, e.g., of the form (17) or (21) is obtained. As discussed in
Section 3 some of the submatrices [N(ij and ]\Zj are fully populated, however, they can be
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r nested dissection
/ needed for AMLS

o] (@) (@) [
I\-_| l\__l geometric bisection
ng) ?b ng ng 8 Iﬁ r—L' needed for H-matrix
OO algebra

Figure 6: Schematic example of the partitioning of the domain € applied in H-AMLS:
A two-level nested dissection (necessary for AMLS, cf. Figure 2) is applied followed by an
additional two-level geometric bisection of the subdomains and a one-level geometric bisection
of the interfaces (necessary for H-matrix approximation).

approximated by H-matrices. For this purpose we apply additionally a geometric bisection
to the index sets associated with the subdomains and interfaces, and reorder the row and
column indices of the submatrices K;; and M;; correspondingly. In Figure 6 the described
domain partitioning is illustrated.

Using the H-matrix format resulting from the matrix partitioning described above, the
block diagonalisation of K and the transformation of M can be computed by an efficient
algorithm, similar to the recursive algorithm used for (A*)~!, in O(N log® N) leading to

K~ L*KMLMT  and MM~ (L%)'M(L7)7. (24)

As already noted, these H-matrix operations are performed not exactly but only approxima-
tively, and the approximation errors | L — L¥||,, ||[K — K*||, and |M — M HH2 are influenced
by the chosen accuracy € in (23). An example of the applied H-matrix format is given in

Figure 7 for the matrix M™.

6 Combination of AMLS and H-matrices

In this section a more refined version of the AMLS method using the fast H-matrix algebra
is presented. The benefit of the use of the H-matrices is a reduction in computational time
and storage requirements. However, an additional error due the use of H-matrices occurs
which can influence the quality of the computed eigenpair approximations. This problem is
discussed in the following but first the new method, called H-AMLS, is introduced.

As in the classical AMLS method in the first step of H-AMLS a nested dissection is applied.
To use the fast H-matrix algebra additionally a geometric bisection is performed as described
in the previous section. In the next step we compute as in (24) the block diagonalisation of
K and the corresponding matrix transformation of M using the fast H-matrix algebra.

The further proceeding of H-AMLS is analogous to the classical AMLS method. Subma-
trices of K™ and M™ according to block row ¢ and block column j are denoted by K M and

18



(a) one-level nested dis. (b) two-level nested dis. (c) three-level nested dis.

Figure 7: H-matrix format of MM using a one, two and three-level nested dissection. Red
blocks represent full matrices, green blocks Rk-matrices and white blocks submatrices equal
to zero which don’t cause computational costs in the H-matrix algebra.

]\qu{ In the next step the partial eigensolutions of the subproblems (K n M H) are computed
for i = 1,..., m which are given by

KMS; = M}*S;D; with STMHS,; =1d, (25)

where the diagonal matrix D; € R*** contains the k; < N; smallest eigenvalues and the
matrix S; € RYNixki column-wise the associated eigenvectors. Because in general the matrices
K} and M slightly differ from K;; and M;; the corresponding eigensolutions (18) and (25)
can differ as well. To indicate this difference in the H-AMLS method bold symbols are used
for the corresponding matrices and symbols.

In the next step we define S := diag[Sy,...,S,;] and the matrices

K :=STK"S e R** and M :=STM"S e R¥**
are computed which lead to the so-called H-reduced eigenvalue problem

{ find (X, %) € R x R* with (26)
KX = AMX

where the eigenpairs be given by (AJ,X]> € Ry x RF with )\ < )\]+1 In the last step
the smallest n., eigenpairs of (26) are computed leading to the eigenpair approximations
()\J,§])"e”1 of the original problem (K, M) with y; := (L™)""S X;. In contrast to the
classical AMLS method, in general Xj is not equal to the Rayleigh quotient

N1 =yIKy;/ ¥, My; (27)
since the matrix operations in (24) are performed only approximatively. Typically the

Rayleigh quotients )\ "? deliver better approximations of the sought eigenvalues A; than )\
especially when the chosen accuracy € of H-matrix approximation is coarse. To compare
the classical AMLS method with the new H-AMLS method an overview of both methods is
given in Table 1 where the different tasks of the methods are denoted by (T1)—(T8).
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Task

Matrix Operations AMLS

Matrix Operations H-AMLS

(T1) partition ma-

nested dissection reordering, cf. (17)

(17)

nested dissection reordering, cf.

trices K and M and (21) and (21), with subsequent geometric bi-
section (cf. Section 5)
(T2) block diago- | K = LKLY — expensive because | K ~ L*KH(L*)T - using fast -

nalise K

of large-sized, dense interface matrices

matrix algebra done in O(N log® N)

(T3) transform M

M= L*MLT

— expensive be-

cause of large-sized, dense interface

matrices

M* =~ (LM'ML*)T 5 us
ing fast H-matrix algebra done in
O(Nlog®N)

(T4) compute par-

KuSi = MyS;D;

— expensive

[N(gtsz = J\Z-?{‘SiDi — use fast H-

tial  eigensolution || when Kj; and M;; are interface matri- | matrix algebra when [?Zj and Ml“ are
fori=1,...,m ces because they are dense interface matrices

(T5) define sub- | S := diag(Sy,...,S,) € RV*k S := diag(Sy,...,S,,) € RV*k

space with k=" k& with k=" k&

(T6) compute | K := STKS € RF*k, K = STKMS € RF*F,

matrices of reduced
eigenvalue problem

M = STMS € RF<F

M := STAMHS € R¥*F 5 use fast H-
matrix algebra for computation

(T7) solve reduced | KZ; = A, M%; forj=1,...,n0 | K% = AM%; forj=1,... 1.
eigenvalue problem

(T8) transforma- || g; ;==L 7Sz, forj=1,...,n¢ y; = (L")TSx;, forj=1,...,ne
tion of eigenvectors

final eigenpair ap- (ngj) for j=1,...,n¢ (X;q,%) for j=1,...,ng

proximations

with A7 .= ?;'FK yi/ ijM Vi

Table 1: Overview of the classical AMLS and the new H-AMLS method.

6.1 Computational Costs

Beside N and the number of sought eigenpairs n., the computational costs of H-AMLS
depend on the chosen accuracy e of the H-matrix operation in (24) and the applied modal
truncation in (25), i.e, the number of selected eigenvectors k;. A coarser accuracy e and

smaller k; result in faster computations and reduced memory requirements of H-AMLS.
Of course these parameters can be chosen arbitrarily, however, their choice influences the
approximation accuracy of the sought n., eigenpairs. This issue is discussed in the next
paragraph and in Section 7.

Comparing the different tasks it can be seen that the H-AMLS method is much faster
than the classical AMLS method. The computational costs of task (T1) are negligible,
O(Nlog N). The computational costs for task (T2) and (T3) are of the order O(N log™ N)
in H-AMLS whereas in classical AMLS they are at least of the order O(N?) in the three-
dimensional case (cf. Section 4). Also the computation of the partial eigensolutions (task
(T4)) is faster in the H-AMLS method: The submatrices l?;t and ]\Zi" whose row and
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column indices are associated to an interface are data-sparse H-matrices and not unstructured
dense matrices as assumed in the classical AMLS method. Correspondingly an eigensolver
exploiting the H-matrix structure can be applied in (25) instead of an eigensolver for dense
matrices as it is done in classical AMLS. Since the interface matrices are of size at most
O(N?%3), the almost linear scaling of H-matrices allows us to solve for n,, eigenvectors in
complexity O(neUN2/3(10gaN + nev)), e.g. by SIL, which is for n., ~ N'/3 the same as
O(ne,N).

Also the H-matrix structure of K7 and M* can be ¢ exploited in H-AMLS using the fast H-
matrix-vector multiplication for the computation of K and M: The multiplications ST(K HS)
and ST(M HS) involve 2n,., H-matrix times vector multiplications in O(N log® N) plus 2n?,
scalar products of length N. Both together sum up to costs of the order (’)(neUN (log™® N +
nev)) for task (T6). Since the scalar products can be computed with peak performance, the
costs for these is invisible in practice. The n., H-matrix times vector multiplications are as
well harmless since the logarithms and constants involved in the matrix vector multiplications
are much smaller than for the H-matrix operations in (24).

The computational costs of task (T7) are the same in both methods. The reduced
eigenvalue problems (K, M ) and (K M) are both of the same structure. Since we aim
at Ne, ~ N'/3 eigenvalues, the size of the reduced problem allows us to use a dense linear
algebra solver with cubic complexity and still remain in O(N).

Finally, for task (T8) we can again exploit the fast H-matrix times vector multiplication
(forward substitution in (L*)”) to complete this task in O (ne,N(log* N + n.,)) and for the
Rayleigh Quotients it is enough to use the sparsity of K and M to perform the computation
in O(ne,N).

We can sum up that theoretically the complexity is dominated by tasks (T6) and (T8).
The operations involved there are the H-matrix times vector multiplication, which accumu-
lates to a total of O(n.,Nlog® N), and the usual scalar product accumulating to at most
O(n?,N) multiplications or additions. Both of these operations have extremely small con-
stants involved and are therefore for problem sizes up to N = 4,000, 000 not the bottleneck.
Instead, most of the time is spent in the transformation steps (T2) and (T3), both of them
in O(N log® N) which is asymptotically in o(n.,N), and in the interface eigenvalue problem
of task (T4) which is of complexity O(ne,N).

In the numerical examples we can observe that the costs for (T6) and (T8) are slowly
increasing relative to the total cost, and that the total complexity stays in O(n.,N) for very
large-scale problems.

6.2 Accuracy of the Eigenpair Approximation

The downside of faster computations and reduced memory requirements in H-AMLS —
achieved by a coarsening of the H-matrix accuracy ¢ and a reduction of the number of
selected eigenvectors k; — is a possible loss in quality of the eigenpair approximations.
Keeping in mind the initial problem, the Rayleigh quotients )\;q in (27) are used to approx-
imate the n., smallest eigenvalues A; of the continuous problem (2). For the approximation
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error it holds

LR T L P e ¥ I VD

N—— N——— —— N——

error of the error caused by error caused by the error caused by the
‘H-AMLS method the discretisation modal truncation ‘H-matrix approximation

where A§N) is the eigenvalue of the discrete problem (4) and Xj is the eigenvalue of the reduced

problem (19) from classical AMLS. The upper index of )\EN) is indicating the number of DOF
of the underlying finite element space V. The approximation error of the H-AMLS method
is associated with the finite element discretisation, the modal truncation, and the H-matrix
approximation. The error caused by the modal truncation is influenced by the number of
selected eigenvectors k; in (25), and the error caused by the use of H-matrix approximation
is influenced by the chosen accuracy ¢ in (24).

In contrast to the H-AMLS method, the approximation error of classical approaches, like
the SIL algorithm, is only associated with the finite element discretisation because (almost)
exact eigenvalues A§N) of the discrete problem (4) are computed. The corresponding dis-
cretisation errors are used as reference values for the H-AMLS method. To compete with
a classical approach, the error caused by the modal truncation and the error caused by the
use of the H-matrix approximation have to be small enough that the error of the H-AMLS
method is of the same order as the discretisation error

NG N
=X Py =l (28)
——r —
error of H-AMLS discretisation error

Dividing (28) by |A;| we obtain the equivalent statement expressed in form of relative errors

NG N
570 . 1A — A - [Aj — A§ ) s (29)
! A A !
—_——— ————
relative error relative error
of H-AMLS of discretisation

In the following the aim is to choose the parameters k; and € in such a way that (29) holds
while the computational costs and storage requirements of H-AMLS are reduced as much as
possible.

7 Numerical Results

The H-AMLS method has been implemented in C++ using the H-matrix software library
HLIBpro [7, 26, 27]. In the following we analyse numerically H-AMLS for the Laplace
eigenvalue problem

(30)

—Au=Xu in Q= (0,1)3,
u=0 on 0.
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Note that the domain €2 is three-dimensional and it is very costly to solve this problem by
the classical AMLS method (cf. Section 4). The eigenvalues in (30) are

A= MNP = 72?4+ B2 4 42) with o, 8,7 €N

and correspondingly it is possible to evaluate the relative errors 5](-N) and 3;61 from (29).

To solve problem (30) by a classical approach or H-AMLS it is discretised first using
standard P1 finite elements as described in Section 4. A discrete eigenvalue problem of
the form (4) is obtained of the size N = n3. The size N is the number of DOF and
h = 1/(n + 1) the mesh width of the model. The eigenvalues A§N) of the discrete problem
(4) are approximating the sought smallest n., eigenvalues \; of the continuous problem (30).
The approximation errors of )\gN) depend on h. This issue is illustrated in Table 2 and Figure
8 where the mesh widths are

e hy :==0.00 = N =6,859,

e hy:=0.025 = N = 59,319,

o h3:=0.0125 = N =493, 0309.
Halving the mesh width reduces the errors by a factor of approximately 4 but at the same
time the system size increases by a factor of 8. Furthermore, it can be seen that smaller
eigenvalues are better approximated than larger ones as already mentioned in Section 2. The
relative errors 6§N) form more or less a monotonically increasing sequence in j. Additionally
it can be seen (cf. the last three columns of Table 2) that a finer mesh width is necessary to
approximate more eigenvalues with the same accuracy. For example, to compute the smallest
10 eigenvalues with a relative accuracy of le-2 the mesh width hs is sufficient while for the
smallest 300 eigenvalues a mesh width finer than hj is necessary and correspondingly more
than 493,039 DOF are needed.

As a reference the eigenvalues A§N) of the discrete problem have been computed by a shift-
invert version of the subspace iteration! where the arising shift-invert systems have been
solved with the help of the fast H-matrix algebra — but any other solver would suffice.

Neglecting possible computational costs for the orthogonalisation and the predonditioners,
however, a lower bound for the best possible computational complexity of an eigensolver

IThe subspace iteration is also called orthogonal iteration or simultaneous iteration.
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j A error |\; — A;N)| rel. error (5;N> max{ s |i=1,...,j }
b | ha | hs o | he | ks hy hs hs
1 29.60 0.30 0.07 | 0.01 1.02e-2 | 2.57e-3 | 6.42¢-4 1.02e-2 | 2.57e-3 | 6.42¢-4
2 59.21 0.92 0.23 | 0.05 1.55e-2 | 3.88e-3 | 9.71le-4 1.55e-2 | 3.88e-3 | 9.71le-4
3 59.21 0.92 0.23 | 0.05 1.55e-2 | 3.88e-3 | 9.71e-4 1.55e-2 | 3.88e-3 | 9.71le-4
4 59.21 1.45 0.36 | 0.09 2.45e-2 | 6.11e-3 | 1.52¢-3 2.45e-2 | 6.11e-3 | 1.52e-3
5 88.82 2.34 0.58 | 0.14 2.64e-2 | 6.62e-3 | 1.65e-3 2.64e-2 | 6.62e-3 | 1.65e-3
10 || 108.56 3.31 0.81 | 0.20 3.05e-2 | 7.48e-3 | 1.86e-3 3.50e-2 | 8.83e-3 | 2.21e-3
50 || 286.21 21.27 | 5.46 | 1.37 7.43e-2 | 1.91e-2 | 4.81e-3 1.01e-1 | 2.51e-2 | 6.27e-3
100 || 414.52 63.52 | 16.69 | 4.19 1.53e-1 | 4.02e-2 | 1.01e-2 1.53e-1 | 4.06e-2 | 1.09e-2
300 || 819.17 188.28 | 37.64 | 9.20 2.29¢e-1 | 4.59e-2 | 1.12e-2 2.60e-1 | 7.29e-2 | 2.20e-2

Table 2: Errors between the eigenvalues \; of the continuous problem (30) and the eigen-

values A§N) of the discretised problem (K, M) for varying mesh widths. (All values given in
this and the following tables are correct to two digits.)

would be
O(ne N). (31)

Correspondingly a possible measure for the performance of an eigensolver is the needed
computational time per eigenpair and per one Million DOF, formally defined by avg(t.),
where t,) is the total time needed for the computation of the first n., eigenpairs and
109¢
Ney N
Assume for example that a classical iterative approach has the best possible complexity
where in average 10 iterations are necessary until an iteration vector converges, and the
matrix-vector multiplication (by the inverse) takes 5 seconds per one million DOF. Then the
average computational time of this eigensolver is avg(t.;) = 50s.

Applying H-AMLS, the discrete problem (4) is projected onto a subspace using the fast
H-matrix algebra and the H-reduced eigenvalue problem (26) is obtained where the Rayleigh
quotients X;q are approximating the sought eigenvalues \; of (30). Beside the DOF of the

avg(t) := avg(t, ney, V) :== (32)

model, the relative errors g;q depend on the number of selected eigenvectors k; and the
chosen accuracy ¢ of the H-matrix approximation. In the following we investigate how these
parameters have to be chosen so that the eigenvalue approximations of H-AMLS match
the discretisation errors. In particular we will test for ne, = N3 2NV3 5N/3 how the
parameters have to be selected so that the inequality

(N)

Trey < 3 (33)

holds where N
A0 = ma {81/ 0 [ =1, e}

is the maximal ratio between the relative discretisation error 5§N) and the relative error g;q
associated to H-AMLS. If inequality (33) is fulfilled it can be said that the approximation
error of H-AMLS is of the same order as the discretisation error, cf. (29).
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7.1 Influence of the Modal Truncation

At first we investigate the influence of the number of selected eigenvectors k;. To do this
the H-matrix approximation is deactivated in (24) by setting the parameter n from (22) to
n = 0. Correspondingly no subblock is admissible, no Rk-matrix approximation is applied
and the block diagonalisation of K and the matrix transformation of M in (24) are computed
exactly (up to machine precision). In this situation H-AMLS is equivalent with the classical
AMLS method and correspondingly the computations will be very expensive as described in
Section 4.

We used the approach discussed in Remark 4 for the modal truncation and benchmarked
the following two mode selection strategies:

strategy || subdomain problem | interface problem

e SI ki = 15N/ ki = N}/
e SII ki = 15N, ki = N}/

If for example strategy SII is applied then the smallest k; = 1.5NZ-1/ 3 eigenpairs in (25)
are selected if the corresponding subproblem is associated to a subdomain and the smallest
ki = Nl-l/ ? eigenpairs if the subproblem is associated to an interface. In Figure 9(a) the

corresponding relative errors c/i\;q and in Table 3 the maximal ratios fyg,) are displayed for
the mesh widths Ay, hs and hs. For comparison the discretisation errors BEN) are displayed

as well in Figure 9(a). Obviously, strategy SI (where only Nil/ ® modes from the interface are
selected) deteriorates as h — 0.

In Table 3 can be seen that for hy,hs and hs mode selection strategy SII is sufficient in
such a way that for all n,, = N3 2NY3 5N/3 postulation (33) is fulfilled. However, the
computational costs of H-AMLS are getting very expensive with increasing DOF because
n=0.

7.2 Influence of the H-Matrix Approximation

To speed up the computations of the block diagonalisation of K and the matrix transforma-
tion of M in (24) the H-matrix approximation is activated by setting the parameter 7 in (22)
back to 7 = 50. Accordingly certain subblocks get admissible and the respective submatrices
are approximated by Rk-matrices with a given approximation accuracy e¢.

In the previous subsection we have seen that mode selection strategy SII is sufficient for
the mesh widths hq, hy and hz. Using this mode selection strategy the computations have
been done again applying the following H-matrix approximation accuracies

o c;:=¢1(h):=6-h
o &y :=cgy(h) ;=120 K2
The accuracies depend on the mesh width of the underlying model and for hy, ho, hy we

obtain:
hy ha hs

er(h) | 03015 |0.075
eo(R) | 0.3 0.075 | 0.01875
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New ’VT(IJ:,) for hl ’Y’r(lje\i) for h? 77(1]:,) for h&
SI SII SI SII SI SIT

N1/3 4.93 | 1.78 7.49 | 1.79 21.47 | 1.91
2NV/3 5.00 | 1.78 7.49 | 2.02 21.47 | 2.18
5N1/3 5.00 | 2.58 8.36 | 2.06 21.47 | 2.37

Table 3: Influence of the mode selection strategy to the maximal ratios %fevv) for varying
mesh widths. In this test the H-matrix approximation has been deactivated (n was set to

0).

Ney ﬁ/,(f:? for hy %(11:7,”) for ho fy,(fi) for hg
€1 ‘ €2 ‘77:0 €1 ‘ ) ‘77:0 €1 €2 ‘77:0
N3 2111211 1.78 5.15 [ 2.22 | 1.79 14.46 | 2.31 | 1.91
2N/3 2111211 1.78 5.15 [ 2.22 | 2.02 14.46 | 2.31 | 2.18
5N1/3 2.63 | 2.63 | 2.58 5.15 | 2.22 | 2.06 14.46 | 2.40 | 2.37

Table 4: Influence of the H-matrix approximation accuracy € = 1(h), e2(h) on the maximal
ratios 'y,(fi) for varying mesh widths. In this test mode selection strategy SII has been applied.

The relative errors g;q of this benchmark are displayed in Figure 9(b) and the maximal ratios
77(116\? in Table 4. In Table 4 can be seen that for the mesh widths hq, hy and hs mode selection
strategy SII and H-matrix accuracy e are sufficient to fulfil postulation (33) for all n., =
N1/3 aNY3 5N/3_ This parameter setting adjusts the H-matrix accuracy automatically to
the underlying mesh width, and the number of selected eigenpairs k; automatically to the
size of the subproblem. Furthermore, in Figure 9(b) can be seen that the approximation of
smaller eigenvalues behaves more sensitive to the chosen accuracy ¢ than the approximation
of larger eigenvalues.

We could observe in our benchmarks that the number of selected eigenpairs k; in (25)
should be of the order O(Nil/ 3) for subdomain problems (which are associated to three-

dimensional subdomains) and of the order O(Nil/ 2) for interface eigenvalue problems (which
are associated to hyperplanes in R?). The accuracy of the H-matrix algebra in (24) should
be proportional to h?, or respectively, expressed in DOF to N~2/3. We recommend this
parameter setting for similar problems. If more accuracy of the eigenpair approximations is
needed k; should be scaled by a constant larger than 1 and &, by a constant smaller than 1.

26



relative error

relative error

relative error

mesh width h; (without H-matrix approximation)

1 T T T T T T T T T

+ “"ﬁ"ﬁ & “‘..:;,‘,"
ant b vl m«‘"’#
L.

0.1 ﬁt’m

L

0.01
strategy SI  +
strategy SlI +
discrete error  +
0001 1 1 1 I I I I I
0O 10 20 30 40 50 60 70 80 90
j
mesh width h, (without H-matrix approximation)
1 T T T T T
0.1
0.01
strategy SI  *
strategy SlI +
discrete error _ +
0001 1 1 1 I I I I I
0 20 40 60 80 100 120 140 160 180
j
mesh width hy (without H-matrix approximation)
1
0.1
0.01
strategy Sl
strategy SlI +
N discrete error _ +
0001 1 1 I I I I

0 50 100 150 200 250 300 350
j

(a) Influence of the mode selection strategy to the
relative errors g;q. In this tests the H-matrix ap-
proximation has been deactivated (n was set to 0).
The approximation errors of the smallest 5N'/3
eigenvalues are displayed.

relative error

relative error

relative error

mesh width hy (using mode selection strategy Sll)

1 3 T T T T T T T T T

Mw‘ "”Wl
0.1 E g g #%
EE"’. o V:*#M
-

0.01

[ | accuracy eps 1andeps2  +
discrete error _ +
0001 I I I I I I

I I
0 10 20 30 40 50 60 70 80 90
j

mesh width h, (using mode selection strategy Sll)

1 E T T T T T T T T T
01 F
5 SR
P
-
e
0.01 ?5:4-3!'
- accuracy eps 1 .
e accuracy eps 2+
discrete error  +
0001 1 1 1 T T T T T

0 10 20 30 40 50 60 70 80 90
j

mesh width h (using mode selection strategy Sl)
01 E T T T T T T T T T

0.01 |¢

et s

0.001 pm
o

accuracy eps 1 +
accuracy eps 2 *

discrete error _ +
I I I I I

0.0001 L
0 10 20 30 40 50 60 70 80 90

J

(b) Influence of the H-matrix approximation ac-

curacy € to the relative errors g;q. In this tests
mode selection strategy SII has been applied. To
highlight the influence of the H-matrix accuracy on
the approximation error of the smallest eigenvalues
only the first 95 are displayed.

Figure 9: Influence of the mode selection strategy and the H-matrix approximation accuracy
€ to the relative errors 5;‘1 of H-AMLS for varying mesh widths and comparison with the

relative discretisation errors 55- ),
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7.3 Timing for Multi-Level (non-recursive) 7-AMLS

The computational costs of the benchmarks from the previous section, using mode selection
strategy SII and H-matrix accuracy s, are given in Table 5 for n., = 5N'/3. The costs of the
different tasks (indicated in Table 1) are displayed there, and the order k of the H-reduced
eigenvalue problem (IA{, ﬁ) The computation of the block diagonalisation K ~ L*K*(L#)T
and the matrix transformation M* ~ (L)TM(L7)~T task (T2) and (T3), are dominating
the costs of the other tasks. However, with increasing DOF the portion of task (T2) and (T3)
to the total computational time is decreasing. To keep the computational costs of task (T4)
small the domain €2 has been substructured several times in our benchmarks to obtain small
subdomain eigenvalue problems in (25) which can be solved easily. In order to keep their size
constant when h is decreased, the number of levels in H-AMLS has to increase, cf. Figure
6 and column (Ivl) in Table 5. The downside of the multi-level substructuring is that for
constant sized subdomain eigenvalue problems, the size of the H-reduced eigenvalue problem
is O(N) with the same block-sparsity structure as the original discrete eigenvalue problem.
Nevertheless, the cost savings achieved in task (T4) outweigh the additional computational
costs in tasks (T'6)—(T8). The eigenpairs of the H-reduced problem have been computed by
the dense eigensolver dsygvx of LAPACK, and correspondingly in Table 5 we observe that
the computational costs of task (T7) are increasing much stronger than the costs of tasks
(T6) and (T8). This is due to the fact that we have not yet applied the recursive version
of H-AMLS.

The mode selection strategy and the H-matrix accuracy have been chosen in such a way
that postulation (33) is fulfilled, i.e., that the eigenvalue approximation error due to H-AMLS
s

matches the discretisation error. In Table 4 we see that the ratios between g;q and are

only slowly increasing in j. It seems that in these benchmarks much more than 5N'/3
eigenvalue approximations can be computed with nearly the same approximation quality
as the discretisation. Increasing the number of sought eigenpairs, however, increases just
slightly the computational costs of H-AMLS as it can be seen in Figure 10. There the total
computational time of H-AMLS depending on n., is displayed with n., up to 50N/3.
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characteristics computational time of tasks computational
H-AMLS in relation to total time time
ne | N | k|| | (T2)+(T3) | (T4) | (T6) | (T7) | (T8) tan | ave(tan)
hi | 95 6,859 185 | 3 | 2.63 55.1% 41.2% | 0.74% | 0.31% | 2.45% 10s | 15.18s
he || 195 | 59,319 | 1,649 | 6 | 2.22 69.0% 19.2% | 3.07% | 3.18% | 5.28% 2min 51s | 14.86s
hs || 395 | 493,039 | 13,537 | 9 | 2.40 33.2% 5.24% | 7.99% | 45.0% | 8.38% || 1h 27min 44s | 27.02s

Table 5: Computational costs of H-AMLS computing the smallest n., = 5N/? eigenpairs
for varying mesh widths using mode selection strategy SII and H-matrix accuracy e5. The
computational costs of the tasks (T1) and (T5) are negligible and left out in this table. ¢, is
the total computational time and avg(t,;) the average time defined in (32) using ., = 5N'/3.

characteristics computational time of tasks computational
recursive H-AMLS in relation to total time time
ne | N k| i) | (T2)+(T3) | (T4) | (T6) | (T7) | (T8) ta | avg(tan)
hi| 95 6,859 185 | 2.63 55.6% 40.6% | 0.73% | 0.30% | 2.47% 10s | 15.31s
hy || 195 59,319 | 1,505 | 2.22 64.8% 18.2% | 6.31% | 2.40% | 8.10% 3min 5s | 16.01s
hs || 395 493,039 | 3,105 | 2.99 62.7% 9.92% | 11.9% | 1.67% | 13.6% 46min 40s | 14.37s
hy || 795 | 4,019,679 | 6,323 | (%) 47.3% 5.06% | 23.0% | 1.11% | 23.3% | 20h 18min 20s | 22.87s

Table 6: Computational costs of recursive H-AMLS computing the smallest n., = 5N/3
eigenpairs for varying mesh widths using the parameter setting described in Section 7.4. The
discretisation error (x) was beyond our computing capabilities.

7.4 Timing for Recursive H-AMLS

In the previous section we have seen that the fast H-matrix algebra can be successfully applied
for the computation of the transformed eigenvalue problem, task (T2) and (T3), leading to
a massive reduction of the computational time of AMLS. These two tasks are the bottleneck
of classical AMLS, each with costs of at least the order O(N?) for three-dimensional problems
(cf. Section 4). Using the fast H-matrix algebra these tasks are now computed in almost
linear complexity O(N log® N) independently of the number n., of sought eigenvectors.

In this section we consider the recursive H-AMLS version where the size of the H-reduced
eigenvalue problem can be bounded by O(N'/3), c¢f. Remark 5.

We choose the parameters for recursive H-AMLS as follows:

1. In the multi-level substructuring we use 4 levels accumulating to a total of m = 31 sub-
problems (16 subdomain and 15 interface eigenvalue problems). For the computation
of the transformation (24) we use H-matrix accuracy e(h) from the previous section.

2. For large-sized subdomain problems we compute recursively by H-AMLS the smallest
5N1-1/ s eigenpairs.

3. For large-sized interface problems we compute the smallest Nil/ 2 eigenpairs by SIL
where the inverse is approximated in the H-matrix format using the fast H-algebra.
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4. For small-sized subproblems we use the LAPACK solver dsygvx and compute the eigen-
pairs directly. For subdomain problems we compute the smallest 1.5Ni1/ 3 eigenpairs
and for interface problems the smallest Nil/ 2,

Using this parameter setting we achieved that 7\") < 3 holds for n., = 5N'/3 and the mesh
widths hq, he and hs as it can be seen in Table 6. Analogously to (33), the value %(M)
the maximal ratio between the relative discretisation error and the relative error associated
to recursive H-AMLS. Furthermore, in Table 6 we display the computational costs of the
different tasks and the size of the H-reduced problem.

We remark that in Table 6 and in the following the time measurements concerning the
different tasks have to be seen accumulatively, e.g., the computational time of task (T7) in
Table 6 includes as well the time spent for the solution of the H-reduced eigenvalue problems
of the recursive calls of H-AMLS. For the finest mesh width hy := h3/2 we obtain a discrete
eigenvalue problem with roughly 4 million DOF.

To get a better impression of the practical performance of recursive H-AMLS we investigate
the average computational time of the method defined in (32). In Figure 11(a) the average
time avg(t,) is displayed for the computation of the smallest n., = 5N'/3 eigenpairs for
varying DOF with N up to 6 million. It can be observed that the average time is constant.
Correspondingly recursive H-AMLS reaches in our benchmarks optimal complexity O(ng,N).

In order to profile the complexity of tasks (T2)—(T8) (except for (T5)) in more detail, we
measure the average time for each task separately (accumulated as explained above). The
results in Figure 11(b) show that for all involved tasks the average time (per eigenvector) is
roughly constant.

8 Conclusion

In order to solve an elliptic PDE eigenvalue problem we have combined a recursive version of
the automated multi-level substructuring with the concept of hierarchical matrices. Whereas
the classical AMLS method is very effective in the two-dimensional case, it is getting very
expensive for three-dimensional problems. The required computation of the transformed
eigenvalue problem (K, M) is one computational bottleneck of the classical AMLS method
in the three-dimensional case. Using the fast H-matrix algebra, however, we can compute
the transformed problem very efficiently in almost linear complexity O(N log® N) which is
even independent of the number of sought eigenpairs. Also the computation of the partial
eigensolutions (K”, M”) and the reduced eigenvalue problem (K M ) are performed much
more efficiently using the fast H-matrix algebra and the new recursive AMLS. Altogether
the new H-AMLS method allows us to compute a large amount of eigenpair approximations
in almost optimal complexity.

H-AMLS has to be benchmarked in further examples, especially for problems arising from
applications. However, the numerical results demonstrate the potential of the method in
solving large-scale elliptic PDE eigenvalue problems.
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Figure 11: Average computational time (per eigenvector) of recursive H-AMLS for the
computation of the smallest n., = 5N'/3 eigenpairs.
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