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Abstract. In this paper, we employ the reduced basis method for the efficient and reliable solu-
tion of parametrized optimal control problems governed by scalar coercive elliptic partial differential
equations. We consider the standard linear-quadratic problem setting with distributed control and
unilateral control constraints. For this problem class, we propose two different reduced basis approx-
imations and associated error estimation procedures. In our first approach, we directly consider the
resulting optimality system, introduce suitable reduced basis approximations for the state, adjoint,
control, and Lagrange multipliers, and use a projection approach to bound the error in the reduced
optimal control. For our second approach, we first reformulate the optimal control problem using
a slack variable, we then develop a reduced basis approximation for the slack problem by suitably
restricting the solution space, and derive error bounds for the slack based optimal control. We discuss
benefits and drawbacks of both approaches and substantiate the comparison by presenting numerical
results for several model problems.
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1. Introduction. Optimal control problems governed by partial differential equa-
tions (PDEs) appear in a wide range of applications in science and engineering, such as
heat phenomena, crystal growth, and fluid flow, see e.g. [23, 13, 22, 31, 7] for theoret-
ical results and applications. Their solution using classical discretization techniques
such as finite elements (FE) or finite volumes can be computationally expensive and
time-consuming. Often, additional parameters enter the optimal control formulation
either through the PDE, e.g., material or geometry parameters or boundary and ini-
tial conditions, the cost functional, e.g., regularization parameters, or the constraints,
e.g., lower or upper bounds for the control variable. For a fixed set of parameters,
one obtains a standard PDE-constrained optimal control problem. In many appli-
cations, however, such as a (controller) design exercise or a robust control context,
the parameter themselves may vary or be allowed to vary. A bilevel optimization
problem arises in such a case, where the upper-level optimization is performed over
the parameters and the lower-level optimization task is to solve the optimal control
problem. The surrogate model approach, where the original high-dimensional (say,
finite element) approximation is replaced by a reduced order approximation, allows
to speed up the low-level optimization task and thus has proven very useful in this
context. In fact, various model order reduction techniques have been proposed to
solve PDE-constrained optimal control problems: proper orthogonal decomposition
(POD) e.g. in [20, 1, 21, 32], reduction based on inertial manifolds in [15], and reduced
basis (RB) methods in [16, 8, 18, 17, 26]. However, the solution of the reduced order
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optimal control problem is generally suboptimal and reliable error estimation is thus
crucial.

Previous work on reduced basis methods for optimal control problems considered
distributed but unconstrained controls or constrained but scalar controls (possibly as
a function of time in the parabolic case). There exists, to the best of our knowledge,
no previous work providing reduced order approximations and associated rigorous as
well as efficiently evaluable a posteriori error bounds for distributed optimal control
problems with control constraints. Control constraints obviously pose a major chal-
lenge for reduced order approaches because (i) the problem becomes nonlinear, and
thus many of the standard approaches for model reduction cannot be applied, and
(ii) the construction of the optimal solution and error bound is usually based on a
pointwise analysis of the optimality equation. Since this pointwise analysis takes place
in the original high-dimensional approximation space, it often results in an inefficient
reduced order method — besides contradicting the reduced order philosophy of using
global basis functions and fully decoupling the low-dimensional approximation from
the underlying high-dimensional problem.

In the present paper we aim to close this gap. We employ the reduced basis
method [28, 30] as a surrogate model for the solution of distributed and constrained
optimal control problems governed by parametrized elliptic partial differential equa-
tions. After stating the problem in section 2 we present the following contributions:

• In section 3 we extend previous work on reduced basis methods for variational
inequalities in [12] to the optimal control setting. We introduce a reduced
basis approximation for the first-order optimality system where we impose an
additional convex cone condition for the Lagrange multiplier. Although the
RB approximation is online-efficient, the reduced order optimal control is not
guaranteed to be feasible. The proposed a posteriori error bound accounts
for the constraint-violation which needs to be evaluated pointwise and is thus
not fully offline-online decomposable, i.e. the online cost depends linearly on
the dimension of the underlying high-dimensional control space. However,
due to the only linear dependence the online cost may be acceptable in many
applications.

• In section 4 we build on the recent work in [35] and propose a novel reduced
basis slack approach for optimal control. More precisely, we first introduce a
slack formulation for the optimal control problem which we obtain by shifting
the optimal control by the control constraint. We then impose a convex cone
condition on the reduced basis approximation of the slack variable, i.e., the
shifted control. The overall reduced basis slack approximation is not only
online-efficient, but also provides a feasible reduced order optimal control.
We further propose an associated a posteriori error bound which exploits
the feasibility of the slack approximation and satisfies a full offline-online
decomposition.

In section 5 we present a variation of the standard greedy algorithm proposed origi-
nally in [33]. After presenting numerical results for three model problems – two heat
phenomena and a Graetz flow problem – in section 6, we provide a detailed comparison
of our approach with other approaches in section 7.

2. General problem statement and finite element discretization. In this
section we introduce the parametrized linear-quadratic optimal control problem with
elliptic PDE constraint and a constrained distributed control. We introduce a finite
element truth discretization for the exact, i.e., continuous problem and recall the
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first-order necessary (and in our convex setting sufficient) optimality conditions.

2.1. Preliminaries. Let Ye with H1
0 (Ω) ⊂ Ye ⊂ H1(Ω) be a Hilbert space over

the bounded Lipschitz domain Ω ⊂ Rd, d ∈ {1, 2, 3}, with boundary Γ.1 The inner
product and induced norm associated with Ye are given by (·, ·)Y and ‖·‖Y =

√
(·, ·)Y ,

respectively. We assume that the norm ‖·‖Y is equivalent to the H1(Ω)-norm and
denote the dual space of Ye by Y ′e . We also introduce the control Hilbert space
Ue = L2(Ω), together with its inner product (·, ·)U , induced norm ‖·‖U =

√
(·, ·)U , and

associated dual space U ′e.2 Furthermore, let D ⊂ RP be a prescribed P -dimensional
compact parameter set in which our P -tuple (input) parameter µ = (µ1, . . . , µP )
resides.

We directly consider a finite element approximation for the infinite-dimensional
optimal control problem. To this end, we define two conforming finite element spaces
Y ⊂ Ye and U ⊂ Ue of dimensions NY = dim(Y ) and NU = dim(U). We shall assume
that the truth spaces Y and U are sufficiently rich such that the finite element solutions
guarantee a desired accuracy over the whole parameter domain D.

We next introduce the parameter-dependent bilinear form a(·, ·;µ) : Y × Y → R,
and shall assume that a(·, ·;µ) is continuous,

(2.1) 0 < γa(µ) = sup
w∈Y \{0}

sup
v∈Y \{0}

a(w, v;µ)

‖w‖Y ‖v‖Y
≤ γa0 <∞ ∀µ ∈ D,

and coercive,

(2.2) αa(µ) = inf
v∈Y \{0}

a(v, v;µ)

‖v‖2Y
≥ αa0 > 0 ∀µ ∈ D.

Furthermore, we introduce the parameter-dependent continuous linear functional
f(·;µ) : Y → R. We also introduce the parameter-dependent bilinear form b(·, ·;µ) :
U × Y → R and assume that b(·, ·;µ) is continuous,

(2.3) 0 < γb(µ) = sup
z∈U\{0}

sup
v∈Y \{0}

b(z, v;µ)

‖z‖U‖v‖Y
≤ γb0 <∞ ∀µ ∈ D.

Finally, in anticipation of the optimal control problem defined in subsection 2.2, we
introduce the parametrized control constraint ua(µ) ∈ U and desired state yd ∈ YD.
Here, YD ⊂ L2(Ω

D
) is a suitable FE space for the observation subdomain Ω

D
⊂ Ω.

The involved bilinear and linear forms as well as the control constraint are as-
sumed to depend affinely on the parameter, i.e., for all w, v ∈ Y, z ∈ U and all
parameters µ ∈ D,

a(w, v;µ) =

Qa∑
q=1

Θq
a(µ) aq(w, v), b(z, v;µ) =

Qb∑
q=1

Θq
b(µ) bq(z, v),

(2.4)

f(v;µ) =

Qf∑
q=1

Θq
f (µ) fq(v), ua(x;µ) =

Qua∑
q=1

Θq
ua(µ)uqa(x),

1The subscript “e” denotes “exact”.
2Our framework directly extends to Neumann boundary controls Ue = L2(Γ) or finite dimensional

controls Ue = Rm. Also distributed controls on a subdomain ΩU ⊂ Ω or Neumann boundary controls
on a boundary segment ΓU ⊂ Γ are possible.
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for some (preferably) small integers Qa, Qb, Qf , and Qua. Here, the coefficient
functions Θq

•(·) : D → R are continuous and depend on µ; whereas, the continuous
bilinear forms aq(·, ·) : Y ×Y → R, bq(·, ·) : U×Y → R, as well as the continuous linear
forms fq : Y → R and uqa ∈ U do not depend on µ. Although we here choose yd(x)
to be parameter-independent, our approach directly extends to an affinely parameter-
dependent yd(x;µ) [19].

For the development of the a posteriori error bounds we will also require the
following ingredients. We assume that we are given a positive lower bound αLB

a (·) :
D → R+ for the coercivity constant αa(µ) defined in (2.2) such that

(2.5) 0 < αa0 ≤ αLB
a (µ) ≤ αa(µ) ∀µ ∈ D.

Furthermore, we assume that we have upper bounds available for the constant

(2.6) CUB
Ω
D
≥ CΩ

D
≡ sup
v∈Y \{0}

|v|L2(Ω
D

)

‖v‖Y
≥ 0 ∀µ ∈ D,

and the continuity constant of the bilinear form b(·, ·;µ)

(2.7) γUB
b (µ) ≥ γb(µ) ∀µ ∈ D.

It is possible to compute these constants (or their bounds) efficiently in terms of an
offline-online procedure; see subsection 3.4 for details.

2.2. Abstract formulation. We consider the following finite element optimal
control problem with weak formulation of the control constraint

min
y,u

J(y, u) =
1

2
‖y − yd‖2L2(Ω

D
) +

λ

2
‖u‖2U(P)

s.t. (y, u) ∈ Y × U solves a(y, v;µ) = b(u, v;µ) + f(v;µ) ∀v ∈ Y,
(ua(µ), ρ)U ≤ (u, ρ)U ∀ρ ∈ U+,

where U+ = {ρ ∈ U ; ρ ≥ 0 almost everywhere} defines a nonnegative convex cone and
we dropped the µ-dependence of the state y and control u for the sake of readability.
We note that the last line of (P) is equivalent to u being in the closed convex admissible
set Uad = {u ∈ U ; (ua(µ), ρ)U ≤ (u, ρ)U ∀ρ ∈ U+}. In the following we call problem
(P) the “primal” problem. The existence and uniqueness of the solution is standard
(see e.g. Theorem 1.43 in [13]); for the boundedness of the solution we refer to [2].

2.3. First-order optimality conditions. Introducing the Lagrange functional
for (P)

L(y, u, p, σ;µ) = J(y, u) + a(y, p;µ)− b(u, p;µ)− f(p;µ) + (ua(µ)− u, σ)U

we obtain the necessary (and here sufficient) first-order optimality system: Given
µ ∈ D, the optimal solution (y∗, p∗, u∗, σ∗) ∈ Y × Y × U × U satisfies

a(y∗, φ;µ) = b(u∗, φ;µ) + f(φ;µ) ∀φ ∈ Y,(2.8a)

a(ϕ, p∗;µ) = (yd − y∗, ϕ)L2(Ω
D

) ∀ϕ ∈ Y,(2.8b)

(λu∗, ψ)U − b(ψ, p∗;µ)− (σ∗, ψ)U = 0 ∀ψ ∈ U,(2.8c)

(ua(µ)− u∗, ρ)U ≤ 0 ∀ρ ∈ U+,(2.8d)

(ua(µ)− u∗, σ∗)U = 0, σ∗ ≥ 0.(2.8e)
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Note that we follow a first-discretize-then-optimize approach here, but we would ob-
tain the same optimality conditions by employing a first-optimize-then-discretize ap-
proach for our control problem. The last line is the well-known complimentary slack-
ness condition. We refer to Corollary 1.3 and Theorem 1.43 in [13] for a detailed
derivation of (2.8) via the variational inequality (λu∗, ψ − u∗)U − b(ψ − u∗, p∗;µ) ≥
0 ∀ψ ∈ Uad. The last inequality can be reformulated by the means of the Lagrange
multiplier σ ∈ U+ into (2.8c)-(2.8e).

2.4. Algebraic formulation. In this paper we assume that the state variable
is discretized by P1, i.e., continuous and piecewise linear, and the control variable
by P0, i.e., piecewise constant, finite elements. We introduce two bases for the finite
element spaces Y and U , such that

Y = span{φyi , i = 1, . . . ,NY } and U = span{φui , i = 1, . . . ,NU},

where φyi ≥ 0, i = 1, . . . ,NY , and φui ≥ 0, i = 1, . . . ,NU , are the usual hat and
bar basis functions. Using these basis functions we can express the functions y ∈ Y ,
p ∈ Y , u ∈ U , and σ ∈ U as

y =

NY∑
i=1

yiφ
y
i , p =

NY∑
i=1

piφ
y
i , u =

NU∑
i=1

uiφ
u
i , and σ =

NU∑
i=1

σiφ
u
i ,

respectively. The corresponding finite element coefficient vectors are given by y =
(y1, . . . , yNY )T ∈ RNY , p = (p1, . . . , pNY )T ∈ RNY , u = (u1, . . . , uNU )T ∈ RNU , and
σ = (σ1, . . . , σNU )T ∈ RNU . Note that by definition of U+ and since φui ≥ 0, the
condition ρ ∈ U+ translates into the condition ρ ≥ 0 for the corresponding coeffi-
cient vector, ρ = (ρ1, . . . , ρNU )T ∈ RNU . We also introduce the control mass matrix
MU with entries (MU )ij = (φui , φ

u
j )U , the matrices Bq, 1 ≤ q ≤ Qb with entries

Bqij = bq(φuj , φ
y
i ), and B(µ) =

∑Qb
q=1 Θq

b(µ)Bq. Note that for a P0 control discretiza-
tion MU is a positive diagonal matrix and hence the point-wise and weak constraint
formulations are equivalent: u(x) ≥ ua(x;µ) a.e. ⇔ (u, ρ)U ≥ (ua(µ), ρ)U ∀ρ ∈ U+.
However, this is in general not true for other control discretizations, e.g. P1. The
algebraic formulation of the optimality system (2.8) is standard and thus omitted.

3. Reduced basis method for the primal problem. In this section we
present the first main contribution of the paper. Based on the truth optimal con-
trol problem (P) we propose a reduced basis optimal control problem (PN) in the
following section. Subsequently, we introduce a rigorous a posteriori bound for the
error between the truth and reduced optimal control in Theorem 4.

3.1. Reduced basis approximation. To begin, we define the reduced basis
spaces YN ⊂ Y , UN ⊂ U , ΣN ⊂ U , as well as the convex cone Σ+

N ⊂ U+ as follows:
given N parameter samples µ1, . . . , µN , we set

YN = span{ζy1 , . . . , ζ
y
NY
} = span{y∗(µ1), p∗(µ1), . . . , y∗(µN ), p∗(µN )},

UN = span{ζu1 , . . . , ζuNU } = span{u∗(µ1), σ∗(µ1), . . . , u∗(µN ), σ∗(µN )},
ΣN = span{ζσ1 , . . . , ζσNσ} = span{σ∗(µ1), . . . , σ∗(µN )},
Σ+
N = span+{ζσ1 , . . . , ζσNσ} = span+{σ∗(µ1), . . . , σ∗(µN )},

where we assume that the basis functions, ζ•1 , . . . ζ
•
N•

, are linearly independent. Note
that we employ integrated spaces for the state and adjoint as well as for the control
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(cf. Remarks 1 and 2). For the spaces YN and UN we additionally assume that the
basis functions are orthogonal, i.e., (ζyi , ζ

y
j )Y = δij and (ζui , ζ

u
j )U = δij , where δij

is the Kronecker delta. This orthogonality is favorable to keep the condition of the
RB algebraic linear systems small [30]. For the RB space ΣN and the RB cone Σ+

N

we assume that ζσ1 , . . . ζ
σ
Nσ

are not orthogonalized, such that all elements in Σ+
N are

nonnegative. This nonnegativity is crucial to define the reduced problem (PN) of (P).
We describe the greedy approach to construct the RB spaces in section 5.

Given the RB spaces we introduce the reduced primal problem

min
yN ,uN

J(yN , uN ) =
1

2
‖yN − yd‖2L2(Ω

D
) +

λ

2
‖uN‖2U(PN)

s.t. (yN , uN ) ∈ YN × UN solves a(yN , v;µ)=b(uN , v;µ)+f(v;µ) ∀v ∈ YN ,

(ua(µ), ρ)U ≤(uN , ρ)U ∀ρ ∈ Σ+
N .

It is important to note that the last line of (PN) defines the admissible set for uN :
Uad,N = {uN ∈ UN ; (ua(µ), ρ)U ≤ (uN , ρ)U ∀ρ ∈ Σ+

N}, which is generally not a subset
of Uad. Although we thus cannot ensure feasibility of the RB control u∗N on the FE
level, i.e. u∗N ∈ Uad, we still expect u∗N to provide good approximations to the optimal
FE control u∗. We also note that the definition of the RB admissible set Uad,N

through the cone Σ+
N is the reason why we do not orthogonalize the σ-snapshots: the

orthogonalization would destroy the nonnegativity of the snapshots ζσ1 , . . . , ζ
σ
Nσ

which
is of central importance for the weak constraint formulation.

Employing the Lagrange functional for (PN), given by

LN (yN , uN , pN , σN ;µ)

= J(yN , uN ) + a(yN , pN ;µ)− b(uN , pN ;µ)− f(pN ;µ) + (ua(µ)− uN , σN )U ,

we obtain the necessary (and here sufficient) first-order optimality system: Given
µ ∈ D, the optimal RB solution (y∗N , p

∗
N , u

∗
N , σ

∗
N ) ∈ YN × YN × UN × ΣN satisfies

a(y∗N , φ;µ) = b(u∗N , φ;µ) + f(φ;µ) ∀φ ∈ YN ,(3.1a)

a(ϕ, p∗N ;µ) = (yd − y∗N , ϕ)L2(Ω
D

) ∀ϕ ∈ YN ,(3.1b)

(λu∗N , ψ)U − b(ψ, p∗N ;µ)− (σ∗N , ψ)U = 0 ∀ψ ∈ UN ,(3.1c)

(ua(µ)− u∗N , ρ)U ≤ 0 ∀ρ ∈ Σ+
N ,(3.1d)

(ua(µ)− u∗N , σ∗N )U = 0, σ∗N ∈ Σ+
N .(3.1e)

Remark 1 (Existence, uniqueness, integrated space YN ). Since (PN) is a linear-
quadratic optimal control problem over the closed convex admissible set Uad,N , the ex-
istence and uniqueness of the RB optimal control u∗N follows from standard arguments.
We refer to Theorem 1.43 in [13]. Also note that we use a single integrated reduced
basis trial and test space YN for the state and adjoint equations as one ingredient to
ensure stability of the system (3.1). We refer to [18, 17, 26] for further details and
discussion on the use of integrated spaces for the state and adjoint equations.

Remark 2 (Stability, integrated space UN ). For the stability of the RB solutions
we need to also show that the RB inf-sup constant

βN := inf
ψσ∈ΣN

sup
ψu∈UN

(ψσ, ψu)U
‖ψσ‖U‖ψu‖U
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is bounded away from zero. Although the FE inf-sup constant satisfies

β := inf
ψσ∈U

sup
ψu∈U

(ψσ, ψu)U
‖ψσ‖U‖ψu‖U

> 0,

it is well known that the inf-sup stability of the RB problem is not directly inherited
from the FE problem (note that in our case β = 1). However, we can guarantee that
βN ≥ β > 0 by enriching the RB control space with suitable supremizers [24]. To
this end, we introduce the supremizing operator T : U → U , defined by (Tψσ, ψu)U =
(ψσ, ψu)U , ∀ψσ, ψu ∈ U , from which we conclude that T is the identity. Hence, as
a second ingredient, we have to enrich the RB control space UN by the Lagrange
multiplier snapshots Tσ∗(µn) = σ∗(µn), 1 ≤ n ≤ N , to ensure an inf-sup stable RB
space.

When using integrated space YN and UN one can then show boundedness and
continuous dependence on the data f , ua, and yd for the RB solution of (PN). If we
further assume that the functions Θq

•(µ) in the affine expansion (2.4) are Lipschitz-
continuous with respect to the parameter µ, the RB solution then also depends Lipschitz-
continuously on the parameter. We refer to [2] for the detailed proofs.

3.2. Algebraic formulation. We express the RB variables as

yN =

NY∑
i=1

yNiζ
y
i , pN =

NY∑
i=1

pNiζ
y
i , uN =

NU∑
i=1

uNiζ
u
i , and σN =

Nσ∑
i=1

σNiζ
σ
i ,

and denote the corresponding coefficient vectors as yN = (yN1, . . . , yNNY )T ∈ RNY ,
pN = (pN1, . . . , pNNY )T ∈ RNY , uN = (uN1, . . . , uNNU )T ∈ RNU , and σN =
(σN1, . . . , σNNσ )T ∈ RNσ . For later use we also introduce an RB matrix, ZσN =
(ζσ1 | · · · | ζ

σ
Nσ ) ∈ RNU×Nσ , which is associated to the above defined RB space ΣN .

We can then represent an RB function σN ∈ ΣN with RB coefficients σN ∈ RNσ in
terms of its FE basis coefficient vector as ZσNσN ∈ RNU . Analogously, we define the
RB matrix ZyN = (ζy1 | · · · | ζ

y
NY

) ∈ RNY ×NY .
The algebraic formulation of the RB state equation (3.1a), adjoint equation (3.1b),

and optimality condition (3.1c) is standard, see e.g. [19]. We thus focus on the new
ingredient, the inequality condition (3.1d) and the complimentary slackness condi-
tion (3.1e). To this end, we introduce the RB vector Uσa,N (µ) ∈ RNσ with entries

Uσa,N (µ)i = (ua(µ), ζσi )U , and RB matrix UσN ∈ RNσ×NU with entries (UσN )ij =

(ζuj , ζ
σ
i )U . The inequality condition, (ua(µ)−u∗N , ρ)U ≤ 0 ∀ρ ∈ Σ+

N , is then equivalent
to the algebraic formulation Uσa,N (µ) − UσNu∗N ≤ 0. Similarly, the complementarity

condition (ua(µ) − u∗N , σ∗N )U = 0 translates into (Uσa,N (µ) − UσNu∗N )Tσ∗N = 0. By

definition of Σ+
N it follows that σ∗N ∈ Σ+

N is equivalent to σ∗N ≥ 0. Furthermore, the
specific choice of the set Σ+

N for the Lagrange multiplier and the condition σ∗N ≥ 0
ensure the nonnegativity of the approximation σ∗N .

3.3. Primal error bound. We next propose an a posteriori error bound for the
optimal control. The bound is based on an RB approach for variational inequalities of
the first kind proposed in [12]. Before stating the main result, we define the following
approximation errors of the primal RB system

ey(µ) = y∗ − y∗N , ep(µ) = p∗ − p∗N , eu(µ) = u∗ − u∗N , eσ(µ) = σ∗ − σ∗N ,

as well as the corresponding residuals.
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Definition 3. The residuals of the state equation, the adjoint equation, and the
optimality equation are defined by

ry(φ;µ) = b(u∗N , φ;µ) + f(φ;µ)− a(y∗N , φ;µ) ∀φ ∈ Y ∀µ ∈ D,
rp(ϕ;µ) = (yd − y∗N , ϕ)L2(Ω

D
) − a(ϕ, p∗N ;µ) ∀ϕ ∈ Y ∀µ ∈ D,

ru(ψ;µ) = −λ(u∗N , ψ)U + b(ψ, p∗N ;µ) + (σ∗N , ψ)U ∀ψ ∈ U ∀µ ∈ D.

Theorem 4. Let u∗ and u∗N be the optimal solutions of the FE optimal control
problem (P) and of the reduced primal problem (PN), respectively. For any given
parameter µ ∈ D the error in the optimal control satisfies

‖eu(µ)‖U ≤ ∆pr
N (µ),

where ∆pr
N (µ) := c1(µ) +

√
c1(µ)2 + c2(µ) with nonnegative coefficients

c1(µ) =
1

2λ

(
‖ru‖U ′ +

γUB
b (µ)

αLB
a (µ)

‖rp‖Y ′ + λδ1

)
,(3.2a)

c2(µ) =
1

λ

[
2

αLB
a (µ)

‖ry‖Y ′‖rp‖Y ′ +
1

4

(
CUB

Ω
D

αLB
a (µ)

(
‖ry‖Y ′ + γUB

b (µ)δ1
))2

(3.2b)

+

(
‖ru‖U ′ +

γUB
b (µ)

αLB
a (µ)

(‖rp‖Y ′)
)
δ1 + δ2

]
,

and

δ1 = ‖[ua − u∗N ]+‖U , δ2 = ([ua − u∗N ]+, σ
∗
N )U .

Here [·]+ = max(·, 0) denotes the positive part. Note that we sometimes use r• instead
of r•(·;µ) for the sake of readability.

Proof. The finite element optimal solutions y∗, p∗, u∗, σ∗ satisfy the optimality
conditions (2.8) and hence we obtain the following error-residual equations:

a(ey, φ;µ)− b(eu, φ;µ) = ry(φ;µ) ∀φ ∈ Y,(3.3a)

a(ϕ, ep;µ) + (ey, ϕ)L2(Ω
D

) = rp(ϕ;µ) ∀ϕ ∈ Y,(3.3b)

λ(eu, ψ)U − b(ψ, ep;µ)− (eσ, ψ)U = ru(ψ;µ) ∀ψ ∈ U.(3.3c)

From (3.3a) with φ = ey and invoking (2.2) and (2.5) we obtain

αLB
a (µ)‖ey‖2Y ≤ a(ey, ey;µ) = ry(ey;µ) + b(eu, ey;µ),

and hence

(3.4) ‖ey‖Y ≤
1

αLB
a (µ)

(
‖ry(·;µ)‖Y ′ + γUB

b (µ)‖eu‖U
)
,

where we used (2.3) and (2.7). Similarly, from (3.3b) with ϕ = ep we get

αLB
a (µ)‖ep‖2Y ≤ a(ep, ep;µ) = rp(ep;µ)− (ey, ep)L2(Ω

D
),

and hence invoking (2.6)

(3.5) ‖ep‖Y ≤
1

αLB
a (µ)

(
‖rp(·;µ)‖Y ′ + CUB

Ω
D
‖ey‖L2(Ω

D
)

)
.
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Choosing φ = ep, ϕ = ey, ψ = eu in (3.3) we have

a(ey, ep;µ)− b(eu, ep;µ) = ry(ep;µ),(3.6a)

a(ey, ep;µ) + (ey, ey)L2(Ω
D

) = rp(ey;µ),(3.6b)

λ(eu, eu)U − b(eu, ep;µ)− (eσ, eu)U = ru(eu;µ).(3.6c)

Adding (3.6b) and (3.6c) and subtracting (3.6a) results in

λ(eu, eu)U + (ey, ey)L2(Ω
D

) − (eσ, eu)U = −ry(ep;µ) + rp(ey;µ) + ru(eu;µ),

and we thus obtain the inequality

λ‖eu‖2U + ‖ey‖2L2(Ω
D

) ≤‖ry‖Y ′‖ep‖Y + ‖rp‖Y ′‖ey‖Y(3.7)

+ ‖ru‖U ′‖eu‖U + (eσ, eu)U .

We now consider the last term (eσ, eu)U and note that

(eσ, eu)U = (σ∗ − σ∗N , u∗ − u∗N )U = (u∗ − u∗N , σ∗)U + (u∗N − u∗, σ∗N )U

= (u∗ − ua, σ∗)U + (ua − u∗N , σ∗)U + (u∗N − ua, σ∗N )U + (ua − u∗, σ∗N )U .

By the complementarity relations (2.8e) and (3.1e) the first and third term on the
right hand side are zero. Since (ua−u∗, σ∗N )U ≤ 0 (by (2.8d) with ρ = σ∗N ) we obtain

(eσ, eu)U ≤ (ua − u∗N , σ∗)U ≤ ([ua − u∗N ]+, σ
∗)U(3.8)

= ([ua − u∗N ]+, σ
∗ − σ∗N )U + ([ua − u∗N ]+, σ

∗
N )U

≤ ‖[ua − u∗N ]+‖U‖σ∗ − σ∗N‖U + ([ua − u∗N ]+, σ
∗
N )U .

Using the definitions of δ1 and δ2 we thus obtain the overall estimate

(eσ, eu)U ≤ ‖eσ‖U δ1 + δ2.(3.9)

It remains to bound the term ‖eσ‖U . Choosing ψ = eσ in (3.3c) we obtain the bound

‖eσ‖2U = −ru(eσ;µ) + λ(eu, eσ)U − b(eσ, ep;µ)

≤
(
‖ru‖U ′ + λ‖eu‖U + γUB

b (µ)‖ep‖Y
)
‖eσ‖U .

Invoking again (3.4) and (3.5) we thus have

‖eσ‖U ≤‖ru‖U ′ + λ‖eu‖U +
γUB
b (µ)

αLB
a (µ)

(
‖rp‖Y ′ + CUB

Ω
D
‖ey‖L2(Ω

D
)

)
.(3.10)

Next, we use the inequalities (3.4), (3.5), (3.9), and (3.10) in (3.7) to obtain:

λ‖eu‖2U+‖ey‖2L2(Ω
D

) ≤ ‖eu‖U
(
‖ru‖U ′ +

γUB
b (µ)

αLB
a (µ)

‖rp‖Y ′ + λδ1

)
(3.11)

+ ‖ey‖L2(Ω
D

)

CUB
Ω
D

αLB
a (µ)

(
‖rp‖Y ′ + γUB

b (µ)δ1
)

+
2

αLB
a (µ)

‖ry‖Y ′‖rp‖Y ′ + δ1

(
‖ru‖U ′ +

γUB
b (µ)

αLB
a (µ)

‖rp‖Y ′
)

+ δ2.
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It thus follows from applying Young’s inequality to the second line of (3.11) that

λ‖eu‖2U ≤‖eu‖U
(
‖ru‖U ′ +

γUB
b (µ)

αLB
a (µ)

‖rp‖Y ′ + λδ1

)
(3.12)

+
1

4

(
CUB

Ω
D

αLB
a (µ)

(
‖rp‖Y ′ + γUB

b (µ)δ1
))2

+
2

αLB
a (µ)

‖ry‖Y ′‖rp‖Y ′ + δ1

(
‖ru‖U ′ +

γUB
b (µ)

αLB
a (µ)

‖rp‖Y ′
)

+ δ2.

Finally, we can formulate the last inequality as a quadratic inequality in ‖eu‖U ,

‖eu‖2U − 2c1(µ)‖eu‖U − c2(µ) ≤ 0,

and hence ‖eu‖U is bounded by the larger root given by ∆pr
N (µ).

We note that most of the ingredients of the error bound ∆pr
N (µ) introduced in

Theorem 4 are standard, i.e., the dual norms of state, adjoint, and control residuals as
well as coercivity and continuity constants respectively their lower and upper bounds.
The only non-standard terms are δ1 and δ2, which measure the constraint-violation of
the RB optimal control u∗N : recall that Uad,N 6⊂ Uad and thus u∗N may not be feasible
on the FE level. As a result, the online computational cost to evaluate δ1 and δ2 – and
hence the error bound ∆pr

N (µ) – depends on the FE control dimension NU : first, we
need to evaluate the positive part [ua−u∗N ]+ on the FE level; and second, we have to
represent σ∗N in the FE basis to compute δ2. The most expensive operations are the
matrix-vector products ZuNu

∗
N and ZσNσ

∗
N requiring O((NU +Nσ)NU ) operations.

An interesting observation is that the error bound ∆pr
N (µ) turns into the a poste-

riori control error bound proposed in [19] for unconstrained optimal control problems
if the reduced problem is unconstrained: The terms δ1 and δ2 vanish by feasibility of
the RB optimal control, u∗N (µ) ∈ Uad, and since σ∗N (µ) = 0 holds, the residual ru(·;µ)
reduces to the unconstrained case, i.e., without the term (σ∗N , ·)U .

Remark 5. The expressions for δ1 and δ2 given in Theorem 4 exploit the fact
that MU is a positive diagonal matrix (cf. (3.8)). If we consider control discretizations
different from P0, say P1, we have to change the expressions for δ1 and δ2 in the error
bound ∆pr

N (µ) to

δ1 =
(
[MU (ua − ZuNu∗N )]T+M

−1
U [MU (ua − ZuNu∗N )]+

) 1
2 ,

δ2 = [MU (ua − ZuNu∗N )]T+Z
σ
Nσ
∗
N ,

which are considerably more expensive to evaluate.

3.4. Computational procedure. We briefly comment on the computational
procedure for the primal error bound. The evaluation of ∆pr

N (µ) requires the following
ingredients:

• the dual norm of the residuals ‖ry‖Y ′ , ‖rp‖Y ′ , and ‖ru‖U ′ ;
• the lower and upper bounds for the constants αLB

a (µ), γUB
b (µ), and CUB

Ω
D

;

• the terms δ1 and δ2.
The evaluation of δ1 and δ2 was already discussed in the last section and incurs
an NU -dependent online cost. For the construction of the coercivity constant lower
bound αLB

a (µ) various recipes exist [14, 28, 34]. The specific choices for our numerical
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examples are stated in section 6. Simple (yet for our examples effective) upper bounds
CUB

Ω
D

and γUB
b (µ) can be computed by solving 1 +Qb generalized eigenvalue problems

in the offline stage and then assembled in O(1 + Qb) operations online. In general
(arbitrarily tight) upper bounds can be obtained by applying the successive constraint
method (SCM) [14].

The offline-online evaluation of ‖ry‖Y ′ and ‖rp‖Y ′ is standard and therefore omit-
ted [30]; also see [19] for a summary of the computational cost in the optimal control
context. For the computation of the optimality equation residual we employ the
Riesz-representation r̂u(µ) of ru(·;µ) given by

ru(ψ;µ) = (r̂u(µ), ψ)U = −λ(u∗N , ψ)U + b(ψ, p∗N ;µ) + (σ∗N , ψ)U

= (−λu∗N + B∗(µ)p∗N + σ∗N , ψ)U .

Here B∗(µ) : Y → U is the adjoint operator of the operator B(µ) : U → Y ′ induced
by the bilinear form b(·, ·;µ) and thus satisfies

〈B(µ)ψ, φ〉Y ′,Y = b(ψ, φ;µ) = (ψ,B∗(µ)φ)U .

Furthermore, we can directly and explicitly identify r̂u(µ) = −λu∗N + B∗(µ)p∗N + σ∗N
(without solving any Poisson problems) to get

‖ru(·;µ)‖2U ′ = ‖r̂u(µ)‖2U = ‖−λu∗N + B∗(µ)p∗N + σ∗N‖2U
= λ2(u∗N , u

∗
N )U + (B∗(µ)p∗N ,B∗(µ)p∗N )U + (σ∗N , σ

∗
N )U

− 2λ(u∗N ,B∗(µ)p∗N )U − 2λ(u∗N , σ
∗
N )U + 2(B∗(µ)p∗N , σ

∗
N )U

= λ2(u∗N , u
∗
N )U + (B∗(µ)p∗N ,B∗(µ)p∗N )U + (σ∗N , σ

∗
N )U

− 2λb(u∗N , p
∗
N ;µ)− 2λ(u∗N , σ

∗
N )U + 2b(σ∗N , p

∗
N ;µ).

All terms except for (B∗(µ)p∗N ,B∗(µ)p∗N )U are standard and are thus not discussed
here. Let χ(µ) be the FE coefficient vector of χ(µ) = B∗(µ)φ. From the definition of
the adjoint operator we obtain the algebraic formulation

ψTMUχ(µ) = (B(µ)ψ)Tφ ⇔ MUχ(µ) = B(µ)Tφ ⇔ χ(µ) = M−1
U B(µ)Tφ,

from which it follows that

(B∗(µ)φ,B∗(µ)φ)U = χ(µ)TMUχ(µ) = φTB(µ)M−1
U B(µ)Tφ.

Finally, for φ = p∗N we obtain

pTN (ZyN )TB(µ)M−1
U B(µ)TZyNpN =pTN

(
Qb∑
q=1

Qb∑
p=1

Θq
b(µ)Θp

b(µ)(ZyN )TBqM−1
U (Bp)TZyN

)
pN ,

which allows an offline-online decomposition. In the offline phase we construct (and
save) Q2

b (symmetric) matrices (ZyN )TBqM−1
U (Bp)TZyN , q = 1, . . . , Qb, p = 1, . . . , Qb,

of dimension NY ×NY ; in the online phase we assemble the matrix in the parentheses
at cost Q2

bN
2
Y and perform the inner product at cost N2

Y .

4. Slack problem and the primal-slack error bound. In section 6 we will
present numerical results for several test problems showing that the primal bound
proposed in the last section is reasonably sharp. As pointed out above, however,
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there are two problems intrinsic to the formulation: first, the RB optimal control is
not guaranteed to be feasible on the FE level; and second, the online cost to evaluate
the bound therefore depends on the FE dimension NU 3. We also recall that the primal
bound is based on a result for variational inequalities proposed in [12] which suffers
from the same drawbacks.

In a recent note [35], the authors propose an improvement to [12] by introducing a
slack formulation and associated a posteriori error bounds for variational inequalities.
The slack approach does not only guarantee feasibility of the reduced optimal solution
with respect to the FE admissible set, but also provides an a posteriori error bound
with associated computational cost independent of the FE dimension. Moreover, the
slack-based error bound is considerably sharper than the primal error bound.

Following the idea presented in [35] we proceed as follows: we first reformulate the
original optimization problem (P) by replacing the control variable with a slack vari-
able. We will therefore call the reformulation given in (S) below the “slack problem.”
Second, we use snapshots of the slack variable to construct an associated positive
convex cone. Third, we derive a reduced slack problem by restricting the RB slack
variable to this positive convex cone. And finally, we propose an a posteriori error
bound for the error in a combined primal-slack variable approximation in Theorem 7.

4.1. Finite element slack problem. We consider the finite element optimiza-
tion problem (P) and introduce the slack variable s ∈ U+ given by s = u−ua together
with the corresponding FE coefficient vector s = u− ua. Here, we omit the explicit
dependence on the parameter µ. We note that, by construction, the feasibility of u
is equivalent to MUs ≥ 0, which in turn is equivalent to s ≥ 0 since we are using P0

elements and hence MU is a positive diagonal matrix.
The optimization problem (P) can then be recast as follows

min
y,s

Js(y, s) =
1

2
‖y − yd‖2L2(Ω

D
) +

λ

2
‖s+ ua‖2U(S)

s.t. (y, s) ∈ Y × U+ solves a(y, v;µ) = b(s+ ua, v;µ) + f(v;µ) ∀v ∈ Y.

Since the slack problem is equivalent to the original problem formulation, it directly
inherits the well-posedness discussed in the previous sections. Also the associated
optimality system is equivalent to (2.8) if we replace u by s+ ua.

4.2. Reduced basis slack approximation. As pointed out in the last section,
the original finite element problem formulation (P) and the slack problem formula-
tion (S) are equivalent. We may thus directly use the RB space YN introduced in
subsection 3.1 for the state and adjoint variables for our RB slack approximation.
Furthermore, for the RB approximation of the slack variable we introduce an RB
slack space SN by shifting the control snapshots by the control constraint ua(µ), i.e.,
we define

SN = span{ζs1 , . . . , ζsNS} = span{u∗(µ1)− ua(µ1), . . . , u∗(µM )− ua(µM )},

and also the positive convex cone

S+
N = span+{ζs1 , . . . , ζsNS} ⊂ U

+.

3We do want to point out that the online evaluation of the primal error bound is actually still
more efficient than the solution of the reduced optimal control problem itself for our test problems
and chosen discretizations. Of course, this observation strongly depends on the (FE) problem size
and solvers; see section 6 for details.
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Similar to before, we assume that the snapshots ζs1 , . . . , ζ
s
Ns

are linearly independent.
Note that we can construct SN from the control snapshots of the FE primal problem
without having to solve the FE slack problem (S) in computational practice. More
importantly, we notice that the positive cone S+

N satisfies S+
N ⊂ U+. If we now require

the RB slack approximation sN of the slack variable s to lie in S+
N , it follows that

sN ≥ 0, which results in an FE feasible control approximation. Note that sN ∈ S+
N

is equivalent to sN ≥ 0, where sN = (sN1, . . . , sNNS )T ∈ RNS are the RB coefficients

of the expansion sN =
∑NS
i=1 sNiζ

s
i .

We then obtain the RB optimization problem

min
ysN ,sN

Js(y
s
N , sN ) =

1

2
‖ysN − yd‖2L2(D) +

λ

2
‖sN + ua‖2U(SN)

s.t. (ysN , sN )∈YN×S+
N solves a(ysN , v;µ) = b(sN + ua, v;µ) + f(v;µ) ∀v ∈ YN .

We again omit the associated optimality system since it directly follows from (3.1). We
denote the associated optimal state and slack RB solutions by (ys,∗N , s∗N ) ∈ YN × S+

N .
From the first-order optimality system we also obtain the optimal adjoint RB solution
ps,∗N and the optimal Lagrange multiplier σs,∗N ∈ RNS+ for the inequality condition s∗N ≥
0. We like to stress, however, that we do not need σs,∗N for the error bound presented
below, but instead we will use the primal RB Lagrange multiplier approximation σ∗N .

We also denote the RB control approximation from (SN) by

(4.1) us(µ) = s∗N (µ) + ua(µ),

and conclude from s∗N ≥ 0 that us is an FE feasible approximation for the control,
i.e. us ∈ Uad.

In contrast to the RB primal problem (PN), it can be shown that the RB slack
problem (SN) is well-posed even without supremizer enrichment of the RB slack space
SN ; we refer to [2] for details.

We note that the nonnegativity condition imposed by sN ∈ S+
N in (SN) is more

restrictive than uN ∈ Uad,N in (PN) in terms of the control approximation as it permits
only conical linear combinations (i.e., with only nonnegative coefficients, sN ≥ 0).
Consequently, the RB slack approach — in contrast to the RB primal approach —
approximates the feasible set Uad from the inside and thus guarantees the feasibility
of the control approximation. However, in the case of small or empty active sets (i.e.
unconstrained solutions), this restriction can lead to larger approximation errors since
negative coefficients cannot be employed gainfully. We also note that the condition
sN ∈ S+

N precludes orthogonalization of the basis functions ζsi .

4.3. Primal-slack error bound. We turn to the derivation of an a posteriori
error bound for the error u∗ − us. To this end, we extend the approach presented
in [35] for variational inequalities to our setting, i.e., we advantageously combine the
RB approximations of the primal and slack problems and exploit the FE feasibility of
us. More precisely, we consider the primal-slack approximation (ys,∗N , ps,∗N , us, σ∗N ) ∈
YN × YN × Uad × Σ+

N and define the corresponding errors

esy(µ) = y∗ − ys,∗N , esp(µ) = p∗ − ps,∗N , esu(µ) = u∗ − us.

Recall that we already introduced eσ(µ) in the beginning of subsection 3.3. We also
require the definition of the corresponding residuals.
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Definition 6. The residuals of the state equation, the adjoint equation, and the
optimality equation are defined by

rsy(φ;µ) = b(us, φ;µ) + f(φ;µ)− a(ys,∗N , φ;µ) ∀φ ∈ Y ∀µ ∈ D,
rsp(ϕ;µ) = (yd − ys,∗N , ϕ)L2(Ω

D
) − a(ϕ, ps,∗N ;µ) ∀ϕ ∈ Y ∀µ ∈ D,

rsu(ψ;µ) = −λ(us, ψ)U + b(ψ, ps,∗N ;µ) + (σ∗N , ψ)U ∀ψ ∈ U ∀µ ∈ D.

We state the main result in the next theorem.

Theorem 7. Let u∗ and s∗N be the optimal solutions of the FE optimal control
problem (P) and the reduced slack problem (SN), respectively. For any given parameter
µ ∈ D the error in the optimal control satisfies

‖esu(µ)‖U ≤ ∆pr-sl
N (µ),

where ∆pr-sl
N (µ) := cs1(µ) +

√
cs1(µ)2 + cs2(µ) with nonnegative coefficients

cs1(µ) =
1

2λ

(
‖rsu‖U ′ +

γUB
b (µ)

αLB
a (µ)

‖rsp‖Y ′
)
,(4.2a)

cs2(µ) =
1

λ

(
2

αLB
a (µ)

‖rsy‖Y ′‖rsp‖Y ′ +
(CUB

Ω
D

)2

4(αLB
a (µ))2

‖rsy‖2Y ′ + (s∗N , σ
∗
N )U

)
.(4.2b)

Before proceeding with the proof, we immediately observe that the primal-slack bound
∆pr-sl
N (µ) is similar to the primal bound defined in Theorem 4 but does not contain the

two terms δ1 and δ2 anymore. Instead, it contains the nonnegative term (s∗N , σ
∗
N )U

which is the only non-standard ingredient. Since s∗N is an approximation of u∗ − ua,
the term (s∗N , σ

∗
N )U measures how well the reduced basis can approximate the FE

complementarity condition (u∗ − ua, σ∗)U . Also recall that the NU -dependent online
computational cost to evaluate the primal bound was due to δ1 and δ2. The online
cost to evaluate the primal-slack bound, in contrast, is independent of NU and only
depends on the dimension of the reduced basis approximation. Finally, we note that
the term (s∗N , σ

∗
N )U and the residual rsu incorporate the primal variable σ∗N in addition

to the variables from the RB slack problem. Hence the bound uses information from
both the primal and slack RB problem and we therefore call it primal-slack error
bound.

Proof. The finite element optimal solutions y∗, p∗, u∗, σ∗ satisfy the first-order
optimality conditions (2.8) and hence we obtain the error-residual equations

a(esy, φ;µ)− b(esu, φ;µ) = rsy(φ;µ) ∀φ ∈ Y,(4.3a)

a(ϕ, esp;µ) + (esy, ϕ)L2(Ω
D

) = rsp(ϕ;µ) ∀ϕ ∈ Y,(4.3b)

λ(esu, ψ)U − b(ψ, esp;µ)− (eσ, ψ)U = rsu(ψ;µ) ∀ψ ∈ U.(4.3c)

We follow the same steps as in the proof of Theorem 4. We use the inequalities (3.4),
(3.5), (3.7) and involve Young’s inequality to obtain

λ‖esu‖2U ≤‖rsu‖U ′‖esu‖U +
2

αLB
a (µ)

‖rsy‖Y ′‖esp‖Y

+
γUB
b (µ)

αLB
a (µ)

‖rsp‖Y ′‖esu‖U +
(CUB

Ω
D

)2

4(αLB
a (µ))2

‖rsy‖2Y ′ + (eσ, e
s
u)U .
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In contrast to the proof of Theorem 4, we can bound (eσ, e
s
u)U differently. Since

us = s∗N + ua (cf. (4.1)) we have

(eσ, e
s
u)U = (σ∗ − σ∗N , u∗ − us)U = −(us − u∗, σ∗)U + (us − u∗, σ∗N )U

= −(ua − u∗, σ∗)U − (s∗N , σ
∗)U + (ua − u∗, σ∗N )U + (s∗N , σ

∗
N )U .

By the complementarity condition (2.8e), the nonnegativity of (s∗N , σ
∗)U , and since

(ua − u∗, σ∗N )U ≤ 0 (by (2.8d) with ρ = σ∗N ) we obtain

(eσ, e
s
u)U ≤ (s∗N , σ

∗
N )U .

We thus obtain a quadratic inequality in ‖esu‖U , ‖esu‖2U − 2cs1(µ)‖esu‖U − cs2(µ) ≤ 0,

whose larger root is given by ∆pr-sl
N (µ).

We make two remarks. First, the only ingredient used from the primal RB prob-
lem for the primal-slack approximation is σ∗N , which is needed to evaluate the error
bound. The slack control approximation us, however, is completely independent of
the primal RB problem. If we are only interested in an RB approximation to the
optimal control u∗, we may thus either solve the primal problem for u∗N or the slack
problem for us — the computational effort is roughly equivalent.

Second, we note that — similar to the primal bound — the error bound ∆pr-sl
N (µ)

recovers the a posteriori control error bound proposed in [19] for unconstrained opti-
mal control problems if the primal RB problem (PN) is unconstrained: if σ∗N (µ) = 0
holds, then (1) the residual rsu(·;µ) reduces to the unconstrained case, i.e., without
the term (σ∗N , ·)U , and (2) the term (s∗N , σ

∗
N )U vanishes. Although the error bound

is then identical to the one presented in [19], we stress that the RB approximation
itself is different as it is obtained from the RB slack problem (SN) instead of the RB
primal problem (PN).

We omit the details on the computational procedure for the primal-slack error
bound since it is very similar to the primal error bound. Indeed, we need to com-
pute the same lower and upper bounds for the constants αLB

a (µ), γUB
b (µ), and CUB

Ω
D

.

Furthermore, the evaluation of the dual norms of the residuals ‖rsy‖Y ′ , ‖rsp‖Y ′ , and
‖rsu‖U ′ is completely analogous to the primal problem. The only difference is the
term (s∗N , σ

∗
N )U , which can be computed online-efficiently by precomputing the ma-

trix (ZsN )TMUZ
σ
N ∈ RNs×Nσ , where ZsN = (ζs1 | · · · | ζ

s
Ns) ∈ RNU×Ns .

4.4. Primal vs. primal-slack approach. We comment on the main differences
between the primal(-only) approach and the primal-slack approach; also see [35] for
a thorough discussion in the context of variational inequalities. We first summarize
the different feasibility relations:

primal: UσNu
∗
N ≥ Uσa,N ⇔ u∗N ∈ Uad,N 6⇒ u∗N ∈ Uad

slack: s∗N ≥ 0 ⇔ s∗N ∈ S+
N ⊂ U

+ ⇒ us ∈ Uad.

The FE feasibility of the RB slack approximation s∗N provides us with an FE feasible
control approximation us, whereas the control approximation u∗N of the RB primal
problem is not necessarily feasible. As mentioned above, the online costs to compute
us and u∗N are roughly the same. The different feasibility relations, however, deter-
mine if the a posteriori control error bounds are online-efficiently computable and
— as we shall see in section 6 — affect their sharpness. The primal bound ∆pr

N (µ)
requires only the solution of the RB primal problem (PN), i.e., (y∗N , p

∗
N , u

∗
N , σ

∗
N ),
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whereas the primal-slack bound ∆pr-sl
N (µ) requires ingredients from both the RB pri-

mal problem (PN), i.e., σ∗N , and the RB slack problem (SN), i.e., (ys,∗N , ps,∗N , us). Given
these optimal solutions, the online computational cost for the dual norms of the resid-
uals depends on the dimensions of the RB spaces NY , NU , NS , Nσ and the number
of terms in the affine expansions (2.4). The cost is roughly the same for both ap-
proaches and independent of the FE dimensions NY and NU . For the primal-slack
bound, however, we additionally need to evaluate the terms δ1 and δ2, which requires
O(NU (NU +Nσ)) operations and is thus not online-efficient.

We compare the sharpness of the two bounds for several numerical test problems
in section 6.

Finally, we note that – for both approaches – the lower control constraint can of
course be replaced by an upper control constraint (also see the numerical results in
section 6). For an extension to bilateral control constraints we refer to [2].

5. Greedy algorithm. The reduced basis spaces introduced in subsections 3.1
and 4.2 are constructed using the greedy sampling procedure outlined in Algorithm 1.
A survey of parametric model reduction methods is presented in [3], one aspect of
which are different sampling strategies in parameter space (e.g., structured or random
sampling, or sampling via local sensitivity analysis); we thus refer to [3] for an overview
of these strategies. Since our objective is to reduce the error in the optimal control
approximation, we employ the proposed a posteriori error bounds in the greedy search.
Here, Ξtrain ⊂ D is a finite but suitably large parameter training sample, µ1 ∈ Ξtrain is
the initial parameter value, Nmax the maximum number of greedy iterations, εtol,min >
0 is a prescribed desired error tolerance, and ∆•N (µ), • ∈ {pr,pr-sl}, is the primal or
primal-slack error bound and u•N ∈ {uN , us}.

In the following we like to point out the major differences to the standard greedy
algorithm [33]. First, we construct integrated RB spaces YN (state and adjoint snap-
shots) in step 5 and UN (control and Lagrange multiplier snapshots) in step 6 as
discussed previously. Second, we point out that in steps 5 to 8 we need to check if
the new snapshots are already contained in the reduced basis spaces and consequently
discard linearly dependent snapshots. It may thus happen in our setting that some
RB spaces are not enriched in every greedy step. Consider the following case: let
ua be parameter-independent and, say, a(·, ·, µ) parameter-dependent. Assume that
the greedy algorithm previously picked a parameter µN with u∗(µN ) ≡ ua, i.e., the
constraint is fully active, and we thus have ua ∈ UN . If the greedy search now picks
another parameter µN+1 where again u∗(µN+1) ≡ ua, we do not enrich UN in step 6 to
avoid linearly dependent basis functions. Note that such a scenario is indeed possible
since the parameter enters through a(·, ·, µ).

Finally, we comment on two special cases: (1) if the control constraint is fully
active in each greedy step, i.e. we have u∗(µn) = ua, n = 1, . . . , N , we set s∗N = 0;
and (2) if the control constraint is never active, i.e., for all snapshots σ∗(µn) = 0, n =
1, . . . , N , we set σ∗N = 0.

6. Numerical results. In this section we consider three numerical examples: (i)
a thermal block problem with one conductivity parameter and a fixed lower bound, (ii)
a thermal block problem with one conductivity parameter and a parametrized upper
bound and (iii) a Graetz flow problem with varying Péclet number and a parametrized
domain. Our goal is to demonstrate the different properties of the approximations
and their error bounds.

Before we discuss the three examples in detail we introduce another well-known
error bound ∆TV

N (µ) in order to compare it with the error bounds proposed in this
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Algorithm 1 Greedy Sampling Procedure

1: Choose Ξtrain ⊂ D, µ1 ∈ Ξtrain (arbitrary), Nmax, and εtol,min > 0

2: Set N ← 1, Y0 ← {0}, U0 ← {0}, S0 ← {0}, Σ0 ← {0}
3: Set ∆•N (µN )←∞
4: while ∆•N (µN )/‖u•N (µN )‖U > εtol,min and N ≤ Nmax do

5: YN ← YN−1 ⊕ span{ y∗(µN ), p∗(µN ) }
6: UN ← UN−1 ⊕ span{u∗(µN ), σ∗(µN ) }
7: SN ← SN−1 ⊕ span{ s∗(µN ) }
8: ΣN ← ΣN−1 ⊕ span{σ∗(µN ) }
9: µN+1 ← arg max

µ∈Ξtrain

∆•N (µ)/‖u•N (µ)‖U

10: N ← N + 1

11: end while

paper. The bound ∆TV
N (µ) has been proposed in [32], where the authors estimate the

distance between a suboptimal control ũ and the unknown optimal control u∗ using
a perturbation argument. Although the bound has been proposed in the context of
proper orthogonal decomposition, it can be applied to any feasible control ũ ∈ Uad.
In fact, we note that the bound has been used successfully for other model order
reduction methods, see [4] for an overview. However, as pointed out in [32], the
computation of ∆TV

N (µ) requires a solution of the FE state and adjoint equation for
the given control ũ. Hence, the evaluation of the error bound is computationally
expensive as it depends on the FE dimension NY . Also note that the error bound
∆TV
N (µ) can only be computed for P0 control discretizations, since its construction is

based on a pointwise analysis of the optimality equation.
In principle, we can evaluate the error bound ∆TV

N (µ) for both the primal optimal
control u∗N (µ) and the slack optimal control us(µ). However, recall that for the slack
approach we can guarantee us ∈ Uad and hence directly evaluate the bound ∆TV

N (µ),
whereas u∗N is not necessarily feasible. We therefore need to first project u∗N onto Uad

to obtain uproj
N ∈ Uad and then evaluate ∆TV

N (µ) for uproj
N . In this case we encounter

rather poor results for all our examples, i.e., a relative bound of approximately 0.1 for
all N . We therefore evaluate ∆TV

N (µ) and present results only for the slack optimal
control us(µ). We also note that [32] did not consider a reduction of the control space
and the feasibility issue of the “reduced” control thus did not appear.

The following computations are performed with MATLAB (R2014b) on an Intel
Core i5-4570R 2.7 GHz processor and 16 GB RAM. To solve the FE optimal control
problems we use the primal-dual active set method, see [31] for details.

6.1. Thermal block: Lower bound. We consider a linear-quadratic optimal
control problem governed by a steady heat conduction problem in a two-dimensional
domain. The spatial domain is given by Ω = [0, 1]2 and is subdivided into the two
subdomains Ω1 = [0, 0.5]× [0, 1] and Ω2 = [0.5, 1]× [0, 1] with thermal conductivities
µ1 and 1, respectively.

We impose homogeneous Dirichlet boundary conditions for the state on Γ. The
amount of heat supply in the domain Ω is regulated by the distributed control function
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u ∈ U ⊂ Ue ≡ L2(Ω). The parametrized optimal control problem is then

min
y∈Y,u∈U

J(y, u;µ) =
1

2
‖y − yd‖2L2(Ω) +

λ

2
‖u‖2L2(Ω)

s.t. µ1

∫
Ω1

∇y · ∇v dx+ 1

∫
Ω2

∇y · ∇v dx =

∫
Ω

u v dx ∀v ∈ Y,

(ua, ρ)U ≤ (u, ρ)U ∀ρ ∈ U+,

where Y ⊂ Ye = H1
0 (Ω) and ua(x) = 2+2·(x1−0.5) is fixed. The parameter µ1 satisfies

µ1 ∈ D = [0.5, 3]. We set the desired state to yd = 1 in Ω and the regularization
parameter to λ = 0.01. We choose the inner product (w, v)Y = µref

1

∫
Ω1
∇w · ∇v dx+∫

Ω2
∇w · ∇v dx for µref

1 = 1 and hence get αLB
a (µ) = min(µ1/µ

ref
1 , 1) by the min-

theta approach. For the control space U we use the standard L2-norm and L2-inner
product. The considered problem satisfies the affine representation (2.4) with Qa = 2,
Qb = Qf = Qua = Qyd = 1.
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Fig. 1a: POD error for unconstrained and
constrained training snapshots.
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Fig. 1b: Maximal relative control errors and
bounds over the number of greedy iterations.

For the truth discretization we consider a piecewise linear finite element approx-
imation space Y ⊂ Ye for the state and adjoint variables, and a piecewise constant
FE approximation space U ⊂ Ue for the control variable. We use a quasi-uniform un-
structured mesh on Ω, leading to dim(Y ) = NY ≈ 8, 300 and dim(U) = NU ≈ 17, 000.
The associated finite element discretization error is roughly 1%.

We construct the reduced basis spaces using the greedy sampling procedure de-
scribed in section 5. To this end, we employ a training sample Ξtrain ⊂ D consisting
of ntrain = 100 equidistant points on a log-scale and stop the greedy enrichment after
30 steps, i.e., we set Nmax = 30 resulting in a relative pr-sl error bound of ≈ 1 E – 3.
Note that here and for the following examples we generate two separate RB spaces for
the primal (pr) and the primal-slack (pr-sl) approach. The first one uses the primal

bound ∆pr
N (µ) in the greedy search and the second one uses the pr-sl bound ∆pr-sl

N (µ).
In Figure 1a we present the POD error decay of the control snapshots over Ξtrain

for the constrained and corresponding unconstrained problem, i.e., setting ua = −∞
in the problem formulation.4 Note that POD serves as an indicator for how many

4The error for a POD basis of size NPOD is given by (
∑ntrain

i=NPOD+1 σ
2
i )1/2, where σi, 1 ≤ i ≤
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snapshots we need in our RB basis to approximate the control with a desired accuracy
for all µ ∈ D. We immediately observe that the decay behavior is extremely different:
the unconstrained problem can be approximated by roughly 12 snapshots in the RB
basis to a precision of 1 E – 14, whereas for the constrained problem the POD error
decays much slower and hence we need a larger RB basis to reach a certain desired
accuracy. Although POD is only optimal in the L2-sense over the snapshot set, it
serves as a good indicator of the error one can expect from our reduced basis approach
(also see the discussion in Section 8.1.4 in [30]). Note that the POD results reflect only
the control dynamics since only control snapshots are used in the basis construction.
In contrary, the RB approach is based on an approximation of the full optimality
system, and hence snapshots of the state, adjoint, control, and Lagrange multiplier
variable are required. Nevertheless, in our numerical examples the control dynamics
seem to dominate and thus the results for POD and RB are comparable.

In Figure 1b we present, as a function of the number of greedy iterations N , the
maximum relative errors and bounds over a test sample Ξtest ⊂ D of size ntest =
125 with logarithmically distributed parameter points in [0.503, 2.99] ⊂ D. Here,
the errors and bounds are defined as follows: the pr-sl bound is the maximum of
∆pr-sl
N (µ)/‖u∗(µ)‖U over Ξtest, the primal bound is the maximum of ∆pr

N (µ)/‖u∗(µ)‖U
over Ξtest, the TV(us) bound is the maximum of ∆TV

N (µ)/‖u∗(µ)‖U over Ξtest evalu-
ated for us, and the us and uN errors are the maxima of ‖u∗(µ)− us(µ)‖U/‖u∗(µ)‖U
and ‖u∗(µ) − u∗N (µ)‖U/‖u∗(µ)‖U over Ξtest, respectively. We observe that both the
primal and pr-sl error converge, but also that the primal error is approximately three
times larger than the pr-sl error. The pr-sl error reaches ≈ 3 E – 4 at N = 30, which is
in good agreement with the POD results in Figure 1a. Furthermore, the pr-sl error
bound is considerably sharper than the primal bound and even the TV bound. For
N = 30 we obtain an average effectivity, i.e., the ratio of the bound and the error, of
5 for the primal bound and 1.6 for the pr-sl bound.

6.2. Thermal block: Upper bound. We consider the same problem setting
as in the last subsection, but replace the lower constraint ua with a parametrized upper
constraint ub(x;µ2), given by the FE interpolant of 5+µ2 sin(3πx1) sin(3πx2) exp(−x1).
As in the previous example we consider the conductivity as a parameter such that
(µ1, µ2)T ∈ D = [0.5, 3] × [−2, 2]. We also consider the same truth discretization as
before and obtain a discretization error of roughly 2% for this problem. In Figure 2
we illustrate the behavior of the solution u(µ) and the active sets for different val-
ues of µ. Note that changing µ2 influences ub(x;µ2) which in turn leads to different
constrained controls u(µ); see lower part of Figures 2a and 2b. In the lower part of
Figure 2c we discover that µ1 = 3 leads to an unconstrained u(µ). We observe in the
upper row of Figure 2 that the active set is changing considerably and is empty for
some parameters.

We construct the reduced basis spaces using the greedy sampling procedure de-
scribed in section 5. We employ a training sample with 50 · 50 = 2500 equidistant
parameter points (on a log-scale in µ1 and a lin-scale in µ2) and stop the greedy en-
richment after 30 steps. We also introduce a parameter test sample with 16 ·16 = 256
(log × lin) parameter points in [0.503, 2.99]× [−1.98, 1.9] ⊂ D.

We again present results for the POD error and the RB errors and bounds in

ntrain, are the singular values (in decreasing order) of 1√
ntrain

U1/2S. Here, U is the finite element

matrix associated with the inner product (·, ·)U , and S ∈ RNU×ntrain is the snapshot matrix of
optimal controls u∗(µ) for all µ ∈ Ξtrain. See also [29].
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(a): µ = (0.5,−2) (b): µ = (1, 2) (c): µ = (3, 2)

Fig. 2: Snapshots of active sets (upper row) and optimal control (lower row) for
different parameters. The active (inactive) sets are displayed in white (gray).
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constrained training snapshots.
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Fig. 3b: Maximal relative control errors and
bounds over the number of greedy iterations.

Figures 3a and 3b, respectively. All quantities are defined as in the last example. We
first observe that the POD error of the unconstrained problem again converges very
fast (note the much larger training sample). For the constrained problem, however,
the POD error decay is initially similar to the previous example, but then also drops
to zero at a POD dimension of approx. 1750. The reason for this is that the control
constraint is not active for approximately one third of the parameter domain and
hence the problem reduces to an unconstrained problem for these parameters. We
can expect for a POD basis of size 30 an error of ≈ 4 E – 3, which again roughly matches
the results in Figure 3b.

We observe a similar convergence of the primal and slack error, but this time
the primal error is slightly smaller (except for N ≥ 27). In contrast to the previous
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example, the overall convergence rate is smaller due to the parametrized upper bound
resulting in more diverse solutions (also visible from the POD convergence and the
variation in the active sets). We also note that the pr-sl error bound is again much
sharper than the primal bound and also the TV bound. Thus, although the slack
error is larger than the primal error, the smaller effectivity of the pr-sl bound still
leads to a better overall a posteriori certificate for the control error.

Finally, we briefly report the computational timings: the solution of the FE opti-
mization problem takes ≈ 2 seconds (for a discretization error of 2%) and the solution
of the RB optimization problem using the primal (slack) approach, for N = 25, takes
≈ 0.027 (≈ 0.022) seconds. The RB slack problem can be solved slightly faster since
we do not have to enrich SN by supremizers and dim(SN ) is thus roughly only half
the size of dim(UN ). Furthermore, the evaluation of the TV(us) bound takes 0.053
seconds, whereas the evaluation of the primal bound takes 0.0075 seconds and the pr-
sl bound, given σ∗N , takes 0.0045 seconds. Overall, we achieve an online speed-up of
≈ 70− 90 for the RB solution without certification and ≈ 40− 60 for the RB solution
with certification. Finally, we note that the offline phase for the primal (primal-slack)
approach takes ≈ 1900 seconds (≈ 2700 seconds), which is mainly due to the fairly
large training set including 2500 parameter points.

6.3. Graetz flow: Constant lower bound and geometry parametriza-
tion. We consider a linear-quadratic optimal control problem governed by a steady
Graetz flow in a two-dimensional domain inspired by the numerical examples in [26].
The problem is parametrized by a varying Péclet number µ1 ∈ [5, 18] and a geometry
parameter µ2 ∈ [0.8, 1.2]. Hence, the parameter domain is D = [5, 18] × [0.8, 1.2].
The parametrized geometry is given by Ω(µ) = [0, 1.5 + µ2] × [0, 1] and is subdi-
vided into the three subdomains Ω1(µ) = [0.2µ2, 0.8µ2] × [0.3, 0.7], Ω2(µ) = [µ2 +
0.2, µ2 + 1.5]× [0.3, 0.7], and Ω3(µ) = Ω(µ)\{Ω1(µ)∪Ω2(µ)}. A sketch of the domain
is shown in Figure 4. We impose boundary conditions of homogeneous Neumann
and of non-homogeneous Dirichlet type: yn ≡ 0 on ΓN (µ), and y ≡ 1 on ΓD(µ).
Thus the trial space is given by Y (µ) ⊂ Ye(µ) ≡ {v ∈ H1(Ω(µ)); v|ΓD(µ) ≡ 1}. The
amount of heat supply in the whole domain Ω(µ) is regulated by the distributed con-
trol u ∈ U(µ) ⊂ Ue(µ) ≡ L2(Ω(µ)) and bounded by the lower constraint ua ≡ −0.5.
The observation domain is Ω

D
(µ) = Ω1(µ) ∪ Ω2(µ) and the desired state is given by

yd ≡ 0.5 on Ω1(µ) and yd ≡ 2 on Ω2(µ).

Fig. 4: Domain Ω(µ) for the Graetz flow problem with distributed control.
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Overall, the parametrized optimal control problem is given by

min
y∈Y (µ),u∈U(µ)

J(y, u;µ) =
1

2
‖y − yd‖2L2(Ω

D
(µ)) +

λ

2
‖u‖2L2(Ω(µ))

s.t.
1

µ1

∫
Ω(µ)

∇y · ∇v dx+

∫
Ω(µ)

β(x) · ∇y v dx =

∫
Ω(µ)

u v dx ∀v ∈ Y (µ),

(ua, ρ)U(µ) ≤ (u, ρ)U(µ) ∀ρ ∈ U(µ)+,

for the given parabolic velocity field β(x) = (x2(1 − x2), 0)T . The regularization
parameter λ is fixed to 0.01.

After recasting the problem to a reference domain Ω = Ω(µref) = [0, 2.5] × [0, 1]
for µref = (5, 1)T , and introducing suitable lifting functions that take into account
the non-homogeneous Dirichlet boundary conditions, we can reformulate the problem
in terms of the parameter-independent FE spaces Y ⊂ Ye = H1

0 (Ω) and U ⊂ Ue =
L2(Ω) [30]. We then obtain the affine representation (2.4) of all involved quantities
with Qa = Qf = 4, Qb = Qd = Qu = Qyd = 2, and Qua = 1. The inner product
is given by (w, v)Y = 1

µref
1

∫
Ω
∇w · ∇v dx + 1

2 (
∫

Ω
β(x) · ∇w v dx +

∫
Ω
β(x) · ∇v w dx)

and we obtain a lower bound αLB
a (µ) for the coercivity constant by the min-theta

approach. Note that for the control space we obtain a parameter-dependent inner
product (·, ·)U(µ) from the affine geometry parametrization. Hence the control error
is measured in the parameter-dependent energy norm ‖·‖U(µ). The derivations of the
primal and primal-slack error bounds remain the same in this case and they bound the
control error in the energy norm. We also note that an offline-online decomposition for
a domain parametrization only works for the chosen P0 discretization of the control.
In this case the control mass matrix MU (µ) is diagonal and hence its inverse is easily
computable and satisfies an affine expansion.

We choose the same type of discretization as in the previous examples (P1 for
the state and adjoint, P0 for the control) to obtain dim(Y ) = NY ≈ 11, 000 and
dim(U) = NU ≈ 22, 000. The chosen discretization induces a discretization error
of roughly 2%. In Figure 5 we present control snapshots and associated active sets
for two different parameters. Although here the control constraint ua is parameter-
independent, we again observe strongly varying control solutions and active sets.

We construct the reduced basis spaces using the greedy algorithm by employing an
equidistant training sample Ξtrain ⊂ D of size 30·30 = 900 (log-scale in µ1 and lin-scale
in µ2) and stop the greedy enrichment after 30 steps. We also introduce a test sample
with 10 · 5 (log × lin) equidistant parameter points in [5.2, 17.5]× [0.82, 1.17] ⊂ D.

We plot the POD errors in Figure 6a and observe a very similar behavior as in the
first example: the unconstrained problem converges much faster than the constrained
one, and the control constraint is active for all snapshots in the training set. In
Figure 6b we present, as a function of N , the resulting energy norm errors and bounds
over the test sample. The decay of the errors and bounds is slightly slower than in
the previous examples as a results of the strongly varying controls and active sets.
The primal and pr-sl errors are very close to each other, but the pr-sl bound is
considerably sharper than the primal bound. In contrast to the previous examples
the TV(us) bound tracks the error as well as the pr-sl bound.

As with the previous example, we briefly report the computational timings: the
solution of the FE optimization problem takes ≈ 4 seconds (for a discretization error
of 2%) and the solution of the RB optimization problem using the primal (slack)
approach, for N = 25, takes ≈ 0.035 (≈ 0.024) seconds. The evaluation of the
TV(us) bound takes 0.12 seconds, whereas the evaluation of the primal bound takes
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(a): µ = (5, 0.8) (b): µ = (18, 1.2)

Fig. 5: Snapshots of active sets (upper row) and optimal control (lower row) on the
reference domain. The active (inactive) sets are displayed in white (gray).
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Fig. 6a: POD error for unconstrained and
constrained training snapshots.
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Fig. 6b: Maximal relative control errors and
bounds over the number of greedy iterations.

0.008 seconds and the pr-sl bound, given σ∗N , takes 0.005 seconds. Overall, we achieve
an online speed-up of ≈ 110 − 170 for the RB solution without certification and
≈ 60 − 90 for the RB solution with certification. The offline phase for the primal
(primal-slack) approach takes ≈ 900 seconds (≈ 1300 seconds).

7. Related works. In this section, we place our work in the context of already
published contributions combining reduced order methods and a posteriori error esti-
mation for optimal control problems. We note that, besides the reduced basis method,
there exists a large amount of literature on parametric model reduction for control
and optimization based on other model reduction approaches, e.g. balanced trunca-
tion. Since we focus on reduced basis methods and a posteriori error estimation in
this paper, we do not intend to provide an extensive review of all the other works and
thus refer to the excellent review articles [3] and [4] for further references on other
approaches.
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Elliptic optimal control problems with distributed control have been considered
recently in [26, 25]. The proposed error bound is based on the Banach-Nečas-Babuška
(BNB) theory applied to the first order optimality system and directly follows from
previous work on reduced basis methods for noncoercive problems [33]. The approach
thus provides a combined bound for the error in the state, adjoint, and control vari-
able, but it is only applicable to problems without control constraints. Furthermore,
the bound requires the computation of (a lower bound to) the parameter-dependent
Babuška inf-sup constant of the first-order optimality system, which is usually com-
puted via the SCM. Since the required offline computations are expensive or — as
stated in [25] — even unaffordable, the authors in [25] propose to replace the rigorous
SCM lower bound by a heuristic interpolant surrogate, thus turning the error bound
into an error estimate.

Based on the ideas presented in [32], we proposed rigorous and online-efficient
control error bounds for reduced basis approximations of scalar elliptic optimal control
problems in [11, 18]. In [19] we extended these ideas to distributed control problems,
proposed a new control error bound which is similar in spirit to the bounds proposed
in this paper, and compared these two approaches with the BNB bound from [26].

As already mentioned in the beginning of section 6, POD a posteriori error bounds
for elliptic and parabolic optimal control problems have been proposed in [32]. The
approach provides rigorous and often very sharp control error bounds including control
constraints. The evaluation of these bounds, however, requires a solution of the
underlying high-dimensional state and adjoint equations and, as pointed out in [32],
is thus computationally expensive.

Reduced basis a posteriori error bounds for parabolic optimal control problems
including control constraints have been derived in [8, 9] and [17, 27]. In [8, 9], the
author proposes an estimate for the error in the optimal value of the cost functional
which is efficient to evaluate but not a rigorous bound for the error. Our approach
presented in [17] is again based on [32], but provides a rigorous and efficiently evaluable
bound for the error in the control and associated cost functional. We note that a
pointwise analysis of the optimality equations is still feasible and online-efficient in
the parabolic case as long as the controls are scalar functions of time. The online
complexity of a pointwise analysis only depends on the number of time steps, which is
inherent in any time-stepping discretization scheme. The approach presented in [19]
is extended to a space-time reduced basis approach in [27].

Finally, although we considered a purely deterministic problem here, the input
parameters could also be considered random inputs. We note that the approach
presented here can be gainfully employed in such a stochastic setting, see for example
[10] or [5]. For a more detailed comparison between the reduced basis method and
stochastic collocation methods we refer to [6].

8. Conclusions. We proposed two novel certified reduced basis approaches for
distributed elliptic optimal control problems with control constraints: a primal and a
primal-slack approach. We observed in the numerical results that the approximation
error is roughly the same for both approaches. The a posteriori error bound of the
pr-sl approach, however, turned out to be considerably sharper than the bound of
the primal approach, thus allowing a better a posteriori certification for the control
error. Concerning the computational cost, the reduced basis approximation and error
bound of the pr-sl approach can be evaluated efficiently using the standard offline-
online decomposition. We do, however, need to solve two reduced order optimization
problems to evaluate the pr-sl bound. The reduced basis approximation of the primal
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approach is also online-efficient, but the primal bound does not satisfy a full offline-
online decomposition, i.e., the evaluation of the constraint-violation requires a search
over the degrees of freedom of the underlying FE control space and thus depends
linearly on its dimension NU .

In summary, the proposed methods allow an efficient and reliable online solution
of parametrized optimal control problems involving control constraints. Such methods
have the potential to greatly reduce the solution time while providing a rigorous cer-
tificate on the approximation quality. Thus, given a demand for real-time or repeated
solutions, and the pervasive appearance of optimal control problems in engineering
and science, we believe that the approach presented here and — more generally —
reduced order methods for optimal control problems could prove beneficial in a large
variety of real-world applications.
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