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Abstract We propose a certified reduced basis approach for the strong- and
weak-constraint four-dimensional variational (4D-Var) data assimilation prob-
lem for a parametrized PDE model. While the standard strong-constraint 4D-
Var approach uses the given observational data to estimate only the unknown
initial condition of the model, the weak-constraint 4D-Var formulation addi-
tionally provides an estimate for the model error and thus can deal with im-
perfect models. Since the model error is a distributed function in both space
and time, the 4D-Var formulation leads to a large-scale optimization problem
for every given parameter instance of the PDE model. To solve the problem
efficiently, various reduced order approaches have therefore been proposed in
the recent past. Here, we employ the reduced basis method to generate reduced
order approximations for the state, adjoint, initial condition, and model error.
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Our main contribution is the development of efficiently computable a pos-
teriori upper bounds for the error of the reduced basis approximation with
respect to the underlying high-dimensional 4D-Var problem. Numerical results
are conducted to test the validity of our approach.

Keywords Variational data assimilation · 4D-Var · Strong-constraint
4D-Var · Weak-constraint 4D-Var · Reduced-order models · Reduced basis
method · A posteriori error estimation · PDE-constrained optimization ·
Parameter estimation

1 Introduction

The goal of four-dimensional variational (4D-Var) data assimilation is to esti-
mate unknown control variables of a dynamical system — classically the initial
condition of the system — that provide the best fit of the system outputs with
observation data over a specific time interval [4,18–20,28]. The use of 4D-Var
data assimilation is prevalent in oceanography [1] and meteorology [21], where
the dynamical system is described by partial differential equations (PDEs); see
the recent texts [17,25] and references therein for variational data assimilation
in general.

We consider two variants of the 4D-Var problem. In the traditional strong-
constraint 4D-Var formulation, the model is assumed to be “perfect” and
only the initial conditions serve as the (unknown) control variable. The weak-
constraint 4D-Var formulation additionally accounts for an imperfect model
in the traditional formulation by introducing and finding a forcing term to
account for the model error. In the weak-constraint case, the unknown ini-
tial condition and unknown model-error forcing term thus serve as control
variables; for various weak-constraint formulations see e.g. [29].

The 4D-Var problem is usually cast as an optimization problem and has
very close connections to optimal control theory [30]. A cost functional is in-
troduced consisting of two terms in the classical strong-constraint formulation:
the first term penalizes the misfit between the (unknown) initial condition and
its prior background information and the second term penalizes the distance
between the predicted system outputs and the observation data. In the weak-
constraint case, another term is added which penalizes the model-error forcing.
The optimal estimate of the initial condition is then found by minimizing the
cost functional subject to the governing equations of the dynamical system,
i.e., the PDE. After discretization of the PDE using classical techniques such
as finite elements or volumes, the 4D-Var problem results in a large-scale op-
timization problem which is typically very expensive to solve due to the high-
dimensional state and control variable spaces and the associated computation
of the cost functional, gradient, and possibly Hessian. Note that in the dis-
cretized weak-constraint formulation, the model-error forcing is also assumed
to be spatially distributed and thus has approximately the same dimension as
the state and initial condition. To lower the tremendous computational cost
for solving the problem, an incremental approach has been proposed in [5].
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Another possibility to speed-up the solution process are reduced-order ap-
proaches which have been proposed successfully for the strong-constraint 4D-
Var formulation in, for example, [2,6,7,12,26,30]. There are two kinds of 4D-
Var reduced-order approaches in the literature: In the first approach [12,26,30],
a reduced basis space is introduced, e.g. using empirical orthogonal functions,
only for the control variable (initial condition). By limiting the search space
to the reduced space, the optimization cost per iteration decreases and the
convergence improves (at least during the first few iterations). In the second
approach [2,6,7], a reduced-order model for the system dynamics using proper
orthogonal decomposition (POD) is additionally introduced. This leads to an
additional speed-up and significant overall computational savings compared to
reducing only the control space. All of these approaches also consider adapt-
ing the basis during the optimization. However, to the best of our knowledge,
a posteriori error bounds to assess the sub-optimality of the reduced-order
4D-Var solutions have not yet been developed.

In this paper, we develop efficiently evaluable a posteriori error bounds for
reduced order solutions of the strong- and weak-constraint 4D-Var data assim-
ilation problem. We consider the standard quadratic 4D-Var cost functional
constrained by parametrized linear parabolic PDEs involving noisy observa-
tions in time. Our final goal is not only to recover the “usual” 4D-Var control
variables, i.e. the initial condition and model-error forcing, but also the model
parameters. We thus obtain a bilevel optimization problem where the outer
optimization stage is performed over the model parameters after an inner op-
timization stage identical to the standard 4D-Var setting, i.e., an optimization
over control variables for given fixed model parameters. In this paper, we focus
mainly on the inner optimization stage and propose a posteriori error bounds
for the control variable. Our main contributions are as follows:

– In Section 3, we consider the strong-constraint 4D-Var formulation. We em-
ploy the reduced basis method to generate reduced order approximations
for the solution of the parametrized 4D-Var problem, i.e., the state, ad-
joint, and control variables (i.e., the initial condition). We then propose an
a posteriori error bound for the control variable that allows us to assess the
error between the reduced-order 4D-Var solution and 4D-Var solution of
the underlying high-dimensional FE approximation. With the assumption
of affine parameter dependence, the reduced-order 4D-Var problem and the
a posteriori error bound can be efficiently evaluated using an offline-online
computational decomposition.

– In Section 4, we extend the reduced basis approximation and a posteriori
error estimation procedure from the strong- to the weak-constraint case.
For simplicity of exposition, we consider the model-error forcing as the only
unknown control variable in this section.

– In Section 5, we combine the results from the two previous sections and
consider problems with unknown initial condition and model-error forcing.

We present numerical results for the strong- and weak-constraint setting in
Section 6. We consider the dispersion of a pollutant governed by a convection-
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diffusion equation with a Taylor-Green vortex velocity field. Our goal is to
recover the initial condition (in the strong-constraint case) or the model-error
forcing (in the weak-constraint case) given noisy measurements of the pollutant
concentration at five spatial locations over time.

We note that the reduced basis method has already been used in a para-
meterized-background data-weak approach to variational data assimilation
in [22,23]. However, this previous work considers the elliptic case and presents
a relaxation of the 3D-Var setting, whereas we consider the time-dependent
case using the classical 4D-Var formulation. Before introducing some prelim-
inary definitions and assumptions in the following section, we do note that
although we consider the 4D-Var problem here, our approach directly applies
to the 3D-Var setting since the two are formally similar [21].

2 Preliminaries

In this section, we introduce the necessary ingredients and definitions for the
subsequent discussion. The 4D-Var problem is usually cast in a fully discrete
setting; we thus directly consider a spatial finite element (FE) and temporal
finite difference (FD) discretization using the weak variational formulation.

Let Ye with H1
0 (Ω) ⊂ Ye ⊂ H1(Ω) be a Hilbert space of functions over

the bounded Lipschitz domain Ω ⊂ Rd, d ∈ N, with boundary Γ . The in-
ner product and induced norm associated with Y are given by (·, ·)Y and
‖·‖Y =

√
(·, ·)Y , respectively. We assume that the norm ‖·‖Y is equivalent to

the H1(Ω)-norm and denote the dual space of Ye by Y ′e . We also introduce
the Hilbert space for the control, Ue = L2(Ω), together with its inner product
(·, ·)U , induced norm ‖·‖U =

√
(·, ·)U , and associated dual space U ′e. Further-

more, let D ⊂ RP be a prescribed P -dimensional compact set in which our
P -tuple input parameter µ = (µ1, . . . , µP ) resides.

We divide the time interval [0, T ] with fixed final time T into K subintervals
of equal length τ = T

K and define tk = k τ, 0 ≤ k ≤ K, and K = {1, . . . ,K}.
We also introduce two conforming finite element approximation spaces Y ⊂ Ye
and U ⊂ Ue of typically large dimension NY = dim(Y ) and NU = dim(U);
note that Y and U shall inherit the inner product and norm from Ye and
Ue, respectively. We shall assume that the spaces Y,U and the number of
timesteps K are large enough – i.e. Y and U are sufficiently rich and the time-
discretization sufficiently fine – such that the FE-FD approximation guarantees
a desired accuracy over the whole parameter domain D.

We next introduce the (for the sake of simplicity) parameter-independent
bilinear forms m(w, v) = (w, v)L2(Ω) for all w, v ∈ L2(Ω) and b(·, ·) : U ×Y →
R. We assume that b(·, ·) is continuous, i.e.

γb = sup
w∈U\{0}

sup
v∈Y \{0}

b(w, v)

‖w‖U‖v‖Y
<∞. (1)
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We also introduce the parameter-dependent bilinear form a(·, ·;µ) : Y × Y →
R, which we assume to be continuous, coercive,

α(µ) = inf
v∈Y \{0}

a(v, v;µ)

‖v‖2Y
≥ α > 0 ∀µ ∈ D, (2)

and affinely parameter-dependent,

a(w, v;µ) =

Qa∑
q=1

Θqa(µ) aq(w, v) ∀w, v ∈ Y, ∀µ ∈ D, (3)

for some (preferably) small integer Qa. Here, the coefficient functions Θqa :
D → R are continuous and depend on µ, but the continuous bilinear forms
aq : Y × Y → R do not depend on µ.

We also require the continuous linear functional f(·) : Y → R and the
continuous and linear (observation) operator C : Y → D, where D is a suit-
able Hilbert space of observations with inner product (·, ·)D and norm ‖·‖D.
Although a more general setting is possible, we consider here the observation
space D = Rl and the observation operator given by Cφ = (h1(φ), . . . , h`(φ))T ,
where hi ∈ Y ′ are linear output functionals. The continuity constant of the
operator C is given by

γc = sup
v∈Y \{0}

‖Cv‖D
‖v‖Y

. (4)

For the development of the a posteriori error bounds we assume that we
have access to a positive lower bound αLB(µ) : D → R+ for the coercivity
constant α(µ) defined in (2) such that

0 < α ≤ αLB(µ) ≤ α(µ) ∀µ ∈ D. (5)

We note that αLB(µ) is used in the a posteriori error bound formulation to
replace the actual coercivity constants. Whereas the constants γb and γc are
parameter-independent and can thus be computed once offline, we require that
the coercivity lower can be efficiently evaluated online, i.e., the computational
cost is independent of the FE dimension N . Various recipes exist to obtain
such bounds [13,27].

3 Strong-constraint 4D-Var

In this section, we consider the strong-constraint 4D-Var data assimilation
problem. The extension to the weak-constraint case is considered in Section 4.
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3.1 Problem statement

For a given parameter µ ∈ D, the classical 4D-Var problem can be stated as
the minimization problem

min
y∈Y K , u∈U

J(y, u;µ) s.t. y ∈ Y K solves

m(yk, v) + τ a(yk, v;µ) = m(yk−1, v) + τf(v) ∀v ∈ Y, ∀k ∈ K,
(6)

with initial condition m(y0, v) = m(u, v) for all v ∈ Y, and cost functional
J(·, ·;µ) : Y K × U → R given by

J(y, u;µ) =
1

2
‖u− ud‖2U +

τ

2

K∑
k=1

‖Cyk − zkd‖2D. (7)

Here, ud ∈ U is the background state (also referred to as the prior), i.e.,
the best estimate of the true initial condition u ∈ U prior to measurements
being available, and zkd ∈ D, k ∈ K, is the given data, e.g., observed outputs.
The first term in the cost functional penalizes the deviation of the initial
condition from the background state, the second term penalizes the deviation
of the predicted outputs from the given data/observed outputs. The relative
weight of both terms is affected by the choice of the (·, ·)U and (·, ·)D inner
products. Note that we use u for the unknown control/initial condition to
signify the similarity to optimal control and the notation J(·, ·;µ) to indicate
the implicit dependence of the cost functional J on the parameter µ through
the state y. However, to simplify the notation we often do not explicitly state
the dependence of the state and control on the parameter, i.e., we use yk and
u instead of yk(µ) and u(µ), respectively.

Employing a Lagrangian approach, we obtain the associated necessary, and
in our setting sufficient, first-order optimality conditions: Given µ ∈ D, the
optimal solution (y∗, p∗, u∗) ∈ Y K × Y K × U satisfies

m(y∗,k − y∗,k−1, φ) + τ a(y∗,k, φ;µ) = τ f(φ) ∀φ ∈ Y, ∀k ∈ K, (8a)

m(y∗,0, φ) = m(u∗, φ) ∀φ ∈ Y, (8b)

m(ϕ, p∗,k − p∗,k+1) + τ a(ϕ, p∗,k;µ) = τ (zkd − Cy∗,k, Cϕ)D

∀ϕ ∈ Y, ∀k ∈ K, (8c)

(u∗ − ud, ψ)U −m(ψ, p∗,1) = 0 ∀ψ ∈ U, (8d)

where the final condition of the adjoint is given by p∗,K+1 = 0.

3.1.1 Algebraic Formulation

The 4D-Var problem is usually stated using an algebraic formulation [14]. We
thus briefly outline the algebraic equivalent of (6) by introducing a basis for
the finite element spaces Y and U such that Y = span{φyi , i = 1, . . . ,NY } and
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U = span{φui , i = 1, . . . ,NU}, respectively. We express the state, adjoint, and
control, respectively, as

yk =
NY∑
i=1

yki φ
y
i , pk =

NY∑
i=1

yki φ
y
i , u =

NU∑
i=1

uiφ
u
i ,

and denote the corresponding coefficient vectors by yk = [yk1 , . . . , y
k
NY

]T ∈
RNY , pk = [pk1 , . . . , p

k
NY

]T ∈ RNY , and u = [u1, . . . , uNU
]T ∈ RNU . We thus

obtain the algebraic formulation of the classical 4D-Var minimization problem

min J(y,u;µ) =
1

2
(u− ub)

TU(u− ub) +
τ

2

K∑
k=1

(Cyk − zkd)TD(Cyk − zkd),

s.t. yk ∈ RNY solves Myk + τ A(µ)yk = Myk−1 + τF ∀k ∈ K,
with initial condition My0 = Muu.

(9)

Here, M ∈ RNY ×NY , A(µ) ∈ RNY ×NY , F ∈ RNY , and C ∈ R`×NY are the
usual finite element mass matrix, stiffness matrix, load vector, and state-to-
output matrix with entries Mij = m(φyj , φ

y
i ), Aij(µ) = a(φyj , φ

y
i ;µ), Fi =

f(φyi ), and Cij = hi(φ
y
j ), respectively. The matrix Mu ∈ RNY ×NU is given

by (Mu)ij = m(φuj , φ
y
i ). Furthermore, the matrices U ∈ RNY ×NY with entries

Uij = (φyj , φ
y
i )U and D ∈ R`×` with entries Dij = (ej , ei)D can be identified

as the inverses of the background and observation error covariance matrices,
respectively. Here, ei denotes the ith unit vector in R`.

The derivation and algebraic formulation of the optimality system (8) is
standard and thus omitted for brevity. Further, in our problem setting the
first-discretize-then-optimize and first-optimize-then-discretize strategies lead
to the same algebraic formulation of the first-order optimality system. For
more details on these two approaches, we refer to [11].

3.2 Reduced basis approximation

We first assume that we are given the reduced basis spaces YN ⊂ Y for the state
and adjoint, and U0

N ⊂ U for the control. Here, 1 ≤ N ≤ Nmax is the number of
iterations of the POD-Greedy sampling procedure to construct the spaces YN
and U0

N discussed in Section 4.4. Note that the dimensions NY (N) := dim(YN )
and N0

U (N) := dim(U0
N ) of the reduced basis spaces depend on N but are in

general not equal to N . Furthermore, the basis functions of YN and U0
N are

orthogonalized with respect to the (·, ·)Y and (·, ·)U inner product, respectively.
We next replace the finite element approximation of the PDE constraint in

the 4D-Var problem statement (6) with its reduced basis approximation. For a
given parameter µ ∈ D, the reduced-order 4D-Var data assimilation problem
can thus be stated as

min
yN∈Y K

N , uN∈U0
N

J(yN , uN ;µ) s.t. yN ∈ Y KN solves

m(ykN , v) + τ a(ykN , v;µ) = m(yk−1N , v) + τf(v) ∀v ∈ YN , ∀k ∈ K,
(10)
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with initial condition m(y0N , v) = m(uN , v) for all v ∈ YN .
We can again employ a Lagrangian approach to obtain the reduced-order

optimality system: Given any µ ∈ D, the optimal solution (y∗N , p
∗
N , u

∗
N ) ∈

Y KN × Y KN × U0
N satisfies

m(y∗,kN − y∗,k−1N , φ) + τ a(y∗,kN , φ;µ) = τ f(φ) ∀φ ∈ YN , ∀k ∈ K, (11a)

m(y∗,0N , φ) = m(u∗N , φ) ∀φ ∈ YN , (11b)

m(ϕ, p∗,kN − p
∗,k+1
N ) + τ a(ϕ, p∗,kN ;µ) = τ (zkd − Cy

∗,k
N , Cϕ)D

∀ϕ ∈ YN , ∀k ∈ K, (11c)

(u∗N − ud, ψ)U −m(ψ, p∗,1N ) = 0 ∀ψ ∈ U0
N , (11d)

where the final condition of the adjoint is given by p∗,K+1
N = 0. The reduced-

order optimality system can be solved efficiently using an offline-online com-
putational procedure which is briefly discussed in Section 3.4.

Note that we use a single reduced basis ansatz and test space for the
state and adjoint equations for two reasons: first, a single space for state and
adjoint guarantees the stability of the reduced-order optimality system [9]; and
second, the reduced-order optimality system (11) reflects the reduced-order
4D-Var problem (10) only if the spaces of the state and adjoint equations are
identical. Since the state and adjoint solutions need to be well-approximated
using the single space YN , we combine both snapshots of the state and adjoint
equations into the reduced basis space YN .

3.3 A posteriori error estimation

We turn to the a posteriori error estimation procedure. Although we consider
a parametrized problem here, we note that the error bounds proposed below
can also be used in the non-parametrized reduced-order setting and are in-
dependent of how the reduced-order spaces are constructed, i.e., the bound
directly applies to reduced-order approaches where the spaces are constructed
e.g. using empirical orthogonal functions, POD, or dual-weighted POD [6].

As mentioned above, our main goal is to rigorously bound the error in
the optimal control, u∗ − u∗N . This will allow us to confirm the fidelity of the
reduced-order 4D-Var solution efficiently during the online stage. Our a pos-
teriori error bounds are also crucial in the construction of the reduced basis
spaces by the POD-Greedy algorithm (see Section 3.5).

To begin, we require the residuals

rky(φ;µ) = f(φ)− a(y∗,kN , φ;µ)− 1

τ
m(y∗,kN − y∗,k−1N , φ) ∀φ ∈ Y, k ∈ K, (12)

rkp(ϕ;µ) = (zkd − Cy
∗,k
N , Cϕ)D − a(ϕ, p∗,kN ;µ)− 1

τ
m(ϕ, p∗,kN − p

∗,k+1
N )

∀ϕ ∈ Y, k ∈ K, (13)

ru(ψ;µ) = m(ψ, p∗,1N )− (u∗N − ud, ψ)U ∀ψ ∈ U. (14)
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We also define

Ry =
(
τ

K∑
k=1

‖rky‖2Y ′

)1/2
, Rp =

(
τ

K∑
k=1

‖rkp‖2Y ′

)1/2
, (15)

and the errors eky = y∗,k − y∗,kN , ekp = p∗,k − p∗,kN , and eu = u∗ − u∗N . Note

that we use ‖rky,p‖Y ′ and ‖ru‖U ′ as a shorthand notation for ‖rky,p(·;µ)‖Y ′ and
‖ru(·;µ)‖)U ′ , respectively. We can now state our main result:

Proposition 1 Let u∗ and u∗N be the optimal solutions of the full-order and
reduced-order 4D-Var problems, (6) and (10), respectively. The error satisfies

‖u∗ − u∗N‖U ≤ ∆u
N (µ) := c1(µ) +

√
c1(µ)2 + c2(µ) ∀µ ∈ D, (16)

where c1(µ) and c2(µ) are given by

c1(µ) =
1

2

(
‖ru(·;µ)‖U ′ +

1√
αLB(µ)

Rp

)
, and (17)

c2(µ) =

(√
2 + 1

αLB(µ)
RyRp +

γ2c
2(αLB(µ))2

R2
y

)
. (18)

Proof We start from the error-residual equations obtained from (8) and the
definitions of the residuals

m(eky − ek−1y , φ) + τ a(eky , φ;µ) = τ rky(φ;µ), ∀φ ∈ Y, k ∈ K, (19)

m(ϕ, ekp − ek+1
p ) + τ a(ϕ, ekp;µ) = τ rkp(ϕ;µ)− τ (Ceky , Cϕ)D,

∀ϕ ∈ Y, k ∈ K, (20)

(eu, ψ)U −m(ψ, e1p) = ru(ψ;µ), ∀ψ ∈ U, (21)

where eK+1
p = 0 and e0y = eu. We first choose φ = ekp in (19) and take the sum

from k = 1 to K to get

K∑
k=1

m(eky − ek−1y , ekp) + τ
K∑
k=1

a(eky , e
k
p;µ) = τ

K∑
k=1

rky(ekp;µ). (22)

Similarly, choosing ϕ = eky in (20) and summing from k = 1 to K we obtain

K∑
k=1

m(eky , e
k
p−ek+1

p )+τ

K∑
k=1

a(eky , e
k
p;µ) = τ

K∑
k=1

rkp(eky ;µ)−τ
K∑
k=1

‖Ceky‖2D. (23)

Finally, from (21) with ψ = eu we have

‖eu‖2U −m(eu, e
1
p) = ru(eu;µ). (24)
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By adding equations (23) and (24), and then subtracting (22) we get

K∑
k=1

m(ek−1y , ekp)−
K∑
k=1

m(eky , e
k+1
p )−m(eu, e

1
p) + ‖eu‖2U

= −τ
K∑
k=1

rky(ekp;µ) + τ

K∑
k=1

rkp(eky ;µ) + ru(eu;µ)− τ
K∑
k=1

‖Ceky‖2D. (25)

Since e0y = eu, and eK+1
p = 0, the left-hand side of (25) reduces to ‖eu‖2U and

we thus obtain

‖eu‖2U + τ

K∑
k=1

‖Ceky‖2D = −τ
K∑
k=1

rky(ekp;µ) + τ

K∑
k=1

rkp(eky ;µ) + ru(eu;µ)

≤
(
τ

K∑
k=1

‖rky‖2Y ′

)1/2(
τ

K∑
k=1

‖ekp‖2Y
)1/2

+
(
τ

K∑
k=1

‖rkp‖2Y ′

)1/2(
τ

K∑
k=1

‖eky‖2Y
)1/2

+ ‖ru‖U ′‖eu‖U .

(26)

From the proof for the spatio-temporal energy norm bound in [10,16] we know
that

τ

K∑
k=1

‖eky‖2Y ≤
τ

(αLB(µ))2

K∑
k=1

‖rky‖2Y ′ +
1

αLB(µ)
m(eu, eu)︸ ︷︷ ︸
=‖eu‖2U

. (27)

We need an analogous result for the adjoint. To this end, we first choose ϕ = ekp
in (20) to obtain

m(ekp, e
k
p − ek+1

p ) + τ a(ekp, e
k
p;µ) = τ rkp(ekp;µ)− τ (Ceky , Ce

k
p)D. (28)

We next note from the Cauchy-Schwarz inequality and Young’s inequality that

2m(ekp, e
k+1
p ) ≤ m(ekp, e

k
p) +m(ek+1

p , ek+1
p ), (29)

and also that

2 τ (Ceky , Ce
k
p)D ≤ 2 τ ‖Ceky‖D ‖Cekp‖D ≤ 2 τ ‖Ceky‖D γc ‖ekp‖Y

≤ 2 τ γ2c
αLB(µ)

‖Ceky‖2D +
τ αLB(µ)

2
‖ekp‖2Y , (30)

where we also used the definition of the constant γc. Finally, again from
Young’s inequality we obtain

2 τ rkp(ekp;µ) ≤ 2 τ

αLB(µ)
‖rkp‖2Y ′ +

τ αLB(µ)

2
‖ekp‖2Y . (31)
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By summing two times (28) from k = 1 to K and invoking (29), (30), and
(31), we obtain

m(e1p, e
1
p)+τ

K∑
k=1

a(ekp, e
k
p;µ) ≤ 2 τ

αLB(µ)

K∑
k=1

‖rkp‖2Y ′ +
2 τ γ2c
αLB(µ)

K∑
k=1

‖Ceky‖2D, (32)

and hence

τ

K∑
k=1

‖ekp‖2Y ≤
2 τ

(αLB(µ))2

K∑
k=1

‖rkp‖2Y ′ + 2

(
γc

αLB(µ)

)2

τ

K∑
k=1

‖Ceky‖2D. (33)

Using the inequalities (27) and (33) in (26), invoking the definitions (15), and
noting that (a2 + b2)1/2 ≤ |a|+ |b|, it follows that

‖eu‖2U + τ

K∑
k=1

‖Ceky‖2D ≤‖ru‖U ′‖eu‖U +Rp

[
1

(αLB(µ))2
R2
y +

1

αLB(µ)
‖eu‖2U

]1/2

+Ry

[
2

(αLB(µ))2
R2
p + 2

(
γc

αLB(µ)

)2

τ

K∑
k=1

‖Ceky‖2D

]1/2

≤‖ru‖U ′‖eu‖U +Rp

[
1

αLB(µ)
Ry +

1√
αLB(µ)

‖eu‖U

]

+Ry

[ √
2

αLB(µ)
Rp +

√
2 γc

αLB(µ)

(
τ

K∑
k=1

‖Ceky‖2D
)1/2]

.

(34)

We now use Young’s inequality to bound

Ry

√
2 γc

αLB(µ)

(
τ

K∑
k=1

‖Ceky‖2D
)1/2

≤ γ2c
2(αLB(µ))2

R2
y + τ

K∑
k=1

‖Ceky‖2D, (35)

and thereby eliminate the second term on the left-hand side of the inequality
(34) to obtain

‖eu‖2U ≤ ‖ru‖U ′‖eu‖U +
1√

αLB(µ)
Rp‖eu‖U

+

√
2 + 1

αLB(µ)
RyRp +

γ2c
2(αLB(µ))2

R2
y. (36)

Using the definitions of c1(µ) and c2(µ) in (17) and (18), respectively, (36)
simplifies to

‖eu‖2U − 2 c1(µ) ‖eu‖U − c2(µ) ≤ 0. (37)

We obtain the desired result by bounding the error ‖eu‖U by the larger root
of the quadratic inequality.
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3.4 Computational Procedure

We briefly comment on the computational procedure to solve the reduced-order
4D-Var problem and to evaluate the error bound. Given the affine parameter
dependence, the offline-online decomposition for the reduced basis approxi-
mation is already quite standard in the reduced basis literature [27]; for the
parabolic case considered in this paper, we also specifically refer to [10,16]. The
evaluation of the a posteriori error bounds requires the following ingredients:

– the dual norm of the residuals ‖rky‖Y ′ , ‖rkp‖Y ′ , and ‖ru‖U ′ ;
– the coercivity lower bound αLB(µ) and the constant γc.

For the construction of the coercivity lower bound, αLB(µ), various recipes
exist [13,24,31]. The specific choices for our numerical tests are stated in Sec-
tion 6. The constant γc is parameter-independent and can be computed by
solving a generalized eigenproblem. The offline-online evaluation of the dual
norms of the residuals is standard and hence omitted [27]. For a summary
of the computational cost in the parabolic optimal control context, we refer
to [16].

We solve the full-order and reduced-order 4D-Var problems with a pre-
conditioned Newton-CG method on the “reduced” cost functional j(u;µ) :=
J(y(u), u;µ), i.e., we eliminate the PDE-constraint in the minimization prob-
lem. The control mass matrix is used as a preconditioner. We present results
for the number of CG iterations in Section 6. Overall, the online computational
cost to solve the reduced-order 4D-Var problem and to evaluate the a poste-
riori error bound depends only on the reduced basis dimensions NY and N0

U ,
but is independent of N .

3.5 Greedy Algorithm

To construct the reduced basis spaces YN and U0
N , we use the POD-Greedy

sampling procedure in Algorithm 1. Here, Ξtrain ⊂ D is a finite but suitably
large training sample, µ1 ∈ Ξtrain is the initial parameter value, Nmax the
maximum number of greedy iterations, and εtol,min > 0 a prescribed error tol-
erance. We also define the relative error bound ∆u

N,rel(µ) = ∆u
N (µ)/‖u∗N (µ)‖U .

Furthermore, for a given time history vk ∈ Y, k ∈ K, the operator PODY ({vk :
k ∈ K}) returns the largest POD-mode with respect to the (·, ·)Y inner prod-
uct (normalized with respect to the Y -norm), and vkproj,N (µ) denotes the Y -

orthogonal projection of vk(µ) onto the reduced basis space YN .

In steps 6 and 7 of Algorithm 1 we expand the reduced basis space YN
with the largest POD mode of both the state and the adjoint solution. Note
that we apply the POD in these two steps to the time history of the optimal
state and adjoint projection errors, i.e., ey,kproj,N (µ) = y∗,k(µ)− y∗,kproj,N (µ) and

ep,kproj,N (µ) = p∗,k(µ)−p∗,kproj,N (µ), k ∈ K, and not to the solutions yk(µ), k ∈ K,
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and pk(µ), k ∈ K, itself.1 This ensures that the POD modes are already
orthogonal with respect to the (·, ·)Y inner product and that we add only new
information to YN which is not yet captured in the reduced basis.

In step 8 we expand the reduced basis space U0
N with the optimal control

at µ∗. Due to the time-dependence of the state and adjoint, it is possible
that a specific parameter µ̃ is picked several times by the greedy search in
step 9. Before expanding U0

N , we thus need to check if the new snapshot is
already contained in the reduced basis space U0

N−1, and consequently discard
linearly dependent snapshots. By construction, we thus have dim(U0

N ) ≤ N
and dim(YN ) = 2N (although it is theoretically possible that dim(YN ) ≤
2N , we did not observe this case in the numerical results). Finally, we note
that information from the data assimilation cost functional enters through the
adjoint equation and the adjoint snapshots into YN .

Algorithm 1 Sampling Procedure: Strong-constraint 4D-Var

1: Choose Ξtrain ⊂ D, µ1 ∈ Ξtrain, Nmax, and εtol,min > 0

2: Set N ← 0, YN ← {}, U0
N ← {}

3: Set µ∗ ← µ1 and ∆u
N,rel(µ

∗)←∞
4: while ∆u

N,rel(µ
∗) > εtol,min and N ≤ Nmax do

5: N ← N + 1

6: ζ1 = PODY

({
ey,kproj,N−1(µ∗) : k ∈ K

})
, YN ← YN−1 ⊕ span{ζ1}

7: ζ2 = PODY

({
ep,kproj,N (µ∗) : k ∈ K

})
, YN ← YN ⊕ span{ζ2}

8: U0
N ← U0

N−1 ⊕ span{u∗(µ∗)}
9: µ∗ ← arg max

µ∈Ξtrain

∆u
N,rel(µ)

10: end while

4 Weak-constraint 4D-Var

We next consider the weak-constraint 4D-Var data assimilation problem, thus
accounting for possible model errors in the dynamical system. For simplicity,
we assume in this section that the initial condition is known and that we
are only interested in bounding the model error. We consider the combined
problem (unknown initial condition and model error) in the next section.

1 For the first iteration of the algorithm we define vkproj,0(µ) = 0, and hence ey,kproj,0(µ) =

yk(µ) and ep,kproj,0(µ) = pk(µ).
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4.1 Problem statement

To emphasize the relation between the weak-constraint 4D-Var problem and
the optimal control setting, we denote in this section the model error by u.
However, the model error is now time-dependent, i.e., u = uk, k ∈ K, and
appears in every time step of the dynamical system. For a given parameter
µ ∈ D, the weak-constraint 4D-Var problem is then given by the minimization
problem

min
y∈Y K , u∈UK

J(y, u;µ) s.t. y ∈ Y K solves

m(yk, v) + τ a(yk, v;µ) = m(yk−1, v) + τ b(uk, v) + τ f(v)

∀v ∈ Y, ∀k ∈ K,

(38)

with initial condition m(y0, v) = m(y0, v) for all v ∈ Y, and cost functional
J(·, ·;µ) : Y K × UK → R given by

J(y, u;µ) =
τ

2

K∑
k=1

‖uk − ukd‖2U +
τ

2

K∑
k=1

‖Cyk − zkd‖2D. (39)

We note that the cost functional now contains the contribution of the model
error uk as a sum over all time steps. In the optimal control setting, ukd ∈
U, k ∈ K denotes the desired optimal control. In the data assimilation setting,
however, ukd is usually set to zero since the model error is generally assumed to
be unbiased [17]. We also note that a constant (known) bias can be taken into
account by adjusting the right-hand side f(v). Similar to the strong-constraint
formulation, zkd ∈ D, k ∈ K, are the observed outputs.

We again obtain the associated necessary and sufficient first-order optimal-
ity conditions using a Lagrangian approach: Given µ ∈ D, the optimal solution
(y∗, p∗, u∗) ∈ Y K × Y K × UK satisfies

m(y∗,k − y∗,k−1, φ) + τ a(y∗,k, φ;µ) = τ b(uk, φ) + τ f(φ)

∀φ ∈ Y, ∀k ∈ K, (40a)

m(y0, φ) = m(y0, φ) ∀φ ∈ Y, (40b)

m(ϕ, p∗,k − p∗,k+1) + τ a(ϕ, p∗,k;µ) = τ (zkd − Cy∗,k, Cϕ)D

∀ϕ ∈ Y, ∀k ∈ K, (40c)

τ (u∗,k − ukd, ψ)U − τ b(ψ, p∗,k) = 0 ∀ψ ∈ U, ∀k ∈ K, (40d)

where the final condition of the adjoint is given by p∗,K+1 = 0. We note that
the adjoint equation of the weak-constraint formulation (40c) is identical to
the adjoint of the strong constraint formulation (8c).
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4.2 Reduced basis approximation

We again assume that we are given the reduced basis spaces YN ⊂ Y for the
state and adjoint and UN ⊂ U for the control. Whereas the construction of
the space YN directly follows from the discussion in Section 3.5 for the strong-
constraint case, the construction of UN needs to be adjusted to account for
the time-dependence of the model error. We briefly outline the procedure in
Section 4.4.

For a given parameter µ ∈ D, we can now state the weak-constraint
reduced-order 4D-Var data assimilation problem as follows

min
yN∈Y K

N , uN∈UK
N

J(yN , uN ;µ) s.t. yN ∈ Y KN solves

m(ykN , v) + τ a(ykN , v;µ) = m(yk−1N , v) + τ b(ukN , v) + τ f(v)

∀v ∈ YN , ∀k ∈ K,

(41)

with initial condition m(y0N , v) = m(y0, v) for all v ∈ YN . The reduced-order
optimality system directly follows from (40) and is thus omitted.

4.3 A posteriori error estimation

We first introduce the residuals for the weak-constraint case

r̃ky(φ;µ) = f(φ) + b(u∗,kN , φ)− a(y∗,kN , φ;µ)− 1

τ
m(y∗,kN − y∗,k−1N , φ)

∀φ ∈ Y, k ∈ K, (42)

r̃kp(ϕ;µ) = (zkd − Cy
∗,k
N , Cϕ)D − a(ϕ, p∗,kN ;µ)− 1

τ
m(ϕ, p∗,kN − p

∗,k+1
N )

∀ϕ ∈ Y, k ∈ K, (43)

r̃ku(ψ;µ) = m(ψ, p∗,kN )− (u∗,kN − ud, ψ)U ∀ψ ∈ U, k ∈ K. (44)

Since the adjoint equations (40c) and (8c) are identical, the adjoint residual is
actually equivalent to the strong-constraint case, i.e., rkp = r̃kp . Similar to (15),
we introduce the sums from k = 1 to K of the dual norms of the residuals as

R̃y,p =
(
τ

K∑
k=1

‖r̃ky,p(·;µ)‖2Y ′

)1/2
, R̃u =

(
τ

K∑
k=1

‖r̃ku(·;µ)‖2U ′

)1/2
, (45)

and the time-dependent model error eku = u∗,k − u∗,kN . We may now state our
main result:

Proposition 2 Let u∗,k and u∗,kN , k ∈ K, be the optimal solutions of the
full-order and reduced-order 4D-Var problems (38) and (41), respectively. The
error satisfies(

τ

K∑
k=1

‖u∗,k − u∗,kN ‖
2
U

)1/2
≤ ∆̃u

N (µ) := c1(µ) +
√
c1(µ)2 + c2(µ) ∀µ ∈ D,

(46)
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where c1(µ) and c2(µ) are given by

c1(µ) =
1

2

(
R̃u +

√
2 γb

αLB(µ)
R̃p

)
, and (47)

c2(µ) =

(
2
√

2

αLB(µ)
R̃yR̃p +

γ2c
2(αLB(µ))2

R̃2
y

)
. (48)

Proof The proof follows partly from the proof of Proposition 1; we thus stress
the differences and refer to the previous proof whenever possible. We again
start from the error-residual equations which are now given by

m(eky − ek−1y , φ) + τ a(eky , φ;µ) = τ r̃ky(φ;µ) + τ b(eku, φ)

, ∀φ ∈ Y, k ∈ K, (49)

m(ϕ, ekp − ek+1
p ) + τ a(ϕ, ekp;µ) = τ r̃kp(ϕ;µ)− τ (Ceky , Cϕ)D,

∀ϕ ∈ Y, k ∈ K, (50)

τ (eku, ψ)U − τ b(ψ, ekp) = τ r̃ku(ψ;µ), ∀ψ ∈ U, k ∈ K, (51)

where eK+1
p = 0 and e0y = 0, since we guarantee that y0 ∈ YN . We now choose

φ = ekp in (49), ϕ = ekp in (50), and ψ = eku in (21), sum all equations from
from k = 1 to K and combine them following the proof of Proposition 1 to
obtain

τ

K∑
k=1

‖eku‖2U + τ

K∑
k=1

‖Ceky‖2D

= −τ
K∑
k=1

r̃ky(ekp;µ) + τ

K∑
k=1

r̃kp(eky ;µ) + τ

K∑
k=1

r̃ku(eku;µ)

≤ R̃y
(
τ

K∑
k=1

‖ekp‖2Y
)1/2

+ R̃p

(
τ

K∑
k=1

‖eky‖2Y
)1/2

+ R̃u

(
τ

K∑
k=1

‖eku‖2U
)1/2

.

(52)

We next bound the primal error. Since the primal equation contains the model
error on the right-hand side, we need to extend the proof from [10] for the
spatio-temporal energy norm bound to include the extra term on the right-
hand side. The derivation is similar to the one for the bound of the adjoint
in the proof of Proposition 1 (cf. (28) – (33)), but instead of bounding the
(·, ·)D inner product using Cauchy-Schwarz and the constant γc, we invoke the
continuity of the bilinear form b(·, ·). We can thus derive the bound

τ

K∑
k=1

‖eky‖2Y ≤
2 τ

(αLB(µ))2

K∑
k=1

‖rky‖2Y ′ + 2

(
γb

αLB(µ)

)2

τ

K∑
k=1

‖eku‖2U . (53)

Furthermore, since the adjoint of the strong- and weak-constraint case are
equivalent, we can directly use the bound (33). Using the inequalities (53)
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and (33) in (52), invoking the definitions (45), and noting that (a2 + b2)1/2 ≤
|a|+ |b|, it follows that

τ

K∑
k=1

‖eku‖2U+τ

K∑
k=1

‖Ceky‖2D

≤

[
R̃u +

√
2 γb

αLB(µ)
R̃p

](
τ

K∑
k=1

‖eku‖2U
)1/2

+
2
√

2

αLB(µ)
R̃yR̃p +

√
2 γc

αLB(µ)
R̃y

(
τ

K∑
k=1

‖Ceky‖2D
)1/2

. (54)

We again use Young’s inequality to bound

R̃y

√
2 γc

αLB(µ)

(
τ

K∑
k=1

‖Ceky‖2D
)1/2

≤ γ2c
2(αLB(µ))2

R̃2
y + τ

K∑
k=1

‖Ceky‖2D, (55)

and thereby eliminate the second term on the left-hand side of (54) to obtain

τ

K∑
k=1

‖eku‖2U ≤

[
R̃u +

√
2 γb

αLB(µ)
R̃p

](
τ

K∑
k=1

‖eku‖2U
)1/2

+
2
√

2

αLB(µ)
R̃yR̃p +

γ2c
2(αLB(µ))2

R̃2
y. (56)

Using the definitions of c1(µ) and c2(µ) in (47) and (48), respectively, we
obtain

τ

K∑
k=1

‖eku‖2U − 2 c1(µ)
(
τ

K∑
k=1

‖eku‖2U
)1/2

− c2(µ) ≤ 0, (57)

The desired result follows again by using the larger root of the quadratic
inequality as a bound for the error.

The offline-online computational procedure in the weak-constraint case is
analogous to the strong-constraint case discussed in Section 3.4 and there-
fore omitted. Note that we additionally require the constant γb now, which is
parameter-independent and can be computed by solving a generalized eigen-
problem (similar to γc). For the Newton-CG method, we use the block-diagonal
matrix blkdiag(τM, . . . , τM) as a preconditioner.

4.4 Greedy Algorithm

The POD-Greedy sampling procedure to construct the reduced basis spaces
YN and UN in the weak-constraint case is very similar to the strong-constraint
case. We summarize the procedure in Algorithm 2 and only comment on the
differences.
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First, since we assume in this section that the initial condition y0 is known,
we initialize the reduced basis space YN with y0/‖y0‖Y . Second, we addition-
ally require the operator PODU ({vk : k ∈ K}), which returns the largest POD
mode with respect to the (·, ·)U inner product (and normalized with respect to
the U -norm). Also, vkprojU ,N (µ) denotes the U -orthogonal projection of vk(µ)

onto the reduced basis space UN and eu,kprojU ,N
(µ) = u∗,k(µ) − u∗,kprojU ,N

(µ)
denotes the time history of the optimal model-error forcing. Since the model-
error forcing is time-dependent, we simply replace step 8 in Algorithm 1 with
a POD-step and add only the largest POD mode ζ to UN . We note that the
POD modes ζ are orthogonal with respect to the (·, ·)U inner product and that
we now usually have dim(UN ) = N and dim(YN ) = 2N + 1 (due to the initial
condition), i.e., the reduced basis space UN is enriched in every greedy step.
Again, it is theoretically possible that dim(UN ) ≤ N and dim(YN ) ≤ 2N + 1,
although we did not observe this case in the numerical results.

Algorithm 2 Sampling Procedure: Weak-constraint 4D-Var

1: Choose Ξtrain ⊂ D, µ1 ∈ Ξtrain, Nmax, and εtol,min > 0

2: Set N ← 0, YN ← {y0/‖y0‖Y }, UN ← {}
3: Set µ∗ ← µ1 and ∆̃u

N,rel(µ
∗)←∞

4: while ∆̃u
N,rel(µ

∗) > εtol,min and N ≤ Nmax do

5: N ← N + 1

6: ζ1 = PODY

({
ey,kproj,N−1(µ∗) : k ∈ K

})
, YN ← YN−1 ⊕ span{ζ1}

7: ζ2 = PODY

({
ep,kproj,N (µ∗) : k ∈ K

})
, YN ← YN ⊕ span{ζ2}

8: ζ = PODU

({
eu,kprojU ,N−1

(µ∗) : k ∈ K
})

, UN ← UN−1 ⊕ span{ζ}
9: µ∗ ← arg max

µ∈Ξtrain

∆̃u
N,rel(µ)

10: end while

5 Combined 4D-Var formulation

We now combine the results from the previous two sections and consider the
classical 4D-Var data assimilation problem including model error.
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5.1 Problem statement

For a given parameter µ ∈ D, we now consider the minimization problem

min
y∈Y K , u∈UK+1

J(y, u;µ) s.t. y ∈ Y K solves

m(yk, v) + τ a(yk, v;µ) = m(yk−1, v) + τ b(uk, v) + τ f(v)

∀v ∈ Y, ∀k ∈ K,

(58)

with initial condition m(y0, v) = m(u0, v) for all v ∈ Y, and cost functional
J(·, ·;µ) : Y K × UK+1 → R given by

J(y, u;µ) =
1

2
‖u0 − u0d‖2U +

τ

2

K∑
k=1

‖uk − ukd‖2U +
τ

2

K∑
k=1

‖Cyk − zkd‖2D. (59)

In addition to the error between the predicted and observed outputs, the
cost functional now contains the deviation of the initial condition from the
background state, u0d ∈ U, as well as the model error for all time steps. As
mentioned earlier, in the data assimilation context we usually have u0d 6= 0
and ukd = 0, 1 ≤ k ≤ K, i.e. the background state is nonzero whereas the
model error is assumed to have zero mean.

The associated necessary and sufficient first-order optimality conditions
are thus: Given µ ∈ D, the optimal solution (y∗, p∗, u∗) ∈ Y K × Y K × UK+1

satisfies

m(y∗,k − y∗,k−1, φ) + τ a(y∗,k, φ;µ) = τ b(uk, φ) + τ f(φ)

∀φ ∈ Y, ∀k ∈ K, (60a)

m(y∗,0, φ) = m(u0, φ) ∀φ ∈ Y (60b)

m(ϕ, p∗,k − p∗,k+1) + τ a(ϕ, p∗,k;µ) = τ (zkd − Cy∗,k, Cϕ)D

∀ϕ ∈ Y, ∀k ∈ K, (60c)

τ (u∗,k − ukd, ψ)U − τ b(ψ, p∗,k) = 0 ∀ψ ∈ U, ∀k ∈ K, (60d)

(u∗,0 − u0d, ψ)U −m(ψ, p∗,1) = 0 ∀ψ ∈ U, (60e)

where the final condition of the adjoint is given by p∗,K+1 = 0.

5.2 Reduced basis approximation and error estimation

The reduced-order problem follows directly from (58) and (59) by restricting
the state, adjoint, and control spaces to their respective reduced basis spaces.
We again introduce an integrated space YN for the state and adjoint, and two
separate spaces for the “control,” i.e., U0

N for the initial condition u0N and UN
for the model error ukN , k ∈ K. The greedy procedure to generate these spaces
simply combines the algorithms introduced in Sections 3.5 and 4.4.
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For any given µ ∈ D, we can now state the reduced-order minimization
problem as follows

min
yN∈Y K

N , uN∈U0
N×UK

N

J(yN , uN ;µ) s.t. yN ∈ Y KN solves

m(ykN , v) + τ a(ykN , v;µ) = m(yk−1N , v) + τ b(ukN , v) + τ f(v)

∀v ∈ YN , ∀k ∈ K,

(61)

with initial condition m(y0N , v) = m(u0N , v) for all v ∈ YN . The reduced-order
optimality system directly follows from (60) and is thus omitted.

The a posteriori error bound result is a combination of the strong- and
weak-constraint case. In addition to the residuals of the state r̃ky , adjoint r̃kp ,

and model error r̃ku defined in (42), (43), and (44), we also require the residual

r0u(ψ;µ) = m(ψ, p∗,1N )− (u∗,0N − u
0
d, ψ)U ∀ψ ∈ U. (62)

The a posteriori error bound is given in the following proposition.

Proposition 3 Let u∗,k and u∗,kN be the optimal solutions of the full-order and
reduced-order 4D-Var problems (58) and (61), respectively. The error satisfies

(
‖u∗,0 − u∗,0N ‖

2
U + τ

K∑
k=1

‖u∗,k − u∗,kN ‖
2
U

)1/2
≤ ∆̂u

N (µ) := c1(µ) +
√
c1(µ)2 + c2(µ) ∀µ ∈ D, (63)

where c1(µ) and c2(µ) are given by

c1(µ) =
1

2

((
‖r0u(·;µ)‖2U ′ + R̃2

u

)1/2
+

(
2 γ2b

(αLB(µ))2
+

1

αLB(µ)

)1/2

R̃p

)
(64)

and

c2(µ) =

(
2
√

2

αLB(µ)
R̃yR̃p +

γ2c
2(αLB(µ))2

R̃2
y

)
. (65)

The proof follows from the proofs of Propositions 1 and 2 and is thus omit-
ted. The offline-online decomposition is analogous to our previous discussion
in Section 3.4.

6 Numerical results

6.1 Problem description

We consider the dispersion of a pollutant governed by a convection-diffusion
equation with a Taylor-Green vortex velocity field. The concentration of the
pollutant is measured at five spatial locations over time. The computational
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domain is Ω = (−1, 1)2 and we assume homogeneous Dirichlet boundary con-
ditions on the lower boundary ΓD and homogeneous Neumann boundary con-
ditions on the remaining boundary ΓN . The Péclet number serves as our pa-
rameter, i.e., we have µ = Pe ∈ D = [10, 50]. The bilinear form a is thus given
by

a(w, v;µ) =
1

µ

∫
Ω

∇w · ∇v dx+

∫
Ω

(β · ∇w)v dx, (66)

and the velocity field is β(x) = (sin(πx1) cos(πx2),− cos(πx1) sin(πx2))T . The
domain Ω with measurement sites as well as the velocity field are sketched in
Figure 1.

We do not consider an additional forcing term and thus set f ≡ 0. The
inner product on Ye = {v ∈ H1(Ω) : v|ΓD

≡ 0} is defined as (w, v)Y =
1
2a(w, v;µref) + 1

2a(v, w;µref) for the reference parameter µref = 30. Since β is
divergence-free and β · n ≡ 0 on Γ , one can show that a is coercive and that
the symmetric part of a is given by 1/µ

∫
Ω
∇w · ∇v dx. Hence we can use the

min-theta approach to construct a coercivity lower bound: αLB(µ) := µref/µ.
For details, we refer to Appendix B.3 of [15].

x1

x2
1

1

-1
-1

ΓD

ΓN ΓN

ΓN

1 2

34

5

Fig. 1 Left: Sketch of the computational domain with measurement locations Ω1, . . . , Ω5.
The centers of the sensors are located at (±0.6,±0.6)T and (0, 0)T ; their width and height is
0.1. The colors match those in Figure 3. Right: Plot of the Taylor-Green vortex velocity field.
The blue dot indicates the center (−0.1, 0.8)T of the Gaussian serving as initial condition.

We choose the time interval I = [0, 8] and a time step size τ = 0.04 resulting
in K = 200 time steps. For the space discretization we introduce a spatial
mesh with an element size of h = 0.04 and corresponding linear finite element
approximation spaces Y = U with NY = NU = 13, 131 degrees of freedom.
We assume that the (unknown true) initial condition ytrue0 is given by a spatial
Gaussian function with mean (−0.1, 0.8)T and covariance matrix σ2I, where
σ = 0.1 and I is the identity matrix (the center of the Gaussian is shown
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as a blue dot in Figure 1). The average concentration over the measurement
domains shown in Figure 1 serve as our five outputs hi(φ) = |Ωi|−1

∫
Ωi
φ dx,

i = 1, . . . , 5. We then generate noisy measurements by adding white noise
to the outputs computed from the full-order model for the (unknown true)
parameter µtrue = 30 with initial condition ytrue0 such that zkd = Cyk,true + ηk,
where ηk ∈ R5, k ∈ K, is a vector containing uncorrelated Gaussian noise in
each entry, i.e, ηki ∼ N(0, 0.052), i = 1, . . . , 5, k ∈ K . The inverse observation
covariance matrix is given by D = 10I. In the strong-constraint case, we assume
an optimal prior and set the prior mean ud to be equal to the true initial
condition. In the weak-constraint case, we set b(·, ·) = m(·, ·) to account for
the model-error forcing and ukd = 0, k ∈ K, i.e. the model-error forcing is
assumed to be unbiased and have zero mean. In both cases, the inverse prior
covariance matrix U is given by the mass matrix.

A preconditioned Newton-CG method takes between 30 seconds for µ = 10
(requiring 31 CG iterations) and 54 seconds for µ = 50 (requiring 56 CG
iterations) to solve the full-order strong-constraint 4D-Var problem. For the
weak-constraint case, the solution time ranges from 114 seconds (µ = 10,
81 CG iterations) to 189 seconds (µ = 50, 137 CG iterations). In Figure 2,
we plot the concentration of the pollutant for three different parameter values
and various timesteps. The influence of the Taylor-Green vortex and the Péclet
number on the solutions is clearly visible. In Figure 3 on the left, we plot the
five true outputs Cyk,true over time (the numbering and color of the curves
refer to the sketch in Figure 1). The corresponding noisy measurements zkd used
for the data assimilation are shown on the right. We note that all computations
were performed in Matlab on a computer with 2.6 GHz Intel Core i7 processor
and 16 GB of RAM.

6.2 Reduced-order 4D-Var approach

We consider the strong- and weak-constraint 4D-Var data assimilation prob-
lem separately and present results for the performance of the reduced-order
approach for each setting. We thus build different reduced basis spaces for the
strong- and weak-constraint case by employing the Greedy sampling procedure
described in Section 3.5 and 4.4, respectively. For both, we choose µstart = 10
and a training set consisting of 40 equidistant parameters over the parameter
domain D. We also prescribe the number of Greedy iterations to Nmax = 80
(strong) and Nmax = 100 (weak) resulting in a relative error bound tolerance
of approximately 10−2.

In Figure 4 we plot the maximum relative error and error bound over
a test sample consisting of 20 randomly chosen parameters in D versus the
number of Greedy iterations N . The relative error and bound are defined as
‖u∗(µ) − u∗N (µ)‖U/‖u∗(µ)‖U and ∆u

N (µ)/‖u∗(µ)‖U in the strong-constraint

case, and by
(
τ
∑K
k=1‖u∗,k(µ) − u∗,kN (µ)‖2U

)1/2
/
(
τ
∑K
k=1‖u∗,k(µ)‖2U

)1/2
and

∆̃u
N (µ)/

(
τ
∑K
k=1‖u∗,k(µ)‖2U

)1/2
in the weak-constraint case. We observe that
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Fig. 2 State solution for the true initial condition ytrue0 and for three different parameters µ.

the error and bound converge at the same rate and that the effectivities, i.e.,
the ratio of the bound and the error, thus remain almost constant over N . The
mean effectivities over the test sample forNmax are 480 in the strong-constraint
case and 40 in the weak-constraint case. We note that maximum dimensions of
the reduced basis state/adjoint and control spaces are NY,max = 2Nmax = 160
and N0

U,max = 21 (strong-constraint), and NY,max = 2Nmax + 1 = 201 and
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Fig. 3 Outputs Cyk(µtrue) and associated noisy output measurements zkd over time.

NU,max = Nmax = 100 (weak-constraint). Especially in the strong-constraint
case, we thus obtain a considerable reduction in the dimension of the control
space from N = 13, 131 to N0

U,max = 21. This will also be reflected in the
required number of CG iterations to solve the reduced-order 4D-Var problem
(see below).

Fig. 4 Maximum relative control error and error bound over number of Greedy iterations N
for strong-constraint case (left) and weak-constraint case (right).

We next report on the online computational times of our reduced-order
approach. Similar to the full-order approach, the reduced-order solution times
also depend on µ (smaller for µ = 10 and higher for µ = 50) and of course
also strongly on N . We first consider the strong-constraint case: the solution
times for the reduced-order 4D-Var problem range from 10 milliseconds to 1.37
seconds, the evaluation of the a posteriori error bound ∆u

N (µ) takes between
2.8 and 29 milliseconds. We note that the computation of the error bound is
much faster than the solution of the 4D-Var problem itself. Furthermore, we
note that the computational time to evaluate the error bound only depends
on N and not on µ (i.e., evaluating the bound for fixed N at µ = 10 or µ = 50
takes the same time). The overall online speed-up for N = Nmax thus ranges
from approximately 23 to 40.
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In the weak-constraint case, the solution times for the reduced-order 4D-
Var problem range from 99 milliseconds to 12.6 seconds, the evaluation of the
a posteriori error bound ∆̃u

N (µ) takes between 4.8 and 71 milliseconds. Again,
the evaluation of the error bound is much faster than the solution of the 4D-
Var problem itself. The online speed-up for N = Nmax is now approximately
15.

We next show results for the number of CG iterations required to solve
the reduced-order 4D-Var problem. In Figure 5, we plot the number of CG
iterations as a function of the parameter µ for various values of N and NU on
the left for the strong-constraint case and on the right for the weak-constraint
case. In the same plots, we also show the number of CG iterations required
to solve the full-order problem. We observe a different behavior in the strong-
and weak-constraint case. We first note that in the weak-constraint case the
number of reduced-order CG iterations converges to the number of full-order
CG iterations with increasing N . However, in the strong-constraint case the
number of reduced-order CG iterations is bounded by N0

U , which is signifi-
cantly smaller than N . The number of reduced-order CG iterations are thus
almost constant over µ for given N and are considerably smaller than the
number of full-order CG iterations even for N = Nmax.

Fig. 5 Required number of CG iterations for solving the full- and reduced-order 4D-Var
problem in dependence of the parameter µ and the number of Greedy iterations N . Strong-
constraint case (left) and weak-constraint case (right).

Finally, we consider the outer minimization problem and try to estimate
the unknown true parameter µtrue = 30 which lead to the noisy measurements.
To this end, we define the “optimal” parameters µ∗ and µ∗N which minimize
the full-order and reduced-order cost functionals

µ∗ = arg min
µ∈D

J∗(µ) and µ∗N = arg min
µ∈D

J∗N (µ), (67)

respectively. We compute the optimal estimated parameters µ∗ and µ∗N using
the Matlab routine fminbnd, which only needs evaluations of the full-order
and reduced-order cost functional. We also define the maximum relative cost
functional error emax

J,N = maxµ∈D |J∗(µ)− J∗N (µ)|/|J∗(µ)| and parameter error
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Table 1 Error in cost functional and estimated parameter over number of Greedy itera-
tions N . Note that µ∗ = 29.67 (strong) and µ∗ = 45.36 (weak).

N emax
J,N (strong) eµ,N (strong) emax

J,N (weak) eµ,N (weak)

10 3.12e-01 4.18e-01 2.44e-01 6.02e-02
20 7.36e-03 1.30e-01 1.70e-02 9.33e-03
30 8.22e-04 1.42e-03 3.51e-03 1.70e-04
40 1.24e-04 4.99e-04 6.37e-04 3.26e-04
50 1.14e-05 2.98e-05 2.05e-04 3.53e-05
60 4.36e-06 1.27e-05 9.70e-05 3.90e-05
70 3.92e-07 4.18e-06 3.58e-05 1.93e-05
80 8.76e-08 9.71e-08 1.05e-05 4.12e-06
90 - - 4.17e-06 2.51e-06

100 - - 1.94e-06 3.09e-06

eµ,N := |µ∗ − µ∗N |/|µ∗|. We present these errors for the strong- and weak-
constraint case as a function of N in Table 1. We observe that in both cases the
cost functional error and parameter error converge very fast, i.e., the reduced-
order approach allows us to recover the optimal parameter µ∗. We also note
that the (full-order) optimal parameter is close to the true parameter in the
strong-constraint case (µ∗ = 29.67 vs. µtrue = 30), but that this is not true
in the weak-constraint case (µ∗ = 45.36 vs. µtrue = 30). Since µ∗N → µ∗ with
increasing N , this is of course also true for — and the best we can expect of
— the reduced-order optimal parameters.

7 Conclusion

In this paper, we considered the strong- and weak-constraint 4D-Var data
assimilation problem. We presented a reduced-order approach to the 4D-Var
problem based on the reduced basis method and proposed rigorous and effi-
ciently evaluable a posteriori error bounds for the optimal control, i.e., the
initial condition in the strong-constraint setting and the model-error forcing
in the weak-constraint setting. For both instances we showed numerical results
confirming the validity of the proposed approach. We also presented theoretical
results for the combined case with unknown initial condition and model-error
forcing.

We note that although we consider a parametrized problem here, the error
bounds can also be used in the non-parametrized reduced-order setting and are
independent of how the reduced-order spaces are constructed. The bound thus
directly applies to reduced-order approaches where the spaces are constructed,
e.g., using empirical orthogonal functions, POD, or dual-weighted POD [6].
Furthermore, we believe that the error bounds can be gainfully applied in a
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multi-fidelity approach to solve the 4D-Var problem, e.g., in a trust-region
approach as proposed in [3,8].

Although we also presented results for the error in the cost functional and
for estimating the unknown model parameter, we currently cannot provide
rigorous and sharp a posteriori error bounds for these quantities. This is the
topic of current and future research in our groups.
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