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1 Introduction

Many problems in science and engineering can be modeled in terms of optimal control prob-
lems governed by parametrized partial differential equations (PDEs), see e.g. [25,13,24,34]
for theoretical results and applications. While the PDE describes the underlying system or
component behavior, the parameters often serve to identify a particular configuration of the
component — such as boundary and initial conditions, material properties, and geometry.
In such cases — in addition to solving the optimal control problem itself — one is often
interested in exploring many different parameter configurations and thus in speeding up the
solution of the optimal control problem. However, using classical discretization techniques
such as finite elements or finite volumes even a single solution is often computationally
expensive and time-consuming, a parameter-space exploration thus prohibitive. One way to
decrease the computational burden is the surrogate model approach, where the original high-
dimensional model is replaced by a reduced order approximation. These ideas have received
a lot of attention in the past and various model order reduction techniques have been used in
this context: proper orthogonal decomposition (POD) e.g. in [22,2,23,35], reduction based
on inertial manifolds in [15], and reduced basis methods in [16,7,21,20,29]. However, the
solution of the reduced order optimal control problem is generally suboptimal and reliable
error estimation is thus crucial.

In this paper we employ the reduced basis method [30,32] as a surrogate model for
the solution of distributed optimal control problems governed by parametrized elliptic par-
tial differential equations. We extend our previous work in [11,21,20] in several directions.
First, we consider optimal control problems involving distributed controls. Distributed con-
trols pose an additional challenge relative to scalar controls since the control space is also
high-dimensional. To this end, we follow the approach originally proposed in [18] and in-
troduce reduced basis spaces not only for the state and adjoint variable but also a separate
reduced basis (control) space for the distributed control. We thus obtain a considerable di-
mension reduction of the first-order optimality system. Second, we propose two new a poste-
riori error bounds for the optimal control and associated cost functional. The first proposed
bound is an extension of our work in [11,21] to distributed controls, the second bound is
derived directly from the error residual equations of the optimality system. Third, we com-
pare our proposed bounds to the bound recently proposed in [29]. Finally, we show that the
reduced order optimal control problem and error bounds can be efficiently evaluated in an
offline-online computational procedure.

A posteriori error bounds for reduced order solutions of optimal control problems have
been proposed for proper orthogonal decomposition (POD) and reduced basis surrogate
models in [35] and [7,29], respectively. In [35], the authors estimate the distance between
the computed suboptimal control and the unknown optimal control using a perturbation ar-
gument proposed in [12,26]. The approach allows one to use the POD approximation to ef-
ficiently solve the optimal control problem. The evaluation of the a posteriori error bounds,
however, requires a “forward-backward” solution of the underlying high-dimensional state
and adjoint equations and, as pointed out in [35], is thus computationally expensive. Fur-
thermore, in the case of distributed controls there is no reduction of the possibly high-
dimensional control space.

In [29], a reduced basis approach to distributed optimal control problems has been con-
sidered. The resulting a posteriori error bound follows directly from previous work on re-
duced basis methods for noncoercive problems [36]. However, the development in [36] only
provides a combined bound for the error in the state, adjoint, and control variables. Further-
more, the approach requires the computation of (a lower bound to) the parameter-dependent
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Babuška inf-sup constant of the first-order optimality system, which is not only expensive
in terms of computational cost but also involved in terms of implementation effort. We com-
pare here the computational effort and performance, i.e., sharpness, of our proposed bounds
with the bound from [29] when we discuss numerical results. We observe that our proposed
bounds — in contrast to the bound from [29] — involve only constants (or their lower/upper
bounds) that are straightforward and inexpensive to compute. Furthermore, numerical results
show that the new bound derived from the error residual equations of the optimality system
tends to be much sharper, especially in the case of optimal control problems involving small
regularization parameters.

Although we consider a purely deterministic problem here, the input parameters could
also be considered random inputs. We note that the approach presented here can be gain-
fully employed in such a stochastic setting, see for example [8] or [4]. For a more detailed
comparison between the reduced basis method and stochastic collocation methods we refer
to [5].

This paper is organized as follows. In Section 2 we introduce the finite element (truth)
optimal control problem and state the first-order optimality conditions. The reduced basis ap-
proximation of the optimal control problem is illustrated in Section 3, where we also explain
the associated offline-online computational procedure and briefly summarize the greedy pro-
cedure to generate the reduced basis spaces. In Section 4, we discuss the a posteriori error
estimation procedures. We propose two new a posteriori error bounds for the optimal control
and the associated cost functional before briefly reviewing the bound from [29]. Finally, we
present numerical results for a Graetz flow problem and a heat transfer problem in Section 5
and offer concluding remarks in Section 6.

2 General problem statement and truth discretization

In this section we introduce the parametrized linear-quadratic optimal control problem with
elliptic PDE constraint and distributed control. We introduce a finite element truth discretiza-
tion for the exact, i.e., continuous problem and recall the first-order necessary (and in our
case sufficient) optimality conditions.

2.1 Preliminaries

Let Ye with H1
0 (Ω) ⊂ Ye ⊂ H1(Ω) be a Hilbert space over the bounded Lipschitz domain

Ω ⊂Rd ,d = 1,2,3, with boundary Γ .1 The inner product and induced norm associated with
Ye are given by (·, ·)Y and ‖·‖Y =

√
(·, ·)Y , respectively. We assume that the norm ‖·‖Y is

equivalent to the H1(Ω)-norm and denote the dual space of Ye by Y ′e . We also introduce
the control Hilbert space Ue, together with its reference inner product (·, ·)U , induced refer-
ence norm ‖·‖U =

√
(·, ·)U , and associated dual space U ′e.2 Furthermore, let D ⊂ RP be a

prescribed compact parameter set in which our parameter µ = (µ1, . . . ,µP) resides.
We directly consider a finite element approximation for the infinite-dimensional optimal

control problem. To this end we define two conforming finite element spaces Y ⊂ Ye and
U ⊂Ue. We denote their typically large dimensions by NY = dim(Y ) and NU = dim(U). We
shall assume that the truth spaces Y and U are sufficiently rich such that the finite element

1 The subscripts “e” denote “exact”.
2 Our framework covers spatially distributed controls Ue = L2(ΩU ), ΩU ⊂ Ω , and Neumann boundary

controls Ue = L2(ΓU ), ΓU ⊂ Γ . It also applies to finite-dimensional control spaces Ue = Rm.
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solutions guarantee a desired accuracy over the whole parameter domain D . We further
recall that the reduced basis approximation shall be built upon – and the reduced basis error
thus evaluated with respect to – the truth solution y(µ) ∈ Y and u(µ) ∈U .

We next introduce the parameter-dependent bilinear form a(·, ·; µ) : Y ×Y → R, and
shall assume that a(·, ·; µ) is continuous,

0 < γa(µ) = sup
w∈Y\{0}

sup
v∈Y\{0}

a(w,v; µ)

‖w‖Y‖v‖Y
≤ γ

a
0 < ∞ ∀µ ∈D , (1)

and coercive,

αa(µ) = inf
v∈Y\{0}

a(v,v; µ)

‖v‖2
Y
≥ α

a
0 > 0 ∀µ ∈D . (2)

Furthermore we introduce the parameter-dependent continuous linear functional f (·; µ) :
Y → R and the parameter-dependent bilinear form d(·, ·; µ) : Y ×Y → R, where d(·, ·; µ) is
continuous, symmetric, and positive semi-definite and hence induces an associated semi-
norm |·|D(µ) =

√
d(·, ·; µ). Furthermore c(·, ·; µ) : U ×U → R is a parameter-dependent

energy inner product on U . The associated induced energy norm is denoted by ‖·‖U(µ) =√
c(·, ·; µ) and we assume that it is equivalent to the reference norm ‖·‖U on U . In the

following we will use the notation (·, ·)U(µ) := c(·, ·; µ) and (·, ·)D(µ) := d(·, ·; µ). We also
introduce the parameter-dependent bilinear form b(·, ·; µ) : U ×Y → R and assume that
b(·, ·; µ) is continuous,

0 < γb(µ) = sup
w∈U\{0}

sup
v∈Y\{0}

b(w,v; µ)

‖w‖U(µ)‖v‖Y
≤ γ

b
0 < ∞ ∀µ ∈D . (3)

Finally, in anticipation of the optimal control problem defined in Section 2.2, we introduce
the parametrized desired state yd(µ) ∈ Y .

The involved bilinear and linear forms as well as the desired state are assumed to depend
affinely on the parameter, i.e., for all w,v ∈ Y , u,z ∈U and all parameters µ ∈D ,

a(w,v; µ) =
Qa

∑
q=1

Θ
q
a (µ)aq(w,v), b(u,v; µ) =

Qb

∑
q=1

Θ
q
b (µ)bq(u,v),

d(w,v; µ) =
Qd

∑
q=1

Θ
q
d (µ)dq(w,v), c(u,z; µ) =

Qc

∑
q=1

Θ
q
c (µ)cq(u,z), (4)

f (v; µ) =

Q f

∑
q=1

Θ
q
f (µ) f q(v), yd(x; µ) =

Qyd

∑
q=1

Θ
q
yd(µ)yq

d(x),

for some (preferably) small integers Qa, Qb, Qc, Qd , Q f , and Qyd . Here, the coefficient
functions Θ

q
• (·) : D→R, are continuous and depend on µ , but the continuous bilinear forms

aq(·, ·) : Y ×Y → R, bq(·, ·) : U×Y → R, dq(·, ·) : Y ×Y → R, cq(·, ·) : U×U → R, as well
as the continuous linear forms f q : Y → R and yq

d ∈ Y do not depend on µ .
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2.2 General problem statement

We consider the parametrized optimal control problem3

min
y∈Y,u∈U

J(y,u; µ) =
1
2
|y− yd(µ)|2D(µ)+

λ

2
‖u−ud‖2

U(µ) (P)

s.t. (y,u) ∈ Y ×U solves a(y,v; µ) = b(u,v; µ)+ f (v; µ) ∀v ∈ Y.

Here, yd(µ) ∈ Y,µ ∈ D is the desired state and ud ∈U is the desired control. The regular-
ization parameter λ > 0 governs the trade-off between the cost associated with the deviation
from the desired state and the desired control, respectively. For simplicity, we assume that
the desired control ud is parameter-independent; however, (affine) parameter dependence is
readily admitted.

It follows from our assumptions that there exists a unique optimal solution (y∗,u∗) to (P);
see e.g. [25]. By employing a Lagrangian approach, we obtain the first-order optimality
system consisting of the state equation, the adjoint equation, and the optimality equation:
Given µ ∈D , the optimal solution (y∗, p∗,u∗) ∈ Y ×Y ×U satisfies4

a(y∗,φ ; µ) = b(u∗,φ ; µ)+ f (φ ; µ) ∀φ ∈ Y, (5a)

a(ϕ, p∗; µ) = (yd(µ)− y∗,ϕ)D(µ) ∀ϕ ∈ Y, (5b)

λ (u∗−ud ,ψ)U(µ)−b(ψ, p∗; µ) = 0 ∀ψ ∈U. (5c)

Here, p is the adjoint variable and the superscript ∗ denotes optimality. We note that for the
linear-quadratic optimal control problem (P) the first-order conditions (5) are necessary and
sufficient for the optimality of (y∗,u∗) [25]. We also note that the trial and test spaces are
identical for the state and adjoint equations. The “first-discretize-then-optimize” and “first-
optimize-then-discretize” approaches commute in this setting and hence lead to the same
discrete the optimality system (5), see for example [13].

The optimality system (5) constitutes a coupled set of equations of dimension 2NY +NU
and is thus expensive to solve, especially if one is interested in various values of µ ∈D . Our
goal is therefore to significantly speed up the solution of (5) by employing the reduced basis
approximation as a surrogate model for the PDE constraint in (P).

Remark 1 In practice, the regularization parameter often serves as a design parameter which
is tuned to achieve a desired performance of the optimal controller. From a reduced basis
point of view, however, the regularization parameter may simply be considered an input
parameter of the parametrized optimal control problem. This allows us to vary λ online
and thus to efficiently design the optimal controller as discussed in the context of parabolic
optimal control problems in [20].

Remark 2 In the sequel we derive the reduced basis approximation and associated a poste-
riori error bounds for the linear-quadratic setting (P). We note that the method can be easily
extended to account for a general linear observation operator in the cost functional. How-
ever, the extension to control or state constrained problems is neither obvious nor straightfor-
ward, since determining the active and inactive sets requires an operation on the truth finite
element grid. Furthermore, the extension to problems involving nonlinear PDE constraints
poses several challenges, such as the development of certified reduced order approximation
of the PDE itself; also see e.g. [17].

3 Here and in the following we often omit the dependence on µ to simplify notation.
4 We again note that we omit the dependence on µ to simplify notation, i.e., we write y = y(µ), p = p(µ),

and u = u(µ).
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3 Reduced basis approximation

We will now employ the reduced basis method for the efficient solution of the truth optimal
control problem (P). We first assume that we are given the sample sets DN = {µ1, . . . ,µN},1≤
N ≤ Nmax, and associated integrated reduced basis spaces

YN = span{ζ y
n , 1≤ n≤ 2N}= span{y∗(µn), p∗(µn), 1≤ n≤ N}, 1≤ N ≤ Nmax, (6)

where y∗(µn) and p∗(µn) are the solutions of (5) and ζ
y
n are mutually (·, ·)Y -orthogonal basis

functions derived by a Gram-Schmidt orthogonalization procedure. Note that we integrate
both state and adjoint snapshots in YN ; thus the term “integrated.” We refer to [21,20,29]
for further details and discussion on the use of integrated spaces for the state and adjoint
equations. Furthermore we assume that the reduced basis control spaces are given by

UN = span{ζ u
n , 1≤ n≤ N}= span{u∗(µn), 1≤ n≤ N}, 1≤ N ≤ Nmax. (7)

Here, the ζ u
n , 1 ≤ n ≤ N, are mutually (·, ·)U -orthogonal basis functions. We comment on

the greedy sampling procedure to construct the spaces YN and UN in Section 3.2. Although
the snapshots generated by the greedy procedure can be linearly dependent, we will assume
in the following dim(YN) = 2N and dim(UN) = N to simplify the presentation.

We next replace the truth approximation of the PDE constraint in (P) by its reduced basis
approximation. The reduced basis optimal control problem is thus given by

min
yN∈YN ,uN∈UN

J(yN ,uN ; µ) (PN)

s.t. (yN ,uN) ∈ YN ×UN solves a(yN ,v; µ) = b(uN ,v; µ)+ f (v; µ) ∀v ∈ YN .

We can also directly state the associated first-order optimality system: Given µ ∈ D , find
(y∗N , p∗N ,u

∗
N) ∈ YN ×YN ×UN such that

a(y∗N ,φ ; µ) = b(u∗N ,φ ; µ)+ f (φ ; µ) ∀φ ∈ YN , (8a)

a(ϕ, p∗N ; µ) = (yd(µ)− y∗N ,ϕ)D(µ) ∀ϕ ∈ YN , (8b)

λ (u∗N −ud ,ψ)U(µ)−b(ψ, p∗N ; µ) = 0 ∀ψ ∈UN . (8c)

The reduced basis optimality system is only of dimension 5N and can be evaluated effi-
ciently using an offline-online computational decomposition. The details are presented in
the following subsection.

We also note that we use a single reduced basis trial and test space for the state and
adjoint equations. The reason is twofold: First, in this case the “first-reduce-then-optimize”
and “first-optimize-then-reduce” approaches are equivalent. Second, using different spaces
may result in an unstable system (8). This issue is closely related to the stability of reduced
basis formulations for saddle point problems, see [10] for details. If we use the same space
YN for the state and the adjoint equation, on the other hand, the system (8) is provably
stable [27,29]. Finally, since the state and adjoint solutions need to be well-approximated
by the single space YN , we choose integrated spaces; see (6).
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3.1 Computational procedure

We now turn to the computational details of the reduced basis approximation of the op-
timality system. To this end, we express the reduced basis state, adjoint and control so-
lutions as yN(µ) = ∑

2N
i=1 yNi(µ)ζ

y
i , pN(µ) = ∑

2N
i=1 pNi(µ)ζ

y
i , and uN(µ) = ∑

N
i=1 uNi(µ)ζ

u
i ,

and denote the coefficient vectors by yN(µ) = [yN1(µ), . . . ,yN2N(µ)]
T ∈ R2N , pN(µ) =

[pN1(µ), . . . , pN2N(µ)]
T ∈ R2N and uN(µ) = [uN1(µ), . . . ,uNN(µ)]

T ∈ RN , respectively. If
we choose as test functions φ = ζ

y
i , 1≤ i≤ 2N, ϕ = ζ

y
i , 1≤ i≤ 2N, and ψ = ζ u

i , 1≤ i≤N,
the reduced basis optimality system (8) can be expressed in terms of the 5N×5N linear sys-
tem DN(µ) 0 AT

N(µ)
0 λCN(µ) −BT

N(µ)
AN(µ) −BN(µ) 0

 yN
uN
pN

=

 Yd,N(µ)
λUd,N(µ)

FN(µ)

 . (9)

Here, we have reordered the variables and equations to exhibit the saddle point structure
of the system. The matrices AN(µ) ∈ R2N×2N , BN(µ) ∈ R2N×N , DN(µ) ∈ R2N×2N , and
CN(µ)∈RN×N are defined by the entries (AN(µ))i j = a(ζ y

j ,ζ
y
i ; µ), (BN(µ))i j = b(ζ u

j ,ζ
y
i ; µ),

(DN(µ))i j = d(ζ y
j ,ζ

y
i ; µ), and (CN(µ))i j = c(ζ u

j ,ζ
u
i ; µ), respectively. The vectors FN(µ) ∈

R2N , Yd,N(µ) ∈ R2N , and Ud,N(µ) ∈ RN are given by (FN(µ))i = f (ζ y
i ; µ), (Yd,N(µ))i =

d(yd(µ),ζ
y
i ; µ), and (Ud,N(µ))i = c(ud ,ζ

u
i ; µ), respectively.

The affine parameter dependence (4) yields the expansion AN(µ) = ∑
Qa
q=1 Θ

q
a (µ)A

q
N ,

where the parameter-independent matrices Aq
N ∈ R2N×2N are given by (Aq

N)i j = aq(ζ y
j ,ζ

y
i ).

The matrices BN(µ), DN(µ), CN(µ) and vectors FN(µ), Yd,N(µ), and Ud,N(µ) yield a similar
expansion. Finally, to allow an efficient evaluation of the cost functional in the online stage,
we also save the three-dimensional tensor Yd,d given by (Yd,d)q,p,r = dq(yp

d ,y
r
d), 1≤ q≤Qd ,

1≤ p≤ Qyd , 1≤ r ≤ Qyd , as well as the vector (Ud,d)q = cq(ud ,ud), 1≤ q≤ Qc.
The offline-online decomposition works as follows. In the offline stage — performed

only once — we first construct the reduced basis spaces YN and UN . We then assemble
the parameter-independent quantities Aq

N(1 ≤ q ≤ Qa), Bq
N(1 ≤ q ≤ Qb), Dq

N(1 ≤ q ≤ Qd),
Cq

N(1≤ q≤ Qc), Fq
N(1≤ q≤ Q f ), Y q

d,N(1≤ q≤ QdQyd), Uq
d,N(1≤ q≤ Qc), Yd,d and Ud,d .

The computational cost clearly depends on the truth finite element dimensions NY and NU .
In the online stage — for each new parameter value µ — we first assemble all parameter-
dependent quantities in (to leading order) (Qa + Qb + Qc + Qd)N2 + (Q f + QdQyd)N +
QdQ2

yd operations. We then solve the reduced basis optimality system (9) at cost O((5N)3).
Given the reduced basis optimal solution, the cost functional can then be evaluated effi-
ciently from

J(yN ,uN ; µ) =
1
2

(
yT

NDN(µ)yN −2Y T
d,N(µ)yN +Yd,d(µ)

)
+

λ

2
(
uT

NCN(µ)uN −2UT
d,N(µ)uN +Ud,d(µ)

)
, (10)

where we assemble Yd,d(µ)=∑
Qd
q=1 ∑

Qyd
p=1 ∑

Qyd
r=1 Θ

q
d (µ)Θ

p
yd(µ)Θ

r
yd(µ)(Yd,d)q,p,r and Ud,d(µ)=

∑
Qc
q=1 Θ

q
c (µ)(Ud,d)q. The computational cost for the cost functional evaluation is O

(
QdN2+

QdQydN+QdQ2
yd

)
for the state misfit term plus O

(
QcN2

)
for the control misfit term. Hence,

the overall computational cost for the online stage is independent of NY and NU , the di-
mensions of the underlying truth finite element approximation spaces. Since N �NY and
N�NU , we expect a significant computational speed-up in the online stage relative to the
solution of (5). However, we need to rigorously and efficiently assess the error introduced.
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3.2 Greedy algorithm

We generate the reduced basis space using the greedy sampling procedure [36] summarized
in Algorithm 1. To this end, we presume the existence of an a posteriori error bound ∆N(µ)
— to be introduced in the next section — for the optimal control or the associated cost
functional. Furthermore, Ξtrain ⊂ D is a finite but suitably large parameter train sample;
µ1 ∈ Ξtrain is the initial parameter value; and εtol,min > 0 is a prescribed error tolerance.
Since we can only guarantee the desired error tolerance for all µ ∈ Ξtrain, we note that we
have to choose the train sample sufficiently fine. The reduced basis space YN is expanded
in step 6 with a snapshot of the corresponding truth state and adjoint equation, i.e., we use
“integrated” spaces as discussed previously. Simultaneously we reduce the control space,
i.e., UN is spanned by snapshots of the truth optimal control at the selected parameter values.
Note that in step 6 and 7 we need to check if the new snapshots are already contained in the
reduced basis spaces and consequently discard linear dependent snapshots. Although the
reduced basis spaces could be of smaller dimension, we will assume dim(YN) = 2N and
dim(UN) = N to simplify the presentation. This is true for all numerical examples presented
in Section 5.

Algorithm 1 Greedy Sampling Procedure

1: Choose Ξtrain ⊂D , µ1 ∈ Ξtrain, and εtol,min > 0

2: Set N← 0, YN ←{},UN ←{}
3: Set µ∗← µ1 and ∆N(µ

∗)← ∞

4: while ∆N(µ
∗)> εtol,min do

5: N← N +1

6: YN ← YN−1∪ span{y(µ∗), p(µ∗)}
7: UN ←UN−1∪ span{u(µ∗)}
8: µ

∗← argmax
µ∈Ξtrain

∆N(µ)

9: end while
10: Nmax← N

4 A posteriori error estimation

We next turn to the a posteriori error estimation procedure. We consider three different error
bounds for the optimal control in Section 4.2 and subsequently derive associated cost func-
tional error bounds in Section 4.3. The error bounds introduced are rigorous upper bounds
for the errors and are online-efficient to compute; we summarize the computational proce-
dure in Section 4.4.
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4.1 Preliminaries

To begin, we assume that we are given a positive lower bound αLB
a (µ) : D → R+ for the

coercivity constant αa(µ) defined in (2) such that

0 < α
a
0 ≤ α

LB
a (µ)≤ αa(µ) ∀µ ∈D . (11)

Furthermore, we assume that we have upper bounds available for the constant

CUB
D (µ)≥CD(µ) := sup

v∈Y\{0}

|v|D(µ)

‖v‖Y
≥ 0 ∀µ ∈D , (12)

and the continuity constant of the bilinear form b(·, ·; µ)

γ
UB
b (µ)≥ γb(µ) ∀µ ∈D . (13)

It is possible to compute these constants (or their bounds) efficiently in terms of an offline-
online procedure; see Section 4.4 for details. We also require the following definition.

Definition 1 The residuals of the state equation, the adjoint equation, and the optimality
equation are defined by

ry(φ ; µ) = f (φ ; µ)+b(u∗N ,φ ; µ)−a(y∗N ,φ ; µ) ∀φ ∈ Y, ∀µ ∈D , (14)

rp(ϕ; µ) = (yd(µ)− y∗N ,ϕ)D(µ)−a(ϕ, p∗N ; µ) ∀ϕ ∈ Y, ∀µ ∈D , (15)

ru(ψ; µ) = b(ψ, p∗N ; µ)−λ (u∗N −ud ,ψ)U(µ) ∀ψ ∈U, ∀µ ∈D . (16)

4.2 Control error bounds

We now introduce two new a posteriori error bounds for the optimal control: the first is
based on a perturbation approach proposed in [35] and the second is directly derived from
the error residual equations of the optimality system. At the end of this section, we briefly
recall a previously proposed bound based on the Banach-Nečas-Babuška (BNB) theory [9].

4.2.1 Perturbation approach (PER)

The perturbation approach was originally proposed in [35] for POD approximations to op-
timal control problems. As pointed out previously, evaluation of the error bound introduced
in [35] requires a “forward-backward” truth solution and is thus computationally expen-
sive. Based on this work, we developed rigorous and efficient reduced basis control error
bounds in different contexts, i.e., for elliptic problems with scalar controls in [11,21] and
for parabolic problems in [20]. Here, we extend this work to problems involving distributed
controls, also see [18]. The derivation is based on the following result from [35] (see Theo-
rem 3.1 therein for the proof).

Theorem 1 Let u∗ and u∗N be the optimal solutions to the truth and reduced basis optimal
control problems (P) and (PN), respectively. The error in the optimal control then satisfies

‖u∗−u∗N‖U(µ) ≤ ∆
u,TV
N (µ) :=

1
λ
‖λ (u∗N −ud)−B?p(y(u∗N))‖U(µ) ∀µ ∈D , (17)
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where B? : Y →U is the adjoint operator5 defined by

b(ψ,φ ; µ) = (ψ,B?
φ)U(µ) ∀ψ ∈U, φ ∈ Y, ∀µ ∈D . (18)

Note that the error bound measures the error in the energy control norm ‖·‖U(µ), which is
the more relevant norm for parametrized geometries. In such a case we perform an affine
mapping from the parameter-dependent geometry to a parameter-independent reference ge-
ometry. This results in a parameter-dependent inner product and induced norm on the con-
trol space U [32]. Furthermore, we assume that the adjoint operator B? itself is parameter-
independent, i.e., the parameter-dependence of b(·, ·; µ) is caused only by the presence of
the parameter-dependent inner product (·, ·)U(µ) in (18). This assumption is satisfied by all
numerical examples in this paper. Nevertheless, an extension to parameter-dependent B? is
possible in many cases (see [19] for more details). In order to derive the error bound in the
following, we must compute the parameter-dependent constant (or an upper bound)

‖B?‖Y→U(µ) := sup
φ∈Y\{0}

‖B?φ‖U(µ)

‖φ‖Y
, (19)

such that ‖B?φ‖U(µ) ≤ ‖B?‖Y→U(µ)‖φ‖Y holds for all φ ∈ Y . From the definition of the
adjoint operator in (18) and the Cauchy-Schwarz inequality it follows that

‖B?
φ‖U(µ) = sup

ψ∈U\{0}

(B?φ ,ψ)U(µ)

‖ψ‖U(µ)
= sup

ψ∈U\{0}

b(ψ,φ ; µ)

‖ψ‖U(µ)
. (20)

Hence by the definition of γb(µ) in (3) we obtain that ‖B?‖Y→U(µ) = γb(µ).
We further note that y(u∗N) is the solution of the (truth) state equation (5a) with con-

trol u∗N instead of u∗, and p(y(u∗N)) is the solution of the (truth) adjoint equation (5b) with
y(u∗N) instead of y∗(u∗) on the right-hand side. Evaluation of the bound (17) thus requires a
consecutive solution of both the state and adjoint truth approximations and is computation-
ally expensive. In contrast, the bound developed in the following is online-efficient, i.e, its
evaluation is independent of NY and NU . The underlying idea is to replace the truth approx-
imation p(y(u∗N)) in (17) with the reduced basis approximation p∗N(y

∗
N(u
∗
N)) and to bound

the error term p(y(u∗N))− p∗N(y
∗
N(u
∗
N)).

Before we continue, let us make some notational remarks. Following the notation and
terminology in [7], we refer to ẽy = y(u∗N)− y∗N(u

∗
N) as the state predictability error and to

ẽp = p(y(u∗N))− p∗N(y
∗
N(u
∗
N)) as the adjoint predictability error. They reflect the ability of the

corresponding reduced basis solutions to approximate the truth state and adjoint solutions
for a prescribed control. We further define the state, adjoint, and control optimality errors as
ey,∗ = y∗(u∗)− y∗N(u

∗
N), ep,∗ = p∗ (y∗(u∗))− p∗N (y∗N(u

∗
N)), and eu,∗ = u∗− u∗N , respectively.

Before turning to the bound for the optimal control we require two intermediate results for
the state and adjoint predictability errors.

Lemma 1 The state predictability error, ẽy = y(u∗N)− y∗N(u
∗
N), is bounded by

‖ẽy‖Y ≤ ∆̃
y
N(µ) :=

‖ry(·; µ)‖Y ′
αLB

a (µ)
∀µ ∈D , (21)

where y∗N(u
∗
N) is the solution of (8a) and y(u∗N) is the solution of the truth state equation (5a)

with control u∗N .

5 The bilinear form b(·, ·; µ) : U ×Y → R defines an associated mapping B(µ) : U → Y ′ given by
〈B(µ)ψ,φ〉Y ′,Y = b(ψ,φ ; µ) for all ψ ∈U , φ ∈ Y , µ ∈D .
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This is the standard a posteriori error bound for coercive elliptic PDEs [30].

Lemma 2 The adjoint predictability error, ẽp = p(y(u∗N))− p∗N (y∗N(u
∗
N)), is bounded by

‖ẽp‖Y ≤ ∆̃
p
N(µ) :=

1
αLB

a (µ)

(
‖rp(·; µ)‖Y ′ +CUB

D (µ)2
∆̃

y
N(µ)

)
∀µ ∈D , (22)

where p∗N (y∗N(u
∗
N)) is the solution of (8b) and p(y(u∗N)) is the solution of the truth adjoint

equation (5b) with y(u∗N) on the right-hand side.

Proof We note from (15) and (5b) that the error, ẽp, satisfies

a(ϕ, ẽp; µ) = rp(ϕ; µ)+(y∗N(u
∗
N)− y(u∗N),ϕ)D(µ) ∀ϕ ∈ Y. (23)

We now choose ϕ = ẽp and invoke (2), (11), the definition of the dual norm of the residual,
and the Cauchy-Schwarz inequality to obtain

α
LB
a (µ)‖ẽp‖2

Y ≤ ‖rp(·; µ)‖Y ′‖ẽp‖Y + |y(u∗N)− y∗N(u
∗
N)|D(µ)|ẽp|D(µ). (24)

The desired result directly follows from the definition of CD(µ) and Lemma 1.

We note that this proof is in fact a simple extension of the proof of the standard error
bound. The main difference is the additional error term due to the change in the right-hand
sides of equations (5b) and (8b). We are now ready to state the optimal control error bound.

Proposition 1 Let u∗ and u∗N be the optimal solutions of the truth and reduced basis optimal
control problems, respectively. Given ∆̃

p
N(µ) defined in (22), the error in the optimal control

satisfies

‖u∗−u∗N‖U(µ) ≤ ∆
u,PER
N (µ) :=

1
λ
‖λ (u∗N −ud)−B?p∗N‖U(µ)

+
1
λ

γ
UB
b (µ) ∆̃

p
N(µ) ∀µ ∈D . (25)

Proof We append ±B?p∗N (y∗N(u
∗
N)) to the bound in (17) and invoke the triangle inequality

to obtain for all µ ∈D

‖u∗−u∗N‖U(µ) ≤
1
λ
‖λ (u∗N −ud)−B?p∗N‖U(µ)+

1
λ
‖B?

(
p∗N − p(y(u∗N))

)
‖U(µ). (26)

The desired result directly follows from the definition of the constant ‖B?‖Y→U(µ) = γb(µ)
and Lemma 2.

4.2.2 Alternative approach (ALT)

Here, we present a second new approach for the construction of a control error bound, which
is based on a direct manipulation of the error residual equations of the optimality system.
We will denote this bound — for lack of a better name — by ALT, for “alternative”. As for
the perturbation approach, the bound measures the error in the energy control norm ‖·‖U(µ).
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Proposition 2 Let u∗ and u∗N be the optimal solutions to the truth and reduced basis optimal
control problems, respectively. For any given parameter µ ∈ D , the error in the optimal
control satisfies

‖u∗−u∗N‖U(µ) ≤ ∆
u,ALT
N (µ), (27)

where ∆
u,ALT
N (µ) := c1(µ)+

√
c1(µ)2 + c2(µ) with nonnegative coefficients

c1(µ) =
1

2λ

(
‖ru(· ; µ)‖U(µ)′ +

γUB
b (µ)

αLB
a (µ)

‖rp(· ; µ)‖Y ′
)
, (28)

c2(µ) =
1
λ

[
2

αLB
a (µ)

‖ry(· ; µ)‖Y ′‖rp(· ; µ)‖Y ′ +
1
4

(
CUB

D (µ)

αLB
a (µ)

‖ry(· ; µ)‖Y ′
)2
]
. (29)

Although this error bound looks admittedly complicated, we note that it only contains
the dual norms of the state, adjoint, and optimality equation residuals which also appear
in the previous two bounds. Furthermore, it only depends on constants or rather on their
lower/upper bounds, which are straightforward to compute. We also note that, overall, terms
involving the dual norm of the state residual, ‖ry(·; µ)‖Y ′ , scale with 1/

√
λ , whereas all

other terms scale with 1/λ . This is in contrast to the perturbation approach of the last sec-
tion. Usually, small values of λ allow for a better fit of the optimal state y∗ to the desired
state yd(µ). Since the difference (yd(µ)− y∗, ·)D(µ) acts as a source term for the adjoint
equation, a small misfit will typically result in a p∗ of small norm compared to y∗; in this
case ‖ry(·; µ)‖Y ′ will dominate ‖rp(·; µ)‖Y ′ . As a result, we expect the bound (27) to perform
better than (25) for small regularization parameters λ . We will confirm this observation in
the numerical results in Section 5. We turn to the proof of Proposition 2.

Proof We start from the error residual equations

a(ey,∗,φ ; µ)−b(eu,∗,φ ; µ) = ry(φ ; µ) ∀φ ∈ Y, (30)

a(ϕ,ep,∗; µ)+(ey,∗,ϕ)D(µ) = rp(ϕ; µ) ∀ϕ ∈ Y, (31)

λ (eu,∗,ψ)U(µ)−b(ψ,ep,∗; µ) = ru(ψ; µ) ∀ψ ∈U. (32)

From (30) with φ = ey,∗ we obtain

α
LB
a (µ)‖ey,∗‖2

Y ≤ a(ey,∗,ey,∗; µ) = ry(ey,∗; µ)+b(eu,∗,ey,∗; µ), (33)

and therefore (as in Lemma 3)

‖ey,∗‖Y ≤
1

αLB
a (µ)

(
‖ry(·; µ)‖Y ′ + γb(µ)‖eu,∗‖U(µ)

)
. (34)

Similarly, equation (31) with ϕ = ep,∗ yields

α
LB
a (µ)‖ep,∗‖2

Y ≤ a(ep,∗,ep,∗; µ) = rp(ep,∗; µ)− (ey,∗,ep,∗)D(µ), (35)

and thus (similar to in Lemma 4)

‖ep,∗‖Y ≤
1

αLB
a (µ)

(
‖rp(·; µ)‖Y ′ +CD(µ)|ey,∗|D(µ)

)
. (36)
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Choosing the test functions φ = ep,∗, ϕ = ey,∗, and ψ = eu,∗ in equations (30) – (32), we
obtain

a(ey,∗,ep,∗; µ)−b(eu,∗,ep,∗; µ) = ry(ep,∗; µ), (37)

a(ey,∗,ep,∗; µ)+(ey,∗,ey,∗)D(µ) = rp(ey,∗; µ), (38)

λ (eu,∗,eu,∗)U(µ)−b(eu,∗,ep,∗; µ) = ru(eu,∗; µ). (39)

Adding (38) and (39) and subtracting (37) yields

λ (eu,∗,eu,∗)U(µ)+(ey,∗,ey,∗)D(µ) =−ry(ep,∗; µ)+ rp(ey,∗; µ)+ ru(eu,∗; µ) (40)

and hence

λ‖eu,∗‖2
U(µ)+ |e

y,∗|2D(µ) ≤‖ry(·; µ)‖Y ′‖ep,∗‖Y +‖rp(·; µ)‖Y ′‖ey,∗‖Y
+‖ru(·; µ)‖U(µ)′‖eu,∗‖U(µ). (41)

We now plug (34) and (36) in (41) to obtain

λ‖eu,∗‖2
U(µ)+ |e

y,∗|2D(µ) ≤‖ru(·; µ)‖U(µ)′‖eu,∗‖U(µ)

+
1

αLB
a (µ)

‖rp(·; µ)‖Y ′
(
‖ry(·; µ)‖Y ′ + γb(µ)‖eu,∗‖U(µ)

)
+

1
αLB

a (µ)
‖ry(·; µ)‖Y ′

(
‖rp(·; µ)‖Y ′ +CD(µ)|ey,∗|D(µ)

)
. (42)

Furthermore it follows from Young’s inequality that

CD(µ)

αLB
a (µ)

‖ry(·; µ)‖Y ′ |ey,∗|D(µ) ≤
CD(µ)

2

4αLB
a (µ)2 ‖ry(·; µ)‖2

Y ′ + |e
y,∗|2D(µ). (43)

Combining the last two inequalities, rearranging terms and employing the upper bounds for
the constants in (12) and (13) results in

λ‖eu,∗‖2
U(µ) ≤‖ru(·; µ)‖U(µ)′‖eu,∗‖U(µ)+

2
αLB

a (µ)
‖ry(·; µ)‖Y ′‖rp(·; µ)‖Y ′

+
γUB

b (µ)

αLB
a (µ)

‖rp(·; µ)‖Y ′‖eu,∗‖U(µ)+
CUB

D (µ)2

4αLB
a (µ)2 ‖ry(·; µ)‖2

Y ′ . (44)

Finally, we can formulate the last inequality as a quadratic inequality in ‖eu,∗‖U(µ),

‖eu,∗‖2
U(µ)−2c1(µ)‖eu,∗‖U(µ)− c2(µ)≤ 0, (45)

and hence ‖eu,∗‖U(µ) is bounded by the larger root given by ∆
u,ALT
N (µ).



14 Mark Kärcher et al.

4.2.3 Banach-Nečas-Babuška approach (BNB)

We now briefly recall a bound based on the Banach-Nečas-Babuška (BNB) theory [9], which
was first used in [36] for reduced basis approximations to noncoercive problems, and in [29]
in the context of optimal control problems. We summarize the main result from [29] here,
because we compare the BNB-bound with our two new bounds in the next section.

For x = (y,u, p)∈ X =Y ×U×Y and ϑ = (ϕ,ψ,φ)∈ X , we introduce the bilinear form
K(·, ·; µ) : X×X → R and the linear functional F(·; µ) : X → R as

K(x,ϑ ; µ) = a(y,φ ; µ)−b(u,φ ; µ)+a(ϕ, p; µ)+(y,ϕ)D(µ)+λ (u,ψ)U(µ)−b(ψ, p; µ),

F(ϑ ; µ) = f (φ ; µ)+(yd(µ),ϕ)D(µ)+λ (ud ,ψ)U(µ). (46)

We can then express (5) compactly via: find x∗ ∈ X such that

K(x∗,ϑ ; µ) = F(ϑ ; µ) ∀ϑ ∈ X . (47)

For the optimal reduced basis solution x∗N = (y∗N ,u
∗
N , p∗N) of (8), the corresponding residual

is given by

rx(ϑ ; µ) = F(ϑ ; µ)−K(x∗N ,ϑ ; µ) = ry(φ ; µ)+ rp(ϕ; µ)+ ru(ψ; µ) ∀ϑ ∈ X . (48)

We now have all necessary ingredients and can state the standard BNB-bound (see [36,
33] for a proof).

Proposition 3 Let x∗ and x∗N be the optimal solutions to the truth and reduced basis optimal
control problems, respectively. The error in the optimal triple satisfies

‖x∗− x∗N‖X ≤ ∆
x,BNB
N (µ) :=

‖rx(·; µ)‖X ′

β LB
Ba (µ)

∀µ ∈D , (49)

where β LB
Ba (µ) is a lower bound of the inf-sup constant

βBa(µ) = inf
ϑ∈X\{0}

sup
x∈X\{0}

K(x;ϑ ; µ)

‖x‖X ‖ϑ‖X
, (50)

and ‖·‖X is a given norm on X.

We make several remarks. First, we note that this is simply the standard result for re-
duced basis approximations of noncoercive problems [36], which was applied in [29] for
reduced basis approximations of parametrized optimal control problems. Second, there is
a certain freedom of choice on how to define the inner product and associated norm on X ;
we specify and compare two options when discussing numerical results in Section 5. Third,
since ‖u∗− u∗N‖U ≤ CU,X‖x∗− x∗N‖X , the bound ∆

x,BNB
N (µ) can also be used to bound the

error in the optimal control. We thus define ∆
u,BNB
N (µ) :=CU,X ∆

x,BNB
N (µ) for notational con-

venience. Finally, the computation of a lower bound of the inf-sup constant βBa(µ) requires
large offline effort as noted in [29].

4.3 Cost functional error bounds

Given the error bounds for the optimal triple x∗ ∈ X and the optimal control u∗ ∈U , we may
readily derive a bound for the error in the cost functional. After presenting the results for the
PER- and ALT-approach, we review the BNB result.
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4.3.1 Perturbation and alternative approach

For the PER- and ALT-approaches, we have derived only the a posteriori error bounds for the
control so far. In order to formulate the error bound for the cost functional, we also require
a posteriori error bounds associated with the optimal state and adjoint. These are stated in
the following two preparatory lemmata. We note that the proofs of these lemmata are similar
to the proof of Lemma 2, i.e., the error in the optimal control — or, more precisely, the error
bound of the optimal control — propagates and appears as an additional term in the state
and adjoint optimality error bounds.

Lemma 3 The state optimality error, ey,∗ = y∗(u∗)− y∗N(u
∗
N), is bounded by

‖ey,∗‖Y ≤ ∆
y,•
N (µ) :=

1
αLB

a (µ)

(
‖ry(·; µ)‖Y ′ + γ

UB
b (µ)∆

u,•
N (µ)

)
∀µ ∈D , (51)

where • ∈ {PER,ALT}.

Proof We note from (14) and (5a) that the error, ey,∗, satisfies

a(ey,∗,φ ; µ) = ry(φ ; µ)+b(u∗−u∗N ,φ ; µ) ∀φ ∈ Y. (52)

We now choose φ = ey,∗ and invoke (2), (11), and the definition of the dual norm of the
residual to obtain

α
LB
a (µ)‖ey,∗‖2

Y ≤ ‖ry(·; µ)‖Y ′‖ey,∗‖Y +b(u∗−u∗N ,e
y,∗; µ). (53)

From the definition of γb(µ) and by invoking respectively Proposition 1 and Proposition 2,
we obtain the desired result.

Lemma 4 The adjoint optimality error, ep,∗ = p∗ (y∗(u∗))− p∗N (y∗N(u
∗
N)), is bounded by

‖ep,∗‖Y ≤ ∆
p,•
N :=

1
αLB

a (µ)

(
‖rp(·; µ)‖Y ′ +CUB

D (µ)2
∆

y,•
N

)
∀µ ∈D , (54)

where • ∈ {PER,ALT}.

The proof is analogous to the proof of Lemma 2 and therefore omitted. We can now
state the cost functional error bound.

Proposition 4 Let J∗ = J(y∗,u∗; µ) and J∗N = J(y∗N ,u
∗
N ; µ) be the optimal values of the cost

functionals of the truth and reduced basis optimal control problems, respectively. The error
then satisfies for all µ ∈D

|J∗− J∗N | ≤ ∆
J,•
N :=

1
2

(
‖ry(·; µ)‖Y ′ ∆

p,•
N +‖rp(·; µ)‖Y ′ ∆

y,•
N +‖ru(·; µ)‖U(µ)′ ∆

u,•
N

)
, (55)

where • ∈ {PER,ALT}.

Proof We use the standard result from [3] to bound the cost functional error by

|J∗− J∗N |=
1
2

rx(ex,∗; µ) =
1
2

(
ry(ep,∗; µ)+ rp(ey,∗; µ)+ ru(eu,∗; µ)

)
≤1

2

(
‖ry(·; µ)‖Y ′ ‖ep,∗‖Y +‖rp(·; µ)‖Y ′ ‖ey,∗‖Y +‖ru(·; µ)‖U(µ)′ ‖eu,∗‖U(µ)

)
(56)

for all µ ∈D . The result follows from Lemma 3 and 4 and Proposition 1 respectively 2.



16 Mark Kärcher et al.

4.3.2 Banach-Nečas-Babuška approach

The cost functional error bound is defined in the next proposition.

Proposition 5 Let J∗ = J(y∗,u∗; µ) and J∗N = J(y∗N ,u
∗
N ; µ) be the optimal values of the cost

functionals of the truth and reduced basis optimal control problems, respectively. The error
then satisfies

|J∗− J∗N | ≤ ∆
J,BNB
N (µ) :=

1
2
‖rx(·; µ)‖2

X ′

β LB
Ba (µ)

∀µ ∈D . (57)

Proof We use the standard result from [3] to estimate the error in the cost functional by

|J∗− J∗N |=
1
2

rx(ex,∗; µ)≤ 1
2
‖rx(·; µ)‖X ′‖ex,∗‖X ∀µ ∈D , (58)

where ex,∗ = x∗− x∗N . The result then follows directly from Proposition 3.

As pointed out previously, there is a freedom of choice on how to define the inner product
and associated norm on X . In fact, one can choose the norm on X so as to minimize the
effectivity of the error bound ∆

J,BNB
N (µ). We will comment on this issue in Section 5.

4.4 Computational procedure

To evaluate the control and cost functional error bounds ∆
u,PER
N (µ), ∆

u,ALT
N (µ), ∆

J,PER
N (µ),

and ∆
J,ALT
N (µ) (see Sections 4.2.1, 4.2.2 and 4.3.1), we need to compute

1. the dual norms of the state, adjoint, and optimality equation residuals, i.e., ‖ry(·; µ)‖Y ′ ,
‖rp(·; µ)‖Y ′ , and ‖ru(·; µ)‖U(µ)′ ; and

2. the lower and upper bounds αLB
a (µ), CUB

D (µ), and γUB
b (µ).

Since ‖ry(·; µ)‖Y ′ and ‖rp(·; µ)‖Y ′ can be evaluated using the standard offline-online de-
composition [32], we only summarize the computational cost in the offline and online stage.
For the computation of the dual norm of the state residual we have to solve ny = (2Qa +
Qb)N +Q f Poisson-type problems in the offline stage, and can then evaluate ‖ry(·; µ)‖Y ′ in
O(n2

y) operations in the online stage for any given parameter µ ∈ D (and associated opti-
mal solution x∗N). Similarly, for the adjoint residual we require np = (2Qa+2Qd)N+QdQyd
Poisson problem solves offline, and O(n2

p) operations online.
Since the evaluation of ‖ru(·; µ)‖U(µ)′ is not standard, we provide the necessary details

here. From

ru(ψ; µ) =−(λ (u∗N −ud)−B?p∗N ,ψ)U(µ) = (r̃u(µ),ψ)U(µ), (59)

it follows that r̃u(µ) =−λ (u∗N−ud)+B?p∗N is the Riesz-representation of ru(·; µ)∈U(µ)′

with respect to the (·, ·)U(µ) energy inner product. Since ‖ru(·; µ)‖U(µ)′ = ‖r̃u(µ)‖U(µ), we
can compute the dual norm of the optimality equation residual by

‖ru(·; µ)‖2
U(µ)′ = ‖r̃u(µ)‖2

U(µ) = ‖λ (u
∗
N −ud)−B?p∗N‖2

U(µ) (60)

= λ
2(u∗N ,u

∗
N)U(µ)−2λ (u∗N ,ud)U(µ)+λ

2(ud ,ud)U(µ)

−2λ (u∗N ,B
?p∗N)U(µ)+2λ (ud ,B

?p∗N)U(µ)+(B?p∗N ,B
?p∗N)U(µ) (61)

= λ
2(u∗N)

TCN(µ)u∗N −2λ (u∗N)
TUd,N(µ)+λ

2Ud,d(µ)

−2λ (u∗N)
T BT

N(µ)p∗N +2λBT
d,N(µ)p∗N +(p∗N)

T B?
N(µ)p∗N . (62)
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The matrix B?
N(µ)∈R2N×2N and vector Bd,N(µ)∈R2N are defined by the entries (B?

N(µ))i j =
c(B?ζ

y
j ,B

?ζ
y
i ; µ), and (Bd,N(µ))i = b(ud ,ζ

y
i ; µ). For the case of parameter-dependent op-

erators B?(µ), we refer to the discussion in [19]. By exploiting the affine parameter de-
pendence of c(·, ·; µ) and b(·, ·; µ), B?

N(µ) and Bd,N(µ) can be assembled online in 4QcN2

and 2QbN operations, respectively. The total online cost for computing ‖ru(·; µ)‖U(µ)′ is
O((Qc +Qb)N2).

For the construction of the coercivity constant lower bound αLB
a (µ) various recipes

exist [14,30,37]. The specific choices for our numerical examples are stated in Section 5.
Simple (yet for our examples effective) upper bounds CUB

D (µ) and γUB
b (µ) can be computed

by solving Qd +Qu generalized eigenvalue problems in the offline stage and then assembled
in O(Qd +Qu) operations online (see [19] for more details). In general (arbitrarily tight)
upper bounds can be obtained by applying the successive constraint method.

In summary, the online evaluation of the error bounds ∆
u,PER
N (µ), ∆

u,ALT
N (µ), ∆

J,PER
N (µ),

and ∆
J,ALT
N (µ) involves an operation count that is independent of the dimension of the finite

element spaces NY and NU .
For the evaluation of the error bounds ∆

x,BNB
N (µ), and ∆

J,BNB
N (µ) described in Sec-

tions 4.2.3 and 4.3.2, we need to compute

1. the dual norm of the saddle point residual ‖rx(·; µ)‖X ′ ; and
2. the constant β LB

Ba (µ).

The computational procedure and effort to compute ‖rx(·; µ)‖X ′ are the same as for eval-
uating ‖ry(·; µ)‖Y ′ , ‖rp(·; µ)‖Y ′ , and ‖ru(·; µ)‖U(µ)′ . However, computing a lower bound
β LB

Ba (µ) for the stability constant is quite involved and requires a large computational effort
in the offline stage [29]. Alternatively, interpolation techniques can be used, but doing so
unfortunately sacrifices the rigor of the error bound [28].

5 Numerical results

In this section we present two numerical examples: i) a Graetz flow and ii) a heat transfer
problem motivated by hyperthermia cancer treatment. Both problems involve a distributed
control over the entire domain. We stress that, throughout this section, we use the actual
stability constant βBa(µ) and not its lower bound β LB

Ba (µ) for the evaluation of the BNB-
bounds (49) and (57). The reason is the high computational cost and implementation effort
required to obtain β LB

Ba (µ) in combination with the fact that the BNB-bounds are just used
for comparison here (and are not our original contribution). The computations were done in
Matlab on a computer with a 2.6 GHz Intel Core i7 processor and 16 GB of RAM.

5.1 Graetz flow problem

We consider a linear-quadratic optimal control problem governed by a steady Graetz flow in
a two-dimensional domain based on the numerical examples in [27,29]. The spatial domain,
given by Ω = (0,2.5)× (0,1), is subdivided into the three subdomains Ω1 = [0.2,0.8]×
[0.3,0.7], Ω2 = [1.2,2.5]× [0.3,0.7], and Ω3 = Ω \ {Ω1 ∪Ω2}; see Figure 1a. We impose
homogeneous Neumann and non-homogeneous Dirichlet boundary conditions on ΓN and
ΓD = ΓD1 ∪ΓD2 , respectively. The amount of heat supply in the entire domain Ω is regulated
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Fig. 1a: Domain Ω for the Graetz flow problem with dis-
tributed control.
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Fig. 1b: POD-error for the control in depen-
dence of the basis dimension.

by the distributed control function ue ∈ Ue := L2(Ω). The parametrized optimal control
problem is then

min
ye∈Y D

e ,ue∈Ue
J(ye,ue; µ) =

1
2
‖ye− yd,e(µ)‖2

L2(Ω1∪Ω2)
+

λ

2
‖ue−ud,e‖2

L2(Ω)

s.t.
1
µ1

∫
Ω

∇ye ·∇v dx+
∫

Ω

β (x) ·∇ye v dx =
∫

Ω

ue v dx ∀v ∈ Y D
e , (63)

for the given parabolic velocity field β (x) = (x2(1−x2),0)T and Y D
e = {v∈H1(Ω) : v|ΓD1

≡
1,v|ΓD2

≡ 2}. The parameter µ1 describes the Péclet number of the flow, and the parametrized
desired state is given by yd,e(µ) ≡ µ2 on Ω1 and yd,e(µ) ≡ µ3 on Ω2. The full parameter
domain is D = [3,20]× [0.5,1.5]× [1.5,2.5]. For the cost functional we set ud,e ≡ 0. In
Section 5.3 we consider different values for the regularization parameter λ . However, for
the remainder of this subsection we will keep the regularization parameter λ = 0.01 fixed.
We choose the inner product (w,v)Ye =

1
µ ref

1

∫
Ω

∇w ·∇v dx+ 1
2 (
∫

Ω
β (x) ·∇wv dx+

∫
Ω

β (x) ·

∇vw dx) for µ ref
1 = 3; we may hence choose αLB

a (µ) = min(µ ref
1 /µ1,1) in (11). For the con-

trol space Ue we use the usual L2-norm and inner product. After introducing suitable lifting
functions that take into account the non-homogeneous Dirichlet boundary conditions, we
can reformulate the problem in terms of the space Ye = {v ∈ H1(Ω) : v|ΓD1∪ΓD2

≡ 0}; the
considered problem then satisfies the affine representation (4) of all involved quantities with
Qa = 2, Qb = Qd = Qc = 1, Q f = 2, and Qyd = 3 (taking into account the affine terms
required for the lifting functions). For details regarding the involved bilinear forms and
functionals, the lifting procedure, and the construction of αLB

a (µ) we refer to [19,27,29].
For the truth discretization we consider linear finite element approximation spaces Y ⊂

Ye and U ⊂Ue for the state, adjoint, and control variables. The number of degrees of freedom
is dim(Y ) = NY = 10,801 and dim(U) = NU = 11,148; hence the total dimension of the
truth optimality system is 2NY +NU = 32,750.

We construct the reduced basis spaces YN ⊂Y and UN ⊂U according to the greedy sam-
pling procedure described in Section 3.2. To this end, we employ the train sample Ξtrain ⊂D
consisting of ntrain = 10 ·7 ·7 = 490 equidistant parameter points over D . We sample on the
relative ALT control error bound ∆

u,ALT
N (µ)/‖u∗N(µ)‖U(µ). The desired error tolerance is

εtol,min = 10−4, and the initial parameter value is µ1 = (3,0.5,1.5)T . We also introduce a
parameter test sample Ξtest ⊂D of size ntest = 20 with a uniform-random distribution in D .

On the product space X = Y ×U ×Y , we define for ϑ1 = (ϕ1,ψ1,φ1) ∈ X and ϑ2 =
(ϕ2,ψ2,φ2)∈X the energy inner product as (ϑ1,ϑ2)X(µ) =(ϕ1,ϕ2)Y +(ψ1,ψ2)U(µ)+(φ1,φ2)Y ,

and associated energy norm as ‖ϑ‖X(µ) = (ϑ ,ϑ)
1/2
X(µ)

= (‖ϕ‖2
Y + ‖ψ‖2

U(µ) + ‖φ‖
2
Y )

1/2. In
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Section 5.3 we will also consider a scaled energy inner product and norm given by (ϑ1,ϑ2)Xλ (µ)
=

(ϕ1,ϕ2)Y +λ (ψ1,ψ2)U(µ)+(φ1,φ2)Y and ‖ϑ‖Xλ (µ)
= (ϑ ,ϑ)

1/2
Xλ (µ)

= (‖ϕ‖2
Y +λ‖ψ‖2

U(µ)+

‖φ‖2
Y )

1/2. This corresponds to CU,X = 1 respectively CU,X =
√

λ in the remark after Propo-
sition 3. We recall that the PER- and ALT-bounds measure the error in the energy control
norm ‖·‖U(µ), which is the more relevant norm for geometry parametrizations. Since for the
Graetz flow problem we do not consider any geometrical parametrization, the reference and
energy control norms coincide. Also, in the heat transfer problem of Section 5.2 — involv-
ing a parametrized domain — we do not observe any remarkable differences between the
results for the reference and energy norms (i.e., the norm equivalence constants are close to
one). For this reason, we focus on the results based on the energy norm.

In Figure 1b we present the POD-error decay of the control-snapshots over Ξtrain.6 The
error-decay indicates how many snapshots we need to approximate the control for a desired
accuracy: Any optimal control in the training set can be represented by roughly 14 POD
basis functions to a precision of 1 E–4. Although POD is only optimal in the L2-sense over
the training set, it serves as a good indicator of the error expected from our reduced basis
approach (see Section 8.1.4 in [32]). Indeed, with 16 control basis functions the reduced
basis approximation exhibits a relative L∞-error of less than 1 E–4. With only three more
basis functions (N = 19) this accuracy can even be guaranteed a posteriori using the ALT-
bound (see Table 1).

Table 1: Control variable in Graetz flow example: error convergence, error bounds, and
effectivities as a function of N.

N εu
N,max,rel ∆

u,BNB
N,max,rel η̄

u,BNB
N ∆

u,PER
N,max,rel η̄

u,PER
N ∆

u,ALT
N,max,rel η̄

u,ALT
N

2 1.12 E+00 1.76 E+02 1.35 E+02 1.12 E+02 4.68 E+01 4.01 E+01 1.49 E+01
4 4.96 E–01 9.18 E+01 9.58 E+01 7.84 E+00 2.66 E+01 1.72 E+00 4.34 E+00
8 3.07 E–02 3.82 E+00 7.82 E+01 4.58 E–01 2.25 E+01 1.43 E–01 6.27 E+00
12 1.66 E–03 1.36 E–01 6.89 E+01 4.03 E–02 1.51 E+01 7.74 E–03 4.49 E+00
16 9.67 E–05 8.19 E–03 9.20 E+01 1.95 E–03 2.33 E+01 3.43 E–04 4.95 E+00
19 1.26 E–05 8.13 E–04 7.82 E+01 2.46 E–04 1.49 E+01 4.86 E–05 3.64 E+00

In Table 1 we present, as a function of N, the maximum relative control error εu
N,max,rel

and the maximum relative error bounds ∆
u,BNB
N,max,rel, ∆

u,PER
N,max,rel, ∆

u,ALT
N,max,rel, as well as the cor-

responding mean effectivities η̄
u,BNB
N ,η̄u,PER

N , η̄
u,ALT
N . Here, εu

N,max,rel is the maximum over
Ξtest of ‖eu,∗(µ)‖U(µ)/‖u∗(µ)‖U(µ), ∆

u,•
N,max,rel is the maximum over Ξtest of ∆

u,•
N (µ)/‖u∗(µ)‖U(µ),

and η̄
u,•
N is the average over Ξtest of ∆

u,•
N (µ)/‖eu,∗‖U(µ). We observe that the control error

and all three error bounds are decreasing rapidly with increasing reduced basis dimension N.
The greedy sampling procedure guarantees the prescribed sampling tolerance εtol,min = 10−4

for the normalized error bound ∆
u,ALT
N (µ)/‖u∗N(µ)‖U(µ) over the training set Ξtrain after se-

lecting only Nmax = 19 parameter snapshots. We note that the effectivities of the BNB-bound

6 The error for a POD basis of size NPOD is given by (∑
ntrain
i=NPOD+1 σ2

i )
1/2, where σi, 1 ≤ i ≤ ntrain, are the

singular values (in decreasing order) of 1√
ntrain

U1/2S. Here, U is the finite element matrix associated with the

reference inner product (·, ·)U = (·, ·)U(µref), and S ∈ RNU×ntrain is the snapshot matrix of optimal controls
u∗(µ) for all µ ∈ Ξtrain. See also [31].
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are slightly larger than the ones of the PER-bound, and that both are significantly larger than
the ones of the ALT-bound. The ALT-bound clearly performs best with effectivities close to
one for all values of N (except for N = 2). Again, the BNB-bound is computed with βBa(µ)
instead of β LB

Ba (µ), and the effectivities may thus be considerably larger in actual practice.

Table 2: Combined variable x in Graetz flow example: error convergence, error bounds, and
effectivities as a function of N.

N εx
N,max,rel ∆

x,BNB
N,max,rel η̄

x,BNB
N ∆

x,PER
N,max,rel η̄

x,PER
N ∆

x,ALT
N,max,rel η̄

x,ALT
N

2 7.00 E–02 8.54 E+00 1.02 E+02 7.39 E+00 1.13 E+02 2.67 E+00 3.48 E+01
4 3.15 E–02 3.46 E+00 8.26 E+01 1.05 E+00 7.35 E+01 1.16 E–01 1.08 E+01
8 1.71 E–03 2.03 E–01 7.01 E+01 3.02 E–02 6.54 E+01 8.35 E–03 1.73 E+01
12 6.84 E–05 7.15 E–03 6.26 E+01 2.67 E–03 4.16 E+01 6.06 E–04 1.09 E+01
16 2.87 E–06 4.58 E–04 7.99 E+01 2.83 E–04 6.72 E+01 3.91 E–05 1.24 E+01
19 4.53 E–07 4.55 E–05 6.47 E+01 1.63 E–05 4.01 E+01 3.40 E–06 9.10 E+00

Since the BNB-bound is actually a bound for the combined error ‖ex,∗‖X(µ), we also
present results for the combined variable x. In Table 2 we compare, as function of N,
the maximum relative combined error εx

N,max,rel and the maximum relative error bounds

∆
x,BNB
N,max,rel, ∆

x,PER
N,max,rel, ∆

x,ALT
N,max,rel, as well as the corresponding mean effectivities η̄

x,BNB
N ,η̄x,PER

N ,

η̄
x,ALT
N . Here, εx

N,max,rel is the maximum over Ξtest of ‖ex,∗(µ)‖X(µ)/‖x∗(µ)‖X(µ), ∆
x,•
N,max,rel

is the maximum over Ξtest of ∆
x,•
N (µ)/‖x∗(µ)‖X(µ), and η̄

x,•
N is the average over Ξtest of

∆
x,•
N (µ)/‖ex,∗‖X(µ). Note that we obtain this bound for the PER- and ALT-approach by sim-

ply combining the control error bound with the state and adjoint optimality error bounds
defined in Lemma 3 and 4, respectively. Similar to the results for the control variable, the
combined error and all three bounds are decreasing rapidly with increasing reduced basis
dimension N. Although the BNB-bound is specifically designed to measure the combined
error in the X-norm, its effectivities are comparable to the PER-bound and significantly
(almost one order of magnitude) larger than for the ALT-bound.

Table 3: Cost functional J in Graetz flow example: error convergence, error bounds, and
effectivities as a function of N.

N εJ
N,max,rel ∆

J,BNB
N,max,rel η̄

J,BNB
N ∆

J,PER
N,max,rel η̄

J,PER
N ∆

J,ALT
N,max,rel η̄

J,ALT
N

2 1.10 E+01 3.38 E+03 2.29 E+03 9.30 E+03 7.12 E+02 3.37 E+03 1.81 E+02
4 1.31 E–01 9.23 E+02 4.51 E+03 4.78 E+01 1.18 E+03 6.25 E+00 1.74 E+02
8 4.90 E–04 1.98 E+00 5.49 E+03 1.42 E–01 5.94 E+02 4.60 E–02 1.72 E+02
12 2.53 E–06 2.59 E–03 3.40 E+03 1.21 E–03 3.60 E+02 2.29 E–04 1.16 E+02
16 1.54 E–09 8.86 E–06 9.32 E+03 2.91 E–06 1.25 E+04 3.91 E–07 1.91 E+03
19 1.21 E–10 8.72 E–08 4.61 E+03 4.53 E–08 5.04 E+02 9.08 E–09 1.08 E+02

Finally, we state in Table 3, as a function of N, the maximum relative cost functional
error εJ

N,max,rel and the maximum relative error bounds ∆
J,BNB
N,max,rel, ∆

J,PER
N,max,rel, ∆

J,ALT
N,max,rel, as

well as the corresponding mean effectivities η̄
J,BNB
N ,η̄J,PER

N , η̄
J,ALT
N . Here, εJ

N,max,rel is the
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maximum over Ξtest of |J∗(µ)− J∗N(µ)|/J∗(µ), ∆
J,•
N,max,rel is the maximum over Ξtest of

∆
J,•
N (µ)/J∗(µ), and η̄

J,•
N is the average over Ξtest of ∆

J,•
N (µ)/|J∗(µ)− J∗N(µ)|. Again, a

rapid decrease of the error and error bounds can be observed. The BNB- and PER-bound
effectivities have the same order of magnitude whereas the ALT-bound again performances
considerably better. We note that the (generally) large effectivities for the cost are clearly
not desirable, but not particularly deleterious in the reduced basis context given the rapid
convergence: the additional number of required basis functions due to the overestimation is
only logarithmic in the effectivity for the observed exponential convergence with N.

We finally consider the online computational cost for solving the reduced basis optimal
control problem compared to the truth optimal control problem. On average (over Ξtest) it
takes 0.49 seconds to solve the truth optimal control problem based on our finite element dis-
cretization. Depending on the reduced basis dimension 1≤ N ≤ Nmax = 19 it takes between
1.19 and 2.01 milliseconds to solve the reduced basis optimal control problem (without
error bounds); this results in speed-ups ranging from 244 to 412. Taking into account the
computation of the error bounds (consisting mainly of the online residual calculation and
evaluation of αLB

a (µ)) the online cost for the reduced basis solution ranges from 1.61 to
2.11 milliseconds, which in turn corresponds to a speed-up of 232 up to 304. Note that the
computational time required for the error bound computation is only a small fraction of the
reduced basis solution time.

5.2 Heat transfer problem

Next we consider a linear-quadratic optimal control problem governed by steady heat con-
duction in a parametrized two-dimensional domain. The spatial domain is given by Ω o =
(0,5)× (0,5) and is subdivided into the three subdomains Ω o

1 (µ) = Ω o \ {Ω o
2 ∪Ω o

3 (µ)},
Ω o

2 = {(1,4)×(1,2)}∪{(1,2)×(1,4)}, and Ω o
3 (µ) = (µ1−0.5,µ1+0.5)×(µ2−0.5,µ2+

0.5).7 Here, the parameter µ = (µ1,µ2)
T ∈ D = [3,4]× [3,4] describes the horizontal and

vertical translation of the square Ω o
3 (µ) in the upper right corner of the domain Ω o. A sketch

of the domain is shown in Figure 2a. The temperature satisfies Laplace’s equation in Ω o with

Fig. 2a: Parametrized domain Ω o(µ) for the heat transfer
problem with distributed control.
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Fig. 2b: POD-error for the control in depen-
dence of the basis dimension.

continuity of temperature and heat flux across subdomain interfaces. The (reference) con-
ductivity in the subdomain Ω o

1 (µ) is set to unity, whereas the normalized conductivity is

7 The superscript “o” indicates quantities related to the original parameter-dependent domain Ω o(µ),
whereas no superscript refers to the parameter-independent reference domain Ω = Ω o(µ ref).
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κ2 = 0.2 in the subdomain Ω o
2 and κ3 = 5 in the subdomain Ω o

3 (µ). We impose zero Dirich-
let conditions on the whole domain boundary Γ o. The amount of heat supply in the entire
domain Ω o is regulated by the distributed control function uo

e ∈Uo
e := L2(Ω o).

The parametrized optimal control problem then reads

min
yo

e∈Y o
e ,uo

e∈Uo
e

J(yo
e ,u

o
e ; µ) =

1
2
‖yo

e− yo
d,e‖2

L2(Ω o
2∪Ω o

3 (µ))
+

λ

2
‖uo

e−uo
d,e‖2

L2(Ω o)

s.t.
3

∑
i=1

κi

∫
Ω o

i (µ)
∇yo

e ·∇v dx =
∫

Ω o
uo

e v dx ∀v ∈ Y o
e = H1

0 (Ω
o). (64)

The desired state is given by yo
d,e ≡ 1 in Ω o

2 and yo
d,e ≡ 0 in Ω o

3 (µ), and the desired control is
u0

d,e ≡ 0. As for the Graetz flow example we will keep the regularization parameter λ = 0.01
fixed for the remainder of this subsection. In Section 5.3 we consider different values for
the regularization parameter λ . After recasting the problem to a reference domain Ω with
corresponding subdomains Ω1,3 =Ω o

1,3(µ
ref) for µ ref = (3.5,3.5)T [32], we can reformulate

the problem in terms of the spaces Ye = H1
0 (Ω) and Ue = L2(Ω). We also obtain the affine

representations (4) of all involved quantities with Qa = 15, Qb = Qc = 4, Qd = 1, Q f = 0,
and Qyd = 1; see [19] for details.

The problem is motivated by hyperthermia treatment of cancer, where the subdomain
Ω o

2 could be interpreted as tumor tissue and the subdomain Ω o
3 (µ) as so-called risk tissue.

Hence, the goal is to heat up only the damaged part of the body (yo
d,e ≡ 1 in Ω o

2 ) but not the
regions at risk (yo

d,e ≡ 0 in Ω o
3 (µ)). Furthermore, the approach presented here has also been

applied to a radiation treatment planning problem [1].
We choose the inner product (w,v)Ye =∑

3
i=1 κi

∫
Ωi

∇w ·∇v dx. To compute a lower bound
αLB

a (µ) for the coercivity constant in (11), we use the successive constraint method (SCM)
[14,6], where we chose the following parameters: JSCM = 35 ·35 = 1225 equidistant train-
ing points over D , MSCM = 2 coercivity and MSCM

+ = 4 positivity constraints. A required
tolerance of εSCM = 0.2 then selects KSCM = 53 parameters in the SCM offline phase. The
(reference) inner product for the control space Ue is given by (·, ·)U = c(·, ·,µ ref).

We next introduce linear truth finite element approximation spaces Y ⊂ Ye = H1
0 (Ω)

and U ⊂Ue = L2(Ω) for the state, adjoint, and control variables. The number of degrees of
freedom is dim(Y ) = NY = 18,117 and dim(U) = NU = 18,517; hence the dimension of
the truth optimality system is 2NY +NU = 54,751.

We present results for the solution of the truth optimal control problem (64) for different
parameter values in Figure 3. We plot the optimal temperature distribution and optimal con-
trol, and state the associated cost functional value. We note that all parameters have a strong
influence on the solution of the optimal control problem: the temperature, optimal control,
and optimal cost functional value vary significantly.

Again, we construct the reduced basis spaces YN ⊂ Y and UN ⊂ U according to the
greedy sampling procedure described in Section 3.2. The training set Ξtrain ⊂ D consists
of ntrain = 15 · 15 = 225 equidistant parameter points over D . We sample on the relative
ALT control error bound ∆

u,ALT
N (µ)/‖u∗N(µ)‖U(µ), set the error tolerance to εtol,min = 10−4,

and choose as initial parameter value µ1 = (3,3)T . We obtain Nmax = 45 to achieve the
desired tolerance. The test sample Ξtest ⊂D consists of ntest = 20 random parameter points
distributed uniformly in D .

To assess the overall quality of our reduced basis approximation, we again present the
POD-error decay of the control snapshots over Ξtrain in Figure 2b. We observe that the error
decay is much slower than in the previous example: Although we have one parameter less,
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Fig. 3a: Optimal state y∗(µ),
(µ1,µ2,λ ) = (3,3,0.01), J∗(µ) = 0.13

Fig. 3b: Optimal control u∗(µ),
(µ1,µ2,λ ) = (3,3,0.01), J∗(µ) = 0.13

Fig. 3c: Optimal state y∗(µ),
(µ1,µ2,λ ) = (4,4,0.01), J∗(µ) = 0.08

Fig. 3d: Optimal control u∗(µ),
(µ1,µ2,λ ) = (4,4,0.01), J∗(µ) = 0.08

Fig. 3: Optimal state y∗(µ), optimal control u∗(µ), and optimal cost functional value J∗(µ)
for different representative parameter values.

the POD now requires roughly 23 basis functions to represent any optimal control in the
training set Ξtrain to a precision of 1 E–4. The reduced basis approximation exhibits a similar
error decay, i.e., we also require approximately 23 control basis functions to obtain a relative
L∞-error of less than 1 E–4.

Following the presentation of the numerical results for the Graetz flow example in the
last section, we present the maximum relative errors and bounds, as well as the average
effectivities for the control, the combined variable x, and the cost functional in Tables 4–6.
We first observe that the convergence is slower than in the Graetz flow examples due to the
higher parametric complexity of this example. Also, the effectivities are consistently higher.
For the control variable the effectivities of the BNB-bound and PER-bound are roughly the
same, whereas for the combined variable and the cost functional the PER-bound effectivity
is approximately one order of magnitude higher than the one of the BNB-bound. Taking into
account the additional overestimation if β LB

Ba (µ) is used instead of βBa(µ), the performance
of the BNB-bound and PER-bound would likely be equivalent in practice. For all three
quantities, however, the ALT-bound again performs best: the overestimation is considerably
lower than with the other two approaches.

We finally consider the online computational cost for solving the reduced basis optimal
control problem in comparison with the truth optimal control problem. On average (over
Ξtest) it takes 1.23 seconds to solve the truth optimal control problem based on our finite
element discretization. Depending on the reduced basis dimension 1 ≤ N ≤ Nmax = 45, it
takes between 1.43 and 5.91 milliseconds to solve the reduced basis optimal control problem
resulting in speed-ups ranging from 208 to 860. Taking into account the computation of the
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Table 4: Control variable in heat transfer example: error convergence, error bounds, and
effectivities as a function of N.

N εu
N,max,rel ∆

u,BNB
N,max,rel η̄

u,BNB
N ∆

u,PER
N,max,rel η̄

u,PER
N ∆

u,ALT
N,max,rel η̄

u,ALT
N

2 1.01 E–01 1.28 E+02 6.19 E+02 1.66 E+02 7.30 E+02 3.71 E+00 2.16 E+01
8 7.16 E–03 3.54 E+00 4.25 E+02 3.86 E+00 4.71 E+02 1.18 E–01 1.56 E+01
16 1.21 E–03 3.09 E–01 4.65 E+02 3.04 E–01 5.33 E+02 1.32 E–02 1.86 E+01
24 8.40 E–05 4.77 E–02 4.89 E+02 5.37 E–02 5.56 E+02 1.71 E–03 2.09 E+01
32 2.22 E–05 1.02 E–02 5.49 E+02 1.72 E–02 6.37 E+02 4.72 E–04 2.39 E+01
40 1.09 E–05 4.38 E–03 6.08 E+02 4.43 E–03 6.91 E+02 1.93 E–04 2.54 E+01
45 1.52 E–06 1.44 E–03 7.52 E+02 1.52 E–03 8.55 E+02 4.21 E–05 2.96 E+01

Table 5: Combined variable x in heat transfer example: error convergence, error bounds, and
effectivities as a function of N.

N εx
N,max,rel ∆

x,BNB
N,max,rel η̄

x,BNB
N ∆

x,PER
N,max,rel η̄

x,PER
N ∆

x,ALT
N,max,rel η̄

x,ALT
N

2 1.19 E–01 1.02 E+02 4.55 E+02 1.68 E+03 4.95 E+03 3.82 E+01 1.40 E+02
8 6.58 E–03 2.85 E+00 3.43 E+02 2.91 E+01 3.41 E+03 8.61 E–01 1.10 E+02
16 1.11 E–03 2.49 E–01 3.63 E+02 2.56 E+00 3.78 E+03 6.95 E–02 1.28 E+02
24 8.75 E–05 3.71 E–02 3.83 E+02 4.93 E–01 3.89 E+03 1.60 E–02 1.41 E+02
32 2.40 E–05 8.15 E–03 4.04 E+02 1.81 E–01 4.16 E+03 5.03 E–03 1.51 E+02
40 1.13 E–05 3.47 E–03 4.26 E+02 2.52 E–02 4.25 E+03 8.56 E–04 1.52 E+02
45 2.36 E–06 1.17 E–03 4.60 E+02 1.22 E–02 4.62 E+03 3.48 E–04 1.60 E+02

Table 6: Cost functional J in heat transfer example: error convergence, error bounds, and
effectivities as a function of N.

N εJ
N,max,rel ∆

J,BNB
N,max,rel η̄

J,BNB
N ∆

J,PER
N,max,rel η̄

J,PER
N ∆

J,ALT
N,max,rel η̄

J,ALT
N

2 3.48 E–02 1.12 E+03 1.59 E+04 1.77 E+04 1.71 E+05 4.04 E+02 4.69 E+03
8 6.67 E–05 1.09 E+00 2.68 E+04 9.46 E+00 3.18 E+05 2.85 E–01 8.22 E+03
16 1.09 E–06 1.30 E–02 3.01 E+04 5.79 E–02 3.79 E+05 2.60 E–03 1.24 E+04
24 1.07 E–08 2.04 E–04 2.39 E+04 1.95 E–03 3.29 E+05 6.34 E–05 1.05 E+04
32 1.83 E–09 1.26 E–05 1.75 E+04 1.91 E–04 2.07 E+05 5.32 E–06 7.02 E+03
40 3.17 E–10 2.54 E–06 1.41 E+04 1.23 E–05 1.56 E+05 4.98 E–07 5.33 E+03
45 1.40 E–11 2.27 E–07 2.44 E+04 1.43 E–06 3.96 E+05 4.11 E–08 1.29 E+04

error bounds (consisting mainly of the online residual calculation and evaluation of αLB
a (µ))

the online cost for the reduced basis solution ranges from 2.21 to 9.02 milliseconds, which
in turn corresponds to a speed-up of 136 up to 557. Although the fraction of the total time
required for the error bound computation is now higher than for the Graetz example, the
error bound computation still takes less time than solving the reduced basis optimal control
problem.
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5.3 Performance of error bounds for varying regularization parameter

In this section we investigate the behavior of the parametrized optimal control problem
and the performance of the error bounds for different choices of λ . We again consider the
Graetz flow and heat transfer problem introduced in the last two sections, and generate
five different reduced basis spaces for λ = 1, 10−1, 10−2, 10−3, and 10−4 using the greedy
sampling procedure. In Table 7, we present for each λ the number of reduced basis functions
Nmax required to achieve the prescribed sampling tolerance εtol,min = 10−4 (note that λ =
0.01 corresponds to the case discussed in the last two sections). As expected, the reduced
basis dimension Nmax increases for decreasing λ . The main reason for this behavior is the
increased parametric complexity for smaller values of λ , although we will next observe that
the effectivities of the error bounds (in the greedy sampling we use the relative ALT control
error bound) will also increase slightly for decreasing λ .

Table 7: Number of Greedy iterations Nmax required to achieve the desired accuracy
εtol,min = 10−4.

λ 1 10−1 10−2 10−3 10−4

Graetz flow Nmax 13 16 19 22 24

Heat transfer Nmax 35 39 45 50 61

We will now turn to the influence of λ on the error bounds. In Figure 4, we present
the average (over the test set Ξtest and reduced basis dimension N) control error bound
effectivities, ∆

u,•
N (µ)/‖eu,∗(µ)‖U(µ), as a function of λ for the Graetz flow and heat trans-

fer problem. Note that this corresponds to five separate evaluations each for a fixed λ ∈
{1,10−1,10−2,10−3,10−4}. In addition to the previous tables we also show two more bounds:
the original perturbation bound (denoted by TV) as defined in (17), and the λ -scaled bound
BNB-λ , which measures the error in the ‖·‖Xλ (µ)

-norm instead of the ‖·‖X(µ)-norm. Also
recall that the original perturbation bound (17) is not online-efficient, since it requires a state
and adjoint truth solve. We first observe that the effectivities of all bounds increase with de-
creasing λ . Furthermore, they scale — except for the ALT-bound — with approximately
1/λ for λ ≤ 10−2, whereas the ALT-bound shows approximately a scaling with 1/

√
λ . We

recall our discussion after Proposition 2 explaining this effect. We also observe that the
PER-bound performs slightly better than the BNB-λ and BNB-bounds (again, taking the
additional overestimation due to β LB

Ba (µ) into account); however, all three bounds become
meaningless for small values of λ . In contrast, the ALT-bound effectivity remains accept-
able even for λ = 10−4 and is remarkably even smaller than the original (online-expensive)
perturbation bound for small values of λ .

In Figure 5 and Figure 6, we present the corresponding results for the average combined
error bound effectivities, ∆

x,•
N (µ)/‖ex,∗(µ)‖X(µ), and average cost functional error bound

effectivities, ∆
J,•
N (µ)/|J∗(µ)− J∗N(µ)|, respectively. Note that for the bound BNB-λ , the

error is measured in the Xλ (µ)-norm. Overall, we observe a similar behavior as for the
control variable. We do note, however, that the effectivity of the λ -scaled bound BNB-λ is
in most cases approximately one order of magnitude smaller than for the non-scaled BNB-
bound. The scaling thus allows to improve the effectivity especially for the cost functional
error bound. Finally, we like to point out that the ratio of maximum and mean effectivities
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Fig. 4: Control error bound: average effectivities (over N and Ξtest) vs. regularization pa-
rameter λ for Graetz flow (left) and heat transfer problem (right).

is always smaller than 20 for all error bounds. This is also true for the examples presented
in Section 5.1 and 5.2.
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Fig. 5: X-norm error bound: average effectivities (over N and Ξtest) vs. regularization pa-
rameter λ for Graetz flow (left) and heat transfer problem (right).

6 Conclusions

The solution of distributed optimal control problems governed by parametrized elliptic
PDEs is a challenging and often time-consuming task, especially if one is interested in so-
lutions at many different parameter values. We therefore employed the surrogate model ap-
proach and replaced the original high-dimensional PDE approximation by its reduced basis
approximation. We also presented two new rigorous a posteriori error bounds for the opti-
mal control and associated cost functional. The first one is based on a perturbation argument
and is an extension of our previous work in [11,21] to distributed optimal control problems.
The second one is derived directly from the error residual equation of the optimality system
and has — to the best of our knowledge — never been proposed before. We showed that
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Fig. 6: Cost functional error bound: average effectivities (over N and Ξtest) vs. regularization
parameter λ for Graetz flow (left) and heat transfer problem (right).

the reduced basis optimal control problem and the a posteriori error bounds can be eval-
uated efficiently using the standard offline-online computational procedure, resulting in a
computational speedup factor of more than 100 in the online stage.

We also compared the two proposed bounds to an a posteriori error bound based on the
Banach-Nečas-Babuška (BNB) theory proposed in [29]. Concerning the computational cost
and implementation effort, the proposed bounds present several advantages compared to the
BNB-bound: we only require constants respectively their upper or lower bounds which are
inexpensive and straightforward to evaluate, whereas evaluation of a lower bound of the
Babuška inf-sup constant for the BNB-bound is (offline-)expensive and difficult to imple-
ment. Furthermore, although the performance of the PER-bound is overall similar to the
BNB-bound, it has a much wider applicability, e.g., to parabolic problems involving control
constraints [20]. The ALT-bound performed best overall, delivering the sharpest a posteri-
ori error bounds and the best scaling with respect to the regularization parameter λ . The
extension of this bound to parabolic optimal control problems is a topic of current research.
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11. Grepl, M.A., Kärcher, M.: Reduced basis a posteriori error bounds for parametrized linear-quadratic
elliptic optimal control problems. C. R. Math. 349(15–16), 873–877 (2011)

12. Hager, W.W.: Multiplier methods for nonlinear optimal control. SIAM J. Numer. Anal. 27(4), 1061–1080
(1990)

13. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical Mod-
elling: Theory and Applications, vol. 23. Springer (2009)

14. Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for
lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. 345(8), 473–478
(2007)

15. Ito, K., Kunisch, K.: Reduced-order optimal control based on approximate inertial manifolds for nonlin-
ear dynamical systems. SIAM J. Numer. Anal. 46(6), 2867–2891 (2008)

16. Ito, K., Ravindran, S.S.: A reduced basis method for optimal control of unsteady viscous flows. Int. J.
Comput. Fluid D. 15, 97–113 (2001)
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21. Kärcher, M., Grepl, M.A.: A certified reduced basis method for parametrized elliptic optimal control
problems. ESAIM: Control Optim. Calc. Var. 20(2), 416–441 (2014)

22. Kunisch, K., Volkwein, S.: Control of the Burgers equation by a reduced-order approach using proper
orthogonal decomposition. J. Optimiz. Theory App. 102, 345–371 (1999)

23. Kunisch, K., Volkwein, S., Xie, L.: HJB-POD based feedback design for the optimal control of evolution
problems. SIAM J. Appl. Dyn. Syst. 3, 701–722 (2004)

24. Leugering, G., Engell, S., Griewank, A., Hinze, M., Rannacher, R., Schulz, V., Ulbrich, M., Ulbrich, S.
(eds.): Constrained Optimization and Optimal Control for Partial Differential Equations. (International
Series of Numerical Mathematics). Birkhäuser Basel (2012)
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