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Abstract

We present a model order reduction technique for parametrized nonlin-

ear reaction-diffusion systems. In our approach we combine the reduced

basis method — a computational framework for rapid evaluation of func-

tional outputs associated with the solution of parametrized partial differ-

ential equations — with the empirical interpolation method — a tool to

construct “affine” coefficient-function approximations of nonlinear parame-

ter dependent functions. We develop an efficient offline-online computational

procedure for the evaluation of the reduced basis approximation: in the of-

fline stage, we generate the reduced basis space; in the online stage, given a

new parameter value, we calculate the reduced basis output. The operation

count for the online stage depends only on the dimension of the reduced order

model and the parametric complexity of the problem. The method is thus

ideally suited for the many-query or real-time contexts. We present numeri-

cal results for a non-isothermal reaction-diffusion model to confirm and test

our approach.
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1. Introduction

Nonlinear reaction-diffusion systems appear in a large number of real-

world applications: ranging from Biology, to Ecology, to Physiology, to

Chemistry (Smoller, 1994). Inherent to these equations and the specific ap-

plication area are a large number of parameters – such as reaction rates or

diffusion coefficients — which, in general, have a very strong influence on

the dynamic behavior of the system. To analyze and understand the spe-

cific problem, many different parameter combinations have to be investigated.

The solution of reaction-diffusion systems, however, is a very challenging task

because the equations are time-dependent, often highly nonlinear, and cou-

pled. Efficient solution techniques which can characterize many parameter

combinations are therefore important. Furthermore, in many applications —

such as chemical engineering — understanding, modeling, and simulation is

often only the first step; the actual goal is the design, optimization, or real-

time control of the problem of interest. Model order reduction techniques

are vital in achieving these goals, see e.g. (Marquardt, 2002; Shvartsman

et al., 2000; Christofides, 2001a,b) and (Shvartsman and Kevrekidis, 1998;

Balsa-Canto et al., 2004).

In this paper we propose a model order reduction technique for nonlinear

reaction-diffusion systems whose general formulation is given by

∂y(x, t;µ)

∂t
= ∇ (D(µ)∇y(x, t;µ)) + g(y(x, t;µ);µ), (1)
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where x ∈ Ω ⊂ Rd is the spatial domain, µ ∈ D is the parameter vector, y

is the vector-valued field variable, e.g., containing temperatures and concen-

trations, D(µ) is the diffusion matrix, and g(y;µ) is a vector-valued function

containing the (non)linear reaction terms. Our particular application is the

self-ignition of a coal stockpile with Arrhenius type nonlinearity (Brooks

et al., 1988). We note, however, that similar models are also used in combus-

tion theory (Williams, 1985), biology (Britton, 1986), and in the description

of porous catalysts (Aris, 1975a,b).

Many model-order reduction (MOR) techniques for linear and nonlinear

time-dependent systems are proposed in the literature: the most well-known

are proper orthogonal decomposition (POD or Karhunen-Loève decomposi-

tion) (Sirovich and Kirby, 1987; Sirovich, 1987; Holmes et al., 1996), balanced

truncation (Moore, 1981), and various related hybrid (Lall et al., 1999, 2002;

Hahn and Edgar, 2002; Willcox and Peraire, 2002; Rowley, 2005) techniques.

It is important to note, however, that most MOR techniques focus mainly

on reduced-order modeling of dynamical systems in which time is considered

the only “parameter.” The development of reduced-order models for prob-

lems with a simultaneous dependence of the field variable on parameter and

time — our focus here — is much less common (see (Bui et al., 2003; Chris-

tensen et al., 2000; Daniel et al., 2002; Gunzburger et al., 2007) for a few

exceptions). Furthermore, it is well known that most MOR techniques for

nonlinear systems do not result in computational savings compared to the

underlying high-dimensional model despite the often significant dimension

reduction (Rathinam and Petzold, 2003). This is due to the fact that the

computational cost to evaluate the nonlinearity in the reduced order model,
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i.e., assembly and subsequent projection, still depends on the dimension of

the original high-dimensional model. In most cases this cost outweighs the

cost of solving the nonlinear system of equations. Two approaches to resolve

this issue have been proposed previously in (Astrid, 2004) and (Romijn et al.,

2008).

Our goal is the development of a model order reduction technique for cou-

pled nonlinear reaction-diffusion systems that permits (i) the simultaneous

dependence of the field variable (and output) on both time and parame-

ters, and (ii) an efficient offline-online computational procedure which re-

sults in significant computational savings when solving the reduced system.

To achieve these goals we pursue the reduced basis method (Prud’homme

et al., 2002); see (Rozza et al., 2008) for a recent review of contributions

to the methodology. The reduced basis method is a model order reduction

technique that has proven to admit efficient and reliable reduced-order ap-

proximations for a large class of parametrized partial differential equations.

For linear time-dependent problems we refer the interested reader to, e.g.,

(Grepl and Patera, 2005; Rovas et al., 2005; Haasdonk and Ohlberger, 2008),

and for nonlinear problems to, e.g., (Veroy and Patera, 2005; Grepl et al.,

2007; Nguyen and Peraire, 2008; Knezevic et al., 2011). More specifically, re-

duced basis approximation of reaction-diffusion systems were first considered

in (Grepl, 2005).

This paper is organized as follows: In Section 2 we provide a review of

the reduced basis method for parametrized nonlinear parabolic problems. In

Section 3 we extend the methodology to treat nonlinear reaction-diffusion

systems. As a specific example, we consider a model for the self-ignition of a
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coal stockpile with Arrhenius type nonlinearity. Numerical results showing

the performance of our model order reduction technique are presented in

Section 4. We offer concluding remarks in Section 5.

2. Methodology

We present a review of the reduced basis method for scalar parametrized

nonlinear parabolic problems. The presentation of this section is as follows:

first, we introduce an abstract problem statement; we then introduce the

empirical interpolation method for constructing a coefficient-function ap-

proximation of the nonlinear term; finally, we develop the reduced basis

approximation for nonlinear parabolic problems and discuss computational

complexity.

2.1. Problem Formulation

Our focus here is on nonlinear parabolic partial differential equations

(PDEs) with parametric dependence. The reduced basis approximation is

based on the weak formulation of the governing equation. We therefore state

the general abstract formulation and subsequently present a concrete exam-

ple: a nonlinear reaction-diffusion equation with Arrhenius type nonlinearity.

For simplicity, we directly consider a time-discrete framework associated

to the time interval I ≡]0, tf ] (Ī ≡ [0, tf ]). We divide Ī into K subintervals

of equal length ∆t =
tf
K

and define tk ≡ k∆t, 0 ≤ k ≤ K; for notational

convenience, we also introduce K ≡ {1, . . . , K}. We shall consider Euler-

Backward for the time integration; we can also readily treat higher-order

schemes such as Crank-Nicolson (Grepl, 2005).
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The abstract formulation can be stated as follows: given a parameter

µ ∈ D ⊂ R
P , the field variable ye(x, tk;µ) ∈ Y e, ∀k ∈ K, satisfies the weak

form of the µ-parametrized parabolic PDE

m(ye(tk;µ), v) + ∆t a(ye(tk;µ), v;µ) + ∆t

∫

Ω

g(ye(tk;µ); x;µ) v

= m(ye(tk−1;µ), v) + ∆t f(v) u(tk), ∀v ∈ Y e, ∀k ∈ K, (2)

with initial condition (say) ye(x, t0;µ) = 0. Here, D is the parameter domain

in which our P -tuple (input) parameter µ resides; Y e is an appropriate

Hilbert space; and Ω ⊂ R
d is our spatial domain, a point in which shall be

denoted x. Furthermore, f(·) and a(·, ·;µ), m(·, ·) are continuous bounded

linear and bilinear forms, respectively; u(tk) denotes the “control input” at

time t = tk; and g(w; x;µ) is a nonlinear function continuous in its arguments.

We assume here that f(·), and m(·, ·) do not depend on the parameter; pa-

rameter dependence, however, is readily admitted (Grepl and Patera, 2005).

We note that if an explicit scheme such as Euler-Forward is used, we then

arrive at a linear system for ye(tk;µ) but now burdened with a conditional

stability restriction on ∆t. In that case, the discrete reduced basis system

will also be inheritedly linear.

In general, we are not interested in the field variable – such as temperature

– at all points in Ω per se, but rather at specific performance metrics or

outputs – such as averaged temperatures or heat fluxes – of the system. These

outputs are typically functionals of the field variable: given the solution

ye(x, tk;µ) ∈ Y e, ∀k ∈ K, of (2), we evaluate the (here, single) output of

interest from

se(tk;µ) = ℓ(ye(tk;µ)), ∀k ∈ K, (3)
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where ℓ(·) is a linear bounded functional.

The superscript e denotes the “exact” — more precisely, semi-discrete —

problem. In actual practice, of course, we do not have access to the exact solu-

tion; we thus replace the exact solution with a reference (or “truth”) approx-

imation, which resides in (say) a suitably fine piecewise-linear finite element

approximation space Y ⊂ Y e of very large dimension N . We associated to Y

a set of piecewise linear (over each element) basis functions φi(x), 1 ≤ i ≤ N .

Our “truth” finite element approximation yk(µ) ≡ y(tk;µ) ∈ Y to the semi-

discrete problem (2) is then given by

m(yk(µ), v) + ∆t a(yk(µ), v;µ) + ∆t

∫

Ω

g(yk(µ); x;µ) v

= m(yk−1(µ), v) + ∆t f(v) u(tk), ∀v ∈ Y, ∀k ∈ K, (4)

with initial condition y(t0;µ) = 0; we then evaluate the output sk(µ) ≡

s(tk;µ) ∈ R from

sk(µ) = ℓ(yk(µ)), ∀k ∈ K. (5)

Note that in the sequel we will drop the explicity dependence on the spatial

variable x and use the notation yk(µ) = y(x, tk;µ) unless the x-dependence

is essential. We shall assume — hence the appellation “truth” — that the

discretization is sufficiently rich such that yk(µ) and ye(tk;µ) and hence sk(µ)

and se(tk;µ) are indistinguishable. The reduced-basis approximation shall be

built upon our reference finite element approximation, and the reduced-basis

error will thus be evaluated with respect to yk(µ) ∈ Y .

We shall further assume that the bilinear form a depends affinely on the
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parameter µ and can be expressed as

a(w, v;µ) =

Qa
∑

q=1

Θq
a(µ) a

q(w, v), ∀w, v ∈ Y, ∀µ ∈ D, (6)

for some (preferably) small integer Qa. Here, the function Θq
a(µ) : D → R

depends on µ, but the continuous form aq does not depend on µ. We note that

the assumption of affine parameter dependence (6) holds for many problems

with both property (i.e. physical) and geometry parametric variations (Rozza

et al., 2008).

We also briefly recall the algebraic equations induced by (4) and (5). We

expand yk(µ) =
∑N

n=1 φj(x)y
k
j (µ), then yk(µ) = [yk1(µ) . . . y

k
N (µ)]T ∈ R

N

satisfies

(M+∆t A(µ)) yk(µ)+∆t G(yk(µ);µ) =M yk−1(µ)+∆t F u(tk), ∀k ∈ K (7)

with initial condition y0(µ) = 0; we then evaluate the output from

sk(µ) = LTyk(µ), ∀k ∈ K. (8)

The elements of the mass and stiffness matrices M ∈ R
N×N and A(µ) ∈

R
N×N are given byM i,j = m(φj, φi), 1 ≤ i, j ≤ N and Ai,j(µ) = a(φj , φi;µ),

1 ≤ i, j ≤ N , respectively; the elements of the nonlinear term are given by

Gi(y
k(µ);µ) =

∫

Ω
g(yk(µ); x;µ)φi, 1 ≤ i ≤ N ; and the elements of the load

vector F ∈ R
N are given by F i = f(φi), 1 ≤ i ≤ N .

Example 1 (A nonlinear reaction diffusion problem). We consider a sin-

gle one-step reaction of a reacting mixture in the region Ω = [0, 1]. The

combustion model is given by the PDE (Adjerid and Flaherty, 1986; Kapila,

1983)
∂T (x, t)

∂t
= α

∂2T (x, t)

∂x2
+Da (1− T (x, t)) e−γ/(T (x,t)+1) (9)
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with initial condition T (x, t = 0) = 0 and boundary conditions T (x = 0, t) =

T (x = 1, t) = 0. Here, T (x, t) is the temperature at position x and time

t, α is the thermal diffusivity, Da is the Damköhler number, and γ is the

Arrhenius number.

The governing equation (9) depends on three parameters; we may thus

define the input parameter vector µ = [µ1, µ2, µ3] ≡ [α,Da, γ]. We next de-

rive the weak formulation of (9) and discretize in time using Euler-Backward

and in space using finite elements. The equation then assumes the form (4)

with m(w, v) =
∫

w v dΩ, a(w, v;µ) = α
∫

∂w
∂x

∂v
∂x
dΩ, f(v) = 0, and the non-

linearity is given by g(w;µ) = Da (1− w) e−γ/(w+1). We note that a(w, v;µ)

trivially satisfies the affine parameter dependence with Qa = 1: Θ1
a(µ) = α

and a1(w, v) =
∫

∂w
∂x

∂v
∂x
dΩ.

2.2. Empirical Interpolation Method

The empirical interpolation method (EIM), introduced in (Barrault et al.,

2004), serves to construct affine approximations of parameter dependent non-

affine or nonlinear functions. The method is frequently applied in reduced

basis approximations of parametrized partial differential equations (Grepl

et al., 2007); an affine approximation of the operator allows an “offline-online”

computational procedure and is thus crucial for efficiency.

2.2.1. Motivation

We begin by motivating the need for the EIM. To this end, we suppose

that we are given a reduced basis space W y
N = span{ζn, 1 ≤ n ≤ N},

where the ζn, 1 ≤ n ≤ N , are the basis functions. If we were to follow

the classical recipe, the reduced basis approximation would be obtained by a
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standard Galerkin projection: given µ ∈ D, the reduced basis approximation

ykN(µ) ∈ W
y
N to yk(µ) ∈ Y is the solution of

m(ykN(µ), v) + ∆t a(ykN(µ), v;µ) + ∆t

∫

Ω

g(ykN(µ); x;µ) v

= m(yk−1
N (µ), v) + ∆t f(v) u(tk), ∀v ∈ W y

N , ∀k ∈ K, (10)

with initial condition yN(t
0;µ) = 0. We note that, given a new parameter

value µ, the terms involving the bilinear and linear forms m, a, and f can

be efficiently evaluated in an offline-online computational procedure (Rozza

et al., 2008). However, the nonlinear term
∫

Ω
g(ykN(µ); x;µ) v must be evalu-

ated online for every new parameter value; the operation count for the online

stage will thus scale as O(N ), where N is the dimension of the underlying fi-

nite element truth approximation. Despite the dimension reduction N ≪ N ,

the online cost to evaluate the reduced basis approximation will thus be com-

parable to the cost to evaluate the truth approximation. This is the reason

why most model order reduction techniques for nonlinear problem do not re-

sult in computational savings compared to the underlying high-dimensional

approximation (Rathinam and Petzold, 2003).

The EIM allows us to completely decouple the evaluation of the re-

duced basis approximation from the truth approximation. We also note

that other approaches to resolve this problem have been proposed previ-

ously, see e.g. (Astrid, 2004; Romijn et al., 2008). Recently, the EIM has

also been applied in combination with the Proper Orthogonal Decomposi-

tion in (Chaturantabut and Sorensen, 2010); also see (Lass and Volkwein,

2011) for a comparison of the two approaches.
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2.2.2. Function Interpolation

The basic idea of the EIM is to approximate the nonlinear function

g(yk(µ); x;µ), ∀k ∈ K, by an affine combination of precomputed basis func-

tions. To this end, we first define the EIM approximation space W g
M =

span{qj , 1 ≤ j ≤ M} of dimension M , where the qj are – in essence – pre-

computed snapshots of the nonlinear parameter dependent function. Given

W g
M , we construct an approximation gy

k

M (x;µ) ∈ W g
M , ∀k ∈ K, to the non-

linear function g(yk(µ); x;µ), ∀k ∈ K, as a linear combination of the EIM

basis functions, i.e., we have

gy
k

M (x;µ) =

M
∑

j=1

ϕk
M j(µ) qj(x). (11)

The coefficients ϕk
M j(µ) are determined through the interpolation condition:

the interpolant and the nonlinear function have to be identical at the EIM in-

terpolation points T g
M = {xg1, x

g
2, . . . , x

g
M}, a set of judiciously selected points

in the spatial domain. More specifically, we obtain the coefficients ϕk
M j(µ)

by solving the linear system

M
∑

j=1

BM
i jϕ

k
M j(µ) = g(yk(xgi ;µ); x

g
i ;µ), 1 ≤ i ≤M, ∀k ∈ K, (12)

where the nodal value matrix is defined as BM
i,j = qj(x

g
i ), 1 ≤ i, j ≤ M . Note

that the left hand side of (12) is identical to gy
k

M (xgi ;µ).

It remains to construct the basis W g
M and set of interpolation points

T g
M . This construction is based on a POD/Greedy selection process which is

summarized in Algorithm 1 and explained in detail below. We present the

procedure described in (Grepl, 2012); see (Maday et al., 2009) for the linear

nonaffine case.
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Before explaining the steps in Algorithm 1, we need to introduce a finite

train sample Ξtrain ⊂ D of size |Ξtrain| which shall serve as our computational

surrogate for D. We also require the function PODL2(Ω)({w
k(µ), 1 ≤ k ≤

K}), which returns the largest POD mode, χ1, with respect to the (·, ·)L2(Ω)

inner product. Here, L2(Ω) is the space of square integrable functions over Ω.

We use the method of snapshots to obtain χ1 (Sirovich, 1987): to this end, we

solve the eigenvalue problem Cψi = λiψi for (ψ1 ∈ R
K , λ1 ∈ R) associated

with the largest eigenvalue of C, where Cij = (wi(µ), wj(µ))L2(Ω), 1 ≤ i, j ≤

K; we then obtain the first POD mode from χ1 =
∑K

k=1 ψ
1
k w

k(µ).

The POD/Greedy-EIM procedure in Algorithm 1 proceeds by induction:

we first choose randomly an initial parameter value µ1 ∈ D and calculate the

first POD mode, ξ1(x), of the time-history of the nonlinear function evaluated

at yk(µ1) in step 2. In step 3 and 4 we choose the first interpolation point, xg1,

to be the spatial point where ξ1(x) is maximal, the first basis function, q1(x),

to be the normalized POD mode ξ1(x)/ξ1(x
g
1), and the nodal value matrix,

B1, is simply q1(x) evaluated at xg1. We thus obtain a one-dimensional EIM

approximation to the nonlinear function.

Given the current EIM approximation, we perform a greedy search over

Ξtrain in step 6 to find the parameter value where the L∞(Ω) norm of the

interpolation error over time is maximal, i.e., where the approximation is

worst. We then calculate the largest POD mode, ξM+1(x), of the time-history

of the interpolation error at this parameter value in step 7 and 8. Note that

we perform a POD on the interpolation error instead of the nonlinear function

itself in order to consistently “add” new information at each step of the

POD/Greedy procedure. Given ξM+1(x), we evaluate the next interpolation
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point and basis function: in steps 9 and 10 we calculate the residual vector

rM+1(x), in step 11 we set the next interpolation point, xgM+1, to be the

spatial point where the residual is maximal, and in step 12 we set the next

basis function, qM+1(x), to be the normalized residual. We then expand the

EIM space in step 13 and update the nodal value matrix in step 14. Finally,

we increment M and go back to step 6 if M ≤ Mmax− 1. In general, we may

also specify a desired error tolerance, ǫtol,min, and stop the procedure as soon

as maxµ∈Ξtrain

∑K
k=1 ‖g(y

k(x;µ); x;µ) − gy
k

M (x;µ)‖L∞(Ω) ≤ ǫtol,min is satisfied;

Mmax is then indirectly determined through the stopping criterion.

Note that by construction, the EIM space satisfiesW g
M = span{qm(x), 1 ≤

m ≤M} = span{ξm(x), 1 ≤ m ≤M}. Furthermore, the nodal value matrix

BM , 1 ≤M ≤Mmax, is lower triangular and hence computation of the EIM

coefficients ϕk
M j in (12) is an O(M2) operation per timestep. It can be shown

that the interpolation process is well-defined. For more details on the EIM

including an a priori and a posteriori error analysis for the linear nonaffine

case we refer the interested reader to (Barrault et al., 2004; Grepl et al., 2007;

Maday et al., 2009; Eftang et al., 2010).

We note that we do require the truth solution for all µ in Ξtrain in Al-

gorithm 1 to generate the EIM interpolation points and space. The overall

computational cost is thus very high and the procedure only viable if there

is a clear demand for real-time response or a many query context.

2.3. Reduced Basis Method

In Section 2.2.1 we briefly introduced a straightforward reduced basis

approximation to the nonlinear problem (4). We now return to this discussion

and show that we can devise a very efficient offline-online computational
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Algorithm 1: POD/Greedy-EIM Algorithm

1. specify Ξtrain ⊂ D , Mmax, µ1 ∈ D (arbitrary).

2. ξ1(x) = PODL2(Ω)({g(y
k(x;µ1); x;µ1), 1 ≤ k ≤ K}).

3. set M = 1, xg1 = arg supx∈Ω |ξ1(x)| and q1(x) = ξ1(x)/ξ1(x
g
1)

4. set W g
1 ≡ span{q1} and B

1
1,1 = q1(x

g
1) = 1.

5. while M ≤Mmax − 1 do

6. µM+1 = argmaxµ∈Ξtrain

∑K
k=1 ‖g(y

k(x;µ); x;µ)− gy
k

M (x;µ)‖L∞(Ω),

where gy
k

M is calculated from (11) and (12);

7. ekM,EIM(µ) = g(yk(µM+1); x;µM+1)− g
yk

M (x;µM+1), ∀k ∈ K;

8. ξM+1(x) = PODL2(Ω)({e
k
M,EIM(µM+1), 1 ≤ k ≤ K});

9. solve for σM
j from

∑M
j=1 σ

M
j qj(x

g
i ) = ξM+1(x

g
i ), 1 ≤ i ≤M ;

10. set rM+1(x) ≡ ξM(x)−
∑M

j=1 σj qj(x);

11. set xgM+1 ≡ arg supx∈Ω |rM+1(x)|;

12. set qM+1(x) ≡ rM+1(x)/rM+1(x
g
M+1);

13. W g
M+1 ←W g

M ∪ span{qM+1(x)};

14. BM+1
i,j = qj(x

g
i ), 1 ≤ i, j ≤M + 1;

15. M ←M + 1;

16. end
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strategy by combining the EIM with the reduced basis approximation.

2.3.1. Approximation

We suppose that we are given the nested reduced basis spaces

W y
N = span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, (13)

where the ζn, 1 ≤ n ≤ N , are mutually orthogonal basis functions. We

comment on the adaptive procedure for constructing the basis functions in

Section 2.3.3.

Given the nested EIM space W g
M = span{q1, . . . , qM}, 1 ≤ M ≤ Mmax,

and nested set of interpolation points T g
M = {xg1, . . . , x

g
M}, 1 ≤ M ≤ Mmax,

our reduced basis approximation ykN,M(µ) to yk(µ) is obtained by a standard

Galerkin projection: given µ ∈ D, ykN,M(µ) ∈ W y
N satisfies

m(ykN,M(µ), v) + ∆t a(ykN,M(µ), v;µ) + ∆t

∫

Ω

g
yk
N,M

M (x;µ) v

= m(yk−1
N,M(µ), v) + ∆t f(v) u(tk), ∀v ∈ W y

N , ∀k ∈ K, (14)

with initial condition y0N,M(µ) = 0. We then evaluate the output approxima-

tion, skN,M(µ) ∈ R, from

skN,M(µ) = ℓ(ykN,M(µ)), ∀k ∈ K. (15)

Comparing (14) and (10) we observe that the nonlinearity g(ykN(µ); x;µ) is

now replaced by its EIM approximation g
yk
N,M

M (x;µ). Here, g
yk
N,M

M (x;µ) ∈ W g
M

is given by

g
yk
N,M

M (x;µ) =

M
∑

i=1

ϕ̃k
M i(µ) qi(x). (16)
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where the coefficients ϕ̃k
M i(µ), 1 ≤ i ≤ M, are obtained through the inter-

polation condition, i.e., the solution of the linear system

M
∑

j=1

BM
i j ϕ̃

k
M j(µ) = g(ykN,M(xgi ;µ); x

g
i ;µ), 1 ≤ i ≤M, ∀k ∈ K. (17)

Note that the space W g
M is constructed based on g(yk(µ); x;µ) and not

g(ykN,M(µ); x;µ). However, as N and M increase the reduced basis solu-

tion ykN,M(µ) converges to the truth solution yk(µ) very rapidly. We thus

expect g(ykN,M(µ); x;µ) to be well approximated in W g
M . We shall observe

the (in fact, exponential) convergence when we discuss numerical results in

Section 4.

We note that the need to incorporate the empirical interpolation method

into the reduced basis approximation only exists for high-order polynomial

or non-polynomial nonlinearities (Grepl et al., 2007). If g is a low-order

(or at most quadratically) polynomial nonlinearity in yk(µ), we can expand

the nonlinear terms into their power series and develop an efficient, i.e.,

online N -independent, offline-online computational decomposition using the

standard Galerkin procedure (Veroy and Patera, 2005; Veroy et al., 2003).

We also note that for linear or nonlinear problems with a non-affine parameter

dependence the EIM is always required to develop an efficient offline-online

computational procedure for the nonaffine terms.

2.3.2. Computational Procedure

The EIM allows us to develop an efficient offline-online computational

procedure to solve (14). We omit the details here and refer the interested

reader to (Grepl et al., 2007; Grepl, 2012). The main idea is to first express
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ykN,M(µ) as

ykN,M(µ) =
N
∑

n=1

ykN,Mn(µ) ζn (18)

and choose as test functions v = ζj, 1 ≤ j ≤ N , in (14). We then invoke the

affine representation (16) of g
ykN,M

M and (17) to obtain a nonlinear algebraic

system of dimension N which we solve at each timestep using a Newton

iterative scheme.

During the offline stage we generate the reduced basis space and evalu-

ate several parameter independent quantities — the offline operation count

thus depends on N , the dimension of the underlying “truth” finite element

approximation space. The operation count in the online stage, however, is

(to leading order) O(MN2 + N3) per Newton iteration per timestep and

thus independent of N . Since N ≪ N we expect significant computational

savings in the online stage relative to classical discretization and solution

approaches. We will confirm these savings in Section 4.

2.3.3. Adaptive Sampling Procedure

Given W g
M , T g

M , and BM , we invoke a POD/Greedy sampling proce-

dure — a combination of the Proper Orthogonal Decomposition (POD) in

time with a Greedy selection procedure in parameter space — to gener-

ate W y
N (Haasdonk and Ohlberger, 2008; Grepl, 2012). We shall use the

“best” possible approximation g
ykN,M

M (x;µ) of g(ykN,M ; x;µ) during the sam-

pling process so as to minimize the error induced by the empirical interpo-

lation procedure, i.e., we set M = Mmax. The POD/Greedy Algorithm is

summarized in Algorithm 2. Here, PODX({wk(µ), 1 ≤ k ≤ K}) returns the

largest POD mode with respect to the (·, ·)X = a(·, ·;µref) inner product,
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Algorithm 2: POD/Greedy Algorithm

1. Specify Ξtrain ⊂ D, Nmax, µ1 ∈ D (arbitrary).

2. Set W y
0 = {0} and N = 1.

3. while N ≤ Nmax − 1 do

4. ekN,proj(µN) = yk(µN)− projX,W y
N−1

(yk(µN)), ∀k ∈ K;

5. W y
N ←W y

N−1 ∪ PODX({ekN,proj(µN), 1 ≤ k ≤ K});

6. µN+1 = argmaxµ∈Ξtrain
|||yK(µ)− yKN,M(µ)|||/|||yK(µ)|||;

7. N ← N + 1;

8. end

where µref ∈ D is a reference parameter value; projX,WN
(w) denotes the X-

orthogonal projection of w ∈ X onto W y
N ; and the energy norm is defined as

|||wk|||2 = m(wk, wk) + ∆t
∑k

k′=1 a(w
k′, wk′;µ).

In general, we may also specify a desired error tolerance, ǫtol,min, and stop

the procedure as soon as maxµ∈Ξtrain
|||yK(µ)−yKN,M(µ)|||/|||yK(µ)||| ≤ ǫtol,min

is satisfied; Nmax is then indirectly determined through the stopping criterion.

3. Nonlinear Reaction-Diffusion Systems

In this section we consider a specific problem belonging to the class of

nonlinear reaction-diffusion systems (Smoller, 1994). Reaction-diffusion sys-

tems appear in a large number of real-world applications: ranging from Bi-

ology, where reaction-diffusion equations characterize the pattern formation
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in morphogenesis and mutations in genetics; to Ecology, where they govern

predator-prey relation and the spreading of epidemics; to Physiology, where

the conduction in nerves and carbon monoxide poisoning is described by

reaction-diffusion equations; to Chemistry, probably the most notable appli-

cation area of reaction-diffusion equations. Furthermore, inherent to these

equations and the specific application area are a large number of parame-

ters, which, in general, have a very strong influence on the dynamic behavior

of the system, e.g., such as reaction rates in chemistry. The reduced basis

method is thus ideally suited for the treatment of parametrized nonlinear

reaction-diffusion systems.

We now extend the methodology introduced in the last section to coupled

systems of nonlinear equations. We introduced separate reduced basis spaces

for each field variable. Furthermore, we employ the EIM to generate an

affine approximation of the nonlinear coupling term, thus allowing an efficient

offline-online procedure even for the coupled system of nonlinear equations.

3.1. Model Problem

As a specific example, we consider a one-dimensional non-isothermal

reaction-diffusion model for the self-ignition of a coal stockpile with Arrhe-

nius type nonlinearity (Schmal et al., 1985; Brooks et al., 1988; Brooks and

Glasser, 1986; Brooks et al., 1988; Salinger et al., 1994). In practice this

problem arises if large piles of coal are stored, e.g., in harbors, over extended

periods of time. As the oxygen in the air reacts with the coal, the pile starts

to heat up and can eventually self-ignite if certain conditions — on porosity,

oxygen concentration, and coal size — are met. We also note that similar

models are used in combustion theory (see Example 1), biology, and in the
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description of porous catalysts.

The field variables are the temperature of the reactive medium (here, the

coal) normalized by the ambient temperature, T (x, t) = (T (x, t)− T∞)/T∞,

and the concentration of the reactantd (here, the oxygen in the air) normal-

ized by the concentration of oxygen in the ambient air, c(x, t) = (c(x, t)− c∞)/c∞.

The coupled set of governing equations are given by (Brooks et al., 1988)

∂T (x, t)

∂t
= ∇2T (x, t) + 4.287 · 70000 (c(x, t) + 1) e−γ/(T (x,t)+1), (19)

∂c(x, t)

∂t
= 0.233∇2c(x, t)− 70000 (c(x, t) + 1) e−γ/(T (x,t)+1), (20)

with initial conditions

T (x, t = 0) = T0 = 0, (21)

c(x, t = 0) = c0 =
1

(3x+ 1)2
− 1. (22)

The boundary conditions are

T (x, t)|x=0 = 0, T (x, t)|x=1 = 0,

c(x, t)|x=0 = 0, ∂c(x,t)
∂x

∣

∣

∣

x=1
= 0.

(23)

A sketch of the distribution of temperature and concentration for t > 0 is

shown in Figure 1. Here, x ∈ Ω ⊂ R
1 is the spatial coordinate and Ω ≡ [0, 1]

is the spatial domain. Note that x = 0 corresponds to the top of the pile

at which T (x, t) and c(x, t) are equal to the the ambient temperature and

concentration, respectively; and x = 1 corresponds to the bottom of the

pile at which T (x, t) is equal to the ground (ambient) temperature, and the

concentration gradient is zero. The one-dimensional model accounts only for

the vertical variation in the state variable; the length and width of the coal
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pile are assumed to be much larger than its height. The outputs of interest,

s1 and s2, are the temperature and concentration at x = 0.2 both shifted by

one, respectively.

We only consider one parameter, the Arrhenius number γ, in this model

problem. We assume that γ varies in the range 12 ≤ γ ≤ 12.6 (Brooks

et al., 1988); we thus have µ ≡ γ ∈ D ≡ [12, 12.6] ⊂ R
P=1. Although the

parametric variation is quite small, we will see that the system exhibits a

very interesting dynamical behavior in terms of complex oscillatory patterns

for this parameter range.

Figure 1: Sketch of temperature distribution and concentration for the model problem for

t > 0 (Note that both quantities are shifted by 1).

3.2. Truth Approximation

We next derive the weak form of the governing equations (19) and (20)

and discretize in time using Euler-Backward. We also introduce the linear fi-

nite element truth approximation subspaces YT ≡ {v|v ∈ H1(Ω), v = 0|x=0,1}

and Yc ≡ {v|v ∈ H1(Ω), v = 0|x=0} both of dimension N = 501, whereH1(Ω)

is a suitable Hilbert space and Ω ≡ [0, 1] is the spatial domain. We associated

to YT and Yc a set of piecewise linear (over each element) basis functions
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φi(x), 1 ≤ i ≤ N (note that we use the same spatial discretization for YT and

Yc and they thus share the same basis). We shall consider the time interval

Ī = [0, 6] and a timestep ∆t = 1E– 3; we thus have K = 6000. Our truth

approximation is thus: Given µ ∈ D, find T k(µ) ∈ YT and ck(µ) ∈ Yc such

that2

m(T k(µ), vT ) + ∆t a(T k(µ), vT )

−∆t · 4.287 · 70000

∫

Ω

(ck(µ) + 1) e−µ/(T k(µ)+1) vT

= m(T k−1(µ), vT ), ∀vT ∈ YT , ∀k ∈ K (24)

m(ck(µ), vc) + ∆t · 0.233 a(ck(µ), vc)

+ ∆t · 70000

∫

Ω

(ck(µ) + 1) e−µ/(T k(µ)+1) vc

= m(ck−1(µ), vc), ∀vc ∈ Yc, ∀k ∈ K (25)

with inital conditions m(T 0(µ), vT ) = m(T0, vT ), ∀vT ∈ YT , m(c0(µ), vc) =

m(c0, vc), ∀vc ∈ Yc. We then evaluate the outputs from

sk1(µ) = ℓ(T k(µ)) + 1, ∀k ∈ K, (26)

and

sk2(µ) = ℓ(ck(µ)) + 1, ∀k ∈ K. (27)

Here, ℓ(v) =
∫

Ω
δ(x− 0.2) v, where δ(x) is the Dirac delta function, and the

bilinear forms are given by

m(w, v) =

∫

Ω

w v, a(w, v) =

∫

Ω

∂w

∂x

∂v

∂x
. (28)

2Note that we use our usual notation here: T k(µ) = T (x, tk;µ) and ck(µ) = c(x, tk;µ).
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We also define the nonlinearity g as

g(ck(µ), T k(µ);µ) = (ck(µ) + 1) e−µ/(T k(µ)+1). (29)

The algebraic equations induced by (24) and (25) directly follow from the

discussion in Section 2.1 and are therfore omitted. Note, however, that we

now obtain a coupled system of nonlinear equations which have to be solved

at each timestep using a Newton iterative scheme.

3.2.1. Numerical Results

We present results for the truth approximation. In Figure 2, we plot the

outputs s1 and s2 for µ = 12.0 over (discrete) time. The sharp peak in the

temperature output s1 and corresponding drop in the concentration output

s2 indicates the ignition of the system. After the ignition, the system goes

into a stable steady-state solution. In Figure 3 we show the corresponding

output plots for µ = 12.5; we first note that the ignition occurs at a later

point in time and that the maximum temperature reached is higher. For

this parameter value the system does not return to a steady-state solution,

but converges to a period 1 limit cycle. Finally, we present in Figure 4 the

output plots for µ = 12.58. Again, the time of ignition occurs later and

the maximum temperature is higher than before. Furthermore, the system

converges to a limit cycle with mixed mode oscillations. To clearly visualize

the limit cycles, we show in Figures 5 and 6 the phase plots for the solutions

corresponding to the two parameter values µ = 12.5 and µ = 12.58 without

the transient behavior, respectively. We can clearly see the period 1 limit

cycle for µ = 12.5; as µ is increased, a period doubling cascade occurs leading

to the mixed mode oscillations for µ = 12.58.
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We note that there is a certain critical parameter value µcrit: if µ < µcrit

the system goes into a stable steady-state solution after the first ignition,

whereas if µ ≥ µcrit the system converges to a limit cycle after the first

ignition. We numerically identified this critical value to be approximately

µcrit ≈ 12.24.

The systems clearly exhibits a very complex dynamic behaviour with a

strong dependence on the parameter µ. Approximating such a systems with a

reduced order model over parameter and time is certainly a very challenging

task.
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Figure 2: Outputs s1(t;µ) and s2(t;µ) for µ = 12.0 as a function of time.

3.3. Reduced Basis Approximation

We develop the reduced basis approximation for the coupled system of

nonlinear equations (24) and (25) by generalizing the approach described in

Section 2.3.1. We first introduce a finite train sample Ξtrain ⊂ D and solve

and store the solutions T k(µ) and ck(µ) to (24) and (25) for all µ ∈ Ξtrain

24



0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
Outputs, µ = 12.5

Time t

O
ut

pu
t

 

 

s
1
(t;µ): Temperature

s
2
(t;µ): Concentration

Figure 3: Outputs s1(t;µ) and s2(t;µ) for µ = 12.5 as a function of time.
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Figure 5: Limit Cycls in phase plane (s1(t;µ) vs. s2(t;µ)) for µ = 12.5 without transition

from initial condition.
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Figure 6: Limit Cycles in phase plane (s1(t;µ) vs. s2(t;µ)) for µ = 12.58 without transition

from initial condition.
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and for all k ∈ K, respectively. Given g(ck(µ), T k(µ);µ) in (29), we generate

the nested EIM spaces W g
M = span{q1, . . . , qM}, 1 ≤M ≤Mmax, and nested

set of interpolation points T g
M = {xg1, . . . , x

g
M}, 1 ≤M ≤Mmax, according to

the procedure described in Section 2.2.2. Note that the nonlinearity depends

on both field variables and we thus have to generalize the definition of the

interpolant (8) and of the EIM coefficients (7): the approximation gc
k,T k

M (x;µ)

to g(ck(µ), T k(µ);µ) is given by

gc
k,T k

M (x;µ) =
M
∑

m=1

ϕk
Mm(µ)qm(x) (30)

where the coefficients ϕk
Mm(µ) are determined from

M
∑

j=1

BM
ij ϕ

k
Mj(µ) = g(ck(xgi ;µ), T

k(xgi ;µ);µ), 1 ≤ i ≤ M (31)

and BM
ij = qj(x

g
i ), 1 ≤ i, j ≤ M , 1 ≤ M ≤ Mmax. Given W g

M and T g
M , we

next define the associated nested reduced-basis spaces for the temperature

W T
NT

= span{ζT,m, 1 ≤ n ≤ NT}, 1 ≤ NT ≤ NT,max, (32)

and the concentration

W c
Nc

= span{ζc,m, 1 ≤ n ≤ Nc}, 1 ≤ Nc ≤ Nc,max, (33)

according to the adaptive procedure described in Section 2.3.3. We introduce

separate spaces for temperature and concentration with possibly different

dimensions NT and Nc, respectively.

Our reduced-basis approximation is then: given µ ∈ D, T k
N,M(µ) ∈ W T

NT
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and ckN,M(µ) ∈ W c
Nc

satisfy

m(T k
N,M(µ), vT ) + ∆t a(T k

N,M(µ), vT )

−∆t · 4.287 · 70000

∫

Ω

g
ck
N,M

,T k
N,M

M (x;µ) vT

= m(T k−1
N,M(µ), vT ), ∀vT ∈ W

T
NT
, ∀k ∈ K (34)

m(ckN,M(µ), vc) + ∆t · 0.233 a(ckN,M(µ), vc)

+ ∆t · 70000

∫

Ω

g
ck
N,M

,T k
N,M

M (x;µ) vc

= m(ck−1
N,M(µ), vc), ∀vc ∈ W

c
Nc
, ∀k ∈ K (35)

with inital conditions determined from m(T 0
N,M(µ), vT ) = m(T0, vT ), ∀ vT ∈

W T
NT

, and m(c0N,M(µ), vc) = m(c0, vc), ∀ vc ∈ W c
Nc
; here, g

ck
N,M

,T k
N,M

M (x;µ) is

given by

g
ck
N,M

,T k
N,M

M (x;µ) =

M
∑

m=1

ϕ̃k
Mm(µ)qm(x) (36)

where the coefficients ϕ̃k
Mm(µ) are determined from

M
∑

j=1

BM
ij ϕ̃

k
Mj(µ) = g(ckN,M(xgi ;µ), T

k
N,M(xgi ;µ);µ), 1 ≤ i ≤M, (37)

and BM
ij = qj(x

g
i ), 1 ≤ i, j ≤ M , 1 ≤ M ≤ Mmax. Finally, we evaluate the

outputs from

sk1,N,M(µ) = ℓ(T k
N,M(µ)) + 1, ∀k ∈ K, (38)

and

sk2,N,M(µ) = ℓ(ckN,M(µ)) + 1, ∀k ∈ K. (39)

The offline-online computational procedure directly follows from the scalar

case briefly discussed in Section 2.3.2. We thus omit the details and only
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summarize the computational cost: the operation count in the online stage

is O(MN2+N3) per Newton step per timestep, where N = NT +Nc. Again,

the operation count in the online stage is thus independent of N .

4. Numerical Results

We now present numerical results for the model problem introduced in

Section 3.1. We choose for Ξtrain ⊂ D a regular grid of 15 parameter

points over D and we take µg
1 = 12. Next, we pursue the POD/Greedy-

EIM procedure in Algorithm 1 to construct W g
M , T g

M , and BM , 1 ≤ M ≤

Mmax, with Mmax = 36. We plot the convergence of the error εgM,max =

maxµ∈Ξtrain

∑K
k=1 ‖g(c

k(µ), T k(µ);µ)− gc
k,T k

M (x;µ)‖L∞(Ω) in Figure 7.
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Figure 7: Convergence results for EIM interpolation error.

We next consider to the reduced basis approximation and construct the

reduced basis spaces W T
NT

and W c
Nc

according to the POD/Greedy proce-

dure in Algorithm 2 using the train sample Ξtrain. In Figure 8(a) and (b)

we plot, as a function of NT , Nc, and M , the maximum relative errors
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ǫTN,M,max,rel in the temperature and ǫcN,M,max,rel in the concentration, respec-

tively; here ǫTN,M,max,rel = maxµ∈ΞTest
|||TK(µ)−TK

N,M(µ)|||/|||TK(µT )|||, where

µT ≡ argmaxµ∈ΞTest
|||TK(µ)||| (similarly for ǫcN,M,max,rel) and ΞTest is a test

sample of size 25 (a regular grid inD; note that the test and train samples are,

of course, different). We observe that the reduced basis approximation con-

verges very rapidly. We also note the “plateau” in the curves forM fixed and

the “drops” in the NT , Nc →∞ asymptotes as M increases: for fixed M the

error due to the coefficient function approximation will ultimately dominate

for large NT and Nc; increasing M renders the coefficient function approxi-

mation more accurate, which in turn leads to a drop in the error. We further

note that the separation points, or “knees,” of the NT -M-convergence curves

(resp. Nc-M-convergence curves) reflect a balanced contribution of both er-

ror terms; neither NT (resp. Nc) nor M limit the convergence of the reduced

basis approximation.

We turn to the output estimate and present, in Figure 9(a) and (b),

as a function of NT , Nc, the maximum relative output errors ǫs1N,M,max,rel

and ǫs2N,M,max,rel, respectively; here, ǫ
s
N,M,max,rel is the maximum over ΞTest of

maxk∈K |sk(µ)− skN,M(µ)|/smax(µ), where smax(µ) ≡ maxk∈K |sk(µ)|. We ob-

serve also very rapid convergence of the reduced basis output approximation.

The output error shows the same behavior as the error in the energy norm:

the M-asymptotes level off at a lower and lower error as M increases. To

obtain a maximum relative error in both outputs of less than 1%, we require

approximately M = 30, NT = 13, and Nc = 13.

In Table 1 we present, as a function of N = NT = Nc and M , the

average online computational times to calculate sk1,N,M(µ) and sk2,N,M(µ) for
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Figure 8: Convergence of the reduced basis approximation: maximum relative error in the

energy norm.
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Figure 9: Convergence of the reduced basis approximation: maximum relative output

error.
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all k ∈ K and for all µ ∈ ΞTest. The values are normalized with respect to

the computational time for the direct calculation of the truth approximation

output sk1(µ) and s
k
2(µ) for all k ∈ K. The computational savings are O(100)

for all values of N = NT = Nc and M . For an accuracy of less than 1% in

the output bound (NT = Nc = 13, M = 30) the computational savings are

approximately a factor of 300.

N M sk1/2,N,M(µ), ∀k ∈ K sk1/2(µ), ∀k ∈ K

4 12 2.22E– 03 1

8 30 2.74E– 03 1

12 30 3.42E– 03 1

16 36 3.96E– 03 1

20 36 5.12E– 03 1

Table 1: Online computational times to solve for sk
1/2,N,M (µ) normalized with respect to

the time to solve for sk
1/2(µ) for 1 ≤ k ≤ K.

In the one parameter case we could also obtain a very efficiently evaluable

approximation of the outputs sk1,2(µ) by performing a direct interpolation of

precomputed outputs at certain parameter values. We therefore compare

the reduced basis output approximation with this output interpolation. To

this end, we assume that we precomputed and stored the “truth” outputs

sk1/2(µ), k ∈ K for all µ ∈ Ξtrain. Note that this step requires the same

number of “truth” solves as the reduced basis offline stage. Given a new pa-

rameter value µ ∈ D, we then calculate the interpolated outputs, sk1/2,int(µ),

by performing a linear interpolation at each timestep between the two pre-

computed solutions whose parameter values are closest to the new parameter
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value. In Figures 10 and 11 we present the “truth” output, the reduced basis

output, and the interpolated output as well as the errors as a function of

time for the temperature and concentration output, respectively. A zoom at

the time of ignition of these plots is shown in Figures 12 and 13. We note

that the reduced basis output approximation performs much better than the

interpolated output. This is due to the fact that the ignition times change

with the parameter and the interpolation thus cannot capture the correct

dynamics. We also confirm the superior behavior of the reduced basis out-

put approximation compared to the interpolated output in Table 2, where

we present the maximum relative output error ǫsmax,rel as defined previously

and the maximum relative L2(I)-output error ǫsmax,rel,L2(I), defined as the

maximum over ΞTest of
√

∑K
k=1(s

k(µ)− skN,M/int(µ))
2/
√

∑K
k=1 s

k(µ)2.

Reduced Basis Interpolation

ǫs1max,rel 1.39E–03 6.74E–01

ǫs2max,rel 1.16E–03 4.15E–01

ǫs1max,rel,L2(I) 2.00E–04 4.08E–01

ǫs2max,rel,L2(I) 5.38E–05 1.49E–01

Table 2: Comparison of maximum relative output errors for reduced basis approximation

and direct interpolation of the output.

Finally, we present in Figure 14 the truth temperature output sk1(µ),

the reduced basis output approximation sk1,N,M(µ) and the relative error

|sk1(µ) − sk1,N,M(µ)|/s1,max(µ) as a function of (discrete) time for µ = 12.6;

here, s1,max(µ) = maxk∈K s
k
1(µ). The corresponding results for the concen-

tration output are shown in Figure 15. Note that µ = 12.6 is the most
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Figure 10: Comparison of reduced basis output s1,N,M(t;µ) and interpolated output

s1,int(t;µ) for µ = 12.5 and NT = 16, Nc = 16, and M = 36.
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Figure 11: Comparison of reduced basis output s1,N,M(t;µ) and interpolated output

s1,int(t;µ) for µ = 12.5 and NT = 16, Nc = 16, and M = 36.
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Figure 12: Comparison of reduced basis output s1,N,M(t;µ) and interpolated output

s1,int(t;µ) for µ = 12.5 and NT = 16, Nc = 16, and M = 36, zoom at time of igni-

tion.
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Figure 13: Comparison of reduced basis output s1,N,M(t;µ) and interpolated output

s1,int(t;µ) for µ = 12.5 and NT = 16, Nc = 16, and M = 36, zoom at time of igni-

tion.
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difficult parameter value in terms of dynamic behaviour due to the highest

temperature during ignition and the following mixed mode oscillation. The

reduced basis approximation reproduces the the initial ignition as well as the

mixed mode oscillation very well. The maximum relative error (shown on a

log-scale) remains approximately on the order of 10−4 throughout the whole

time interval of interest.
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Figure 14: Output s1(t;µ), output estimate s1,N,M(t;µ), and relative output error as a

function of time for µ = 12.6 and NT = 16, Nc = 16, and M = 36.

5. Conclusions

We have presented a model order reduction technique for parametrized

nonlinear reaction-diffusion systems. To this end, we employed the reduced

basis method, a model order reduction technique which proved very power-

ful for systems with simultaneous dependence on parameter and time. We
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Figure 15: Output s2(t;µ), output estimate s2,N,M(t;µ), and relative output error as a

function of time for µ = 12.6 and NT = 16, Nc = 16, and M = 36.

presented numerical results for a nonlinear reaction-diffusion system mod-

elling the self-ignition of a coal stockpile. The reduced basis approximation

converged very fast – despite the complex dynamic behavior and strong de-

pendence on the parameter – resulting in a significant dimension reduction.

The reduced basis approximation accurately captured the dynamic behavior

and thus also performed clearly superior compared to a direct interpolation

of the output.

Our second focus was the development of an efficient offline-online com-

putational procedure even in the presence of strong nonlinearities. To this

end, we employed the empirical interpolation method to construct an affine

coefficient-function approximation of the nonlinear term. The EIM allows a

complete decoupling of the offline stage — where the reduced basis spaces

are generated — and the online stage — where, given a new parameter value,
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we solve the reduced basis approximation and evaluate the output. The on-

line stage depends only on N and M and the parametric complexity of the

problem. We observed a significant O(102) reduction in online computational

time for the solution of the reduced model compared to the solution of the

full model.

We thus believe that if there is a high premium on real-time performance

or a many-query context — for example in the design, optimization, control,

and characterization contexts — the reduced basis approach presented here

can be very gainfully employed.
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Nomenclature

()k superscript to denote timestep

()e superscript to denote “exact” (semi-discrete) quantities

()c subscript to denote concentration related quantities of model problem

()N subscript to denote reduced basis quantities

()T subscript to denote temperature related quantities of model problem

()N,M subscript to denote reduced basis quantities (including EIM)
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( ) vector quantities

α thermal diffusivity

D admissible parameter domain

∆t discrete time step size

ℓ linear form (output functional)

γ Arrhenius number

K set of timesteps, K ≡ {1, . . . , K}

µ parameter vector

N finite element dimension

Ω spatial domain

φ finite element basis function

Θq
a parameter dependent functions in affine decomposition of a

D diffusion matrix

A stiffness matrix

BM EIM nodal value matrix

F load vector

G vector containing nonlinearity

M mass matrix

40



ϕ coefficients of EIM approximation

ξ POD mode, generating function for EIM

Ξtrain parameter train sample

ΞTest parameter test sample

ζ reduced basis function

a bilinear form

aq parameter independent bilinear forms in affine decomposition of a

c normalized concentration for model problem

f linear form (forcing)

g nonlinear function

gM EIM interpolant of nonlinear function g

I time interval (Ī ≡ [0, tf ])

K number of timesteps

M dimension of EIM approximation space

m bilinear form

N reduced basis dimension

P number of parameters

q EIM basis function
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Qa number of terms in affine decomposition of a

s output of interest

T normalized temperature for model problem

t time

tf final time

T g
M set of EIM interpolation points

u control input

v test function

W g
M EIM approximation space

W y
N reduced basis space

x spatial variable

xg EIM interpolation point

Y approximation space

y field variable

Da Damköhler number
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