
Offline Error Bounds for the Reduced Basis
Method

Robert O’Connor and Martin Grepl

Abstract The reduced basis method is a model order reduction technique that is
specifically designed for parameter-dependent systems. Due to an offline-online
computational decomposition, the method is particularly suitable for the many-
query or real-time contexts. Furthermore, it provides rigorous and efficiently evalu-
able a posteriori error bounds, which are used offline in the greedy algorithm to
construct the reduced basis spaces and may be used online to certify the accuracy of
the reduced basis approximation. Unfortunately, in real-time applications a posteri-
ori error bounds are of limited use. First, if the reduced basis approximation is not
accurate enough, it is generally impossible to go back to the offline stage and refine
the reduced model; and second, the greedy algorithm guarantees a desired accuracy
only over the finite parameter training set and not over all points in the admissi-
ble parameter domain. Here, we propose an extension or “add-on” to the standard
greedy algorithm that allows us to evaluate bounds over the entire domain, given
information for only a finite number of points. Our approach employs sensitivity
information at a finite number of points to bound the error and may thus be used
to guarantee a certain error tolerance over the entire parameter domain during the
offline stage. We focus on an elliptic problem and provide numerical results for a
thermal block model problem to validate our approach.

1 Introduction

The reduced basis (RB) method is a model order reduction technique that allows
efficient and reliable reduced order approximations for a large class of parametrized
partial differential equations (PDEs), see e.g. [11, 15, 14, 3, 4, 9] or the review
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article [13] and the references therein. The reduced basis approximation is build
on a so-called “truth” approximation of the PDE, i.e., a usually high-dimensional
discretization of the PDE using a classical method such as finite elements or finite
differences, and the errors in the reduced basis approximation are measured with
respect to the truth solution.

The efficiency of the reduced basis method hinges upon an offline-online compu-
tational decomposition: In the offline stage the reduced basis spaces are constructed
and several necessary precomputations (e.g. projections) are performed. This step
requires several solutions of the truth approximation and is thus computationally
expensive. In the online stage, given any new parameter value µ in the admissible
parameter domain D , the reduced basis approximation and associated a posteriori
error bound can be computed very efficiently. The computational complexity de-
pends only on the dimension of the reduced model and not on the dimensionality
of the high-dimensional truth space. Due to the offline-online decomposition, the
reduced basis method is considered to be beneficial in two scenarios [13, 12]: the
many query context, where the offline cost is amortized due to a large number of
online solves, and the real-time context, where one simply requires a fast online
evaluation.

A crucial ingredient for constructing the reduced basis spaces during the offline
stage is the greedy algorithm which was originally proposed in [15]. The greedy
algorithm iteratively constructs the reduced space by searching for the largest a
posteriori error bound over a finite dimensional parameter train set Ξ ⊂ D . Once
the parameter corresponding to the largest error bound is found, the associated full-
order solution is computed, the reduced basis is enriched with this solution, and the
necessary quantities for the approximation and error estimation are updated. The
process continues until the error bound is sufficiently small, i.e. satisfies a desired
error tolerance εtol.

Unfortunately, the desired error tolerance cannot be guaranteed for all parameters
in D , but only for all parameters in Ξ . There are usually two arguments to resolve
this issue: First, one usually requires the train set Ξ to be chosen “sufficiently” fine,
so that a guaranteed certification of Ξ in combination with the smoothness of the
solution in parameter space implies a sufficiently accurate reduced basis approxi-
mation for all µ ∈D . Second, since the a posteriori error bounds can be efficiently
evaluated even in the online stage, one argues that the reduced basis can always be
enriched afterwards if a parameter, encountered during the online stage, results in
a reduced basis approximation which does not meet the required error tolerance.
However, whereas the first argument is heuristic, the second argument — although
feasible in the many query context — is not a viable option in the real-time context.

It is this lack of guaranteed offline certification in combination with the real-time
context which motivated the development in this paper. Our goal is to develop an
approach which allows us to rigorously guarantee a certain accuracy of the reduced
basis approximation over the entire parameter domain D , and not just over the train
set Ξ . Our method can be considered an “add-on” to the standard greedy algorithm:
in addition to the reduced basis approximation and associated a posteriori error
bounds we also evaluate the sensitivity information and their error bounds on a fi-
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nite train set. Given these quantities, we can then bound the error at any parameter
value in the domain and thus bound the accuracy of the reduced basis approxi-
mation over D — we use the term “offline bound” for this approach. In that way
reduced basis models can be guaranteed to satisfy error tolerances for real-time ap-
plications. Obviously, our approach incurs an additional offline cost (see Section 4)
and is thus not useful for applications where one can go back to the offline stage at
will and refine the reduced basis approximation at any time. However, if an offline-
guaranteed accuracy is essential for the application, the added offline cost may be
the only choice and thus acceptable. We note that our results may also be interest-
ing in many-query contexts because they allow us to perform error bounding in the
offline stage, reducing the workload in the online stage.

2 Problem Statement

For our work it will suffice to directly consider the following truth approximation,
i.e., a high-dimensional discretization of an elliptic PDE or just a finite-dimensional
system: Given µ ∈D , find u(µ) ∈ X such that

a(u(µ),v; µ) = f (v; µ), ∀v ∈ X . (1)

Here, D ∈ Rp is a prescribed compact parameter set in which our parameter
µ = (µ1, . . . ,µP) resides and X is a suitable (finite-dimensional) Hilbert space with
associated inner product (·, ·)X and induced norm ‖·‖X =

√
(·, ·)X . We shall assume

that the parameter-dependent bilinear form a(·, ·; µ) : X×X → R is continuous,

0 < γ(µ)≡ sup
v∈X

sup
w∈X

a(v,w; µ)

‖v‖X‖w‖X
≤ γ0 < ∞, ∀µ ∈D , (2)

and coercive,

α(µ)≡ inf
v∈X

a(v,v; µ)

‖v‖2
X
≥ α0 > 0, ∀µ ∈D , (3)

and that f (·; µ) : X → R is a parameter-dependent continuous linear functional for
all µ ∈D . We shall also assume that (1) approximates the real (infinite-dimensional)
system sufficiently well for all parameters µ ∈D .

Our assumptions that a(·, ·; µ) be coercive could be relaxed to allow a larger class
of operators. The more general class of problems can be handled using the concept
of inf-sup stability. For such problems reduced basis methods are well established
[15] and our results can easily be adapted.

In addition to the parameter-independent X-norm we also recall the parameter-
dependent energy inner product and induced norm |||v|||

µ
≡
√

a(v,v; µ). Note that
the X-inner product is usually chosen to be equal to the energy inner product for
some fixed parameter value µ̄ . Generally, sharper error bounds are achieved using
the energy-norm. Although we present numerical results for the energy-norm in
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Section 6, we will work exclusively with the X-norm in the following derivation to
simplify the notation.

We further assume that a and f satisfy the following affine decompositions

a(w,v; µ) =
Qa

∑
q=1

Θ
q
a (µ)a

q(w,v), f (v; µ) =

Q f

∑
q=1

Θ
q
f (µ) f q(v), (4)

where the bilinear forms aq(·, ·) : X ×X → R and linear forms f q(·) : X → R are
independent of the parameters, and the parameter dependent functions Θ

q
· (·) : D →

R are continuous and are assumed to have derivatives up to a certain order. We also
introduce the continuity constants of the parameter independent bilinear and linear
forms as

γa,q ≡ sup
v∈X

sup
w∈X

aq(v,w)
‖v‖X‖w‖X

and γ f ,q ≡ sup
v∈X

f q(v)
‖v‖X

. (5)

2.1 Sensitivity Derivatives

In order to understand how solutions of (1) behave in the neighborhood of a given
parameter value µ we consider sensitivity derivatives. Given a parameter µ ∈ D
and associated solution u(µ) of (1), the directional derivative ∇η u(µ) ∈ X in the
direction η ∈ Rp is given as the solution to

a(∇η u(µ),v; µ) =

Q f

∑
q=1

[
∇ηΘ

q
f (µ)

]
f q(v)−

Qa

∑
q=1

[∇ηΘ
q
a (µ)]a

q(u(µ),v), ∀v ∈ X .

(6)
Often, we will need to solve for u(µ) and several of its sensitivity derivatives.

In that case we can take advantage of the fact that both (1) and (6) have the same
η-independent operator on the left-hand side.

3 The Reduced Basis Method

3.1 Approximation

The reduced basis method involves the Galerkin projection of the truth system onto a
much lower-dimensional subspace XN of the truth space X . The space XN is spanned
by solutions of (1), i.e., XN = span{u(ηn), 1≤ n≤ N}, where the parameter values
ηn are selected by the greedy algorithm [15].

The reduced basis approximation of (1) is thus: Given µ ∈D , uN(µ) ∈ XN satis-
fies

a(uN(µ),v; µ) = f (v), ∀v ∈ XN . (7)
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The definition of the sensitivity derivatives ∇η uN is analogous to (6) and thus omit-
ted. We also note that – given the assumptions above – the reduced basis approxi-
mation uN(µ) can be efficiently computed using the standard offline-online decom-
position.

3.2 A Posteriori Error Estimation

In the sequel we require the usual a posteriori bounds for the error e(µ) ≡ u(µ)−
uN(µ) and for its sensitivity derivatives. To this end, we introduce the residual asso-
ciated with (7) and given by

r(v; µ) = f (v; µ)−a(uN(µ),v; µ), ∀v ∈ X , (8)

as well as the residual associated with the sensitivity equation and given by

rη(v; µ)≡
Q f

∑
q=1

∇ηΘ
q
f (µ) f q(v)−a(∇η uN(µ),v; µ)

−
Qa

∑
q=1

∇ηΘ
q
a (µ)a

q(uN(µ),v), ∀v ∈ X . (9)

We also require a lower bound for the coercivity constant, αLB(µ), satisfying 0 <
α0 ≤ αLB(µ) ≤ α(µ), ∀µ ∈ D ; the calculation of such lower bounds is discussed
in Section 5.

We next recall the well known a posteriori bounds for the error in the reduced ba-
sis approximation and its sensitivity derivative; see e.g. [13] and [10] for the proofs.

Theorem 1. The error in the reduced basis approximation, e(µ) = u(µ)− uN(µ),
and its sensitivity derivative, ∇η e(µ) = ∇η u(µ)−∇η uN(µ), are bounded by

‖e(µ)‖X ≤ ∆(µ)≡ ‖r(·; µ)‖X ′

αLB(µ)
. (10)

and

‖∇η e(µ)‖X ≤∆η(µ)≡
1

αLB(µ)

(
‖rη(·; µ)‖X ′ +∆(µ)

Qa

∑
q=1
|∇ηΘ

q
a (µ)|γa,q

)
. (11)

The bounds given in (10) and (11) – similar to the approximations u(µ) and
∇η uN(µ) – can all be computed very cheaply in the online stage; see [13] for details.
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4 Offline Error Bounds

Our goal in this section is to derive error bounds which can be evaluated efficiently
at any parameter value ω in a specific domain while only requiring the solution of
the RB model at one fixed parameter value (i.e. anchor point) µ . Obviously, such
bounds will be increasingly pessimistic as we deviate from the anchor point µ and
will thus only be useful in a small neighborhood of µ . However, such bounds can
be evaluated offline and thus serve as an “add-on” to the greedy procedure in order
to guarantee a “worst case” accuracy over the whole parameter domain.

4.1 Bounding the Difference Between Solutions

As a first ingredient we require a bound for the differences between solutions to (1)
at two parameter values µ and ω . We note that the analogous bounds stated here for
the truth solutions will also hold for solutions to the reduced basis model.

Theorem 2. The difference between two solutions, d(µ,ω)≡ u(µ)−u(ω), satisfies

‖d(µ,ω)‖X ≤
1

αLB(ω)

(
‖u‖X

Qa

∑
q=1

γa,q|Θ q
a (µ)−Θ

q
a (ω)|

+

Q f

∑
q=1

γ f ,q|Θ q
f (µ)−Θ

q
f (ω)|

)
. (12)

Proof. We first take the difference of two solutions of (1) for µ and ω , add
±∑

Qa
q=1 Θ

q
a (ω)aq(u(µ),v), and invoke (4) to arrive at

a(d(µ,ω),v;ω) =

Q f

∑
q=1

(
Θ

q
f (µ)−Θ

q
f (ω)

)
f q(v)

−
Qa

∑
q=1

(
Θ

q
a (µ)−Θ

q
a (ω)

)
aq(u(µ),v). (13)

Following the normal procedure we choose v = d(µ,ω) which allows us to bound
the left-hand side using (3) and the coercivity lower bound. On the right-hand side
we make use of the triangle inequality and invoke (5) to obtain

αLB(ω)‖d(µ,ω)‖2
X ≤ ‖d(µ,ω)‖X

(
Q f

∑
q=1

γ f ,q
∣∣Θ q

f (µ)−Θ
q
f (ω)

∣∣
+‖u(µ)‖X

Qa

∑
q=1

γa,q
∣∣Θ q

a (µ)−Θ
q
a (ω)

∣∣). (14)
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Cancelling and rearranging terms gives the desired result. ut

Similarly, we can bound the difference between the sensitivity derivatives at var-
ious parameter values as stated in the following theorem. The proof is similar to the
proof of Theorem 2 and thus omitted.

Theorem 3. The difference between ∇η u(µ) and ∇η u(ω) satisfies the following
bounding property

‖∇η d(µ,ω)‖X ≤
Q f

∑
q=1

γ f ,q

αLB(ω)
|∇ηΘ

q
f (µ)−∇ηΘ

q
f (ω)|

+
Qa

∑
q=1

γa,q

αLB(ω)

(
|Θ q

a (µ)−Θ
q
a (ω)|‖∇η u(µ)‖X + |∇ηΘ

q
a (ω)|‖d(µ,ω)‖X

+ |∇ηΘ
q
a (µ)−∇ηΘ

q
a (ω)|‖u(µ)‖X

)
. (15)

We make two remarks. First, we again note that theorems 2 and 3 also hold for
the reduced basis system when all quantities are changed to reduced basis quanti-
ties. Second, in the sequel we also require the bounds (12) and (15). Unfortunately,
these cannot be computed online-efficiently since they involve the truth quantities
‖u(µ)‖X and ‖∇η u(µ)‖X . However, we can invoke the triangle inequality to bound
e.g. ‖u(µ)‖X ≤ ‖uN(µ)‖X +∆(µ) and similarly for ‖∇η u(µ)‖X . We thus obtain
efficiently evaluable upper bounds for (12) and (15).

4.2 An Initial Offline Bound

We first consider error bounds that do not require the calculation of sensitivity
derivatives. To this end we assume that the reduced basis approximation (7) has
been solved and that the bound (10) has been evaluated for the parameter value
µ ∈ D . We would then like to bound e(ω) = u(ω)− uN(ω) for all ω ∈ D . This
bound, as should be expected, will be useful only if ω is sufficiently close to µ .

Theorem 4. Given a reduced basis solution uN(µ) and associated error bound
∆(µ) at a specific parameter value µ , the reduced basis error at any parameter
value ω ∈D is bounded by

‖e(ω)‖X ≤ ∆
0(µ,ω)≡ ∆(µ)+

2
αLB(ω)

(
Q f

∑
q=1

γ f ,q
∣∣Θ q

f (µ)−Θ
q
f (ω)

∣∣)

+
2‖uN(µ)‖X +∆(µ)

αLB(ω)

(
Qa

∑
q=1

γa,q
∣∣Θ q

a (µ)−Θ
q
a (ω)

∣∣) . (16)
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Proof. We begin by writing e(ω) in terms of e(µ), i.e.

e(ω) = e(µ)−d(µ,ω)+dN(µ,ω). (17)

We then take the X-norm of both sides and apply the triangle inequality to the right-
hand side. Invoking (10) and (12) gives the desired result. ut

We again note that we only require the reduced basis solution and the associated
a posteriori error bound at the parameter value µ to evaluate the a posteriori error
bound proposed in (16). Furthermore, the bound reduces to the standard bound ∆(µ)
for ω = µ , but may increase rapidly as ω deviates from µ . To alleviate this issue,
we thus propose another bound in the next section which makes use of first-order
sensitivity derivatives.

4.3 Bounds Based on First-Order Sensitivity Derivatives

We first note that we can bound the error in the sensitivity derivative ∇η e at the
parameter value ω as follows.

Theorem 5. The error in the reduced basis approximation of the sensitivity deriva-
tive at any parameter value ω satisfies

‖∇η e(ω)‖X ≤ ∆η(µ)+‖∇η d(µ,ω)‖X +‖∇η dN(µ,ω)‖X . (18)

Proof. The result directly follows from ∇η e(ω) = ∇η u(ω)−∇η uN(ω) by adding
and subtracting ±∇η u(µ) and ±∇η uN(µ), rearranging terms, and invoking the tri-
angle inequality. ut

Given the previously derived bounds for the sensitivity derivatives, we can now
introduce an improved bound in the following theorem.

Theorem 6. Making use of sensitivity derivatives we get the following error bound
for the parameter value ω = µ +ρ ∈D:

‖e(ω)‖X ≤ ∆
1(µ,ω)≡ ∆(µ)+∆ρ(µ)+

2
αLB

Q f

∑
q=1

γ f ,qIq
f ,∇

+
Qa

∑
q=1

γa,q

αLB

((
2‖uN(µ)‖X +∆(µ)

)(
Iq
a,∇ +

Qa

∑
q̄=1

γa,q̄Iq,q̄
a,a

αLB

)

+
(

2‖∇ρ uN(µ)‖X +∆ρ(µ)
)

Iq
a +

2
αLB

Q f

∑
q̄=1

γ f ,q̄Iq,q̄
a, f

)
, (19)

where the coercivity lower bound αLB satisfies αLB ≤min0≤τ≤1 α(µ + τρ) and the
integrals are given by
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Iq
f ,∇ ≡

∫ 1

0

∣∣∣∇ρΘ
q
f (µ)−∇ρΘ

q
f (µ + τρ)

∣∣∣dτ, (20a)

Iq
a,∇ ≡

∫ 1

0

∣∣∇ρΘ
q
a (µ)−∇ρΘ

q
a (µ + τρ)

∣∣dτ, (20b)

Iq
a ≡

∫ 1

0
|Θ q

a (µ)−Θ
q
a (µ + τρ)|dτ, (20c)

Iq,q̄
a, f ≡

∫ 1

0

∣∣∇ρΘ
q
a (µ + τρ)

∣∣ ∣∣∣Θ q̄
f (µ)−Θ

q̄
f (µ + τρ)

∣∣∣dτ, (20d)

Iq,q̄
a,a ≡

∫ 1

0

∣∣∇ρΘ
q
a (µ + τρ)

∣∣ ∣∣Θ q̄
a (µ)−Θ

q̄
a (µ + τρ)

∣∣dτ. (20e)

Proof. We begin with the fundamental theorem of calculus

e(µ +ρ) = e(µ)+
∫ 1

0
∇ρ e(µ + τρ) dτ. (21)

We then take the X-norm of both sides and apply the triangle inequality on the
right-hand side. Invoking theorems 1, 3, and 5 leads to the desired result. ut

In the majority of cases the functions Θ
q
a (·) and Θ

q
f (·) are analytical functions,

and the integrals in (20) can be evaluated exactly. Nevertheless, we only really need
to bound the integrals uniformly over certain neighborhoods [2].

The bounds given in theorems 4 and 6 allow us to bound the error anywhere in the
neighborhood of a parameter value µ using only a finite number of reduced basis
evaluations, i.e., the reduced basis approximation and the sensitivity derivative as
well as their a posteriori error bounds. In practice, we first introduce a tessellation
of the parameter domain D with a finite set of non-overlapping patches. We then
perform the reduced basis calculations at one point (e.g. the center) in each patch
and evaluate the offline error bounds (16) or (19) over the rest of each patch. Figure
1 shows a sketch of the typical behaviour of the offline bounds for a one-dimensional
parameter domain. For a given fixed training set of size ntrain, the additional cost to
evaluate the first-order bounds during the offline stage is at most P times higher than
the “classical” greedy search for a P dimensional parameter (only considering the
greedy search and not the computation of the basis functions). This can be seen from
Theorem 6, i.e., in addition to evaluating the RB approximation and error bound at
all ntrain parameter values, we also need to evaluate the sensitivity derivative and the
respective error bound at these parameter values.

We note, however, that the local shape of the offline bounds as shown in Figure
1 might not be of interest. Instead, we are usually interested in the global shape and
in the local worst case values which occur at the boundaries of the patches, i.e. the
peaks of the blue dashed line in Figure 1. In the numerical results presented below
we therefore only plot the upper bound obtained by connecting these peaks.

There is just one ingredient that is still missing: calculating lower bounds for the
coercivity constants.
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Fig. 1: Results using the first-order offline bounds

5 Computing Coercivity Constants

In reduced basis modeling stability constants play a vital role, but finding efficient
methods to produce the lower bounds that we need is notoriously difficult. For sim-
ple problems tricks may exist to evaluate such lower bounds exactly [6], but for the
majority of problems more complicated methods are needed. The most used method
seems to be the successive constraints method (SCM). It is a powerful tool for cal-
culating lower bounds for coercivity constants at a large number of parameter values
while incurring minimal cost [1, 5].

Let us introduce the set

Y ≡ {y ∈ RQ|yq = aq(v,v)/‖v‖2
X ,∀1≤ 1≤ Qand anyv ∈ X}. (22)

The coercivity constant can be written as the solution to an optimization problem
over Y .

α(µ) = inf
y∈Y

Q

∑
q=1

Θ
q
a (µ)yq (23)

Working with this formulation of the coercivity constant is often easier than work-
ing with (3). The main difficulty is that the set Y is only defined implicitly and can
be very complicated. The idea of SCM is to relax the optimization problem by re-
placing Y with a larger set that is defined by a finite set of linear constraints. Lower
bounds for the coercivity constant are then given implicitly as the solution to a linear
programming problem.

Unfortunately, SCM will not suffice for our purposes. We will need explicit
bounds on the coercivity constant over regions of the parameter domain. It was
shown how such bounds can be obtained in a recent paper [8]. That paper makes
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use of SCM and the fact that α(µ) is a concave function of the variables Θ
q
a (µ).

The concavity can be shown from (23) and tells us that lower bounds can be derived
using linear interpolation.

6 Numerical Results

We consider the standard thermal block problem [13] to test our approach. The
spatial domain, given by Ω = (0,1)2 with boundary Γ , is divided into four equal
squares denoted by Ωi, i = 1, . . . ,4. The reference conductivity in Ω0 is set to unity,
we denote the normalized conductivities in the other subdomains Ωi by σi. The con-
ductivities will serve as our parameters and vary in the range [0.5,5]. We consider
two problem settings: a one parameter and a three parameter problem; the domains
of our test problems are shown in Figure 2. The temperature satisfies the Laplace
equation in Ω with continuity of temperature and heat flux across subdomain in-
terfaces. We assume homogeneous Dirichlet boundary conditions on the bottom of
the domain, homogeneous Neumann on the left and right side, and a unit heat flux
on the top boundary of the domain. The weak formulation of the problem is thus
given by (1), with the bilinear and linear forms satisfying the assumptions stated
in Section 2. The derivation is standard and thus omitted. Finally, we introduce a
linear truth finite element subspace of dimension N = 41,820. We also define the
X-norm to be equal to the energy-norm with σi = 1 for all i ∈ {1, . . . ,4}.

ΓT

0
0

ΓB

z1

z2

1

1

Ω0

1

Ω1

1

Ω2

µ

Ω3

1

1
2

1
2

(a) Thermal block with 1 parameter

ΓT

0
0

ΓB

z1

z2

1

1

Ω0

1

Ω1

µ1

Ω2

µ2

Ω3

µ3

1
2

1
2

(b) Thermal block with 3 parameter

Fig. 2: 2×2 thermal block model problem

For this example problem our bounds can be greatly simplified. The most obvious
simplification is that all terms involving Θ

q
f (·) can be eliminated due to the fact that

f (·; µ) is parameter independent. We also not that the Θ
q
a (·) are affine and that their

derivatives are constant. As a result the integrals given in (20a), (20b), and (20d) are
all equal to zero and the evaluation of (20c) and (20e) is trivial.
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For our first example problem we set σ0 = σ1 = σ3 = 1 and thus have one pa-
rameter µ = σ2 ∈ [0.5,5]. We build a four-dimensional reduced basis model with
XN spanned by solutions u(ζ ) at ζ ∈ {0.6,1.35,2.75,4}. The offline bounds are cal-
culated by dividing the parameter domain into ` uniform intervals in the log scale,
computing the reduced basis quantities at the center of each interval, and comput-
ing offline bounds for the rest of each interval. Figure 3 shows the a posteriori
error bounds and the zeroth-order offline bounds for ` ∈ {320,640,1280}. Here the
detailed offline error bounds are not plotted but rather curves that interpolate the
peaks of those bounds. We note that the actual offline bounds lie between the plot-
ted curves and the a posteriori bounds and vary very quickly between ` valleys and
`+ 1 peaks. For all practical applications the quick variations are unimportant and
only the peaks are of interest, since they represent the worst case upper bound.

We observe that in comparison with the a posteriori bounds the zeroth-order
bounds are very pessimistic. We can achieve much better results, i.e. tighter upper
bounds, by using the first-order bounds as shown in Figure 4. The first-order bounds
are much smaller, although reduced basis computations were performed at fewer
points in the parameter domain. Figure 1 shows the detailed behavior of the offline
bounds with `= 320 over a small part of the parameter domain.

Depending on the tolerance εtol that we would like to satisfy, a uniform log scale
distribution of the ` points will not be optimal. In practice, it may be more effective
to add points adaptively wherever the bounds need to be improved.

We next consider the three parameter problem setting with the admissible param-
eter domain D = [0.5,µB]

3, where µB is the maximal admissible parameter value.
This time we divide each interval [0.5,µB] into ` log-scale uniform subintervals and
take the tensor product to get `3 patches in D . We then compute the offline bounds
over these patches. For this problem we only use the first-order offline bounds be-
cause using the zeroth-order bounds would be too expensive. Figure 5 shows the
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Fig. 4: Results using the first-order offline bounds

maximum values of the offline error bounds over the entire domain for various val-
ues of ` and three different values of µB. We observe that a larger parameter range
of course requires more anchor points to guarantee a certain desired accuracy, but
also that the accuracy decreases with the number of anchor points.
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Fig. 5: Offline bounds for the 3D problem with various parameter domains
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7 Conclusions and Extensions

The main result of this work is the derivation of error bounds which can be com-
puted offline and used to guarantee a certain desired error tolerance over the whole
parameter domain. This allows us to shift the cost of evaluating error bounds to the
offline stage thus reducing the online computational cost, but more importantly it al-
lows us to achieve a much higher level of confidence in our models. It enables us to
apply reduced basis methods to real-time applications while ensuring the accuracy
of the results.

It should be noted that our methods produce pessimistic bounds and can be quite
costly. Furthermore, since the bounds are based on sensitivity information — similar
to the approach presented in [2] — the approach is restricted to a modest number of
parameters. In general the heuristic method may be more practical unless it is really
necessary to be certain that desired tolerances are met.

We have derived zero and first-order offline bounds. We expect that using higher-
order bounds would produce better results and reduce the computational cost. It
may also be interesting to tailor the reduced basis space to produce accurate ap-
proximations of not only the solution but also of its derivatives. Furthermore, the
proposed bounds may also be used to adaptively refine the train set, i.e. we start
with a coarse train set and then adaptively refine the set parameter regions where
the offline bounds are largest (over the tessellations/patches). This idea will be in-
vestigated in future research.

In practical applications it will usually be more useful to deal with outputs rather
than the full state u(µ). The reduced basis theory for such problems is well estab-
lished [13], and the results that we present here can easily be adapted.

Many of the ideas and bounds given in this paper could also be used to optimize
reduced basis models. One could for example attempt to optimize the train samples
that are used in greedy algorithms. If using offline bounds is too costly, the theory
can still be useful to derive better heuristics for dealing with error tolerances.

One example of real-time problems where offline bounds could be used is adap-
tive parameter estimation. In such contexts the system’s parameters are unknown
meaning that we cannot use a posteriori bounds. We can, however, use offline
bounds [7].
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