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(mono-energetic) Radiative Transfer Problem

We are looking for a particle density u ∈ L2(D× S) satisfying

(TS −KS)u(x , s) = f (x , s) in D× S
u = g on Γ−

with

TSu(x , s) := s · ∇u(x , s) + σ(x , s)u(x , s)

KSu(x , s) :=
∫

S
k(x , s′, s)u(x , s′)ds′

Γ−(s)

s

D
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(mono-energetic) Radiative Transfer Problem

Obstructions

• high dimensional (n = 2,3 dimensional space + n− 1 dimensional transport
direction)

• global scattering kernel
• reliable error estimates?

– a priori error estimates often require unrealistic regularity assumptions on the solution
→ a posteriori estimates
I error control of the solution
I adaptive grid refinement
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Adaptive Source Term Iteration

The following method was developed in collaboration with W. Dahmen and O. Mula.

• Assuming ‖T −1
S KS‖L(L2,L2)

= ρ < 1, we have the ideal iteration

u0 = 0
un+1 = T −1

S (KSun + f ), n = 0,1,2, . . . .

• For this ideal iteration, we have the error estimate

‖u − un‖L2 . ρn‖f‖V ′.

• We need a numerical scheme to realize approximately the fixed point iterations
while still guaranteing convergence of the infinite dimensional iteration.

• In the iterations:
– Accuracy in solution of transport problems is dynamically increased across iterations
→ Need for tight error bounds to avoid adding unnecessary numerical effort DPG
[Broersen et al., 2017]

– Repeated application of KS with increased accuracy Compression techniques.
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The Henyey–Greenstein Kernel

We explain how to approximate

Kv(x , s) =
∫

S
k(s, s′)v(x , s′)ds′

with the model kernel of Henyey and
Greenstein [1941]

k(s, s′) = k(s · s′︸︷︷︸
=cos θ

) :=
1

2π

1− γ2

1 + γ2− 2γs · s′

where γ ∈ (−1,1).

−2 0 2
ϕ

10−3

10−2

10−1

100

101

γ = 0.05

The example illustrates the following issue:
• A naive approximation of Kv with quadratures entails a quadratic cost in the

number of directions.
• One can diminish this cost by exploiting sparsity.
• We illustrate how to achieve this depending on γ.
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The example illustrates the following issue:
• A naive approximation of Kv with quadratures entails a quadratic cost in the

number of directions.
• One can diminish this cost by exploiting sparsity.
• We illustrate how to achieve this depending on γ.
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Low-Rank Approximation of the Henyey–Greenstein Kernel

0 50 100

10 17

10 13

10 9

10 5

10 1

= 0.05
= 0.5
= 0.95

Singular values of Henyey–Greenstein kernel.

K ≈ U

Σ V T

Low-rank approximation,
accurate for small γ.
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Wavelet Approximation of the Henyey–Greenstein Kernel
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(a) γ = 0.05, M = 0
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(e) γ = 0.95, M = 1
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(f) γ = 0.95, M = 3

When γ→ 1, the matrix (kλ,λ′)λ,λ′ becomes quasi-sparse and we can apply compression techniques to efficiently apply the kernel.

7 of 18 Adaptive Source Term Iteration | F. Gruber | 2018



Wavelet Approximation of the Henyey–Greenstein Kernel

0 20 40 60 80 100 120

λ

0

20

40

60

80

100

120

λ
′

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(a) γ = 0.05, M = 0

0 20 40 60 80 100 120

λ

0

20

40

60

80

100

120

λ
′

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(b) γ = 0.5, M = 0

0 20 40 60 80 100 120

λ

0

20

40

60

80

100

120

λ
′

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(c) γ = 0.95, M = 0

0 20 40 60 80 100 120

λ

0

20

40

60

80

100

120

λ
′

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(d) γ = 0.95, M = 0

0 50 100 150 200 250

λ

0

50

100

150

200

250

λ
′

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(e) γ = 0.95, M = 1

0 100 200 300 400 500

λ

0

100

200

300

400

500

λ
′

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(f) γ = 0.95, M = 3

When γ→ 1, the matrix (kλ,λ′)λ,λ′ becomes quasi-sparse and we can apply compression techniques to efficiently apply the kernel.

7 of 18 Adaptive Source Term Iteration | F. Gruber | 2018



Solving the Transport Part

In our ideal iteration, we need to solve transport problems of the type

Tsu = s · ∇u + σu = f .

To obtain reliable a posteriori error estimates, we solve this equation using a
Discontinuous Petrov–Galerkin method.
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Stable Variational Formulations

Given a variational formulation:
Find u

h

∈ U

h

such that

b(u

h

, v

h

) = `(v

h

) for all v

h

∈ V

h

for Hilbert spaces (U , ‖ · ‖U ), (V , ‖ · ‖V), continuous bilinear form
b : U × V → R and ` ∈ V ′.

Goal: Stability

• Discrete approximation yields a best approximation (up to a constant)

‖u − uh‖U ≤ κU ,V ′(Bh) inf
wh∈Uh

‖u −wh‖U .

• Residual-based error bound

‖u − uh‖U ' ‖b(uh, ·)− `‖V ′ .

[see e. g. Demkowicz and Gopalakrishnan, 2015; Barrett and Morton, 1984; Ern and Guermond, 2004]
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Stable Variational Formulations

• For elliptic problems we can set V

h

= U

h

. Then coercivity

b(u,u) ≥ cB‖u‖2
U ∀u ∈ U

gives us stability (Lax–Milgram / Céa lemma).

• Without coercivity Banach–Nečas–Babuška guarantees stability when we choose
the test space V

h

in such a way that

inf
u

h

∈U

h

sup
v

h

∈V

h

b(u

h

, v

h

)

‖u

h

‖U

h

‖v

h

‖V

h

≥ cB > 0.

This needs to be checked for the finite dimensional discretization, as it does not
automatically carry over from the infinite dimensional setting!

[see e. g. Demkowicz and Gopalakrishnan, 2015; Barrett and Morton, 1984; Ern and Guermond, 2004]
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Choose Uh to Ensure Good Approximation Properties, Choose Vh to
Ensure Stability

How to choose Vh for given Uh?

• Optimal test norm

‖ · ‖V ,opt := sup
u∈U

b(u, v)
‖u‖U

• Optimal test space Vh = B−∗RUUh, where RU : U → U ′ is the Riesz isomorphism,
that is Vh := T (Uh) where

〈T (uh), v〉V ,opt = b(uh, v) , ∀ v ∈ V
• This yields

– residual based error bound

‖uh − u‖U = ‖b(uh, ·)− `‖V ′,opt

– best approximation property

‖u − uh‖U = inf
wh∈Uh

‖u −wh‖U

[see e. g. Demkowicz and Gopalakrishnan, 2015; Barrett and Morton, 1984; Ern and Guermond, 2004]
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Computation of the Optimal Test Space

We have to compute Vh by solving

〈T (uh), v〉V ,opt = b(uh, v) , ∀ v ∈ V

• This is infinite dimensional

– Projection approach: Replace V by some good enough finite dimensional test search
space V̂ ⊂ V

• We cannot (afford to) compute the optimal test norm and solve global problems

– replace the optimal test norm by an equivalent but localizable and computable norm
– use an ultra-weak variational formulation

We can compute an approximation for Vh by solving

〈T̂ (uh), v〉V ,K = bK (uh, v) , ∀ v ∈ V̂
∣∣
K ,

where K is a single cell and 〈·, ·〉V ,K and bK (·, ·) denote restrictions to K .

[see e. g. Demkowicz and Gopalakrishnan, 2015; Broersen et al., 2017]
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A Stable DPG Formulation of Linear Transport

In our ideal iteration, we need to solve transport problems of the type

s · ∇u + σu = f .

cell-wise integration by parts on a fixed grid Dh leads to∫
D

σuv − us · ∇v dx +
∫

∂Dh

n · sθJvK dx =
∫

D
fv dx .

Ultra-weak formulation with u ∈ L2(D).
Broken test space with broken norm

‖v‖H(s;Dh)
=

(
∑

T∈Dh

‖v‖2
H(s;K )

)1/2

.

Broersen et al. [2017]: Fullfills requirements of Banach–Nečas–Babuška.
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Checkerboard Example

−2 0 2
ϕ

10−3

10−2

10−1

100

101

Henyey–Greenstein scattering with γ = 0.5

absorbtion coefficient σ source term f

Data of the checkerboard benchmark problem
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Checkerboard Example

To reach target accuracy η in a step of the Source Term Iteration, we have
some freedom in distributing the discretization errors:

• κ1η: accuracy for kernel application
• κ2η: accuracy for evaluation of source term f
• κ3η: accuracy for transport solver

To guarantee convergence, the following restriction holds:

CT κ1 + CT κ2 + 2κ3 ≤ 1.
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Checkerboard Example

integrated solution
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κ1 = θ/CT , κ2 = 0, κ3 = (1− θ)/2, θ = 0.2
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Checkerboard Example

integrated solution
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Checkerboard Example

directional solution directional solution integrated solution

Grids for two different transport solutions and the integrated solution.
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A Generic Library for DPG: dune-dpg

Joint work with Angela Klewinghaus and Olga Mula [Gruber et al., 2017],
based upon the Dune finite element library [Blatt et al., 2016]
(https://dune-project.org/).

• Suitable for different types of problems, e. g.
– radiative transport (O. Mula, F. Gruber)
– convection–diffusion (A. Klewinghaus)
– optimal control problems with transport constraints (A. Klewinghaus)
– porous media (V. König)

• a posteriori estimation
• capable of adaptive h refinement
• free software (GPL 2 with runtime-exception)

available at https://gitlab.dune-project.org/felix.gruber/dune-dpg
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