
An introduction to the Git version control system

Felix Gruber

IGPM, RWTH Aachen

February 22, 2018 IGPM Oberseminar

Felix Gruber (IGPM) The Git version control system February 22, 2018 1 / 26

Outline

1 Versioncontrol using Git

2 Basic Commands

3 Working with Branches

4 Collaborating via Remote Repositories

5 Best Practices

6 Further Reading

7 Questions and Answers

Felix Gruber (IGPM) The Git version control system February 22, 2018 2 / 26

What Is Versioncontrol?

a repository of all older versions of your code
a tool to compare different versions and understand changes
a framework to cooperatively write code (or other text)

Felix Gruber (IGPM) The Git version control system February 22, 2018 3 / 26

Versioncontrol using Git

Why use versioncontrol?
understand changes in your code → indespensable when working with
other developers
Simplifies merging changes from different developers
helps when debugging regressions

Why use Git?
by now the most commonly used VCS → high probability that you
will later get involved in a project using Git; large amount of helpful
Tutorials, StackOverflow threads, etc.
decentral → local access to the whole history of your code, thus many
operations can be done much faster than e.g. in SVN.

Felix Gruber (IGPM) The Git version control system February 22, 2018 4 / 26

Versioncontrol using Git

Where to use Git?
writing code
writing papers
tracking changes in configuration files like .bashrc, .vimrc, etc.
for this you might want to look at specialized Git wrappers like vcsh
my 10k lines long .bib file
generally: anything mostly text based, especially if you want to
collaborate on it with other people

Felix Gruber (IGPM) The Git version control system February 22, 2018 5 / 26

Example History Graph

A B C

D E

F

feature/foo

master

HEAD

Figure: Git’s version history is a directed acyclic graph (DAG)
and its branches and tags are named pointers to commits

See git help glossary for terminology.

Felix Gruber (IGPM) The Git version control system February 22, 2018 6 / 26

What Does a Commit Look Like?
commit b40c51576b644ebc61d5f644d73dbfd5e6bab777
Author: Felix Gruber <gruber@igpm.rwth-aachen.de>
AuthorDate: Tue Feb 20 18:59:53 2018 +0100
Committer: Felix Gruber <gruber@igpm.rwth-aachen.de>
CommitDate: Tue Feb 20 18:59:53 2018 +0100
ParentCommit(s): 82e9c34d7dfa7148b3aabf91479c26e05f340352

short description of commit

This is an example for a Git commit which is identified
by its commit hash (the cryptic hex code above).

After the short one-line description it is customary
to include a longer description of your changes and
clarify why they were done.

<hash of file tree of version represented by this commit>
Felix Gruber (IGPM) The Git version control system February 22, 2018 7 / 26

First Time Setup

Set user name and email address for commits:
git config --global user.name "Your Name"

git config --global user.email name@igpm.rwth-aachen.de

For old versions of Git: set colored output for git diff, git status,
etc.
git config --global color.ui auto

Set editor for commit messages, etc.
git config --global core.editor nano

(default is $EDITOR, or if unset vi)

Felix Gruber (IGPM) The Git version control system February 22, 2018 8 / 26

Creating a Git Repository

cloning an existing repository
git clone https://example.com/remote_repository.git

creating a new repository
git init hello_world

Felix Gruber (IGPM) The Git version control system February 22, 2018 9 / 26

Creating commits

working directory → index → commit

1 add changes to index
git add filename
or graphical frontend: git gui

2 see which changes get commited
git show

git diff --cached

3 create commit
git commit

This will open your editor to let you type in the commit message

Felix Gruber (IGPM) The Git version control system February 22, 2018 10 / 26

Viewing the History

git log

git diff old_commit new_commit
shows changes after old_commit up to (and including) new_commit

Graphical front-ends:
gitk --all

git gui blame filename

Commits can be referred to by
(truncated) hash
branch or tag name
commit^ for previous commit
for a complete list see git help revisions

Felix Gruber (IGPM) The Git version control system February 22, 2018 11 / 26

Viewing the History

git log

git diff old_commit new_commit
shows changes after old_commit up to (and including) new_commit

Graphical front-ends:
gitk --all

git gui blame filename

Commits can be referred to by
(truncated) hash
branch or tag name
commit^ for previous commit
for a complete list see git help revisions

Felix Gruber (IGPM) The Git version control system February 22, 2018 11 / 26

Branching

show list of branches
git branch

create new branch
git checkout -b new_branch
git branch new_branch

switch to branch (this changes the working directory)
git checkout branch

rename branch
git branch -m old_branch new_branch

delete branch
only merged branches:
git branch -d branchname
unmerged branches (Warning: possible data loss):
git branch -D branchname

Felix Gruber (IGPM) The Git version control system February 22, 2018 12 / 26

Merging and Rebasing

A B C

D E

master

feature/foo

HEAD

(a) Before. . .

A B C

D E

F

master

feature/foo

HEAD

(b) . . . and after the merge

Figure: git merge feature/foo

A B C

D E

master

feature/foo

HEAD

(a) Before. . .

A B C D’ E’

D E

master feature/foo

HEAD

(b) . . . and after the rebase

Figure: git rebase master

Felix Gruber (IGPM) The Git version control system February 22, 2018 13 / 26

Resolving Merge Conflicts

When the same lines get changed on both branches, merging will not
succeed
git status shows files affected by the conflict and gives instructions
how to solve the conflict
conflicting lines are marked with <<<<<<<, ======= and >>>>>>>

resolve conflicts in your editor
check changes with git diff and git add file
when all conflicts are resolved git commit

Felix Gruber (IGPM) The Git version control system February 22, 2018 14 / 26

Cherry-Pick

A B F G

C D E

master

release/v0.1

HEAD

(a) Before. . .

A B F G

C D E F’

master

release/v0.1

HEAD

(b) . . . and after the cherry-pick

Figure: git cherry-pick F

Can be used to pick bugfixes to a (release) branch

Felix Gruber (IGPM) The Git version control system February 22, 2018 15 / 26

Git Stash

git stash is used to save the current state of the working directory on
a stack
Useful when shortly switching branches
Apply last stashed changes with git stash pop to the current working
directory

Felix Gruber (IGPM) The Git version control system February 22, 2018 16 / 26

Talking to Remote Git Repositories

Until now, all Git commands (except for clone) were local operations.
remote operations:

I Add a new remote repository:
git remote add name https://example.com/repo.git

I Push currently checked-out branch to remote repository:
git push

I Update remote tracking branches:
git fetch

I Fetch + Merge to currently checked-out branch:
git pull

I Show all remote tracking branches:
git branch -r

Felix Gruber (IGPM) The Git version control system February 22, 2018 17 / 26

Remote Examples

A B C D

master

origin/master

HEAD

(a) Before

A B C D

E F

master

origin/master

HEAD

(b) git fetch

A B C D

E F

G

master

origin/master

HEAD

(c) git pull (fetch + merge)

A B C D

E F C’ D’

master

origin/master

HEAD

(d) git pull --rebase (fetch + rebase)

Figure: Different ways to pull changes

Felix Gruber (IGPM) The Git version control system February 22, 2018 18 / 26

Git Servers

Instead of setting up your own Git server, you probably want to use one of
the following servers:

IGPM Git Server
https://username@www.igpm.rwth-aachen.de/git/repository
Ask Frank if you want to create a new user or repository
RWTH GitLab Server
https://git.rwth-aachen.de/
Up to 50 private or public repositories for employees and students of
RWTH.
GitLab
https://gitlab.com

BitBucket
https://bitbucket.org

GitHub
https://github.com

Felix Gruber (IGPM) The Git version control system February 22, 2018 19 / 26

https://username@www.igpm.rwth-aachen.de/git/repository
https://git.rwth-aachen.de/
https://gitlab.com
https://bitbucket.org
https://github.com

Rewriting History

Changing existing commits might be used to
clean up a feature branch before merging
fixing errors introduced in the last commit
Warning: never do that on commits that have already been pushed!

The following commands can be used to change commits:
change last commit (after adding changes to index)
git commit --amend

interactive rebase
git rebase -i

Felix Gruber (IGPM) The Git version control system February 22, 2018 20 / 26

Rewriting History

Changing existing commits might be used to
clean up a feature branch before merging
fixing errors introduced in the last commit
Warning: never do that on commits that have already been pushed!

The following commands can be used to change commits:
change last commit (after adding changes to index)
git commit --amend

interactive rebase
git rebase -i

Felix Gruber (IGPM) The Git version control system February 22, 2018 20 / 26

Git Bisect

To help fix regressions, one can use git bisect

1 git bisect start bad good
2 Git then checks out the commit in the middle between bad and good
3 Test for regression and mark commit with git bisect good or

git bisect bad

4 lather, rinse, repeat until only one commit left
5 congratulations, you have found the commit that caused the

regression
see git bisect --help for automation, visualization and more

Felix Gruber (IGPM) The Git version control system February 22, 2018 21 / 26

Best Practices

Commit early, commit often.
→ small atomic commits
Use meaningful commit messages consisting of

I 1 line short description (max. 50 characters)
I followed by a blank line
I followed by a long description answering why the commit was done and

what it changes

Take a look at the Linux kernel’s Git repository for examples.
Clean up your commits before pushing (git rebase -i); don’t touch
them afterwards (since this might confuse your collaborators).
Use .gitignore files to exclude generated files like compiler artifacts
and log files.

Felix Gruber (IGPM) The Git version control system February 22, 2018 22 / 26

Recommendations for organizing branches

use the master branch for semi-stable development
use short lived feature branches when doing larger changes
“Cactus” branching for releases
use branch prefixes like release/, feature/ and cleanup/

Felix Gruber (IGPM) The Git version control system February 22, 2018 23 / 26

Auxiliary Git Tools

Git Annex, Git LFS
Git does not work good with binary files. To keep track of my
collection of papers, I use Git Annex to sync between work and home
computers.
vcsh
Wrapper around Git that helps to keep different configuration files in
$HOME in different Git repositories.

Felix Gruber (IGPM) The Git version control system February 22, 2018 24 / 26

Further Reading

Git’s man pages:
git subcommand --help

git help

git help -g

1 page quick overview to print out:
http://www.cheat-sheets.org/saved-copy/git-cheat-sheet.pdf

short git tutorial: git help tutorial

short exercises to learn Git:
https://github.com/praqma-training/gitkatas

For those who want a more detailed introduction:
http://git-scm.com/book

A list of some useful tips not just for beginners:
https://www.andyjeffries.co.uk/25-tips-for-intermediate-git-users/

Felix Gruber (IGPM) The Git version control system February 22, 2018 25 / 26

http://www.cheat-sheets.org/saved-copy/git-cheat-sheet.pdf
https://github.com/praqma-training/gitkatas
http://git-scm.com/book
https://www.andyjeffries.co.uk/25-tips-for-intermediate-git-users/

Questions? → Answers!

Any Questions?
Was something unclearly explained?
Anything you ever wanted to know about Git?

Felix Gruber (IGPM) The Git version control system February 22, 2018 26 / 26

	Versioncontrol using Git
	Basic Commands
	Working with Branches
	Collaborating via Remote Repositories
	Best Practices
	Further Reading
	Questions and Answers

