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(mono-energetic) Radiative Transfer Problem

Bu(x , s) := (TS −KS)u(x , s) = f (x , s) in Ω× S
u = g on Γ−

with

TSu(x , s) := s · ∇u(x , s) + σ(x , s)u(x , s)

KSu(x , s) :=
∫

S
k(x , s′, s)u(x , s′)ds′

Γ−(s)

s

Ω
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(mono-energetic) Radiative Transfer Problem

Obstructions

• high dimensional (n = 2,3 dimensional space + n− 1 dimensional transport
direction)

• global scattering kernel
• reliable error estimates?

– a priori error estimates often require unrealistic regularity assumptions on the solution
→ a posteriori estimates

I error control for “outer iteration”
I adaptive grid refinement
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Roadmap

• ideal iteration un+1 = un + P(f −Bun), n = 0,1,2, . . .
– in infinite dimensional setting
– KS only needs to be evaluated
– mapping property, norm equivalence
– P = T −1

S for dominating transport, i. e. ‖T −1
S KS‖L(L2,L2)

< 1,
otherwise use inner iteration for preconditioning

– costs of last iteration dominate

• numerical realization:
– approximately solve inner iteration with prescribed accuracy;

this accuracy has to be chosen to ensures convergence to the infinite dimensional solution
– a posteriori error estimates for efficient transport solvers

I adaptive grid refinement for non-smooth solutions
I Discontinuous Petrov–Galerkin (DPG)

• tool: Banach–Nečas–Babuška
– convergence of ideal iteration
– a posteriori estimate for transport solver

• approximately applying KS
– operator compression
– low-rank approximation
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Nested Iteration DPG

• Assuming ‖T −1
S KS‖L(L2,L2)

= ρ < 1, we choose P = T −1
S in the ideal iteration

and obtain

u0 = 0
un+1 = un + T −1

S (f −Bun)

= T −1
S (KSun + f ), n = 0,1,2, . . . .

• We need a numerical scheme to realize approximately the fixed point iterations
while still guaranteing contraction of the infinite dimensional iteration.

• In the iterations:
– Accuracy in solution of transport problems is dynamically increased across iterations
→ Need for tight error bounds to avoid adding unnecessary numerical effort DPG
[Broersen et al., 2016]

– Repeated application of KS with increased accuracy Compression techniques.
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Nested Iteration DPG

Algorithm 1 NI-DPG[TS,KS, f , ε]→ uε

u ← 0
err← err0
while err > ε do

Approximatively compute w = KSu.
repeat

Solve TSu = f + w as a set of transport problems using DPG.
Refine grid.

until target accuracy is reached
err← combined error of computing w and u
Increase target accuracy.

end while
uε ← u
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Adaptive Grid Refinement

Solutions to the transport problems are smooth in large parts→ adaptive
grid refinements keep the number of DoFs minimal.

For the computation of the scattering integral, we need to merge the
adaptively refined grids from the transport solutions.
But the more expensive task of computing transport solutions can be done
on the smaller adaptively refined grids.
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Stable Variational Formulations

Given a variational formulation:

Find u

h

∈ U

h

such that

b(u

h

, v

h

) = `(v

h

) for all v

h

∈ V

h

for Hilbert spaces (U , ‖ · ‖U ), (V , ‖ · ‖V), continuous bilinear form
b : U × V → R and ` ∈ V ′.

Goal: Stability

• Discrete approximation yields a best approximation (up to a constant)

‖u − uh‖U ≤ κU ,V ′(Bh) inf
wh∈Uh

‖u −wh‖U .

• Residual-based error bound

‖u − uh‖U ' ‖b(uh, ·)− `‖V ′ .
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Stable Variational Formulations

• For elliptic problems we can set V

h

= U

h

. Then coercivity

b(u,u) ≥ cB‖u‖2
U ∀u ∈ U

gives us stability (Lax–Milgram / Céa lemma).

• Without coercivity Banach–Nečas–Babuška guarantees stability when we choose
the test space V

h

in such a way that

inf
u

h

∈U

h

sup
v

h

∈V

h

b(u

h

, v

h

)

‖u

h

‖U

h

‖v

h

‖V

h

≥ cB.

This needs to be checked for the finite dimensional discretization, as it does not
automatically carry over from the infinite dimensional setting!
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Choose Uh to Ensure Good Approximation Properties, Choose Vh to
Ensure Stability

How to choose Vh for given Uh?

• Optimal test norm

‖ · ‖V ,opt := sup
u∈U

b(u, v)
‖u‖U

• Optimal test space Vh = B−∗RUUh, where RU : U → U ′ is the Riesz isomorphism,
that is Vh := T (Uh) where

〈T (uh), v〉V ,opt = b(uh, v) , ∀ v ∈ V
• This yields

– residual based error bound

‖uh − u‖U = ||b(uh, ·)− `||V ′,opt

– best approximation property

‖u − uh‖U = inf
wh∈Uh

‖u −wh‖U
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Computation of the Optimal Test Space

We have to compute Vh by solving

〈T (uh), v〉V ,opt = b(uh, v) , ∀ v ∈ V

• This is infinite dimensional

– Projection approach: Replace V by some good enough finite dimensional test search
space V̂ ⊂ V

• We cannot (afford to) compute the optimal test norm and solve global problems

– replace the optimal test norm by an equivalent but localizable and computable norm
– use an ultra-weak variational formulation

We can compute an approximation for Vh by solving

〈T̂ (uh), v〉V ,K = bK (uh, v) , ∀ v ∈ V̂
∣∣
K ,

where K is a single cell and 〈·, ·〉V ,K and bK (·, ·) denote restrictions to K .
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Choosing a Good Test Search Space

• δ-proximality (test search space V̂ close enough to optimal test space Vh):

∀0 6= vh ∈ Vh ∃v̂h ∈ V̂ such that ‖vh − v̂h‖V ≤ δ‖vh‖V .
Dahmen et al. [2012]: This guarantees inf-sup constant ≥ (1− δ).

• hard to verify
• for the transport problems that we solve, Broersen et al. [2016] show that V̂ can be

chosen as a finite element space that has a slightly higher polynomial degree than
the trial space and lives on a subgrid.
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A Stable DPG Formulation of Linear Transport

In our ideal iteration, we need to solve transport problems of the type

s · ∇u + cu = f .

cell-wise integration by parts on a fixed grid Ωh leads to∫
Ω

cuv − us · ∇v dx +
∫

∂Ωh

n · sθJvK dx =
∫

Ω
fv dx .

Ultra-weak formulation with u ∈ L2.
Broken test space with broken norm

‖v‖H(s;Ωh)
=

(
∑

T∈Ωh

‖v‖2
H(s;K )

)1/2

.

Broersen et al. [2016]: Fullfills requirements of Banach–Nečas–Babuška.
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The Henyey–Greenstein Kernel

[Henyey and Greenstein, 1941]

k(s, s′) :=
1

2π

1− γ2

1 + γ2− 2γ cos(s− s′)
with γ ∈ (−1,1).

• When γ ≥ 0, the scattering is forward peaked and K is positive semi-definite.
• Negative γ models backward scattering.
• Originally used to model light scattering in the milky way.
• Nowadays used in a wide variety of applications including nuclear physics

[Sanchez and McCormick, 2004].
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The Henyey–Greenstein Kernel
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Figure: Henyey–Greenstein kernel as a function of θ = ∠(s, s′)

Larger γ leads to more concentrated forward-scattering.
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The Henyey–Greenstein Kernel
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Figure: singular values of Henyey–Greenstein kernel

For small γ fast decay of singular values.
→ Kernel can be approximated by low rank matrix.
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The Henyey–Greenstein Kernel
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Figure: wavelet representation of Henyey–Greenstein kernel

• Behaviour similar to boundary integral problems.
• For γ close to 1 we can see the typical “finger” structure which hints at good

wavelet-compressibility.
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Numerical Results

Nested Iteration DPG for

(TS −KS)u(x , s) = 1 in Ω× S
u = 0 on Γ−

with

TSu(x , s) := s · ∇u(x , s) + 5u(x , s)

KSu(x , s) :=
∫

S
k(x , s′, s)u(x , s′)ds′

where k is a Henyey–Greenstein
scattering kernel with γ = 0.9.

10−3 10−2 10−1 100

mesh size H

10−3

10−2

10−1

100

a
po

st
er

io
ri

er
ro

re
st

im
at

or
s

Figure: a posteriori errors of the adaptive sourceterm iteration
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A Generic Library for DPG: dune-dpg

Joint work with Angela Klewinghaus and Olga Mula [Gruber et al., 2017],
based upon the Dune finite element library [Blatt et al., 2016]
(https://dune-project.org/).

• Suitable for different types of problems, e. g.
– radiative transport (O. Mula, F. Gruber)
– convection–diffusion (A. Klewinghaus)
– optimal control problems with transport constraints (A. Klewinghaus)
– soon: porous media (V. König)

• a posteriori estimation
• capable of adaptive h refinement
• free software (GPL 2 with runtime-exception)

available at https://gitlab.dune-project.org/felix.gruber/dune-dpg
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