Geometrische Mechanik

7. In this exercise we study co-ordinate transformations in one degree of freedom.

Let $H: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a given smooth function, with corresponding Hamiltonian vector field X_H . Here we use the standard symplectic structure on \mathbb{R}^2 . Moreover, let $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a diffeomorphism. Consider both the function $K:=H\circ g^{-1}$, together with the associated Hamiltonian vector field X_K , and the transformed vector field $g_{\star}(X_H)$, defined by $g_{\star}(X_H)(g(p)):=D_pgX_H(p)$. Show that

$$g_{\star}(X_H) = \det(Dg) \cdot X_K$$
.

Hint: exploit a coordinate free formulation of the fact that X_H is the Hamiltonian vector field corresponding to H. Discuss the implication for the integral curves of $g_{\star}(X_H)$ and X_K . Also consider the time-parametrisation of these curves. What happens in the special case that g is canonical?

8. A matrix $A \in M_{n \times n}(\mathbb{R})$ defines a linear differential equation $\dot{x} = Ax$, write \mathcal{L}_A for the corresponding vector field. Next to the commutator [A, B] = AB - BA of two matrices there is also the Lie bracket $[\mathcal{L}_A, \mathcal{L}_B]$ defined by how vector fields act as derivations on smooth functions f, given as

$$[\mathcal{L}_A, \mathcal{L}_B](f) := \mathcal{L}_A(\mathcal{L}_B(f)) - \mathcal{L}_B(\mathcal{L}_A(f))$$
.

Show that

$$[\mathcal{L}_A, \mathcal{L}_B] = -\mathcal{L}_{[A,B]}$$
.

Furthermore show that

$$\varphi_t \circ \psi_s - \psi_s \circ \varphi_t = st[A, B] + \mathcal{O}\left((s^2 + t^2)^{\frac{3}{2}}\right)$$

for the flows φ of \mathcal{L}_A and ψ of \mathcal{L}_B . Hence, $[\mathcal{L}_A, \mathcal{L}_B] = 0$ if these two flows commute.

9. In this exercise we study some properties of the Poisson bracket on a symplectic manifold.

Show that if two functions F, G are integrals of H then so is $\{F, G\}$.

Show that if $h: \mathcal{P} \longrightarrow \mathcal{P}$ is symplectic then $\{F, G\} \circ h = \{F \circ h, G \circ h\}$. What is the meaning of this equation?