Streamline Diffusion Stabilization for mass transport in two phase incompressible flows

Christoph Lehrenfeld, Arnold Reusken

IGPM, RWTH Aachen

Transport Processes at Fluidic Interfaces - From Experimental to Mathematical Analysis, Aachen, Dec. 7th, 2011
Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook
Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook
Background: Two phase flow (Navier-Stokes + level set)

Γ(t) = zero-level of a scalar function:
the level set function \(\varphi(x, t) \)

\[
\varphi(x, t) = \begin{cases}
< 0 & \text{for } x \text{ in phase } \Omega_1 \\
> 0 & \text{for } x \text{ in phase } \Omega_2 \\
= 0 & \text{at the interface}
\end{cases}
\]

Navier-Stokes equations coupled with level set equation

\[
\rho(\varphi) \left(\frac{\partial}{\partial t} \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) - \text{div} \left(\mu(\varphi) \mathbf{D} (\mathbf{u}) \right) + \nabla p = \rho(\varphi) \mathbf{g} - \tau \kappa(\varphi) \delta \mathbf{n} \Gamma \\
\text{div} \mathbf{u} = 0 \\
\varphi_t + \mathbf{u} \cdot \nabla \varphi = 0
\]

where \(\rho, \mu \) and \(\kappa, \delta \Gamma, \mathbf{n} \Gamma \) depend on \(\varphi \)
Mass transport equation

\[
\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c - \alpha \Delta c = 0 \quad \text{in } \Omega_1 \cup \Omega_2,
\]

\[
[-\alpha \nabla c] \cdot \mathbf{n} = 0 \quad \text{on } \Gamma,
\]

\[
[\beta c] = 0 \quad \text{on } \Gamma.
\]

\[
\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega
\]

\[
\mathbf{V} \cdot \mathbf{n} = \mathbf{u} \cdot \mathbf{n} \quad \text{on } \Gamma.
\]

\[c: \text{ concentration},\]
\[\alpha: \text{ piecewise constant diffusion coefficients},\]
\[\beta: \text{ piecewise constant Henry coefficients},\]
\[\mathbf{u}: \text{ convection velocity (from Navier Stokes)}\]
\[\mathbf{V}: \text{ the interface velocity}\]

Henry condition: discontinuity in \(c\).
Numerical Aspects

Mass transport equation

\[\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c - \alpha \Delta c = 0 \quad \text{in } \Omega_1 \cup \Omega_2, \]
\[[-\alpha \nabla c] \cdot \mathbf{n} = 0 \quad \text{on } \Gamma, \]
\[[\beta c] = 0 \quad \text{on } \Gamma. \]

Numerical Challenges

- Level set to capture the interface
 \(\Rightarrow \) Interface is not aligned with the mesh (might depend on time)
- Concentration has discontinuities (approximation)
- Problem is typically highly convection dominated (stability)
- Time integration for moving interfaces
Numerical Aspects

Mass transport equation

\[
\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c - \alpha \Delta c = 0 \quad \text{in } \Omega_1 \cup \Omega_2,
\]

\[
[-\alpha \nabla c] \cdot \mathbf{n} = 0 \quad \text{on } \Gamma,
\]

\[
[\beta c] = 0 \quad \text{on } \Gamma.
\]

Numerical Challenges

- Level set to capture the interface
 - Interface is not aligned with the mesh *(might depend on time)*
- Concentration has discontinuities *(approximation)*
- Problem is typically highly convection dominated *(stability)*
- Time integration for moving interfaces

Numerical Approaches

- Extended Finite Element space *(XFEM)*
- Nitsche-type technique to enforce Henry’s law in a weak sense
- Streamline Diffusion Stabilization
Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook
Handling Discontinuities

Interface condition

We have the condition:

\[\llbracket \beta c \rrbracket = 0 \quad \text{at the interface } \Gamma \]

Non-aligned mesh + **standard polynomial** FE space \(V_h \)

⇒ approximation quality reduces to

\[\inf_{c_h \in V_h} \| c - c_h \|_{L^2} \leq O(\sqrt{h}) \]
Handling Discontinuities: Domain-wise cont. ansatz

\[V_h^\Gamma := V_h(\tilde\Omega_1) \cdot H^\Gamma \oplus V_h(\tilde\Omega_2) \cdot (1 - H^\Gamma) \]
Remedy

Extend P_1 FE basis with discontinuous basis functions near Γ:

$$p_j^\Gamma := p_j \left(H_\Gamma(x) - H_\Gamma(x_j) \right), \quad H_\Gamma = \begin{cases} 1 & \text{in } \Omega_1 \\ 0 & \text{in } \Omega_2 \end{cases}$$

and use $V^\Gamma_h = V_h \oplus \{ p_j^\Gamma \}$
Handling Discontinuities: XFEM

Remarks

- In practice: \(\Gamma_h \) instead of \(\Gamma \).
- \(\text{dim}(V_{\Gamma h}) \) depends on \(\Gamma \).
- New basis functions can have very small supports.
- Other applications:
 - [Belytschko (1999 ->)]: elasticity,
 - [Hansbo (2002 ->)]: interf. probl.,
 - [Reusken, Groß (2007 ->)]:
 twophase (Navier-) Stokes

XFEM for approximation

Enrichment: we use a P1X finite element space. This provides discontinuous ansatz functions, which do not satisfy the interface condition.

(+) approximation is optimal: \(O(h^2) \) in \(L^2 \)-norm.

(-) discrete functions in \(V_{\Gamma h} \) do not fulfill Henry’s interface condition
Handling the non-conformity

Shifting interface condition: from f.e. space ...

The finite element space $P1X$ does not incorporate the interface condition. Thus the variational formulation has to enforce it!
Handling the non-conformity: Nitsche XFEM

Shifting interface condition: from f.e. space to var. formulation

The finite element space P1X does not incorporate the interface condition. Thus the variational formulation has to enforce it! ⇒ Nitsche’s method

Nitsche-XFEM formulation (no convection \(u = 0 \))

Find \(c_h \in V_h \), s.t.

\[
\text{(testing } - \alpha \Delta c_h \text{ with } \beta v_h \text{ and applying part. int. on } \Omega_i) \]

\[
A(c_h, v_h) := \sum_i \left\{ \int_{\Omega_i} \alpha \beta \nabla c_h \nabla v_h \, dx \right\} - \int_{\Gamma} [\alpha n \cdot c_h \beta v_h] \, dx
\]

\[
\frac{\partial}{\partial t} (\beta c_h, v_h)_{L^2} + A_h(c_h, v_h) = 0 \quad \forall \ v_h \in V_h
\]
Handling the non-conformity: Nitsche XFEM

Nitsche-XFEM formulation (no convection $u = 0$)

Find $c_h \in V_h$, s.t.

$$A(c_h, v_h) := \sum_i \left\{ \int_{\Omega_i} \alpha \beta \nabla c_h \nabla v_h \, dx \right\} - \int_\Gamma \{ \alpha \partial_n c_h \} [\beta v_h] \, dx$$

$$\frac{\partial}{\partial t} (\beta c_h, v_h)_{L^2} + A_h(c_h, v_h) = 0 \quad \forall \ v_h \in V_h$$

manipulating

$$- \int \{\alpha \partial_n c \, \beta v\} \, dx \quad [\beta c] = 0 \quad \Rightarrow \quad - \int \{\alpha \partial_n c\} [\beta v] \, dx$$

with $\{u\} := \kappa_1 u_1 + \kappa_2 u_2$, $|T|$

$$\kappa_i = \frac{|T_i|}{|T_1| + |T_2|}, \quad \kappa_1 + \kappa_2 = 1$$
Handling the non-conformity: Nitsche XFEM

Nitsche-XFEM formulation (no convection \(u = 0 \))

Find \(c_h \in V_h \), s.t.

\[
A(c_h, v_h) := \sum_i \left\{ \int_{\Omega_i} \alpha \beta \nabla c_h \nabla v_h \, dx \right\} - \int_{\Gamma} \{\{\alpha \partial_n c_h\}\} \{\beta v_h\} \, dx \\
- \int_{\Gamma} \{\{\alpha \partial_n v_h\}\} \{\beta c_h\} \, dx
\]

\[
\frac{\partial}{\partial t} (\beta c_h, v_h)_{L^2} + A_h(c_h, v_h) = 0 \quad \forall \, v_h \in V_h
\]

manipulating, symmetrizing

with \(\{\{u\}\} := \kappa_1 u_1 + \kappa_2 u_2 \), \(|T| \)

\[
\kappa_i = \frac{|T_i|}{|T_1| + |T_2|}, \quad \kappa_1 + \kappa_2 = 1
\]

| \(T_1 \) | | \(T_2 \) |
Handling the non-conformity: Nitsche XFEM

Nitsche-XFEM formulation (no convection \(u = 0 \))

Find \(c_h \in V_h \), s.t.

\[
A_h(c_h, v_h) := \sum_i \left\{ \int_{\Omega_i} \alpha \beta \nabla c_h \nabla v_h \, dx \right\} - \int_{\Gamma} \left\{ \alpha \partial_n c_h \right\} \left[\left[\beta v_h \right] \right] \, dx \\
- \int_{\Gamma} \left\{ \alpha \partial_n v_h \right\} \left[\left[\beta c_h \right] \right] \, dx + \int_{\Gamma} \frac{\alpha \lambda T_h}{h_T} \left[\beta c_h \right] \left[\beta v_h \right] \, dx
\]

\[
\frac{\partial}{\partial t} (\beta c_h, v_h)_{L^2} + A_h(c_h, v_h) = 0 \quad \forall \ v_h \in V_h
\]

manipulating, symmetrizing, stabilizing \((\lambda_T > 0) \).

with \(\left\{ u \right\} := \kappa_1 u_1 + \kappa_2 u_2 \),

\[
\kappa_i = \frac{|T_i|}{|T_1| + |T_2|}, \quad \kappa_1 + \kappa_2 = 1
\]

\(T \) \quad \(T_1 \) \quad \(T_2 \)
Handling large convection

Status

- Nitsche XFEM works fine for diffusion dominated problems.
- For high convection we get oscillations.
- Same situation as Standard FEM in one phase.

Adding streamline diffusion consistently:

\[\sum_{T \in T_h} \int_T \text{scal} \cdot \text{res} \cdot (u \cdot \nabla v) \]

This gives:

\[\sum_{T^{\ast} \in T^{\ast}_h} \int_{T^{\ast}} \beta \gamma \left(\partial_t c + u \cdot \nabla c - \text{div} (\alpha \nabla c) \right) (u \cdot \nabla v) \, dx \]

which contains additional numerical diffusion in streamline direction!
Handling large convection: SD Stabilization

Status

- Nitsche XFEM works fine for diffusion dominated problems.
- For high convection we get oscillations.
- Same situation as Standard FEM in one phase.

⇒ Stabilize in a similar way as in one phase!

Adding streamline diffusion consistently

Consistently add \[+ \sum_{T \in \mathcal{T}_h} \int_{T} \text{scal} \cdot \text{res} \cdot (u \cdot \nabla v) \]

This gives \[+ \sum_{T^* \in \mathcal{T}^*_h} \int_{T^*} \beta \gamma_T (\partial_t c + u \cdot \nabla c - \text{div}(\alpha \nabla c)) \ (u \cdot \nabla v) \ dx \]

which contains additional numerical diffusion in streamline direction!
Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook
How to choose γ_T and λ_T?

Discrete energy norm

$$\|v\|^2 := \bar{\alpha}|\sqrt{\beta} v|_{1,\Omega_1 \cup \Omega_2}^2 + \| \sqrt{\beta} \gamma_T u \cdot \nabla v \|_0^2 + \lambda \bar{\alpha} \| [\beta v] \|_{\frac{1}{2}, h, \Gamma}$$

Choice of γ_T (convection stabilization)

Standard Streamline Diffusion choice (no direct dependence on domain):

$$\gamma_T \sim \begin{cases}
 h_T/\|u\|_{\infty,T} & \text{if } P_h^T > 1 \\
 0 & \text{if } P_h^T \leq 1
\end{cases} \quad \text{with } P_h^T := \frac{1}{2} \| u \|_{\infty,T} h_T/\bar{\alpha}$$

Choice of λ_T (interface stabilization)

$$\lambda_T = \begin{cases}
 c \|u\|_{\infty,T} h_T/\bar{\alpha} & \text{if } P_h^T \geq 1 \\
 c & \text{if } P_h^T < 1,
\end{cases}$$
How to choose γ_T and λ_T?

Discrete energy norm

\[\| v \|^2 := \bar{\alpha} |\sqrt{\beta} v|_{1,\Omega_1 \cup \Omega_2}^2 + \| \sqrt{\beta} \gamma_T u \cdot \nabla v \|_0^2 + \lambda \bar{\alpha} \| [\beta v] \|_{1/2, h, \Gamma}^2 \]

Choice of γ_T (convection stabilization)

Standard Streamline Diffusion choice (no direct dependence on domain):

\[\gamma_T \sim \begin{cases} h_T/\|u\|_{\infty,T} & \text{if } P_h^T > 1 \\ 0 & \text{if } P_h^T \leq 1 \end{cases} \]

with $P_h^T := \frac{1}{2} \|u\|_{\infty,T} h_T/\bar{\alpha}$

Choice of λ_T (interface stabilization)

\[\ldots + \sum_{T \in \mathcal{T}_h} \text{const} \cdot \begin{cases} \|u\|_{\infty,T} & \text{if } P_h^T \geq 1 \\ \bar{\alpha}/h_T & \text{if } P_h^T \leq 1 \end{cases} \int_{\Gamma \cap T} [\beta c_h] [\beta v_h] \, dx \]
Results for SD-Nitsche-XFEM

Bilinear forms

<table>
<thead>
<tr>
<th>A_h</th>
<th>diffusion + Nitsche</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>convection</td>
</tr>
<tr>
<td>S</td>
<td>SD stabilization integrals</td>
</tr>
</tbody>
</table>

Properties of $A_h + C + S$

- $A_h + C + S$ is stable (ellipticity w.r.t. discrete energy norm $\| \cdot \|$)
- $A_h + C + S$ is consistent
- control due to stabilization:
 - Control on streamline derivative (Streamline Diffusion)
 - Control on interface condition (Nitsche)
- optimal convergence, i.e.
 - $\mathcal{O}(h^{1.5})$ in L^2 norm in convection dominated regime
 - $\mathcal{O}(h^2)$ in L^2 norm in diffusion dominated regime
Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook
Setup: Flow around a cylinder

domain

- $\Omega = [0, 2] \times [0, 2] \times [0, 1],
- $\Omega_1 := \{(x - 1)^2 + (y - 1)^2 < R^2\}$,
- $R = 0.25$
Numerical Example

Setup: Flow around a cylinder

stationary interface + velocity

- $\Omega = [0, 2] \times [0, 2] \times [0, 1]$,
 $\Omega_1 := \{(x - 1)^2 + (y - 1)^2 < R^2\}$,
 $R = 0.25$
- $\Gamma \neq \Gamma(t), u \neq u(t)$
Setup: Flow around a cylinder

- **non-matching grid, bound. cond.**
 - $\Omega = [0, 2] \times [0, 2] \times [0, 1]$,
 - $\Omega_1 := \{(x-1)^2 + (y-1)^2 < R^2\}$, $R = 0.25$
 - $\Gamma \neq \Gamma(t)$, $u \neq u(t)$
 - non-matching grid, $h \approx 0.1$
 - Dirichlet b.c. at inflow $x = 0$
 - natural b.c. else
Setup: Flow around a cylinder

Henry jump condition

- $\Omega = [0, 2] \times [0, 2] \times [0, 1]$, $\Omega_1 := \{(x-1)^2 + (y-1)^2 < R^2\}$, $R = 0.25$
- $\Gamma \neq \Gamma(t), \ u \neq u(t)$
- non-matching grid, $h \approx 0.1$
- Dirichlet b.c. at inflow $x = 0$
 - natural b.c. else
- $(\beta_1, \beta_2) = (3, 1)$
- $(\alpha_1, \alpha_2) = (1, 2) \cdot 10^{-4}$
Setup: Flow around a cylinder

convection domination

- \(\Omega = [0, 2] \times [0, 2] \times [0, 1] \),
 \(\Omega_1 := \{(x-1)^2 + (y-1)^2 < R^2\} \),
 \(R = 0.25 \)
- \(\Gamma \neq \Gamma(t), \; u \neq u(t) \)
- non-matching grid, \(h \approx 0.1 \)
- Dirichlet b.c. at inflow \(x = 0 \)
 natural b.c. else
- \((\beta_1, \beta_2) = (3, 1)\)
- \((\alpha_1, \alpha_2) = (1, 2) \cdot 10^{-4},\)
 \(|u| = (0, \sim O(1)) \Rightarrow P_D \sim (0, 10^3)\)
Setup: Flow around a cylinder

parabolic boundary layers

- \(\Omega = [0, 2] \times [0, 2] \times [0, 1] \)
- \(\Omega_1 := \{(x-1)^2 + (y-1)^2 < R^2\} \)
- \(R = 0.25 \)
- \(\Gamma \neq \Gamma(t), \ u \neq u(t) \)
- non-matching grid, \(h \approx 0.1 \)
- Dirichlet b.c. at inflow \(x = 0 \)
- natural b.c. else
- \((\beta_1, \beta_2) = (3, 1) \)
- \((\alpha_1, \alpha_2) = (1, 2) \cdot 10^{-4} \)
- \(|u| = (0, \sim \mathcal{O}(1)) \Rightarrow P_D \sim (0, 10^3) \)
- non-fitting initial conditions
 \(c \big|_{t=0} = (0, 0.05) \)
Numerical Example

Setup: Flow around a cylinder

- **parabolic boundary layers**
 - $\Omega = [0, 2] \times [0, 2] \times [0, 1]$,
 - $\Omega_1 := \{(x - 1)^2 + (y - 1)^2 < R^2\}$,
 - $R = 0.25$
 - $\Gamma \neq \Gamma(t), \ u \neq u(t)$
 - non-matching grid, $h \approx 0.1$
 - Dirichlet b.c. at inflow $x = 0$
 - natural b.c. else
 - $(\beta_1, \beta_2) = (3, 1)$
 - $(\alpha_1, \alpha_2) = (1, 2) \cdot 10^{-4}$,
 - $|u| = (0, \sim \mathcal{O}(1)) \Rightarrow P_D \sim (0, 10^3)$
 - non-fitting initial conditions
 - $c|_{t=0} = (0, 0.05)$
 - \Rightarrow parabolic boundary layers
 - $\mathcal{O}(\sqrt{\alpha t})$
Numerical Example

Compared methods

Comparing volume terms (↔) and Nitsche penalty scaling (↕)

\[\lambda_T = c \]

Nitsche-XFEM

SD-Nitsche-XFEM

\[\lambda_T = c \| \mathbf{u} \|_{\infty, T} h_T / \bar{\alpha} \]

Time integration

Methods can be combined with the method of lines as the interface is stationary. Here, a simple implicit Euler, i.e. \(\delta_t c = \frac{1}{\Delta t} (u^{n+1} - u^n) \), with very small time steps (\(\Delta t = 10^{-4} \)) is used.
Nitsche-XFEM,

\[\lambda_T = c \]

\[\left\| \left[\beta c_h \right] \right\|_{L^2(\Gamma_h)} \bigg|_{t=1} \approx 4.5 \cdot 10^{-2} \]
SD-Nitsche-XFEM,

\[\lambda_T = c \| u \|_\infty, T h_T / \bar{\alpha} \]

\[\| [\beta c_h] \|_{L^2(\Gamma_h)} \mid_{t=1} \approx 2.3 \cdot 10^{-3} \]
Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook
Conclusion and Outlook

Main Ingredients

- Discontinuous Approximations due to XFEM
- Nitsche to deal with interf. cond. and non-conforming disc. space
- Streamline Diffusion Stabilization to allow for convection dominated flows
- Adaptations to Nitsche penalty parameter λ_T

Next steps

- Time integration for moving interfaces
 - Space time finite element formulation for diffusion-dominated regime
 - Space time Streamline Diffusion Stabilization formulation
- Application to realistic two-phase mass transport problems

Thanks to:
- the German Science Foundation (DFG), for the money
- you, for your attention!
Conclusion and Outlook

Main Ingredients

- Discontinuous Approximations due to XFEM
- Nitsche to deal with interf. cond. and non-conforming disc. space
- Streamline Diffusion Stabilization to allow for convection dominated flows
- Adaptations to Nitsche penalty parameter λ_T

Next steps

- Time integration for moving interfaces
 - Space time finite element formulation for diffusion-dominated regime
 - Space time Streamline Diffusion Stabilization formulation
- Application to realistic two-phase mass transport problems

Thanks to:

- the German Science Foundation (DFG), for the money
- you, for your attention!
Error estimates for SD-Nitsche-XFEM

error estimates

\[
\| v \|^2 := \bar{\alpha}|\sqrt{\beta} v|_{1, \Omega_1 \cup \Omega_2}^2 + \| \sqrt{\beta \gamma_T} \mathbf{u} \cdot \nabla v \|_0^2 + \lambda \bar{\alpha}\| [\beta v]\|_{\frac{1}{2}, h, \Gamma}^2
\]

\[
\| c - c_h \| \leq c(\sqrt{\bar{\alpha}} + \sqrt{|u|_{\infty} h}) h \| c \|_{2, \Omega_1 \cup \Omega_2}
\]

Diffusion dominates

\[
| c - c_h |_{1, \Omega_1 \cup \Omega_2} \leq c \cdot h \| c \|_{2, \Omega_1 \cup \Omega_2}
\]

\[
\| [c_h] \|_{\frac{1}{2}, h, \Gamma} \leq c \cdot h^{\frac{3}{2}} \| c \|_{2, \Omega_1 \cup \Omega_2}
\]

Convection dominates

\[
\| \mathbf{u} \cdot \nabla (c - c_h) \|_{L^2(\Omega)} \leq c \cdot h \| c \|_{2, \Omega_1 \cup \Omega_2}
\]

\[
\| [c_h] \|_{\frac{1}{2}, h, \Gamma} \leq c \cdot h^{\frac{3}{2}} \| c \|_{2, \Omega_1 \cup \Omega_2}
\]
Exponential layers

c|_{x=2} = 0, i.e. “non-fitting” Dirichlet b.c. ⇒ exp. layers.

\[P_D \approx 100 \]

Nitsche-XFEM

SD-Nitsche-XFEM

\[\left\| \left[\beta c_h \right] \right\|_{L^2(\Gamma_h)} \bigg|_{t=1} = 6.0 \cdot 10^{-3} \]

\[\left\| \left[\beta c_h \right] \right\|_{L^2(\Gamma_h)} \bigg|_{t=1} = 3.1 \cdot 10^{-9} \]
Comparison to intermediate methods

\[t = 1 \]
\[\| \beta_{ch} \|_{L^2(\Gamma_h)} = 4.5 \cdot 10^{-2} \]

\[t = 1 \]
\[\| \beta_{ch} \|_{L^2(\Gamma_h)} = 4.5 \cdot 10^{-2} \]

\[\lambda_T = c \parallel u \parallel_{\infty, T h_T / \bar{\alpha}} \]

Nitsche-XFEM

SD-Nitsche-XFEM
Results for Nitsche-XFEM (pure diffusion)

Properties of A_h (pure diffusion)

One can show with $\lambda_T = \text{const}(O(1))$ suff. large

- A_h is stable (ellipticity on V_h w.r.t. a “disc. energy norm”)
- A_h is consistent
- semi-discretization of

$$\frac{\partial}{\partial t} c - \Delta c = f + \text{interf.} + \text{init.} + \text{bound. cond.}$$

gives optimal convergence (2nd order) [Reusken, Nguyen].
Results for Nitsche-XFEM (diffusion dominates)

\[C(c_h, v_h) = \sum_i \left\{ \int_{\Omega_i} \beta \, \mathbf{u} \cdot \nabla c_h \, v_h \, dx \right\} \]

Properties of \(A_h + C \) (diffusion dominates)

One can show with \(\lambda_T = \text{const}(\mathcal{O}(1)) \) suff. large

- \(A_h + C \) is stable (ellipticity on \(V_h \) w.r.t. a “disc. energy norm”)
- \(A_h + C \) is consistent
- semi-discretization of

\[\frac{\partial}{\partial t} c + \mathbf{u} \cdot \nabla c - \Delta c = f \quad + \text{interf. + init. + bound. cond.} \]

gives optimal convergence (2nd order) [Reusken, Nguyen].