Streamline Diffusion Stabilization for mass transport in two phase incompressible flows

Christoph Lehrenfeld, Arnold Reusken

IGPM, RWTH Aachen

Transport Processes at Fluidic Interfaces -From Experimental to Mathematical Analysis, Aachen, Dec. 7th, 2011

Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook

Problem description

Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook

Background: Two phase flow (Navier-Stokes + level set)

 $\Gamma(t)$ = zero-level of a scalar function: the level set function $\varphi(x, t)$

$$\varphi(x,t) = \begin{cases} < 0 & \text{for } x \text{ in phase } \Omega_1 \\ > 0 & \text{for } x \text{ in phase } \Omega_2 \\ = 0 & \text{at the interface} \end{cases}$$

Navier-Stokes equations coupled with level set equation

$$\rho(\varphi) \left(\frac{\partial}{\partial t} \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) - \operatorname{div} \left(\mu(\varphi) \mathbf{D}(\mathbf{u}) \right) + \nabla p = \rho(\varphi) g - \tau \kappa(\varphi) \delta_{\Gamma} \mathbf{n}_{\Gamma}$$
$$\operatorname{div} \mathbf{u} = 0$$
$$\varphi_t + \mathbf{u} \cdot \nabla \varphi = 0$$

where ρ, μ and $\kappa, \delta_{\Gamma}, \mathbf{n}_{\Gamma}$ depend on φ

Mass transport

Mass transport equation

$$\begin{split} \frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c - \alpha \Delta c &= 0 \qquad \text{ in } \Omega_1 \cup \Omega_2, \\ \llbracket -\alpha \nabla c \rrbracket \cdot \mathbf{n} &= 0 \qquad \text{ on } \Gamma, \\ \llbracket \beta c \rrbracket &= 0 \qquad \text{ on } \Gamma. \end{split}$$

$$\mathcal{V} \cdot \mathbf{n} = \mathbf{u} \cdot \mathbf{n}$$
 on Γ .
div $(\mathbf{u}) = 0$ in Ω

- c: concentration,
- $\alpha :$ piecewise constant diffusion coefficients,
- β : piecewise constant Henry coefficients,
- u: convection velocity (from Navier Stokes)
- $\mathcal{V}:$ the interface velocity
- Henry condition: discontinuity in *c*.

Numerical Aspects

Mass transport equation

$$\begin{split} \frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c - \alpha \Delta c &= 0 \quad \text{ in } \Omega_1 \cup \Omega_2, \\ \llbracket -\alpha \nabla c \rrbracket \cdot \mathbf{n} &= 0 \quad \text{ on } \Gamma, \\ \llbracket \beta c \rrbracket &= 0 \quad \text{ on } \Gamma. \end{split}$$

Numerical Challenges

- ► Level set to capture the interface ⇒ Interface is not aligned with the mesh (might depend on time)
- concentration has discontinuities (approximation)
- problem is typically highly convection dominated (stability)
- time integration for moving interfaces

Numerical Aspects

Mass transport equation

$$\begin{split} \frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c - \alpha \Delta c &= 0 \quad \text{ in } \Omega_1 \cup \Omega_2, \\ \llbracket -\alpha \nabla c \rrbracket \cdot \mathbf{n} &= 0 \quad \text{ on } \Gamma, \\ \llbracket \beta c \rrbracket &= 0 \quad \text{ on } \Gamma. \end{split}$$

Numerical Challenges

- Level set to capture the interface
 - \Rightarrow Interface is not aligned with the mesh (might depend on time)
- concentration has discontinuities (approximation)
- problem is typically highly convection dominated (stability)
- time integration for moving interfaces

Numerical Approaches

- Extended Finite Element space (XFEM)
- Nitsche-type technique to enforce Henry's law in a weak sense
- Streamline Diffusion Stabilization

Presentation of the method

Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook

Handling Discontinuities

Interface condition

We have the condition:

 $\llbracket \beta c \rrbracket = 0$ at the interface Γ

Non-aligned mesh + standard polynomial FE space V_h \Rightarrow approximation quality reduces to

$$\inf_{c_h \in V_h} \|c - c_h\|_{L^2} \leq \mathcal{O}(\sqrt{h})$$

Handling Discontinuities: Domain-wise cont. ansatz $V_h^{\Gamma} := V_h(\tilde{\Omega_1}) \cdot H^{\Gamma} \oplus V_h(\tilde{\Omega_2}) \cdot (1 - H^{\Gamma})$

Handling Discontinuities: Add. ansatz functions (XFEM)

Remedy

Extend P_1 FE basis with discontinuous basis functions near Γ :

$$p_j^{\Gamma} := p_j \ (H_{\Gamma}(x) - H_{\Gamma}(x_j)), \quad H_{\Gamma} = \begin{cases} 1 & \text{in } \Omega_1 \\ 0 & \text{in } \Omega_2 \end{cases}$$

and use $V_h^{\Gamma} = V_h \oplus \{p_i^{\Gamma}\}$

р

Handling Discontinuities: XFEM

Remarks

- ▶ In practice: Γ_h instead of Γ .
- $\dim(V_h^{\Gamma})$ depends on Γ .
- New basis functions can have very small supports.
- other applications: [Belytschko (1999 ->)]: elasticity, [Hansbo (2002 ->)]: interf. probl., [Reusken, Groß(2007 ->)]: twophase (Navier-) Stokes

XFEM for approximation

Enrichment: we use a P1X finite element space. This provides discontinuous ansatz functions, which **do not satisfy the interface condition**.

- (+) approximation is optimal: $\mathcal{O}(h^2)$ in L^2 -norm.
- (-) discrete functions in V_h^{Γ} do not fulfill Henry's interface condition

Handling the non-conformity

Shifting interface condition: from f.e. space ...

The finite element space P1X does not incorporate the interface condition. Thus the variational formulation has to enforce it!

Shifting interface condition: from f.e. space to var. formulation

The finite element space P1X does not incorporate the interface condition. Thus the variational formulation has to enforce it! \Rightarrow Nitsche's method

Nitsche-XFEM formulation (no convection u = 0)

Find $c_h \in V_h$, s.t. (testing $-\alpha \Delta c_h$ with βv_h and applying part. int. on Ω_i)

$$A(c_h, v_h) := \sum_{i} \left\{ \int_{\Omega_i} \alpha \beta \nabla c_h \nabla v_h \, dx \right\} - \int_{\Gamma} \llbracket \alpha \partial_{\mathbf{n}} c_h \, \beta v_h \rrbracket \, dx$$

$$\frac{\partial}{\partial t}(\beta c_h, v_h)_{L^2} + A_h(c_h, v_h) = 0 \quad \forall \ v_h \in V_h$$

Nitsche-XFEM formulation (no convection u = 0)

Find $c_h \in V_h$, s.t.

$$\begin{aligned} A(c_h, v_h) &:= \sum_i \left\{ \int_{\Omega_i} \alpha \beta \nabla c_h \nabla v_h \, dx \right\} - \int_{\Gamma} \{ \alpha \partial_{\mathbf{n}} c_h \} [\![\beta v_h]\!] \, dx \\ \frac{\partial}{\partial t} (\beta c_h, v_h)_{L^2} &+ A_h(c_h, v_h) = 0 \quad \forall \ v_h \in V_h \end{aligned}$$

manipulating

$$-\int_{\Gamma} \llbracket \alpha \partial_{\mathbf{n}} c \ \beta v \rrbracket dx \quad \stackrel{\llbracket \beta c \rrbracket = 0}{\longrightarrow} \quad -\int_{\Gamma} \{ \llbracket \alpha \partial_{\mathbf{n}} c \} \llbracket \beta v \rrbracket dx$$

with
$$\{\!\!\{u\}\!\!\} := \kappa_1 u_1 + \kappa_2 u_2, |T| |T_1| |T_1| |T_2|$$

 $\kappa_i = \frac{|T_i|}{|T_1| + |T_2|}, \kappa_1 + \kappa_2 = 1$

Nitsche-XFEM formulation (no convection u = 0)

Find $c_h \in V_h$, s.t.

0

$$A(c_h, v_h) := \sum_{i} \left\{ \int_{\Omega_i} \alpha \beta \nabla c_h \nabla v_h \, dx \right\} - \int_{\Gamma} \{\!\!\{ \alpha \partial_{\mathbf{n}} c_h \}\!\!\} [\![\beta v_h]\!] \, dx \\ - \int_{\Gamma} \{\!\!\{ \alpha \partial_{\mathbf{n}} v_h \}\!\!\} [\![\beta c_h]\!] \, dx$$

$$rac{\partial}{\partial t}(eta c_h,v_h)_{L^2} + A_h(c_h,v_h) = 0 \quad \forall \ v_h \in V_h$$

manipulating, symmetrizing

with
$$\{\!\!\{u\}\!\!\} := \kappa_1 u_1 + \kappa_2 u_2, |T| |T_1| |T_2|$$

 $\kappa_i = \frac{|T_i|}{|T_1| + |T_2|}, \kappa_1 + \kappa_2 = 1$

Nitsche-XFEM formulation (no convection u = 0)

Find $c_h \in V_h$, s.t.

$$\begin{aligned} A_h(c_h, v_h) &:= \sum_i \left\{ \int_{\Omega_i} \alpha \beta \nabla c_h \nabla v_h \, dx \right\} - \int_{\Gamma} \{ \alpha \partial_{\mathbf{n}} c_h \} [\![\beta v_h]\!] \, dx \\ &- \int_{\Gamma} \{ \alpha \partial_{\mathbf{n}} v_h \} [\![\beta c_h]\!] \, dx + \int_{\Gamma} \frac{\bar{\alpha} \lambda_T}{h_T} [\![\beta c_h]\!] [\![\beta v_h]\!] \, dx \\ \frac{\partial}{\partial t} (\beta c_h, v_h)_{L^2} + A_h(c_h, v_h) = 0 \quad \forall \ v_h \in V_h \end{aligned}$$

manipulating , symmetrizing , stabilizing ($\lambda_T > 0$).

with
$$\{\!\!\{u\}\!\!\} := \kappa_1 u_1 + \kappa_2 u_2, |T| |T_1| |T_2|$$

 $\kappa_i = \frac{|T_i|}{|T_1| + |T_2|}, \kappa_1 + \kappa_2 = 1$

Handling large convection

Status

- Nitsche XFEM works fine for diffusion dominated problems.
- ▶ For high convection we get oscillations.
- Same situation as Standard FEM in one phase.

Handling large convection: SD Stabilization

Status

- Nitsche XFEM works fine for diffusion dominated problems.
- For high convection we get oscillations.
- Same situation as Standard FEM in one phase.
- \Rightarrow Stabilize in a similar way as in one phase!

Adding streamline diffusion consistently

Consistently add
$$+ \sum_{T \in \mathcal{T}_h} \int \operatorname{scal} \cdot \operatorname{res} \cdot (\mathbf{u} \cdot \nabla \mathbf{v})$$

This gives $+ \sum_{T^* \in \mathcal{T}_h^*} \int_{T^*} \beta \gamma_T (\partial_t \mathbf{c} + \mathbf{u} \cdot \nabla \mathbf{c} - \operatorname{div}(\alpha \nabla \mathbf{c})) (\mathbf{u} \cdot \nabla \mathbf{v}) d\mathbf{x}$

which contains additional numerical diffusion in streamline direction!

Parameter choice, theoretical results

Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook

How to choose γ_T and λ_T ?

Discrete energy norm

$$\| \mathbf{v} \|^{2} := \bar{\alpha} |\sqrt{\beta} \mathbf{v}|^{2}_{1,\Omega_{1} \cup \Omega_{2}} + \| \sqrt{\beta \gamma_{T}} \mathbf{u} \cdot \nabla \mathbf{v} \|^{2}_{0} + \lambda \bar{\alpha} \| [\![\beta \mathbf{v}]\!]\|^{2}_{\frac{1}{2},h,\Gamma}$$

Choice of γ_T (convection stabilization)

Standard Streamline Diffusion choice (no direct dependence on domain):

$$\gamma_{T} \sim \begin{cases} h_{T}/\|\mathbf{u}\|_{\infty,T} & \text{if} \quad P_{h}^{T} > 1\\ 0 & \text{if} \quad P_{h}^{T} \leq 1 \end{cases} \quad \text{with} \ P_{h}^{T} := \frac{1}{2}\|\mathbf{u}\|_{\infty,T}h_{T}/\bar{\alpha}$$

Choice of λ_T (interface stabilization)

$$\lambda_{T} = \begin{cases} c \|\mathbf{u}\|_{\infty,T} h_{T} / \bar{\alpha} & \text{if } P_{h}^{T} \ge 1\\ c & \text{if } P_{h}^{T} < 1, \end{cases}$$

How to choose γ_T and λ_T ?

Discrete energy norm

$$\| \mathbf{v} \|^2 := \bar{\alpha} |\sqrt{\beta} \mathbf{v}|^2_{1,\Omega_1 \cup \Omega_2} + \| \sqrt{\beta \gamma_T} \mathbf{u} \cdot \nabla \mathbf{v} \|^2_0 + \lambda \bar{\alpha} \| [\![\beta \mathbf{v}]\!]\|^2_{\frac{1}{2},h,\Gamma}$$

Choice of γ_T (convection stabilization)

Standard Streamline Diffusion choice (no direct dependence on domain):

$$\gamma_{\mathcal{T}} \sim \begin{cases} h_{\mathcal{T}}/\|\mathbf{u}\|_{\infty,\mathcal{T}} & \text{if } P_h^{\mathcal{T}} > 1\\ 0 & \text{if } P_h^{\mathcal{T}} \le 1 \end{cases} \quad \text{with } P_h^{\mathcal{T}} := \frac{1}{2} \|\mathbf{u}\|_{\infty,\mathcal{T}} h_{\mathcal{T}}/\bar{\alpha}$$

Choice of λ_T (interface stabilization)

$$\ldots + \sum_{T \in \mathcal{T}_h} const \cdot \left\{ \begin{array}{cc} \|\mathbf{u}\|_{\infty,T} & \text{if} \quad P_h^T \ge 1 \\ \bar{\alpha}/h_T & \text{if} \quad P_h^T \le 1 \end{array} \right\} \int_{\Gamma \cap T} \llbracket \beta c_h \rrbracket \llbracket \beta v_h \rrbracket \, dx$$

Results for SD-Nitsche-XFEM

Bilinear forms

- A_h : diffusion + Nitsche
- C : convection
- S : SD stabilization integrals

Properties of $A_h + C + S$

- $A_h + C + S$ is stable (ellipticity w.r.t. discrete energy norm $\|\cdot\|$)
- $A_h + C + S$ is consistent
- control due to stabilization:
 - Control on streamline derivative (Streamline Diffusion)
 - Control on interface condition (Nitsche)
- optimal convergence, i.e.
 - $\mathcal{O}(h^{1\frac{1}{2}})$ in L^2 norm in convection dominated regime
 - $\mathcal{O}(h^2)$ in L^2 norm in diffusion dominated regime

Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook

Setup: Flow around a cylinder

domain

•
$$\Omega = [0, 2] \times [0, 2] \times [0, 1],$$

 $\Omega_1 := \{ (x-1)^2 + (y-1)^2 < R^2 \},$
 $R = 0.25$

Setup: Flow around a cylinder

stationary interface + velocity

- $\Omega = [0, 2] \times [0, 2] \times [0, 1],$ $\Omega_1 := \{(x-1)^2 + (y-1)^2 < R^2\},$ R = 0.25
- $\blacktriangleright \ \ \Gamma \neq \Gamma(t), \ \mathbf{u} \neq \mathbf{u}(t)$

non-matching grid, bound. cond.

- $\Omega = [0, 2] \times [0, 2] \times [0, 1],$ $\Omega_1 := \{(x-1)^2 + (y-1)^2 < R^2\},$ R = 0.25
- ► $\Gamma \neq \Gamma(t)$, $\mathbf{u} \neq \mathbf{u}(t)$
- non-matching grid, $h \approx 0.1$
- Dirichlet b.c. at inflow x = 0 natural b.c. else

Henry jump condition

- $\Omega = [0, 2] \times [0, 2] \times [0, 1],$ $\Omega_1 := \{(x-1)^2 + (y-1)^2 < R^2\},$ R = 0.25
- ► $\Gamma \neq \Gamma(t)$, $\mathbf{u} \neq \mathbf{u}(t)$
- non-matching grid, $h \approx 0.1$
- Dirichlet b.c. at inflow x = 0 natural b.c. else
- ▶ (β_1, β_2) = (3, 1)
- $(\alpha_1, \alpha_2) = (1, 2) \cdot 10^{-4}$

convection domination

- $\Omega = [0, 2] \times [0, 2] \times [0, 1],$ $\Omega_1 := \{(x-1)^2 + (y-1)^2 < R^2\},$ R = 0.25
- ► $\Gamma \neq \Gamma(t)$, $\mathbf{u} \neq \mathbf{u}(t)$
- non-matching grid, $h \approx 0.1$
- Dirichlet b.c. at inflow x = 0 natural b.c. else
- ▶ (β₁, β₂) = (3, 1)
- ► $(\alpha_1, \alpha_2) = (1, 2) \cdot 10^{-4},$ $|\mathbf{u}| = (0, \sim \mathcal{O}(1)) \Rightarrow P_D \sim (0, \mathbf{10^3})$

parabolic boundary layers

- $\Omega = [0, 2] \times [0, 2] \times [0, 1],$ $\Omega_1 := \{ (x-1)^2 + (y-1)^2 < R^2 \},$ R = 0.25
- ► $\Gamma \neq \Gamma(t)$, $\mathbf{u} \neq \mathbf{u}(t)$
- non-matching grid, $h \approx 0.1$
- Dirichlet b.c. at inflow x = 0 natural b.c. else
- ▶ (β₁, β₂) = (3, 1)
- ► $(\alpha_1, \alpha_2) = (1, 2) \cdot 10^{-4}$, $|\mathbf{u}| = (0, \sim \mathcal{O}(1)) \Rightarrow P_D \sim (0, \mathbf{10}^3)$
- non-fitting initial conditions $c\Big|_{t=0} = (0, 0.05)$

parabolic boundary layers

- $\Omega = [0, 2] \times [0, 2] \times [0, 1],$ $\Omega_1 := \{ (x-1)^2 + (y-1)^2 < R^2 \},$ R = 0.25
- ► $\Gamma \neq \Gamma(t)$, $\mathbf{u} \neq \mathbf{u}(t)$
- non-matching grid, $h \approx 0.1$
- Dirichlet b.c. at inflow x = 0 natural b.c. else
- ▶ (β₁, β₂) = (3, 1)
- ► $(\alpha_1, \alpha_2) = (1, 2) \cdot 10^{-4},$ $|\mathbf{u}| = (0, \sim \mathcal{O}(1)) \Rightarrow P_D \sim (0, \mathbf{10^3})$
- ▶ non-fitting initial conditions $c|_{t=0} = (0, 0.05)$ \Rightarrow parabolic boundary layers $(O(\sqrt{\alpha t}))$

Compared methods

Comparing volume terms (\leftrightarrow) and Nitsche penalty scaling (\updownarrow)

Time integration

Methods can be combined with the method of lines as the interface is stationary. Here, a simple implicit Euler, i.e. $\delta_t c = \frac{1}{\Delta t} (u^{n+1} - u^n)$, with very small time steps $(\Delta t = 10^{-4})$ is used.

 $\| [\beta c_h] \|_{L^2(\Gamma_h)} |_{t=1} \approx 4.5 \cdot 10^{-2}$

SD-Nitsche-XFEM,

$$\lambda_T = c \|\mathbf{u}\|_{\infty,T} h_T / \bar{\alpha}$$

 $\| [\beta c_h] \|_{L^2(\Gamma_h)} |_{t=1} \approx 2.3 \cdot 10^{-3}$

Conclusion and Outlook

Overview

Problem description

Presentation of the method

Parameter choice, theoretical results

Numerical Example

Conclusion and Outlook

Conclusion and Outlook

Main Ingredients

- Discontinuous Approximations due to XFEM
- Nitsche to deal with interf. cond. and non-conforming disc. space
- Streamline Diffusion Stabilization to allow for convection dominated flows
- Adaptations to Nitsche penalty parameter λ_T

Next steps

- Time integration for moving interfaces
 - Space time finite element formulation for diffusion-dominated regime
 - Space time Streamline Diffusion Stabilization formulation
- Application to realisitic two-phase mass transport problems

Conclusion and Outlook

Main Ingredients

- Discontinuous Approximations due to XFEM
- Nitsche to deal with interf. cond. and non-conforming disc. space
- Streamline Diffusion Stabilization to allow for convection dominated flows
- Adaptations to Nitsche penalty parameter λ_T

Next steps

- Time integration for moving interfaces
 - Space time finite element formulation for diffusion-dominated regime
 - Space time Streamline Diffusion Stabilization formulation
- Application to realisitic two-phase mass transport problems

Thanks to:

- ▶ the German Science Foundation (DFG), for the money
- you, for your attention!

Back-Up-Slides

Error estimates for SD-Nitsche-XFEM

error estimates

$$||\!| \mathbf{v} ||\!|^2 := \bar{\alpha} |\sqrt{\beta} \mathbf{v}|^2_{\mathbf{1},\Omega_1 \cup \Omega_2} + |\!| \sqrt{\beta \gamma_T} \mathbf{u} \cdot \nabla \mathbf{v} |\!|_0^2 + \lambda \bar{\alpha} ||\![\![\beta \mathbf{v}]\!]|\!]_{\frac{1}{2},h,\Gamma}^2$$

 $||\!| \boldsymbol{c} - \boldsymbol{c}_h |\!|\!| \leq \boldsymbol{c} (\sqrt{\bar{\alpha}} + \sqrt{|\mathbf{u}|_{\infty} h}) h |\!| \boldsymbol{c} |\!|_{2,\Omega_1 \cup \Omega_2}$

Diffusion dominates

$$\|m{c}-m{c}_{h}\|_{1,\Omega_{1}\cup\Omega_{2}}\leqm{c}\cdotm{h}\|m{c}\|_{2,\Omega_{1}\cup\Omega_{2}}$$

 $\| [\![c_h]\!] \|_{rac{1}{2},h,\Gamma} \leq c \cdot h^{rac{3}{2}} \| c \|_{2,\Omega_1 \cup \Omega_2}$

Convection dominates

$$\|\mathbf{u}\cdot
abla(c-c_h)\|_{L^2(\Omega)} \leq c\cdot h\|c\|_{2,\Omega_1\cup\Omega_2}$$

$$\| [\![c_h]\!] \|_{rac{1}{2},h,\Gamma} \leq c \cdot h^{rac{3}{2}} \| c \|_{2,\Omega_1 \cup \Omega_2}$$

Exponential layers

 $c|_{x=2}=$ 0, i.e. "non-fitting" Dirichlet b.c. \Rightarrow exp. layers. $P_D\approx 100$

Nitsche-XFEM

 ${\sf SD-Nitsche-XFEM}$

$$\| [\![\beta c_h]\!] \|_{L^2(\Gamma_h)} |_{t=1} = 6.0 \cdot 10^{-3}$$

 $\| \llbracket \beta c_h \rrbracket \|_{L^2(\Gamma_h)} \Big|_{t=1} = 3.1 \cdot 10^{-9}$

Back-Up-Slides

Comparison to indermediate methods

Back-Up-Slides

Results for Nitsche-XFEM (pure diffusion)

Properties of A_h (pure diffusion)

One can show with $\lambda_T = const(\mathcal{O}(1))$ suff. large

- ▶ A_h is stable (ellipticity on V_h w.r.t. a "disc. energy norm")
- ► A_h is consistent
- semi-discretization of

$$\frac{\partial}{\partial t}c - \Delta c = f$$
 + interf. + init. + bound. cond.

gives optimal convergence (2nd order) [Reusken, Nguyen].

Results for Nitsche-XFEM (diffusion dominates)

$$C(c_h, v_h) = \sum_i \left\{ \int_{\Omega_i} \beta \, \mathbf{u} \cdot \nabla c_h \, v_h \, dx \right\}$$

Properties of $A_h + C$ (diffusion dominates)

One can show with $\lambda_T = const(\mathcal{O}(1))$ suff. large

- $A_h + C$ is stable (ellipticity on V_h w.r.t. a "disc. energy norm")
- ► A_h + C is consistent
- semi-discretization of

$$\frac{\partial}{\partial t}c + \mathbf{u} \cdot \nabla c - \Delta c = f + \text{interf.} + \text{init.} + \text{bound. cond.}$$

gives optimal convergence (2nd order) [Reusken, Nguyen].