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Operator splitting for conv. diff. problems: Motivation I
Convection Diffusion type problems
We consider problems of the form(

∂

∂t + A + C(u)

)
u = f

I with A a linear elliptic operator (“stiff”), e.g. −∆u
I with C a (nonlinear) hyperbolic operator (“non-stiff”), e.g. div(b u)

CFL-type restriction
Applying standard discretization techniques (FD,FV,FEM,DG) in space
combined with an explicit time integration method typically results in
time step restrictions of the form (h the resolution length):

∆t
!
≤ min(CAh2,CC (u)h)



Operator splitting for conv. diff. problems: Motivation II
The stiff part
For the purely elliptic problem

(
∂
∂t + A

)
u = f the time step restriction

∆tA !
≤ CAh2 is typically very strong. ⇒ Many time steps

The non-stiff part
For the purely hyperbolic problem

(
∂
∂t + C(u)

)
u = f the time step

restriction ∆tC !
≤ CC (u)h is typically less severe. ⇒ Few time steps

The reality

I for moderate h and/or small CA time step restriction might not be
serious

I for small h and/or large CC (u) time step restriction might already be
very serious

I no uniform grid, s.t. time step restrictions are not uniform in space
(operator splitting space, local time stepping, etc.)



Operator splitting for conv. diff. problems: Motivation III

Choice of Time Integration method
I implicit time integration:

I linearization schemes necessary (for C(u) 6= C)
I large linear systems have to be solved
I robust
I typically unconditionally stable:
⇒ ∆t ≤ ∆taccuracy

I explicit time integration:
I no large (non)linear systems to solve for A + C(u)
I (eventually) solutions with mass matrix necessary
I only conditionally stable
⇒ ∆t ≤ min(∆taccuracy ,∆tstability )

Explicit approaches work fine as long as

∆taccuracy ≤ min(∆tA
stability ,∆tC

stability )
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Choice of Time Integration method
I implicit time integration:

I linearization schemes necessary (for C(u) 6= C)
I large linear systems have to be solved
I robust
I typically unconditionally stable:
⇒ ∆t ≤ ∆taccuracy

I explicit time integration:
I no large (non)linear systems to solve for A + C(u)
I (eventually) solutions with mass matrix necessary
I only conditionally stable
⇒ ∆t ≤ min(∆taccuracy ,∆tstability )

Explicit approaches work fine as long as

∆taccuracy ≤
time for expl. step
time for impl. step

min(∆tA
stability ,∆tC

stability )



Operator splitting for conv. diff. problems: Motivation IV

Operator splitting idea:
Can’t I integrate some operator explicitely and the other operator
implicitely?

I use implicit time integration where necessary (e.g. constraints) or
more efficient (strong CFL-restrictions)

I use explicit time integration where it is more efficient

Remark:
The distinction between explicit and implicit integration is not the only
interesting splitting!



Operator splitting: Additive splitting methods I
Example
Forward-Backward / Semi-Implicit Euler:(

1
∆t + A

)
un+1 = f n+1 +

(
1

∆t + C(un)

)
un

Structure
I Evaluate explicit and implicit parts at different time stages
I Evaluate explicit part only at old (known) time stages

Generalizations
I Use partitioned Runge-Kutta methods, i.e. two butcher tableaus

with identical time stages.
I Multistep methods, e.g. SBDF, i.e. BDF methods for implicit part

combined with AB for explicit



Operator splitting: Additive splitting methods I
Example
BDF / Adams-Bashforth:

( a0
∆t + A

)
un+1 = f n+1 +

1
∆t

k∑
i=1

aiun+1−i +
k∑

i=1
biC(un+1−i )un+1−i

Structure
I Evaluate explicit and implicit parts at different time stages
I Evaluate explicit part only at old (known) time stages

Generalizations
I Use partitioned Runge-Kutta methods, i.e. two butcher tableaus

with identical time stages.
I Multistep methods, e.g. SBDF, i.e. BDF methods for implicit part

combined with AB for explicit



Operator splitting: Additive splitting methods I
Example

partitioned Runge-Kutta:
0 0 0 0
γ γ 0 0 γ 0
1 δ 1− δ 0 1− γ γ

δ 1− δ 0 1− γ γ

Structure
I Evaluate explicit and implicit parts at different time stages
I Evaluate explicit part only at old (known) time stages

Generalizations
I Use partitioned Runge-Kutta methods, i.e. two butcher tableaus

with identical time stages.
I Multistep methods, e.g. SBDF, i.e. BDF methods for implicit part

combined with AB for explicit



Operator splitting: Additive splitting methods II

Names/Aliases

I IMEX (implicit-explicit) [Ascher, Ruuth, Wetton, ’95]
I ARK (additive Runge-Kutta) [Carpenter, Kennedy, ’01]
I Semi-Implicit (Euler/BDF/...)
I partitioned Runge-Kutta methods [also appear in other splitting

approaches]

Dis-/Advantages of additive splitting

(+) avoids implicit solutions with C(u)

(+) fairly simple to implement
(+) consistent
(-) time steps for explicit and implicit are not decoupled
⇒ ∆tA = ∆tC ≤ ∆tC

stability



Operator splitting: Multiplicative splitting methods I
Idea:
Can’t we decompose the problem into subproblems of the following form?(

∂

∂t + A
)

u = f̃ and
(
∂

∂t + C(u)

)
u = f̃

Operator-Integration-Factor Splitting
Rewrite original problem to

∂

∂t (Qt→t∗u) = Qt→t∗(f − Au)

with Q the propagation operator, s.t. Qt1→t2u1 = v(t2) with v the
solution of the explicit propagation problem:

∂

∂s v = −C(v)v v(t1) = u1

[Maday, Patera, Rønquist, ’90]



Operator splitting: Multiplicative splitting methods II
Operator-Integration-Factor Splitting
Rewrite original problem to

∂

∂t (Qt→t∗u) = Qt→t∗(f − Au)

with Q the propagation operator, s.t. Qt1→t2u1 = v(t2) with v the
solution of the explicit propagation problem:

∂

∂s v = −C(v)v v(t1) = u1

[Maday, Patera, Rønquist, ’90]

First order example: Implicit Euler for implicit problem
Choose t∗ = tn+1 and replace ∂

∂t by a 1st order backward difference:

1
∆t (Qtn+1→tn+1

un+1 − Qtn→tn+1
un) = Qtn+1→tn+1

(f n+1 − Aun+1)



Operator splitting: Multiplicative splitting methods II
Operator-Integration-Factor Splitting
Rewrite original problem to

∂

∂t (Qt→t∗u) = Qt→t∗(f − Au)

with Q the propagation operator, s.t. Qt1→t2u1 = v(t2) with v the
solution of the explicit propagation problem:

∂

∂s v = −C(v)v v(t1) = u1

[Maday, Patera, Rønquist, ’90]

First order example: Implicit Euler for implicit problem
Choose t∗ = tn+1 and replace ∂

∂t by a 1st order backward difference:

1
∆t (un+1 − Qtn→tn+1

un) = (f n+1 − Aun+1)



Operator splitting: Multiplicative splitting methods III
First order example: Implicit Euler for implicit problem
Choose t∗ = tn+1 and replace ∂

∂t by a 1st order backward difference:

1
∆t (un+1 − Qtn→tn+1

un) = (f n+1 − Aun+1)

Algorithm

1. Propagate

ūn = w(tn+1),
∂

∂s w = −C(w)w , w(tn) = un

2. Solve
(I + ∆tA)un+1 = ūn + ∆tf n+1

Generalizations
This approach is applicable for other implicit time integration methods as
well.



Operator splitting: Multiplicative splitting methods IV

Dis-/Advantages of multiplicative splitting

(+) avoids implicit solutions with C(u)

(+) time steps for implicit problem and explicit problem are decoupled
(+) allows for discretizations which are separately taylored for the

explicit and the implicit problem
(+) as long as the explicit propagation problem is solved in a stable

manner, the overall scheme is stable
(-) introduces an additional consistency error (splitting error)



Pseudo-implicit schemes I
Idea:
Decompose the problem into one part with expl. A und impl. C and
another with explicit C and implicit A. Then solve the equation which
involves A implicitely by means of an iteration involving only explicit
evaluations of A.

First order method(
2

∆t + C(un+ 1
2 )

)
un+ 1

2 = f n+ 1
2 +

(
2

∆t − A
)

un =: gn+ 1
2(

2
∆t + A

)
un+1 = f n+1 +

(
2

∆t − C(un+ 1
2 )

)
un+ 1

2

where the first equation is solved by pseudo-time-stepping methods (or
iterative methods):

∂

∂t w = gn+ 1
2 −

(
2

∆t + C(w)

)
w



Pseudo-implicit schemes II

Dis-/Advantages of Pseudo-implicit schemes

(+) consistent
(+) time steps for implicit problem and explicit problem are decoupled
(+) allows for discretizations which are separately taylored for the

explicit and the implicit problem
(-) indirect implicit solutions with C(u) is typically more expensive as

evaluation or propagation



Consequences for spatial discretization

Opportunities for and requirements on spatial discretization

I For additive splitting methods one common space discretization is
appropriate as no “explicit time stepping” is done.

I For multiplicative and pseudo-implicit schemes separate spatial
discretizations are possible as long as they provide reasonable
translation operations from one setting to the other.



Applying the ideas to a scalar convection diffusion equation

Operator splitting for a scalar convection diffusion equation

∂

∂t u + div (−α∇u + bu) = f + b.c., div b = 0

Discretization implicit part (diffusion)

I Hybrid Discontinuous Galerkin Interior Penalty formulation

Discretization explicit part (convection)

I Discontinuous finite elements
I Discontinuous Galerkin Upwind formulation



Applying the ideas to incompressible Navier Stokes
Operator splitting for incompressible Navier Stokes (DAE)

∂
∂t u + div(−ν∇u + u ⊗ u + pI) = f

div u = 0 + b.c.

Note that there is no away around treating the algebraic constraint
implicitely (in our operator splitting context)!

Discretization implicit part (viscosity,pressure,
incompressibility)

I H(div)-conforming Hybrid Discontinuous Galerkin IP formulation

Discretization explicit part (convection)

I Discontinuous Galerkin Upwind formulation
I Take extrapolated velocity from implicit stages (linearization

argument of the explicit operator C(·) no longer depends on the
explicit problem but is known) ⇒ ensures divergencefree-constraint
for the convective velocity



Boussinesq-Approximation
Boussinesq’s assumptions
changes in density are small:

I incompressibility model is still acceptable
I changes in density just cause some buoyancy forces
f = g → (1− β(T − T0))g β : heat expansion coefficient

Operator splitting for Boussinesq-Equation
∂
∂t u + div(−ν∇u + u ⊗ u + pI) + βρTg = (1 + βρT0)g

div u = 0
∂
∂t T + div (−α∇T + uT ) = 0

+b.c.&i .c.

I weak coupling
I Note that for the implicit problem Stokes and temperature part

decouple.
I Discretization: Navier Stokes + scalar convection diffusion equation
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Discretization space for explicit problem

Trial functions are
I (element-)piecewise polynomials
I discontinuous

With appropriate formulations we get

I couplings only between neighbouring (in
the sense of shared facets) elements

I one elements contribution just need the
information of 4 (2D), 5 (3D) elements,
easy to parallize.



DG formulation for the operator div(b u) (div(b) = 0)

Numerical flux: Upwind
Testing against v and doing partial integration on each element results in∫

Ω

div(bu) v dx =
∑

T

{
−
∫

T
bu ∇v dx +

∫
∂T

bnu?v ds
}

DG flexibility: we use upwinding to replace u? by

uup =

{
uneighbour if bn ≤ 0

u if bn > 0



Discretization space for implicit problem

Trial functions are
I discontinuous
I piecewise polynomials
I on each facet (O(pd−1) dof) and

element (O(pd ) dof)

With appropriate formulations we get

I more unknowns but typically less matrix
entries

I implementation fits into standard
element-based assembling

I structure allows for static condensation
of element unknowns



HDG formulation for −∆u

Derivation
Integrating against v∫

Ω

(−∆u)v dx =
∑

T

∫
T
∇u ∇v dx −

∫
∂T

∂u
∂n v ds



HDG formulation for −∆u

Derivation
manipulating by adding a consistent term∫

Ω

(−∆u)v dx →
∑

T

∫
T
∇u ∇v dx −

∫
∂T

∂u
∂n (v−vF ) ds

where we use ∫
∂T +

∂u
∂n vF ds +

∫
∂T−

∂u
∂n vF ds = 0

for the exact solution u on inner facets.



HDG formulation for −∆u

Derivation
symmetrizing∫

Ω

(−∆u)v dx →
∑

T

∫
T
∇u ∇v dx −

∫
∂T

∂u
∂n (v−vF ) ds

−
∫
∂T

∂v
∂n (u−uF ) ds

where we use u − uF = 0

for the exact solution u on facets.



HDG formulation for −∆u

Derivation
stabilizing∫

Ω

(−∆u)v dx →
∑

T

∫
T
∇u ∇v dx −

∫
∂T

∂u
∂n (v−vF ) ds

−
∫
∂T

∂v
∂n (u−uF ) ds +

∫
∂T
τh(u−uF ) (v−vF ) ds

where we use u − uF = 0

for the exact solution u on facets.
The stabilization parameter τh has to scale correctly, i.e. τh ∼ p2

h



HDG formulation for −∆u
Derivation
manipulating by adding a consistent term, symmetrizing, stabilizing∫

Ω

(−∆u)v dx →
∑

T

∫
T
∇u ∇v dx −

∫
∂T

∂u
∂n (v−vF ) ds

−
∫
∂T

∂v
∂n (u−uF ) ds +

∫
∂T
τh(u−uF ) (v−vF ) ds

where we use u − uF = 0

for the exact solution u on facets.
The stabilization parameter τh has to scale correctly, i.e. τh ∼ p2

h

Properties
The formulation is consistent, conservative, stable and optimally
convergent.

This and other hybridizations of CG, mixed and DG methods were
discussed in [Cockburn+Gopalakrishnan+Lazarov,’08]



HDG formulation for −∆u

Derivation
∫

Ω

(−∆u)v dx →
∑

T

∫
T
∇u ∇v dx −

∫
∂T

∂u
∂n (v−vF ) ds

−
∫
∂T

∂v
∂n (u−uF ) ds +

∫
∂T
τh(u−uF ) (v−vF ) ds

where we use u − uF = 0

for the exact solution u on facets.
The stabilization parameter τh has to scale correctly, i.e. τh ∼ p2

h

Hybrid upwinding
Hybrid upwinding (for implicit handling), see [Egger+Schöberl, ’09]



Projected jumps
Suboptimality
W.r.t. the facet approximation the solution quality of u is suboptimal.
Hybrid mixed methods achieve order k + 1 approximations in the volume
while using order k approximations on the facet.

Modifying the formulation
If we denote the L2-projection on the polynomial space of degree k − 1
on a facet as ΠF you can also use:∫

Ω

(−∆u)v dx →
∑

T

∫
T
∇u ∇v dx −

∫
∂T

∂u
∂n ΠF (v−vF ) ds

−
∫
∂T

∂v
∂n ΠF (u−uF ) ds

+

∫
∂T
τhΠF (u−uF ) ΠF (v−vF ) ds

⇒ Now only ΠF vF is involved instead of vF , s.t. we can reduce the
polynomial degree of the facet functions.
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H(div)-conforming elements for (Navier) Stokes

[Cockburn, Kanschat, Schötzau, 2005]
DG methods for the incompressible Navier-Stokes equations cannot be
both locally conservative as well as energy-stable unless the
approximation to the convective velocity is exactly divergence-free.

Trial functions
I normal-continuous,

tangential-discontinuous velocity element
functions, piecewise polynomial (degree k)

I facet velocity functions for the tangential
component only, piecewise polynomial
(degree k / degree k − 1 )

I discontinuous element pressure functions,
piecewise polynomial (degree k − 1)



Hybrid DG - DG Navier Stokes bilinearforms
I unknowns u in elements (H(div)-conforming)
I unknowns for the tangential component ut

F on facets
I unknowns for pressure p on each element

Viscosity: [[v t ]] := v t − v t
F

A
(

(u, uF ), (v , vF )
)

=
∑

T

{∫
T
ν ∇u : ∇v dx −

∫
∂T
ν
∂u
∂n ΠF [[v t ]] ds

−
∫
∂T
ν
∂v
∂n ΠF [[ut ]] ds +

∫
∂T
ντhΠF [[ut ]] · ΠF [[v t ]] ds

}
Convection:

C
(
w ; u, v

)
=
∑

T

{∫
T

u ⊗ w : ∇v dx −
∫
∂T

wnuupv ds
}

pressure / incompressibility constraint:

D
(

(u, uF ), q
)

=
∑

T

∫
T

div(u)q dx

weak incompressibility (+ H(div)-conformity)

⇒ exactly divergence-free solutions



Comparison Std. DG, NodalDG, HDG, p. HDG
Test problem
H(div)-conforming finite element space, vector-valued [H1]d problem:

−∆u + u = f

A(u, v) + M(u, v) = (f , v)L2

with A(·, ·) a Std. DG, a HDG or a p. HDG formulation, considering a
modal and a special nodal DG basis.
System matrix B is s.p.d.. Use sparse direct solver to get decomposition

B = LT L

Numbers of interest
I number of degrees of freedom
I statically condensated number of degrees of freedom
I nonzeros in system matrix B
I nonzeros in L



Comparison Std. DG, NodalDG, HDG, p. HDG
3D mesh, 2022 elements

degrees of freedom condensated degrees of freedom

 10000

 100000

 1e+06

 1e+07

 1  2  3  4  5  6

p

Std DG
Nodal DG

HDG
pHDG
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 100000

 1e+06

 1  2  3  4  5  6

p

Std DG
Nodal DG

HDG
pHDG

nonzeros in system matrix B nonzeros in L
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 1  2  3  4  5  6

p

Std DG
Nodal DG

HDG
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 1e+09

 1e+10

 1  2  3  4  5  6

p

Std DG
Nodal DG

HDG
pHDG

log-scaled



Comparison Std. DG, NodalDG, HDG, p. HDG
3D mesh, 2022 elements

degrees of freedom condensated degrees of freedom
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 4.5e+08

 1  2  3  4  5  6

p

Std DG
Nodal DG

HDG
pHDG

 0
 5e+08
 1e+09
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Ingredients and properties of spat. disc.
Ingredients
We have presented a new Finite Element Method for Navier Stokes, with

I H(div)-conformity resulting in exactly divergence-free solutions
I Hybrid Discontinuous Galerkin Method for viscous terms
I Upwind flux for the convection term

Properties
This discretization leads to solutions, which are

I locally conservative (mass and momentum)
I energy-stable ( ∂∂t ‖u‖

2
L2
≤ C

ν ‖f ‖
2
L2
)

I exactly incompressible
I static condensation
I standard finite element assembly
I less matrix entries than for std. DG approaches
I (reduced basis possible)
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Examples: Steady Navier Stokes
2D Driven Cavity (utop = 0.25, ν = 10−3)



Examples: Unsteady Navier Stokes
2D laminar flow around a disk (Re=100):

3D laminar flow around a cylinder (Re=100):



Examples: Heat driven flow
Benard-Rayleigh example:
Top temperature: constant 20◦C
Bottom temperature: constant 20.5◦C

Initial mesh and initial condition (p = 5):
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Conclusion / Software

Discussed
I Time integration approaches suitable for incompressible Navier

Stokes problems
I Spatial discretization (DG/HDG, H(div)-conforming) taylored for

explicit/implicit problems

Software
I Netgen
I NGSolve (including the presented scalar HDG methods),
I ngsflow (including all other presented methods)

You can find us at sourceforge.



Ongoing work / work todo

explicit problem

I Google Summer of Code: explicit problems on GPU
I local time stepping
I (practically) reliable estimation of a stable time step for the explicit

problem

implicit problem

I nice preconditioners (BDDC?) to go to large problems



Thank you for your attention!
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