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Introduction

Problem classes

> Fluid dynamics for Two-Phase (immiscible) ! j
incompressible flows: '
(Navier-Stokes Eqns. + surface tension effects) i

» with mass transport
(convection-diffusion eqn.+ Henry interface condition |

oo \‘
» and surfactant transport {4 )\

(convection-diffusion eqn. on the surface)

applications:
» falling film > rising bubble > taylor flow
‘ (gas-liquid) (liquid-liquid) (gas-liquid)

Processes at (close to) the interface!
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Two-Phase Hydrodynamic ~ Model

Standard (sharp interface) model for Two-Phase flows

Domains: Qy = Qy(t) and Q, = Q5(1)

Interface: =Tr(t) =0 N0 2
P2, 2

pi: density in Q; 7

Wi viscosity in €2;

T surface tension coefficient

D(w)=Vw+Vw', o0 = —pl+ uD(w)
K. curvature

Navier-Stokes equations

pi(we + (w-V)w) =div(c) +pig in Q
fori=1,2
divw =0 in €;

|[0'n]]r:TI<JI1+VrT, |IW]]r:0



Two-Phase Hydrodynamic ~ Model

Standard (sharp interface) model for Two-Phase flows

Domains: Q0 = Ql(t) and O, = Qz(t)

Interface: =Tr(t) =0 N0 2
P2, 12

pi: density in Q; ’

Wi viscosity in €2;

T surface tension coefficient

D(w)=Vw+Vw', o0 = —pl+ uD(w)
K. curvature

Navier-Stokes equations

pi(we + (w-V)w) =div(c) +pig in Q
fori=1,2
divw =0 in €;

|[0'n]]r:Tl€n+VrT, |IW]]r:0

How to identify the interface?




Two-Phase Hydrodynamic  Interface capturing with Level-Set

Interface capturing: Level set approach

I'(t) = zero-level of a scalar function:

the level set function ¢(x, t)

<0 for x in phase
o(x,t) = ¢ >0 for x in phase Q»
=0 at the interface

should be an “approximate signed distance function”.
x(t) eT(t) = @(x(t),t)=0.

Level set equation

pr+w-Vo=0 inQ



Two-Phase Hydrodynamic Interface capturing with Level-Set

Level set approach: Pros and Cons

Eulerian vs. Lagrangian

Level set description allows us to stay in a purely Eulerian framework.

Interface capturing ( in contrast to interface tracking (e.g. ALE) )

+ no remeshing

+  topology changes (breakups, coalescence) and large deformations
— interface description implicitely (interface is not meshed)

— tracking of evolution of particles at or close to interface

Level set ( in contrast to VOF )

+ accuracy of (implicit) interface

— no discrete mass conservation

(+) signed distance property

— signed distance property gets lost
(re-initialization)




Two-Phase Hydrodynamic Interface capturing with Level-Set

Level set approach: Pros and Cons

Eulerian vs. Lagrangian

Level set description allows us to stay in a purely Eulerian framework.

Interface capturing ( in contrast to interface tracking (e.g. ALE) )

+ no remeshing

+  topology changes (breakups, coalescence) and large deformations
— interface description implicitely (interface is not meshed)

— tracking of evolution of particles at or close to interface

Level set ( in contrast to VOF )

+ accuracy of (implicit) interface ~
— no discrete mass conservation (videos,JB) .
(+) signed distance property
>
>

no corr. (1b.),
single corr. (1 b.)

— signed distance property gets lost single corr. (2 b.)

(re-initialization) multicomp. corr. (2 b.)



Two-Phase Hydrodynamic  Interface capturing with Level-Set

Model: Navier-Stokes + level set equation

Navier-Stokes equations coupled with level set equation (7 = const)

o) (we + (w- V)w) = div(u(@) DW)) +Vp = plp)g — () ornr

divw = 0

pe+w-Vo = 0

where p, u and K, dr, nr depend on .



Two-Phase Hydrodynamic Interface capturing with Level-Set

Model: Navier-Stokes + level set equation

Navier-Stokes equations coupled with level set equation (7 = const)

o) (we + (w- V)w) = div(u(@) DW)) +Vp = plp)g — () ornr

divw = 0

where p, u and K, dr, nr depend on .

Additional equations

Surfactant transport (on the interface):
ss+w-Vrs—urArs = fr onl

Mass transport ( discontinuity across the interface):

up+w-Vu—alAu =1f in Q;
[[a%]]:o, [Bul] =0 onTl



Two-Phase Hydrodynamic  Interface capturing with Level-Set

Discretization background

» Adaptive tetrahedral mesh for Q = Q; U Q»
» Conforming finite elements:

» P2-P1 Taylor-Hood elements (continuous)
> P2 for level set (continuous)
» P1 for mass/surfactants transport (continuous)

> Method of lines time integration (implicit euler, etc..)
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Two-Phase Hydrodynamic ~ Numerical Challenges

Numerical Challenges

Key problems

>

vV vV VY

vV V. YV vV V.V VvV VY

Multiscale phenomena close to the interface.
Highly nonlinear couplings between w, ¢, fr, ¢, cr.
Interesting modeling aspects, e.g.: 7 = 7(c, cr) (YZ) or coalescence (JB)

Accurate resolution of unknown interface.
Treatment of the level set equation (EL), volume correction (JB)

Treatment of surface tension force (Laplace-Beltrami discretization)
Treatment of discontinuous pressure

Treatment of kinks in velocity (SG)

Coupling of flow + interface dynamics + transport equations.
Discretization of transport equation with (moving) discontinuities (CL)
Discretization of transport equation on (moving) interface (JG) + (XZ)
Efficiency/robustness of iterative solvers.

High complexity: parallel solvers needed, (SG) + (PE)

Higher order time integration (space-time formulation) (PE)



Two-Phase Hydrodynamic ~ Numerical Challenges

Interface force balance

Interface condition

We have the condition:

[on]r = [(#D(w) + pl)n]r = 760 (+Vr7)

Typically: "
plr #0

Non-aligned mesh + standard polynomial FE space Qj
= approximation quality reduces to

ianhGQh”p - thL2 < O(\/E)



Two-Phase Hydrodynamic ~ Numerical Challenges YM

Handling Discontinuities: Domain-wise cont. ansatz

QL= Qu(Sh1) - H" @ Qu(S1y) - (1 — H")
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Two-Phase Hydrodynamic Numerical Challenges T

Handling Discontinuities: Add. ansatz functions (XFEM)

Extend P; FE basis with discontinuous basis functions near I:

1 in Ql

Pjr = p; (Hr(X) - HF(Xj))7 Hr = { 0 in$»

and use Q) = @ ® {p] }
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Two-Phase Hydrodynamic ~ Numerical Challenges

Handling (Pressure) Discontinuities: XFEM

‘
> @
P2-P1-Taylor-Hood + XFEM for pressure

Enrichment: we use a P1X finite element space for the pressure space.

» |n practice: I, instead of .

» dim(Q}) depends on T B
» New basis functions can have

very small supports.
» other applications:

[Belytschko (1999 ->)]:  elasticity,

[Hansbo (2002 ->)]: interf. probl.,

Two-Phase Mass Transport

(+) pressure approximation is optimal: O(h?) in L2-norm.

(-) no LBB-stability result for velocity-pressure pair (Vj, Q) any more

Kinks in velocity field also need a "kink-version' XFEM!
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Two-Phase Hydrodynamic ~ Numerical Challenges

Key components in DROPS:

» Hybrid level set technique for interface capturing

v

vV V.V vV vV VY

Adaptive multilevel triangulations (tetrahedra) + Finite Elements
(not aligned to the interface)

Special quadrature techniques (discontinuous p, p)

Discretization of localized force term fr: Laplace-Beltrami

Finite element space for discontinuous pressure: XFEM

Special iterative solvers: robustness w.r.t. h, At, jumps in p, (1)
MPI based parallelization (Institute for Scientific Computing)
Surfactant transport equation: Interface FE method

Mass transport equation: Nitsche-XFEM method
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Two-Phase Hydrodynamic

Some DROPS movies

Numerical Challenges

VAN
A NN
VAV AN
AN
VAV
VNN AN
WA‘VA%WAWMA'MM
T

gl AYAYAVIAVAVA
VI
VAVA'AVAVAYAYAYAYAYAYAVAYAVAYAVA
VAW
VAW
W

13/31



Two-Phase Mass Transport ~ Mass Transport Problem statement

Two-Phase mass transport: A movie

concenftration
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Two-Phase Mass Transport

Situation at the interface

-

Mass Transport Problem statement

9
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Two-Phase Mass Transport ~ Mass Transport Problem statement

Situation at the interface

discontinuous conc.
up/up = B2/ b1

9
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Two-Phase Mass Transport Mass Transport Problem statement

Situation at the interface

N\ discontinuous conc.

U1/U2 = 52/51

disc. normal derivative

ouy _ \, 0u
ale — a26n2
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Two-Phase Mass Transport Mass Transport Problem statement

Situation at the interface

discontinuous conc.

U1/U2 = 52/51

disc. normal derivative

ouy _ \, 0u
ale — a28n2

sharp layers

Y
x



Two-Phase Mass Transport Mass Transport Problem statement

Situation at the interface

discontinuous conc.
up/up = B2/ b1

disc. normal derivative
8u1 _ auz
1 Bn a an

| sharp layers |

| moving interface I'(t) |




Two-Phase Mass Transport Model: Mass transport

Mass transport

Mass transport equation

%—i—w Vu—alAu=0 in Q; UQ,,
[-aVu] -n=0 on T,
[Bu] =0 on .

V-n=w-n onl.
div(w) =0 in Q
concentration,
. piecewise constant diffusion coefficients,
. piecewise constant Henry coefficients,
. convection velocity (from Navier Stokes)
: the interface velocity
enry condition: discontinuity in u.

I<TE ™R S
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Two-Phase Mass Transport ~ Numerical Aspects

Numerical Aspects

Mass transport equation
Jdu

E—’— w-Vu—alAu=0 in Q(t)U (),

[-aVu] -n=0 on I'(t),
[Bul =0 on [(t).
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Two-Phase Mass Transport ~ Numerical Aspects

Numerical Aspects

Mass transport equation
Jdu

E—i— w-Vu—alAu=0 in Q(t)U (),

[-aVu] -n=0 on I'(t),
[Bul =0 on [(t).

Numerical Challenges

> Level set to capture the interface
= Interface is not aligned with the mesh (might depend on time)

> concentration has discontinuities (approximation)
> time integration for (non-matched) moving interfaces

> problem is typically highly convection dominated (stability)
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Two-Phase Mass Transport ~ Numerical Aspects

Numerical Aspects

Numerical Challenges

> Level set to capture the interface
= Interface is not aligned with the mesh (might depend on time)

> concentration has discontinuities (approximation)
> time integration for (non-matched) moving interfaces
> problem is typically highly convection dominated (stability)

Numerical Approaches

Extended Finite Element space (XFEM)
Space-time formulation on each time slab

Nitsche-type technique to enforce Henry's law in a weak sense

vV vV VvV VY

(Space-time Streamline Diffusion) Stabilization

17 /31



Two-Phase Mass Transport Space-time approach

Space-time weak formulation |

tA

r*

G
@

Anisotropic Spaces; Q@ = @Q; U @

Vs ={uel*Q ) | uj € HYY(Q), i=1,2, upa =0, [Bulr. =0}

W= {vevs| 2 e Q.



Two-Phase Mass Transport Space-time approach

Space-time weak formulation Il

Well-posed weak formulation [Gross/Reusken 11]
Determine u € Wp with u(-,0) = 0 such that

2
%(v)f/ uw~Vvdxdt+Z/ OéiVUi'VVdth:/ fv dx dt
Q =1 Qi @

for all v € Hy°(Q)# V;

> Space-time (n+1 dimensional) formulation
» Trial functions are discontinuous across [, test functions are not

» Condition [Bu]r = 0 essential condition in space Wjp
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Two-Phase Mass Transport Space-time approach

Nitsche-DG-XFEM discretization

Space-time FE
In = (th—1,tn], Q" =Q x I,. V, : standard FE space on Q.

W,:={v:Q" = R| v(x,t) = go(x) + td1(x), ¢o,d1 € V,}
W:={v:Q—=R|vg € W,} (space-time FE).

r*

th—1
n—1
2




Two-Phase Mass Transport Space-time approach

Approximating discontinuities
Space-time FE = Space-time XFEM
QF := U, Qi(t), R : restriction to Qf
Wy = RIW, ® R§W,, W™ :={v: Q>R |vqe € W}




Two-Phase Mass Transport Space-time approach

Bilinear forms (within time slab Q") |

Conforming part (strong form + part. int. on diffusion)

2
a"(u,v) = Z /n (% +w- Vu,-)ﬂ,-v,- + «;B;Vu; - Vv dx dt
i=1 i



Two-Phase Mass Transport Space-time approach

Bilinear forms (within time slab Q") |

Conforming part (strong form + part. int. on diffusion)

(0.0) Z/ 8U, _|_w~Vu,'),BiVi+O‘iﬂivu"'vvidth

Discontinuous Galerkin Upwind w.r.t. time:

d"(u, v) = /Q,B(-, el v



Two-Phase Mass Transport ~ Space-time approach

Bilinear forms (within time slab Q") |

Conforming part (strong form + part. int. on diffusion)

(0.1) Z/ 8u, -|-W~Vu,-)ﬂivi+04iﬂiv“"'vv" dx dt

Discontinuous Galerkin Upwind w.r.t. time:

d"(u, v) = /Q,B(-, el v

Henry interface condition

W! ¢ W5 (non-conformity)
= enforce condition[Bu]r- = 0 only weakly (Nitsche)



Two-Phase Mass Transport ~ Space-time approach

Bilinear forms (within time slab Q") Il

Nitsche method for Henry condition:

— [ pdiv(aVu)vdx
Qn




Two-Phase Mass Transport ~ Space-time approach

Bilinear forms (within time slab Q") Il

Nitsche method for Henry condition:

— [ Bdiv(aVu)vdx = / afBVuVvdx — / (agu) -(n*)vds
n aQn

Qn




Two-Phase Mass Transport ~ Space-time approach

Bilinear forms (within time slab Q") Il

Nitsche method for Henry condition:

— [ Bdiv(aVu)vdx = / afBVuVvdx — / (agu) -(n*)vds
n aQn

Qn

= —/ vaVu-nfvds
3

v=1/1+(w-n?Z [I, fr. fdsdt = [, vf ds,



Two-Phase Mass Transport ~ Space-time approach

Bilinear forms (within time slab Q") Il

Nitsche method for Henry condition:

— [ Bdiv(aVu)vdx = / afBVuVvdx — / (agu) -(n*)vds
n aQn

Qn

= —/ vaVu-nfvds
3

2
— —Z/ v{aVu-n}r Bivds
i=1 /%

— .../rzy{aVu'n}rg[ﬂv]rgdsa

with {-}r» suitable volume weighted average.

v=1/1+(w-n?Z [I, fr. fdsdt = [, vf ds,



Two-Phase Mass Transport ~ Space-time approach

Bilinear forms (within time slab Q") Il

Nitsche method for Henry condition:
Bdiv(aVu)v dx = / afVuVvdx — /BQ (aZu) -(n*)vds

n

Qn

= —/ vaVu-nfvds

2
— —Z/ v{aVu-n}r Bivds
i=1 /%

= f/ v{aVu-n}r[Bv]r ds °
rs
— — | v{aVv-n}m[Bulr ds e+ )\h;1/ v[Bulr [BV]r ds, O
rn rn

with {-}r» suitable volume weighted average. ~ A > 0: stabilization parameter

and v=1//1+ (w-n)2: ftin,lfrnfdsdt:frn vf ds,

M) - Q-0 @




Two-Phase Mass Transport ~ Space-time approach

Nitsche-DG-XFEM variational problem

global bilinearforms

N
Za" u,v), similarly : d(u,v), Nr, (u,v).
n=1

Discrete problem

Determine U € W'~ such that
B(U,V)=f(V) forall Ve W',
B(U,V):=a(U,V)+d(U,V)+ N (U, V).



Two-Phase Mass Transport ~ Space-time approach

Nitsche-DG-XFEM variational problem

global bilinearforms

N
Za" u,v), similarly : d(u,v), Nr, (u,v).
n=1

Discrete problem

Determine U € W'~ such that

B(U,V)=f(V) forall Ve W',
B(U, V) :=a(U, V) +d(U, V) + Nr_(U, V).

Still allows for time stepping, i.e. solving time slab by time slab!




Two-Phase Mass Transport Space-time approach

Error analysis (results)

Error analysis for linear (space+time) FE

||(U = U)(7 tN)”L?(QN) < C(h2 ¢ Atz).



Two-Phase Mass Transport ~ Space-time approach

Error analysis (results)

Error analysis for linear (space+time) FE

||(U = U)(7 tN)||L2(QN) < C(h2 + At2).

for standard space-time DG [V. Thomee] (no Nitsche, no XFEM):
I(u = U)C, tn)llizgamy < c(h? + A)

Concept of V. Thomee needs tensor product decomposition of the spaces which
we don't have for moving interfaces.



Two-Phase Mass Transport ~ Space-time approach

Numerical experiment

Numerical example in (14+1)D

Diffusion dominates, periodic boundary conditions, artificial source terms

v
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Two-Phase Mass Transport Space-time approach

Discretization error (temporal convergence)

1072F
. —e n,=28
= o—e ny=106
?10,;7 o—e Ny =32
S o—o ng=064
I —o 1, =128
i ol oo ne=256
—e 1, =512
—e ny,=1024
. order 2
i A order 3

162
number of time steps (ny)

This indicates: |[(U — u)(-, tn) | 12(q) ~ At? if h sufficiently small.
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Two-Phase Mass Transport Space-time approach

Discretization error (spatial convergence)

10—2 L
S :
= e
?10*** —e 1; =16 :
S o—o 1y =32 P :
lQ o—o 1, =064 /,.—-—0———'
= oabe—e =18 N ]
o—o 1, =256 ; :
o—o n; =512 . ‘—_'/.
woH order2 | .. o - o
-- order3 \\
161 162 183

number of elements (n,)

This indicates: |[(U — u)(-, tn)| 12(q) ~ h* if At sufficiently small.
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Two-Phase Mass Transport Space-time approach

Numerical example (continued): Non-planar interface

T
10" | e—e ne=256
order=1
order=2
order=3

This indicates: [|(U — u)(-, tn)||2() ~ A+ At? if h sufficiently small.

With sufficiently fine quadrature we reobtain [(U — u)(-, tn)||2(q) ~ At>.



Two-Phase Mass Transport ~ Space-time approach

Remark on 3+1 dimensions

Quadrature in (3+1)D

Tringulation consists of prism-4 elements

>

» Decompose prism-4 into four pentatopes (simplex-4)

» Decompose cut-pentatopes into uncut pentatopes (approximation of I',)
| 4

4D quadrature on uncut pentatopes

(1) For realistic problems quadrature limits convergence to O(At?)

Implementation and numerical results

» First implementation in 3+1 dimesions exists
» At least second order convergence is validated

» For simple examples even third order is observed



Two-Phase Mass Transport ~ Space-time approach

Conclusion

Interface capturing and consequences

> Level-set approach, Eulerian frame
» Non-matching interface needs special care for space discretization

» Moving discontinuities needs special care for time discretization

Discretization concepts

> (Domain-)piecewise continuous approximation + XFEM
> Nitsche(-XFEM) for interface conditions

> Space-time FEM with (P1) Discontinuous Galerkin in time.
[ space-time integrals = Composite quadrature in (n+1) D ]



Two-Phase Mass Transport Space-time approach

Conclusion

Interface capturing and consequences

> Level-set approach, Eulerian frame
» Non-matching interface needs special care for space discretization

» Moving discontinuities needs special care for time discretization

Discretization concepts

> (Domain-)piecewise continuous approximation + XFEM
> Nitsche(-XFEM) for interface conditions

> Space-time FEM with (P1) Discontinuous Galerkin in time.
[ space-time integrals = Composite quadrature in (n+1) D ]

Thank you for your attention!

bt ‘



Back-Up-Slides

Decomposition into simplices

The reference element can be decomposed into simplices

(14+1): Qis a square — 2 triangles
(24+1): Qs a (regular) prism — 3 tetrahedra
(34+1): Qs a (regular) prism-4 — 4 pentatopes

The reference prism-4 Q



Back-Up-Slides
Decomposition into simplices

The reference element can be decomposed into simplices

(14+1): Qis a square — 2 triangles
(2+1): Qs a (regular) prism — 3 tetrahedra
(3+1): Qisa (regular) prism-4 — 4 pentatopes

The reference prism-4 @? and it’s decomposition




Back-Up-Slides
Decomposition into simplices

The reference element can be decomposed into simplices

(14+1): Qis a square — 2 triangles
(2+1): Qs a (regular) prism — 3 tetrahedra
(3+1): Qisa (regular) prism-4 — 4 pentatopes

The reference prism-4 @? and it’s decomposition

Consider the quadrature problem on (n+1)-simplex!




Slicing the pentatope

Back-Up-Slides

(Non-degerenated) Case 1:

~

T

B

- /
cut pentatope (irregular) prism-4 + pentatope
1 (decomposition) i
4 pentatopes 4F 1 pentatope

interface

1 tetrahedra
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Back-Up-Slides

Slicing the pentatope

(Non-degerenated) Case 2:

S

\ / |
S A
cut pentatope (irregular) hypertriangle +  (irregular) prism-4
1 (decomposition) i
6 pentatopes + 4 pentatopes

interface prism-3 — 3 tetrahedra
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Back-Up-Slides

Slicing the pentatope

(Non-degerenated) Case 2:

S

\ / |
— A
cut pentatope (irregular) hypertriangle +  (irregular) prism-4
1 (decomposition) i
6 pentatopes + 4 pentatopes
interface prism-3 — 3 tetrahedra

Step 4: Decomposition into one-phase (n+1)-simplices and n-simplices!
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Slicing the pentatope

(Non-degerenated) Case 2:

S

\ / |
— A
cut pentatope (irregular) hypertriangle +  (irregular) prism-4
1 (decomposition) i
6 pentatopes + 4 pentatopes
interface prism-3 — 3 tetrahedra

Step 4: Decomposition into one-phase (n+1)-simplices and n-simplices!
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