Numerical Methods for Two-Phase Flows with Mass Transport

C. Lehrenfeld,
J. Berger, P. Esser, J. Grande, S. Groß, E. Loch, X. Xu, L. Zhang, Y. Zhang,
A. Reusken

IGPM, RWTH Aachen

Vienna, March 2013
Problem classes

- Fluid dynamics for Two-Phase (immiscible) incompressible flows: (Navier-Stokes Eqns. + surface tension effects)
- with mass transport (convection-diffusion eqn. + Henry interface condition)
- and surfactant transport (convection-diffusion eqn. on the surface)

applications:
- falling film (gas-liquid)
- rising bubble (liquid-liquid)
- taylor flow (gas-liquid)

Processes at (close to) the interface!
Standard (sharp interface) model for Two-Phase flows

Domains: $\Omega_1 = \Omega_1(t)$ and $\Omega_2 = \Omega_2(t)$

Interface: $\Gamma = \Gamma(t) = \partial \Omega_1 \cap \partial \Omega_2$

ρ_i: density in Ω_i

μ_i: viscosity in Ω_i

τ: surface tension coefficient

$D(w) = \nabla w + \nabla w^T$, $\sigma = -p \mathbf{I} + \mu D(w)$

κ: curvature

Navier-Stokes equations

\[
\begin{cases}
\rho_i(\mathbf{w}_t + (\mathbf{w} \cdot \nabla)\mathbf{w}) = \text{div}(\sigma) + \rho_i \mathbf{g} & \text{in } \Omega_i \\
\text{div} \mathbf{w} = 0 & \text{in } \Omega_i \\
[\sigma \mathbf{n}]_\Gamma = \tau \kappa \mathbf{n} + \nabla_\Gamma \tau, & \mathbf{[w]}_\Gamma = 0
\end{cases}
\]
Two-Phase Hydrodynamic Model

Standard (sharp interface) model for Two-Phase flows

Domains: \(\Omega_1 = \Omega_1(t) \) and \(\Omega_2 = \Omega_2(t) \)

Interface: \(\Gamma = \Gamma(t) = \partial \Omega_1 \cap \partial \Omega_2 \)

\(\rho_i \): density in \(\Omega_i \)
\(\mu_i \): viscosity in \(\Omega_i \)
\(\tau \): surface tension coefficient

\(D(w) = \nabla w + \nabla w^T, \sigma = -p I + \mu D(w) \)

\(\kappa \): curvature

Navier-Stokes equations

\[
\begin{cases}
\rho_i (w_t + (w \cdot \nabla)w) = \text{div} (\sigma) + \rho_i g & \text{in } \Omega_i \\
\text{div } w = 0 & \text{in } \Omega_i \\
\end{cases}
\]

for \(i = 1, 2 \)

\([\sigma n]_\Gamma = \tau \kappa n + \nabla_\Gamma \tau, \quad [w]_\Gamma = 0. \)

How to identify the interface?
Interface capturing: Level set approach

\(\Gamma(t) = \) zero-level of a scalar function:
the level set function \(\varphi(x, t) \)

\[
\varphi(x, t) = \begin{cases}
< 0 & \text{for } x \text{ in phase } \Omega_1 \\
> 0 & \text{for } x \text{ in phase } \Omega_2 \\
= 0 & \text{at the interface}
\end{cases}
\]

should be an “approximate signed distance function”.
\[
x(t) \in \Gamma(t) \Rightarrow \varphi(x(t), t) = 0.
\]

Level set equation

\[
\varphi_t + \mathbf{w} \cdot \nabla \varphi = 0 \quad \text{in } \Omega
\]
Level set approach: Pros and Cons

Eulerian vs. Lagrangian

Level set description allows us to stay in a purely **Eulerian** framework.

Interface capturing (in contrast to interface tracking (e.g. ALE))

+	no remeshing
+	topology changes (breakups, coalescence) and large deformations
−	interface description implicitly (interface is not meshed)
−	tracking of evolution of particles at or close to interface

Level set (in contrast to VOF)

+	accuracy of (implicit) interface
−	no discrete mass conservation
(+)	signed distance property
−	signed distance property gets lost (re-initialization)
Level set approach: Pros and Cons

Eulerian vs. Lagrangian

Level set description allows us to stay in a purely **Eulerian** framework.

Interface capturing (in contrast to interface tracking (e.g. ALE))

- **Pros**
 - no remeshing
 - topology changes (breakups, coalescence) and large deformations
 - interface description implicitly (interface is not meshed)
 - tracking of evolution of particles at or close to interface

- **Cons**
 - no discrete mass conservation

Level set (in contrast to VOF)

- **Pros**
 - accuracy of (implicit) interface
 - signed distance property

- **Cons**
 - no discrete mass conservation
 - signed distance property gets lost

- **Note**
 - no corr. (1 b.),
 - single corr. (1 b.),
 - single corr. (2 b.),
 - multicom. corr. (2 b.)
Model: Navier-Stokes + level set equation

Navier-Stokes equations coupled with level set equation \((\tau = \text{const})\)

\[
\rho(\varphi) \left(w_t + (w \cdot \nabla)w \right) - \text{div} \left(\mu(\varphi) D(w) \right) + \nabla p = \rho(\varphi) g - \tau \kappa(\varphi) \delta_n \Gamma \nabla
\]

\[
\text{div} \ w = 0
\]

\[
\varphi_t + w \cdot \nabla \varphi = 0
\]

where \(\rho, \mu\) and \(\kappa, \delta, \Gamma, \nabla\) depend on \(\varphi\).
Model: Navier-Stokes + level set equation

Navier-Stokes equations coupled with level set equation \((\tau = \text{const})\)

\[
\begin{align*}
\rho(\varphi) \left(\mathbf{w}_t + (\mathbf{w} \cdot \nabla)\mathbf{w} \right) - \text{div} \left(\mu(\varphi) \mathbf{D}(\mathbf{w}) \right) + \nabla p &= \rho(\varphi) g - \tau \kappa(\varphi) \delta\Gamma \mathbf{n}_\Gamma \\
\text{div} \mathbf{w} &= 0 \\
\varphi_t + \mathbf{w} \cdot \nabla \varphi &= 0
\end{align*}
\]

where \(\rho, \mu\) and \(\kappa, \delta\Gamma, \mathbf{n}_\Gamma\) depend on \(\varphi\).

Additional equations

Surfactant transport (on the interface):

\[
s_t + \mathbf{w} \cdot \nabla \Gamma s - \mu \Gamma \Delta \Gamma s = f_\Gamma \quad \text{on } \Gamma
\]

Mass transport (discontinuity across the interface):

\[
\begin{align*}
u_t + \mathbf{w} \cdot \nabla u - \alpha \Delta u &= f \quad \text{in } \Omega_i \\
\left[\alpha \frac{\partial u}{\partial n} \right] &= 0, \quad \left[\beta u \right] = 0 \quad \text{on } \Gamma
\end{align*}
\]
Discretization background

Starting point

- Adaptive tetrahedral mesh for $\Omega = \Omega_1 \cup \Omega_2$
- Conforming finite elements:
 - P2-P1 Taylor-Hood elements (continuous)
 - P2 for level set (continuous)
 - P1 for mass/surfactants transport (continuous)
- Method of lines time integration (implicit euler, etc..)
Numerical Challenges

Key problems

- Multiscale phenomena close to the interface.
- Highly nonlinear couplings between w, φ, f_Γ, c, c_Γ.
- Interesting modeling aspects, e.g.: $\tau = \tau(c, c_\Gamma)$ (YZ) or coalescence (JB)
- Accurate resolution of unknown interface. Treatment of the level set equation (EL), volume correction (JB)
- Treatment of surface tension force (Laplace-Beltrami discretization)
- Treatment of discontinuous pressure
- Treatment of kinks in velocity (SG)
- Coupling of flow + interface dynamics + transport equations.
- Discretization of transport equation with (moving) discontinuities (CL)
- Discretization of transport equation on (moving) interface (JG) + (XZ)
- Efficiency/robustness of iterative solvers.
- High complexity: parallel solvers needed, (SG) + (PE)
- Higher order time integration (space-time formulation) (PE)
Interface force balance

Interface condition

We have the condition:

\[
[\sigma n]_\Gamma = [(\mu D(w) + pl)n]_\Gamma = \tau \kappa n \quad (\nabla_\Gamma \tau)
\]

Typically:

\[
[p]_\Gamma \neq 0
\]

Non-aligned mesh + **standard polynomial** \(Q_h \)

\(\Rightarrow \) approximation quality reduces to

\[
\inf_{p_h \in Q_h} \| p - p_h \|_{L^2} \leq O(\sqrt{h})
\]
Handling Discontinuities: Domain-wise cont. ansatz

\[Q^\Gamma_h := Q_h(\tilde{\Omega}_1) \cdot H^\Gamma \oplus Q_h(\tilde{\Omega}_2) \cdot (1 - H^\Gamma) \]
Handling Discontinuities: Add. ansatz functions (XFEM)

Remedy

Extend P_1 FE basis with discontinuous basis functions near Γ:

$$p_j^\Gamma := p_j \left(H_\Gamma(x) - H_\Gamma(x_j) \right), \quad H_\Gamma = \begin{cases} 1 & \text{in } \Omega_1 \\ 0 & \text{in } \Omega_2 \end{cases}$$

and use $Q_h^\Gamma = Q_h \oplus \{ p_j^\Gamma \}$
Handling (Pressure) Discontinuities: XFEM

Remarks

- In practice: Γ_h instead of Γ.
- $\dim(Q_\Gamma^h)$ depends on Γ.
- New basis functions can have very small supports.
- Other applications:
 - [Belytschko (1999 ->)]: elasticity,
 - [Hansbo (2002 ->)]: interf. probl.,
 - Two-Phase Mass Transport

P2-P1-Taylor-Hood + XFEM for pressure

Enrichment: we use a P1X finite element space for the pressure space.

(+): pressure approximation is optimal: $O(h^2)$ in L^2-norm.
(-): no LBB-stability result for velocity-pressure pair (V_h, Q_Γ^h) any more

Kinks in velocity field also need a "kink-version" XFEM!
Key components in DROPS:

- Hybrid level set technique for interface capturing
- Adaptive multilevel triangulations (tetrahedra) + Finite Elements (not aligned to the interface)
- Special quadrature techniques (discontinuous μ, ρ)
- Discretization of localized force term f_f: Laplace-Beltrami
- Finite element space for discontinuous pressure: XFEM
- Special iterative solvers: robustness w.r.t. $h, \Delta t$, jumps in $\rho, (\mu)$
- MPI based parallelization (Institute for Scientific Computing)
- Surfactant transport equation: Interface FE method
- Mass transport equation: Nitsche-XFEM method
Some DROPS movies
Two-Phase mass transport: A movie
Two-Phase Mass Transport

Mass Transport Problem statement

Situation at the interface

\[\Gamma(t), \Omega_1(t), \Omega_2(t) \]

discontinuous conc.

\[u_1 / u_2 = \beta_2 / \beta_1 \]

disc. normal derivative

\[\alpha_1 \partial u_1 / \partial n_1 = \alpha_2 \partial u_2 / \partial n_2 \]

sharp layers

moving interface
Situation at the interface

\[\Omega_1 \quad \Gamma \quad \Omega_2 \]

discontinuous conc.
\[\frac{u_1}{u_2} = \frac{\beta_2}{\beta_1} \]
Situation at the interface

- Discontinuous concentration:
 \[u_1 / u_2 = \beta_2 / \beta_1 \]

- Discontinuous normal derivative:
 \[\alpha_1 \frac{\partial u_1}{\partial n_1} = \alpha_2 \frac{\partial u_2}{\partial n_2} \]
Situation at the interface

Discontinuous concentration:
\[u_1/u_2 = \beta_2/\beta_1 \]

Discontinuous normal derivative:
\[\alpha_1 \frac{\partial u_1}{\partial n_1} = \alpha_2 \frac{\partial u_2}{\partial n_2} \]

Sharp layers
Two-Phase Mass Transport

Mass Transport Problem statement

Situation at the interface

![Diagram showing two phases with a moving interface \(\Gamma(t) \), discontinuous concentration \(u_1/u_2 = \beta_2/\beta_1 \), discontinuous normal derivative, sharp layers, and moving interface.]

- discontinuous conc. \(u_1/u_2 = \beta_2/\beta_1 \)
- disc. normal derivative \(\alpha_1 \frac{\partial u_1}{\partial n_1} = \alpha_2 \frac{\partial u_2}{\partial n_2} \)
- sharp layers
- moving interface \(\Gamma(t) \)
Mass transport

Mass transport equation

\[
\frac{\partial u}{\partial t} + w \cdot \nabla u - \alpha \Delta u = 0 \quad \text{in} \, \Omega_1 \cup \Omega_2,
\]

\[
[-\alpha \nabla u] \cdot n = 0 \quad \text{on} \, \Gamma,
\]

\[
[\beta u] = 0 \quad \text{on} \, \Gamma.
\]

\[
\mathcal{V} \cdot n = w \cdot n \quad \text{on} \, \Gamma.
\]

\[
\text{div}(w) = 0 \quad \text{in} \, \Omega
\]

\(u\): concentration,
\(\alpha\): piecewise constant diffusion coefficients,
\(\beta\): piecewise constant Henry coefficients,
\(w\): convection velocity (from Navier Stokes)
\(\mathcal{V}\): the interface velocity
Henry condition: discontinuity in \(u\).
Numerical Aspects

Mass transport equation

\[
\frac{\partial u}{\partial t} + \mathbf{w} \cdot \nabla u - \alpha \Delta u = 0 \quad \text{in } \Omega_1(t) \cup \Omega_2(t),
\]

\[
[-\alpha \nabla u] \cdot \mathbf{n} = 0 \quad \text{on } \Gamma(t),
\]

\[
[\beta u] = 0 \quad \text{on } \Gamma(t).
\]
Numerical Aspects

Mass transport equation

\[
\frac{\partial u}{\partial t} + w \cdot \nabla u - \alpha \Delta u = 0 \quad \text{in} \ \Omega_1(t) \cup \Omega_2(t),
\]

\[
[-\alpha \nabla u] \cdot n = 0 \quad \text{on} \ \Gamma(t),
\]

\[
\llbracket \beta u \rrbracket = 0 \quad \text{on} \ \Gamma(t).
\]

Numerical Challenges

▶ Level set to capture the interface
 ⇒ Interface is not aligned with the mesh (might depend on time)
▶ concentration has discontinuities (approximation)
▶ time integration for (non-matched) moving interfaces
▶ problem is typically highly convection dominated (stability)
Numerical Aspects

Numerical Challenges

- Level set to capture the interface
 ⇒ Interface is not aligned with the mesh (might depend on time)
- Concentration has discontinuities (approximation)
- Time integration for (non-matched) moving interfaces
- Problem is typically highly convection dominated (stability)

Numerical Approaches

- Extended Finite Element space (XFEM)
- Space-time formulation on each time slab
- Nitsche-type technique to enforce Henry’s law in a weak sense
- (Space-time Streamline Diffusion) Stabilization
Anisotropic Spaces; \(Q = Q_1 \cup Q_2 \)

\[
V_\beta = \{ u \in L^2(Q) \mid u_i \in H^{1,0}(Q_i), \; i = 1, 2, \; u|_{\partial \Omega} = 0, \; [\beta u]_{\Gamma^*} = 0 \}
\]

\[
W_\beta = \{ v \in V_\beta \mid \frac{\partial v}{\partial t} \in H^{1,0}_0(Q)' \}.
\]
Space-time weak formulation II

Well-posed weak formulation [Gross/Reusken 11]

Determine $u \in W_\beta$ with $u(\cdot, 0) = 0$ such that

$$\frac{\partial u}{\partial t}(v) - \int_Q u \mathbf{w} \cdot \nabla v \, dx \, dt + \sum_{i=1}^{2} \int_{Q_i} \alpha_i \nabla u_i \cdot \nabla v \, dx \, dt = \int_Q f v \, dx \, dt$$

for all $v \in H_{0,0}^1(Q) \neq V_\beta$

Remarks:

- Space-time (n+1 dimensional) formulation
- Trial functions are discontinuous across Γ_*, test functions are not
- Condition $[\beta u]_{\Gamma} = 0$ essential condition in space W_β
Nitsche-DG-XFEM discretization

Space-time FE

\(I_n = (t_{n-1}, t_n], \ Q^n = \Omega \times I_n. \quad V_n : \text{standard FE space on } \Omega. \)

\[
W_n := \left\{ v : Q^n \to \mathbb{R} \mid v(x, t) = \phi_0(x) + t\phi_1(x), \ \phi_0, \phi_1 \in V_n \right\}
\]

\[
W := \left\{ v : Q \to \mathbb{R} \mid v|_{Q^n} \in W_n \right\} \quad \text{(space-time FE)}.
\]
Approximating discontinuities

Space-time FE \Rightarrow Space-time XFEM

$$Q_{i}^{n} := \bigcup_{t \in I_n} \Omega_{i}(t), \quad R_{i}^{n} : \text{restriction to } Q_{i}^{n}$$

$$W_{n}^{\Gamma} := R_{1}^{n} W_{n} \oplus R_{2}^{n} W_{n}, \quad W^{\Gamma*} := \{v : Q \rightarrow \mathbb{R} \mid v|_{Q^n} \in W_{n}^{\Gamma}\}$$
Two-Phase Mass Transport Space-time approach

Bilinear forms (within time slab Q^n)

Conforming part (strong form + part. int. on diffusion)

$$a^n(u, v) = \sum_{i=1}^{2} \int_{Q^n_i} \left(\frac{\partial u_i}{\partial t} + w \cdot \nabla u_i \right) \beta_i v_i + \alpha_i \beta_i \nabla u_i \cdot \nabla v_i \, dx \, dt$$
Bilinear forms (within time slab Q^n)

Conforming part (strong form + part. int. on diffusion)

$$a^n(u, v) = \sum_{i=1}^{2} \int_{Q^n_i} \left(\frac{\partial u_i}{\partial t} + w \cdot \nabla u_i \right) \beta_i v_i + \alpha_i \beta_i \nabla u_i \cdot \nabla v_i \, dx \, dt$$

Discontinuous Galerkin Upwind w.r.t. time:

$$d^n(u, v) = \int_{\Omega} \beta(\cdot, t_n)[u]^{n-1} v^{n-1} \, dt$$
Bilinear forms (within time slab Q^n) I

Conforming part (strong form + part. int. on diffusion)

$$a^n(u, v) = \sum_{i=1}^{2} \int_{Q^n_i} \left(\frac{\partial u_i}{\partial t} + \mathbf{w} \cdot \nabla u_i \right) \beta_i v_i + \alpha_i \beta_i \nabla u_i \cdot \nabla v_i \, dx \, dt$$

Discontinuous Galerkin Upwind w.r.t. time:

$$d^n(u, v) = \int_{\Omega} \beta(\cdot, t_n)[u]^{n-1} v^{n-1} \, dt$$

Henry interface condition

$$W_n^\Gamma \not\subset W_\beta \quad \text{(non-conformity)}$$

$$\Rightarrow \text{enforce condition}[\![\beta u]\!]_{\Gamma^*} = 0 \text{ only weakly} \quad \text{(Nitsche)}$$
Bilinear forms (within time slab Q^n) II

Nitsche method for Henry condition:

$$- \int_{Q^n} \beta \text{div} (\alpha \nabla u) v \, dx$$
Bilinear forms (within time slab Q^n) II

Nitsche method for Henry condition:

$$- \int_{Q^n} \beta \text{div}(\alpha \nabla u) v \, dx = \int_{Q^n} \alpha \beta \nabla u \nabla v \, dx - \int_{\partial Q^n} \left(\begin{array}{c} \alpha \nabla u \\ 0 \end{array} \right) \cdot (\mathbf{n}^*) \, v \, ds$$
Bilinear forms (within time slab Q^n) II

Nitsche method for Henry condition:

$$- \int_{Q^n} \beta \text{div}(\alpha \nabla u) v \, dx = \int_{Q^n} \alpha \beta \nabla u \nabla v \, dx - \int_{\partial Q^n} \begin{pmatrix} \alpha \nabla u \\ 0 \end{pmatrix} \cdot (n^*) v \, ds$$

$$= \ldots - \int_{\Gamma^*_n} \nu \alpha \nabla u \cdot n \beta v \, ds$$

$$\nu = \frac{1}{\sqrt{1 + (w \cdot n)^2}}: \int_{t_{n-1}}^{t_n} \int_{\Gamma_n} f \, ds \, dt = \int_{\Gamma^*_n} \nu f \, ds,$$
Bilinear forms (within time slab Q^n) II

Nitsche method for Henry condition:

$$- \int_{Q^n} \beta \text{div}(\alpha \nabla u) v \, dx = \int_{Q^n} \alpha \beta \nabla u \nabla v \, dx - \int_{\partial Q^n} \left(\frac{\alpha \nabla u}{0} \right) \cdot (n^*) \, v \, ds$$

$$= \ldots - \int_{\Gamma^*_n} \nu \alpha \nabla u \cdot n \beta v \, ds$$

$$\rightarrow \ldots - \sum_{i=1}^{2} \int_{\Gamma^*_n} \nu \{ \alpha \nabla u \cdot n \} \Gamma^*_n [\beta v]_{\Gamma^*_n} \, ds$$

$$= \ldots - \int_{\Gamma^*_n} \nu \{ \alpha \nabla u \cdot n \} \Gamma^*_n [\beta v]_{\Gamma^*_n} \, ds$$

with $\{ \cdot \}_{\Gamma^*_n}$ suitable volume weighted average.

$$\nu = \frac{1}{\sqrt{1 + (w \cdot n)^2}}: \int_{t^n}^{t_{n-1}} \int_{\Gamma_n} f \, ds \, dt = \int_{\Gamma^*_n} \nu f \, ds,$$
Bilinear forms (within time slab Q^n) II

Nitsche method for Henry condition:

\[- \int_{Q^n} \beta \text{div}(\alpha \nabla u) \nu \, dx = \int_{Q^n} \alpha \beta \nabla u \nabla \nu \, dx - \int_{\partial Q^n} \left(\frac{\alpha \nabla u}{0} \right) \cdot (n^*) \nu \, ds \]

\[= \ldots - \int_{\Gamma^*_n} \nu \alpha \nabla u \cdot n \beta \nu \, ds \]

\[\rightarrow \ldots - \sum_{i=1}^{2} \int_{\Gamma^*_n} \nu \{\alpha \nabla u \cdot n\} \Gamma^*_n [\beta \nu]_{\Gamma^*_n} \, ds \]

\[= \ldots - \int_{\Gamma^*_n} \nu \{\alpha \nabla u \cdot n\} \Gamma^*_n [\beta \nu]_{\Gamma^*_n} ds \quad \text{(A)} \]

\[\rightarrow - \int_{\Gamma^*_n} \nu \{\alpha \nabla \nu \cdot n\} \Gamma^*_n [\beta u]_{\Gamma^*_n} ds \quad \text{(B)} + \lambda h_n^{-1} \int_{\Gamma^*_n} \nu [\beta u]_{\Gamma^*_n} [\beta \nu]_{\Gamma^*_n} ds, \quad \text{(C)} \]

with $\{\cdot\}_{\Gamma^*_n}$ suitable volume weighted average. $\lambda > 0$: stabilization parameter and $\nu = 1/\sqrt{1 + (w \cdot n)^2}$: $\int_{t^{n-1}}^{t^n} \int_{\Gamma_n} f \, ds \, dt = \int_{\Gamma^*_n} \nu f \, ds$.

$N^n_{\Gamma^*_n}(c, \nu) := \text{(A)} + \text{(B)} + \text{(C)}$
Nitsche-DG-XFEM variational problem

global bilinearforms

\[a(u, v) = \sum_{n=1}^{N} a^n(u, v), \]
\[d(u, v), \quad N_{\Gamma^*}(u, v). \]

Discrete problem

Determine \(U \in W_{\Gamma^*} \) such that

\[B(U, V) = f(V) \quad \text{for all} \quad V \in W_{\Gamma^*}, \]
\[B(U, V) := a(U, V) + d(U, V) + N_{\Gamma^*}(U, V). \]
Nitsche-DG-XFEM variational problem

global bilinearforms

\[a(u, v) = \sum_{n=1}^{N} a^n(u, v), \quad \text{similarly:} \quad d(u, v), \quad N_{\Gamma^*}(u, v). \]

Discrete problem

Determine \(U \in W^{\Gamma^*} \) such that

\[
B(U, V) = f(V) \quad \text{for all} \quad V \in W^{\Gamma^*},
\]

\[
\]

Still allows for time stepping, i.e. solving time slab by time slab!
Error analysis (results)

Theorem

Error analysis for linear (space+time) FE

\[\| (u - U)(\cdot, t_N) \|_{L^2(\Omega^N)} \leq c(h^2 + \Delta t^2). \]
Error analysis (results)

Theorem

Error analysis for linear (space+time) FE

\[\| (u - U)(\cdot, t_N) \|_{L^2(\Omega^N)} \leq c(h^2 + \Delta t^2). \]

Remark:

for standard space-time DG [V. Thomee] (no Nitsche, no XFEM):

\[\| (u - U)(\cdot, t_N) \|_{L^2(\Omega^N)} \leq c(h^2 + \Delta t^3) \]

Concept of V. Thomee needs tensor product decomposition of the spaces which we don’t have for moving interfaces.
Numerical experiment

Numerical example in (1+1)D

Diffusion dominates, periodic boundary conditions, artificial source terms
Discretization error (temporal convergence)

This indicates: \(\| (U - u)(\cdot, t_N) \|_{L^2(\Omega)} \sim \Delta t^3 \) if \(h \) sufficiently small.
Discretization error (spatial convergence)

This indicates: \(\|(U - u)(\cdot, t_N)\|_{L^2(\Omega)} \sim h^2 \) if \(\Delta t \) sufficiently small.
Two-Phase Mass Transport Space-time approach

Numerical example (continued): Non-planar interface

This indicates: \(\|(U - u)(\cdot, t_N)\|_{L^2(\Omega)} \sim \Delta t^3 \Delta t^2 \) if \(h \) sufficiently small.

With sufficiently fine quadrature we reobtain \(\|(U - u)(\cdot, t_N)\|_{L^2(\Omega)} \sim \Delta t^3 \).
Remark on 3+1 dimensions

Quadrature in (3+1)D

- Triangulation consists of prism-4 elements
- Decompose prism-4 into four pentatopes (simplex-4)
- Decompose cut-pentatopes into uncut pentatopes (approximation of Γ_*)
- 4D quadrature on uncut pentatopes

(!) For realistic problems quadrature limits convergence to $O(\Delta t^2)$

Implementation and numerical results

- First implementation in 3+1 dimensions exists
- At least second order convergence is validated
- For simple examples even third order is observed
Conclusion

Interface capturing and consequences

- Level-set approach, Eulerian frame
- Non-matching interface needs special care for space discretization
- Moving discontinuities needs special care for time discretization

Discretization concepts

- (Domain-)piecewise continuous approximation + XFEM
- Nitsche(-XFEM) for interface conditions
- Space-time FEM with (P1) Discontinuous Galerkin in time.

 \[
 \text{space-time integrals} \implies \text{Composite quadrature in (n+1) D}
 \]
Conclusion

Interface capturing and consequences

- Level-set approach, Eulerian frame
- Non-matching interface needs special care for space discretization
- Moving discontinuities needs special care for time discretization

Discretization concepts

- (Domain-)piecewise continuous approximation + XFEM
- Nitsche(-XFEM) for interface conditions
- Space-time FEM with (P1) Discontinuous Galerkin in time.

 \[\text{space-time integrals} \Rightarrow \text{Composite quadrature in } (n+1)D \]
Decomposition into simplices

The reference element can be decomposed into simplices

- \((1 + 1)\): \(\hat{Q}\) is a square → 2 triangles
- \((2 + 1)\): \(\hat{Q}\) is a (regular) prism → 3 tetrahedra
- \((3 + 1)\): \(\hat{Q}\) is a (regular) prism-4 → 4 pentatopes

The reference prism-4 \(\hat{Q}\)

![Diagram of a reference prism-4 element with vertices labeled X, Y, Z, and T.](image)
Decomposition into simplices

The reference element can be decomposed into simplices

- \((1 + 1): \hat{Q}\) is a square \(\rightarrow 2\) triangles
- \((2 + 1): \hat{Q}\) is a (regular) prism \(\rightarrow 3\) tetrahedra
- \((3 + 1): \hat{Q}\) is a (regular) prism-4 \(\rightarrow 4\) pentatopes

The reference prism-4 \(\hat{Q}\) and it’s decomposition
Decomposition into simplices

The reference element can be decomposed into simplices

(1 + 1) : \(\hat{Q} \) is a square \(\rightarrow \) 2 triangles
(2 + 1) : \(\hat{Q} \) is a (regular) prism \(\rightarrow \) 3 tetrahedra
(3 + 1) : \(\hat{Q} \) is a (regular) prism-4 \(\rightarrow \) 4 pentatopes

The reference prism-4 \(\hat{Q} \) and it’s decomposition

Consider the quadrature problem on \((n+1)\)-simplex!
Slicing the pentatope

(Non-degenerates) Case 1:

<table>
<thead>
<tr>
<th>cut pentatope</th>
<th>(irregular) prism-4 + pentatope</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ (decomposition)</td>
<td>4 pentatopes + 1 pentatope</td>
</tr>
</tbody>
</table>

interface

1 tetrahedra
Slicing the pentatope

(Non-degenerated) Case 2:

- Cut pentatope
 - (irregular) hypertriangle
 - (decomposition)
 - 6 pentatopes
- Interface
 - Prism-3 \(\rightarrow\) 3 tetrahedra

- (irregular) prism-4
 - 4 pentatopes
Slicing the pentatope

(Non-degerenated) Case 2:

Cut pentatope

(irregular) hypertriangle + (irregular) prism-4

↓ (decomposition)

6 pentatopes + 4 pentatopes

Interface

prism-3 → 3 tetrahedra

Step 4: Decomposition into one-phase (n+1)-simplices and n-simplices!
(Non-degenerated) Case 2:

<table>
<thead>
<tr>
<th>cut pentatope</th>
<th>(irregular) hypertriangle \downarrow \text{(decomposition)} \uparrow 6 pentatopes</th>
<th>(irregular) prism-4 \downarrow 4 pentatopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>prism-3 \rightarrow 3 tetrahedra</td>
<td></td>
</tr>
</tbody>
</table>

Step 4: Decomposition into one-phase (n+1)-simplices and n-simplices!
Decomposition of the hypertriangle into 6 pentatopes