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Abstract

The simulation of hypersonic flows presents some difficulties due to the interaction between boundary
layers and shock waves and to the high total enthalpy. In order to achieve more accurate numerical results,
with respect to physics, a Reynolds stress model (RSM) is being implemented in the QUADFLOW solver
for unstructured grids. This model, developed and tested by Eisfeld, showed promising results on structured
grids. It is a combination of two RSM: one that performs better near the wall and another able to achieve
good results in the far field. The implementation consisted of writing new routines for the source terms and
their derivatives as well as modifying old routines for the computation of viscous fluxes, boundary conditions
and far field conditions. Some preliminary results on the flat plate are presented here. The friction coefficient
for different turbulence models and for the analytical solutions (the laminar of Blasius and the turbulent of
Schultz-Grunow) is compared and the grid convergence of the model is analyzed.

1 Introduction

The aerodynamic design of hypersonic inlets is a criti-
cal issue for the overall performance of an air breathing
propulsion system. Two phenomena characterize the
technological problems of the inlet: on the one hand,
the interaction of strong shock waves with thick hy-
personic boundary layers causes large separation zones
that reduce the captured mass flow and thus the en-
gine performance. On the other hand, the high total
enthalpy of the flow leads to severe aerodynamic heat-
ing, further enhanced by turbulent heat fluxes.
Currently, most of the turbulent flows are studied
through the mean of the Reynolds Averaged Navier-
Stokes (RANS) method, where the averaged governing
equations are solved for the mean variables. One of
the main issue of the RANS approach is to model the
terms, mainly the Reynolds stress tensor, that appear
after the averaging process and describe the turbulent
contribution to the mean flow.
In order to model them, eddy viscosity models are
widely employed since they are easy to implement and
computationally convenient. Nevertheless these mod-
els show difficulties to correctly predict flow phenom-
ena like shock boundary layer interaction, which are of
great interest for hypersonic flow.
One of the limits of eddy viscosity models is that tur-
bulence is modeled as an isotropic quantity. This hy-
pothesis is not suitable for hypersonic flows where the

strongly anisotropic flow phenomena, taking place in
the boundary layer, have a great influence on the over-
all flow. For this reason a differential Reynolds stress
model (RSM) [2],[3] -the SSG/LRR-ω model- is being
implemented into QUADFLOW [6] a parallel adap-
tive compressible flow solver which employs locally re-
fined meshes with hanging nodes. The model chosen
in this article has been developed by Eisfeld, who im-
plemented it in the flow solver FLOWer for structured
grids [8].
Until now the model has been implemented into
QUADFLOW. The RSM is tested on a flat plate test
case and the results are compared to those obtained
with other turbulence models implemented in QUAD-
FLOW, specifically the Spalart Allmaras and Menter
Shear Stress Transport (SST) k-ω, as well as with re-
sults obtained with FLOWer using the same RSM.
The choice of implementing a RSM in QUADFLOW
is motivated by the promising results obtained by the
same model with FLOWer solver especially for sepa-
rated flows.
Later on the model will be employed for the simula-
tion of the hypersonic double wedge shock-boundary
layer interaction (Figure 1) and the results will be com-
pared with those of other turbulence models present
in QUADFLOW. In addition a further comparison is
possible with the numerical and experimental results
presented in ref.[1] .
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Figure 1: Shock / boundary layer interaction on a double wedge [1]

2 QUADFLOW Solver

QUADFLOW solves the Euler and Navier-Stokes equa-
tions around complex aerodynamic configurations. It
uses a cell-centered finite volume method on locally re-
fined grids. Mesh adaptation is based on multiscale
analysis. The computational grids are represented
by block-structured parametric B-Spline patches. For
the computation of the convective flux, the flux-
difference splitting HLLC Riemann solver by Batten
and Leschziner is chosen. This method is capable of
exactly preserving isolated shocks, contact and shear
waves and it enforces the entropy condition in a way
that no entropy correction of the primitive variables is
employed.
For what concerns the computation of the viscous
fluxes, the gradients of the variables at cell interfaces
are determined using the divergence theorem. The
computations presented here are steady state analyses
so that time plays the role of an iteration parameter to
achieve asymptotically stationary flow in the computa-
tion. The numerical methods employed are a Runge-
Kutta fifth-order explicit scheme and a Backward Euler
time integration for implicit treatment. In the QUAD-
FLOW solver different turbulent models can be chosen.
These are all RANS eddy viscosity models, in which the
same proportionality between Reynolds stress tensor
and the strain rate tensor as for the viscous stresses of
a Newtonian fluid in laminar flow is considered. Even
though these models are easy to implement and com-
putationally convenient, they appear to be not suitable
to simulate flow phenomena like shock boundary layer
interaction in hypersonic flow. The models considered
in this article and used to compare the results are the
Spalart Allmaras model modified by Ashford and the
Menter Shear Stress Transport (SST) k-ω model.

3 Reynolds Stress Models

Another type of RANS turbulence models are the dif-
ferential Reynolds Stress Models where an equation is
written and solved for each component of the symmet-
ric Reynolds tensor defined as:

ρ̄R̃ij = ρu′′i u′′j(1)

where the superscript ¯ denotes the simple average and
˜ the Favre (or mass) average and ′ (which appears later
on) and ′′define the corresponding fluctuations.

RSM is also referred to as second-order closure
model. This means that the second order correlations
for the fluctuating velocity components are computed
while the higher correlations are modeled.
In order to obtain the equations describing the
Reynolds stresses the first momentum of the Navier-
Stokes equation is considered. This is done by multi-
plying the equation by a fluctuating velocity compo-
nent and time averaging the product. If N is the oper-
ator that represents the Navier-Stokes equation, then
we obtain the Reynolds Stress equation from [9]:

u′′i N(Ũj) + u′′j N(Ũi) .(2)

After reorganizing the various terms, the final
transport equations read as follows:

∂

∂t
(ρ̄R̃ij) +

∂

∂xk
(ρ̄ŨkR̃ij) =(3)

ρ̄Pij + ρ̄Πij − ρ̄εij + ρ̄Dij + ρ̄Mij .

The terms that appear at the right hand side of the
equation represent the production, the redistribution,
the destruction, the diffusion and the contribution of
the turbulent mass flux, respectively.

Apart from the production term, which does not
need modeling because it only depends on quantities
for which an equation is solved,

ρ̄Pij = −ρ̄R̃ik
∂Ũj

∂xk
− ρ̄R̃jk

∂Ũi

∂xk
,(4)

the other terms, that is to say the re-distribution term

ρ̄Πij = p′
(

∂u′′i
∂xj

+
∂u′′j
∂xi

)
,(5)

the destruction term

ρ̄εij = τ ′ik
∂u′′j
∂xk

+ τ ′jk

∂u′′i
∂xk

,(6)



the diffusion term

ρ̄Dij =(7)

− ∂

∂xk
[ρu′′i u′′j u′′k +(p′u′′i δjk +p′u′′j δik)− (τ ′iku′′j + t′jku′′i )]

and the contribution of the turbulent mass flux due to
the compressibility effects

ρ̄Mij = u′′i

(
∂τ̄jk

∂xk
− ∂p̄

∂xj

)
+ u′′j

(
∂τ̄ik

∂xk
− ∂p̄

∂xi

)
(8)

need to be modeled. The way the different terms are
modeled determines the particular type of Reynolds
Stress Model.

3.1 Reynolds stress transport equation

The model chosen to be implemented in QUADFLOW
is the SSG-LRR/ω turbulent model in which the
Menter ω-equation has been used to provide the length
scale [7]. This model has been developed by Eisfeld [2]

and is the combination of the LRR model near the wall
[4] and the SSG model [5] in the far field. The blend-
ing function of Menter has been employed to blend the
coefficients of the two models.

The re-distribution term is modeled as follows

ρ̄Πij = −(C1ρ̄ε +
1
2
C∗

1 ρ̄Pkk)b̃ij(9)

+C2ρ̄ε(b̃ik b̃kj −
1
3
b̃mnb̃mnδij)

+(C3 − C∗
3

√
II)ρ̄k̃S̃∗ij

+C4ρ̄k̃(b̃ikS̃jk + b̃jkS̃ik −
2
3
b̃mnS̃mnδij)

+C5ρ̄k̃(b̃ikW̃jk + b̃jkW̃ik) ,

where all the coefficients are obtained inserting the val-
ues in table (1) in the blending function (23) described
below. In the above equation k̃ is the turbulent kinetic
energy

k̃ =
R̃kk

2
(10)

and ε is the specific dissipation

ε = Cµk̃ω ,(11)

where Cµ is constant and equal to 0.09. The tensor
appearing in equation (9) are the anisotropy tensor

b̃ij =
R̃ij

2k̃
− δij

3
,(12)

and II its second invariant

II = b̃ij b̃ij ,(13)

the strain rate tensor

S̃ij =
1
2

(
∂Ũi

∂xj
+

∂Ũj

∂xi

)
,(14)

the rotation tensor

W̃ij =
1
2

(
∂Ũi

∂xj
− ∂Ũj

∂xi

)
(15)

and the traceless strain rate tensor S̃∗ij .
The isotropic destruction term for both models reads:

ρ̄εij =
2
3
Cµρ̄k̃ωδij .(16)

For what concerns the diffusion term the generalized
gradient diffusion model is choosen:

ρ̄Dij =
∂

∂xk

[(
µ̄δkl + D(GGD) ρ

ω
R̃kl

) ∂R̃ij

∂xl

]
.(17)

The value of the constant D(GGD) is computed through
the equation:

D(GGD) = Fσ∗ + (1− F )
Cs

Cµ
.(18)

F is the blending equation in (23), σ∗= 0.5 and
Cs=0.22.
Finally the term ρ̄Mij is neglected.

The Menter ω-equation for RSM reads as follows:

∂

∂t
(ρ̄ω) +

∂

∂xk
(ρ̄Ũkω) =(19)

ρ̄Pω − ρ̄Dω +
∂

∂xk

[(
µ̄ + σω

ρ̄k̃

ω

)
∂ω

∂xk

]
+ ρ̄CD

with the production term

ρ̄Pω = −αω
ω

k
R̃ik

∂Ũi

∂xk
,(20)

the destruction term

ρ̄Dω = βωρ̄ω2(21)

and the cross-diffusion term

ρ̄CD = σd
ρ̄

ω
max

(
∂k̃
∂xk

∂ω

∂xk
; 0

)
.(22)

The coefficients of the ω-equation as well as those
of the Reynolds Stress are blended using the following
function:

φ = FφLRR + (1− F )φSSG(23)

The coefficient for the ω-equation are listed in table
(2).
The blending function of Menter is defined as:



C1 C∗
1 C2 C3 C∗

3 C4 C5

SSG 3.4 1.8 4.2 0.8 1.3 1.25 0.4
LRR 3.6 0 0 0.8 0 2.0 1.11

Table 1: Coefficients of SSG and LRR model for the re-distribution term [2]

αω βω σω σd

SSG 0.44 0.0828 0.856 2σω

LRR 0.5556 0.75 0.5 0

Table 2: Coefficients for ω-equation [2]

F = tanh(ζ4)(24)

with

ζ = min

[
max

( √
k̃

Cµωd
;
500µ̄

ρ̄ωd2

)
;
4σ

(SSG)
ω ρ̄k̃

ρ̄C(SSG)
D d2

]
.(25)

3.2 Boundary conditions

As freestream conditions a unit Reynolds number (Re)
of 3.5x106 and a Mach number (M) of 0.2 have been
imposed. The incoming turbulence intensity (I) is cho-
sen equal to 0.5%
At the subsonic inflow and outflow boundaries, charac-
teristic boundary conditions are prescribed. Outgoing
Riemann invariants are determined by quantities being
extrapolated from the interior domain, while incoming
Riemann invariants are set by free stream conditions.
Symmetry boundary conditions are prescribed on the
boundary part that precedes the flat plate leading edge.
The flat plate is considered as a Navier-Stokes wall: at
wall boundary cells, the coordinate location that is as-
sociated with the vector of unknowns is shifted from
the cell centroid to the midpoint of the corresponding
wall edge. For what concerns the turbulence variables
the initial and far-field values are obtained through the
following equations where the Reynolds stresses values
are derived from the turbulent kinetic energy.

k̃∞ =
3
2
(I ·M∞ · c∞)2 R̃ij∞ =

2
3
k̃∞(26)

ω̃∞ =
ρ∞ · k̃∞ · Re∞

µt∞
(27)

At the wall the Reynolds stresses are put to zero due
to non slip condition. For the ω-equation the Menter
approach is chosen with constant wall temperature.

4 Implementation

The implementation of the RSM into the QUADFLOW
solver can be divided into basically five steps. First of
all some modifications have been required to add an
additional turbulence model with a different number of
equations with respect to those already in there. The
RSM is, in fact, a 7-equation turbulence model while
the most common eddy viscosity models have one or
two turbulence equations.
After that, the source terms have been implemented as
well as their derivatives. These are employed both for
the implicit time integration for the computation of the
Jacobian matrix and for the explicit time integration,
since the turbulent source terms are always treated im-
plicitly.
As a third step, the viscous fluxes have been con-
sidered. On the one hand the viscous fluxes for the
Reynolds stresses needed to be added to the solver.
On the other hand the viscous fluxes of the momen-
tum and energy equations needed to be modified by
adding the contribution of the Reynolds Stress to the
mean flow. In contrast to eddy viscosity models, these
additional terms to the mean flow are not represented
by the turbulent viscosity but by the components of
the Reynolds stresses themselves. Furthermore, the
derivatives of the viscous fluxes are needed for implicit
time integration.
The last part of the work consisted of implementing the
boundary conditions at solid walls, the far field condi-
tions, the initial conditions and the non-dimensional
form of the Reynolds Stress.
Some further routines have been modified to limit the
values of the variables, to add the constants that ap-
pear in the model and to compute the turbulent vis-
cosity from the model variables. For what concerns
the computation of the convective fluxes, no further
implementation has been required.

5 Flat Plate

As a first test case an incompressible flat plate test case
is employed. The results obtained with the newly im-



Figure 2: Computational grid for flat plate simulation

Figure 3: Non-dimensional distance of the first cell from the wall for different grids.

plemented RSM are compared to results obtained with
QUADFLOW using Spalart Allmaras and Menter SST
models as well as to results obtained with FLOWer us-
ing the SSG/LLR-ω model and to analytical results.
The aim of this simulation is to show that the RSM
can provide results in agreement with other turbulence
models. The choice of a subsonic simulation is justified
by the abundance of results and analytical solutions
that can be employed for the comparison.

5.1 Problem description

For this simulation with the RSM in QUADFLOW
three different computational grids have been em-
ployed. These are all structured grids with an increas-
ing number of cells. The coarser grid (grid1) is pre-
sented in Figure 2. It consists of 11800 cells: 295 in
the x-direction and 40 in the y-direction. The next
grid (grid2) has a double number of grid cells and the
finer grid (grid4) has four times the number of the grid
cells of the coarser grid. Every grid is obtained by
the previous one splitting every cells in half parallel to
the x-direction. The results from Spalart Allmaras and

Menter SST model are obtained using grid1.

5.2 Results

In Figure 3 the non-dimensional distance of the first
cell from the wall is presented for the three grids used
for the simulation on the flat plate. One can notice
that this value is halved, as expected, passing from a
grid to a finer one. Figure 4 shows the behavior of the
friction coefficient for different turbulence models, on
grid1, as well as the turbulent analytical solution of
Schultz-Grunow and the laminar analytical solution of
Blasius.
As one can notice, the Spalart Allmaras model follows
the analytical solution quite closely apart from the
values near the leading edge where the profile is closer
to the laminar one.
Considering the Menter SST model, the friction coef-
ficient, though close to the analytic value, is always
under-predicted and there is a laminar region near
the leading edge, though less pronounced than in the
Spalart Allmaras simulation.



Figure 4: Comparison of friction coefficient for different turbulence models.

Figure 5: Comparison of friction coefficient obtained with RSM and different grids.

The result obtained with RSM in QUADFLOW
shows a laminar behavior near the leading edge and
then the friction coefficient increases but the values
obtained always underestimate the analytical solution.
The friction coefficient obtained with FLOWer is, on
the contrary, larger than the exact one and this is prob-
ably due to the grid that is not fine enough to allow
convergence.

The grid convergence for the RSM is analyzed in
Figure 5 considering the friction coefficient. The re-
finement of the grid leads towards an improved solu-
tion, however the skin friction coefficient is still under-
predicted for unknown reasons. Nevertheless, it is ex-
pected that the performance of the RSM will improve
for compressible flow with strong pressure gradients.

6 Outlook

The implementation of the RSM in QUADFLOW
solver is still under validation. After the encourag-

ing results obtained on the flat plate test case the aim
is to use the RSM model for the simulation of the
hypersonic double wedge shock-boundary layer inter-
action.
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