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Abstract — The simulation of hypersonic flows presents some difficulties due to the interaction be-
tween boundary layer and shock waves and its 3D character. In order to achieve more accurate numer-
ical results with respect to physics, a Reynolds stress model (RSM) has been implemented in the well
validated Reynolds averaged Navier-Stokes solver QUADFLOW. The RSM developed and tested by Eis-
feld, showed promising results on structured grids and is now ready to be used in combination with grid
adaptation for solving highly applied complex 3D flows.

1. Introduction
The aerodynamic design of hypersonic inlets is a critical issue for the overall performance of
an air breathing propulsion system. Two phenomena characterize the technological problems of
the inlet: on the one hand, the interaction of strong shock waves with thick hypersonic bound-
ary layers causes large separation zones that reduce the captured mass flow and thus the engine
performance. On the other hand, the high total enthalpy of the flow leads to severe aerodynamic
heating, further enhanced by turbulent heat fluxes.
Currently, most of the turbulent flows are studied through the mean of the Reynolds Averaged
Navier-Stokes (RANS) method, where the averaged governing equations are solved for the
mean variables. For what concerns the turbulent closure, eddy viscosity models are widely em-
ployed since they are easy to implement and computationally convenient. Nevertheless these
models show difficulties to correctly predict flow phenomena like shock boundary-layer inter-
action, which are of great interest for hypersonic flow.
For this reason, a differential Reynolds stress model, the SSG/LRR-ω model [1], has been im-
plemented into QUADFLOW [2]. This solver is a parallel adaptive compressible flow solver
which employs locally refined meshes with hanging nodes [3].

2. QUADFLOW Solver
QUADFLOW solves RANS equations around complex aerodynamical configurations using a
variety of turbulence models. It uses a cell-centered finite volume method on locally adaptive
grids. For the computation of the convective flux the AUSMDV Riemann solver is employed
[4]. A great advantage of this scheme is the reduction of numerical viscosity.
For what concerns the computation of the viscous fluxes, the gradients of the variables at cell
interfaces are determined using the divergence theorem. The computations presented here are
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Figure 1: Shock / boundary layer interaction on a hypersonic inlet [5].

steady state analyses so that time plays the role of an iteration parameter to achieve asymptoti-
cally stationary flow in the computation. The numerical methods employed are a Runge-Kutta
fifth-order explicit scheme and a Backward Euler time integration for implicit treatment. In the
QUADFLOW solver, different turbulent models can be chosen. These are all RANS eddy vis-
cosity models, in which the same proportionality between Reynolds stress tensor and the strain
rate tensor as for the viscous stresses of a Newtonian fluid in laminar flow is considered. Even
though these models are easy to implement and computationally convenient, they appear to be
not suitable to simulate flow phenomena like shock boundary layer interaction in hypersonic
flow.

2.1. Adaptive technique

The mesh adaptation is performed by means of multiscale techniques similar to those used in
data compression. Starting point of this strategy is a sequence of nested grids G l := {Ωli}i∈Il

that can be obtained by successfully refining the cells on a given coarsest scale l = 0 i.e each
cell on a coarse scale l is the union of cells on the finer scale l + 1. The index set Il represents
the enumeration of the cells corresponding to the grid Gl and corresponding averages ūl. By
means of this sequence, the average ūL on the finest level L is successively decomposed into a
sequence of averages on the coarsest level ū0 and details d̄l, l = 0, ..., L − 1; this is realized by
a multiscale analysis using biorthogonal wavelets [3].

The detail coefficients can be interpreted as differences between successive refinement levels,
which become negligibly small in regions where the solution is sufficiently smooth. The set of
significant details can now be introduced Dε := {(l, i) : |dl,i| > εl} where εl = 2l−Lε is a
level-dependent threshold value and the parameter ε which determines the sensitivity of the
adaptation is user defined. At this point one has to determine the adaptive grid on the new time
level. Since the corresponding averages, respectively details are not yet available, one has to
predict all details on the new time level that can become significant due to the evolution by
means of the details on the old time level. In order to do that an heuristic approach taking into
account the finite speed of propagation and the fact that gradients may become steeper causing
significant details in the local neighborhood and on higher refinement levels respectively. By
means of Dε a locally refined grid with hanging nodes is determined by proceeding from coarse
to fine. If there exists a significant detail the corresponding cell is refined. For the flow fields
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considered, the number of significant detail coefficients ND := #Dε, is much smaller than the
number of averages NL corresponding to the uniform finest scale, i.e. the computational time
and memory requirements are significantly reduced.

3. Reynolds Stress Transport Equations
The more accurate level of RANS turbulence models are the differential Reynolds Stress Models
where an equation is written and solved for each component of the symmetric Reynolds tensor.
The Reynolds stress transport equations for the Reynolds stresses Rij , read as follows:

∂

∂t
(ρ̄R̃ij) +

∂

∂xk
(ρ̄ŨkR̃ij) = ρ̄Pij + ρ̄Πij − ρ̄εij + ρ̄Dij + ρ̄Mij . (1)

where the symbols ( ¯ ) and ( ˜ ) represent the simple average and the Favre average respec-
tively.The terms that appear at the right hand side of the equation represent the production,
the redistribution, the destruction, the diffusion and the contribution of the turbulent mass flux,
respectively. The production term

ρ̄Pij = −ρ̄R̃ik
∂Ũj

∂xk

− ρ̄R̃jk
∂Ũi

∂xk

(2)

does not need modeling because it only depends on quantities for which an equation is
solved. The other terms need to be modeled and the way the terms are modeled determines
the particular type of Reynolds Stress Model.

3.1. The SSG/LRR-ω model

The model chosen to be implemented in QUADFLOW is the SSG/LRR-ω [1]. This model has
been developed by Eisfeld and is the combination of the SSG model [7] in the far field and
the LRR model near the wall [6]. The idea is to extend the applicability of the SSG model to
wall-bounded flows in conjunction with an ω-equation. The LRR model chosen is a simplified
version by Wilcox who coupled it with his ω-equation [8]. The choice of this model near the
wall is justified by the desire of having a low-Reynolds model allowing integration up to the
wall. As Wilcox shows, the near-wall behavior of second-order closure models is strongly
influenced by the scale-determining equation [8]. Models based on an ω-equation often predict
acceptable value of the wall integration constant and are quite easy to integrate through the
viscous sublayer with respect to models based on the ε-equations. The omega equation of
Menter [9] has been chosen to provide a turbulent length scale for the present model. The
blending function of Menter has been employed to smoothly blend the coefficients of the two
models.

The re-distribution term is modeled as follows

ρ̄Πij = −(C1ρ̄ε +
1

2
C∗

1 ρ̄Pkk)b̃ij + C2ρ̄ε(b̃ik b̃kj − 1

3
b̃mnb̃mnδij) (3)

+(C3 − C∗
3

√
II)ρ̄k̃S̃∗

ij + C4ρ̄k̃(b̃ikS̃jk + b̃jkS̃ik − 2

3
b̃mnS̃mnδij) + C5ρ̄k̃(b̃ikW̃jk + b̃jkW̃ik),

where all the coefficients are obtained inserting the values in Table 1 in the blending function
(14) described below. In the above equation k̃ is the turbulent kinetic energy and ε is the specific
dissipation. The tensors appearing in equation (3) are the anisotropy tensor and II its second
invariant,
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b̃ij =
R̃ij

2k̃
− δij

3
, II = b̃ij b̃ij , (4)

S̃ the strain rate tensor, W̃ the rotation tensor

S̃ij =
1

2

(
∂Ũi

∂xj
+

∂Ũj

∂xi

)
, W̃ij =

1

2

(
∂Ũi

∂xj
− ∂Ũj

∂xi

)
(5)

and S̃∗
ij the traceless strain rate tensor. Finally, the specific dissipation is computed from the

length scal.
ε = Cµk̃ω , (6)

where Cµ=0.09.

Table 1: Coefficients of SSG and LRR model for the re-distribution term [1]

C1 C∗
1 C2 C3 C∗

3 C4 C5

SSG 3.4 1.8 4.2 0.8 1.3 1.25 0.4
LRR 3.6 0 0 0.8 0 2.0 1.11

The isotropic destruction term reads:

ρ̄εij =
2

3
Cµρ̄k̃ωδij . (7)

For what concerns the diffusion term the generalized gradient diffusion model is chosen:

ρ̄Dij =
∂

∂xk

[(
µ̄δkl + D(GGD) ρ̃

ω
R̃kl

)
∂R̃ij

∂xl

]
. (8)

The value of the constant D(GGD) is computed by the equation:

D(GGD) = Fσ∗ + (1 − F )
Cs

Cµ
. (9)

F is the blending equation in (14), σ∗= 0.5 and Cs=0.22.
Finally the term ρ̄Mij , which represents a measure of the effects of compressibility through
variations in density, is neglected. The Menter ω-equation for RSM reads as follows:

∂

∂t
(ρ̄ω) +

∂

∂xk
(ρ̄Ũkω) = ρ̄P ω − ρ̄Dω +

∂

∂xk

[(
µ̄ + σω

ρ̄k̃

ω

)
∂ω

∂xk

]
+ ρ̄CD (10)

with the production term

ρ̄P ω = −αω
ω

k̃
R̃ik

∂Ũi

∂xk
, (11)

the destruction term
ρ̄Dω = βωρ̄ω2 (12)

and the cross-diffusion term
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ρ̄CD = σd
ρ̄

ω
max

(
∂k̃

∂xk

∂ω

∂xk
; 0

)
. (13)

The coefficients of the ω-equation, listed in table (2) as well as those of the Reynolds stresses
are blended using the following function:

φ = FφLRR + (1 − F )φSSG . (14)

Table 2: Coefficients for ω-equation [1]

αω βω σω σd

SSG 0.44 0.0828 0.856 2σSSG
ω

LRR 0.5556 0.075 0.5 0

The blending function of Menter is defined as:

F = tanh(ζ4) , ζ = min


max




√
k̃

Cµωd
;
500µ̄

ρ̄ωd2


 ;

4σ(SSG)
ω ρ̄k̃

ρ̄C
(SSG)
D d2


 . (15)

During the average process required by the RANS approach, some additional terms appear
into the averaged Navier-Stokes equations representing the contribution of turbulence to the
mean flow. The modeling of the Reynolds stress tensor has been largely discussed above. The
turbulent heat flux is modeled as in eddy viscosity models using a Fourier type model:

q
(t)
k = −λt

∂T̃

∂xk

, with λt =
Cpµt

Prt

, (16)

where T̃ is the mean temperature and λt the eddy heat conductivity. The eddy viscosity model
can be obtained through the other turbulence variables using the equation:

µt =
ρk̃

ω
. (17)

The turbulent Prandtl number is set constant and equal to Prt = 0.9.
The last term is the diffusion of the turbulent kinetic energy associated with the turbulent

transport and diffusion terms and modeled as half the trace of the Reynolds stresses diffusion
term:

ρD(k) ≈ ρDkk

2
. (18)

4. Boundary Conditions
At solid walls a non-slip condition is imposed for the velocity components and for the Reynolds
stresses. For the ω-equation, the Menter approach is chosen:

ωw = Cm
(µl)w

0.075 · d2
, (19)
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where the wall temperature used for computing the laminar viscosity is considered constant, d
is the wall distance of the first cell center and Cm is a constant and is usually set to 10. Free
stream conditions for the turbulent variables are:

k̃∞ =
3

2
(I · M∞ · c∞)2 , R̃ij∞ =

2

3
k̃∞ , ω̃∞ =

ρ∞ · k̃∞ · Re∞
µt∞

, (20)

where M∞ is the freestream Mach number and I the turbulence intensity. Outgoing Riemann
invariants are determined by quantities being extrapolated from the interior domain, while in-
coming Riemann invariants are set by free stream conditions.

5. Results
Two test cases have been studied so far. A two-dimensional hypersonic double wedge and a
three-dimensional hypersonic inlet based on the double wedge configuration.

5.1. 2D double wedge

At the inflow the following free stream conditions have been imposed: M=8.3, Re=3.76X106

and T=102 K. For what concerns the turbulent variables a turbulent intensity of 0.5% is chosen.
The wall temperature is fixed at 300 K.

5.1.1. Grid Convergence study for two-dimensionale double wedge

The configuration consists of a blunt leading edge with a radius of 0.5mm, a first ramp with
an angle of 9 degrees and a second ramp with an angle of 20.5 degrees. The grid is refined
in the nose region and near the kink to better capture the flow structures. A grid convergence
study has been performed using a coarse mesh (Figure 2) with 40000 points, a medium mesh
with 80000 points and a fine mesh with 120000 points. The solution has been computed using a
laminar/turbulent approach. The first ramp is computed laminar by forcing the turbulent source
term to be zero. The second ramp is computed as fully turbulent. This approach allows us to
simulate the transition process in the separated shear layer above the second ramp. The results

Figure 2: Grid for the medium mesh

for the pressure coefficient and the Stanton number are compared in Figure 5.1.1.. The resolution
of the coarse grid does not allow a reliable description of the flow field at the wall. For what
concerns the medium and fine grid only small differences can be notice for pressure coefficient
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(a) Pressure coefficient (b) Stanton number

Figure 3: Distributions along a double wedge configuration with blunt leading edge using dif-
ferent grid refinements.

and for Stanton number. For these reasons the grid with 80000 points has been used for further
investigations. The results obtained with the chosen grid has been used for a comparison with
experimental [11] and numerical results using a transition model based on the SST turbulence
model also available in QUADFLOW [12]. In Figure 4 the behavior of the pressure coefficient

(a) Pressure coefficient (b) Stanton number

Figure 4: Distributions along a double wedge configuration with blunt leading edge.

along the wall is shown. The black horizontal lines represent the pressure values obtained from
the theory of oblique shock. We notice that the pressure value along the first ramp is the same for
all the computational results but it is lower than the experimental one. This probably indicates
that the inflow conditions for the experimental test were different from the nominal ones later
used for the simulations. A higher pressure value is also observed along the second ramp where
the pressure-peak measured in the shock tunnel is not reached by the simulations. A complete
laminar simulation overpredict the size of the separation, specified by the first pressure rise due
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to the separation shock followed by a region of constant pressure over the separation bubble
and terminated by the second steep pressure rise due to the reattachment shock. The subsequent
pressure decrease is due to the expansion fan originating from the intersection of the separation
and the reattachment shock (see Figure 1). The fully turbulent profile obtained with the RSM is
in good agreement with the SST model, however the fully turbulent flow does not separate. A
laminar/turbulent simulation, with the Reynolds Stress Model, has been performed here since
the fully turbulent solution does not capture the separation of the boundary layer and shows
values significantly different from the experimental results. From the results, it can be noticed
that the boundary layer separates along the first ramp and the size of the separation is smaller
than that shown by the laminar solution. After the kink the pressure increases, as predicted
by the theory, with a slope bigger than in the laminar case and reaches the theoretical value.
Along the second ramp a further change in the pressure coefficient can be observed due to the
merging of the two shock waves. The use of a combined laminar/turbulent simulations allows a
good agreement with the transitional model and an improved agreement with the experimental
results. The Stanton coefficient is also shown in Figure 4. The Stanton number distribution
was the main reason for considering transitional flow in the first place since the experimental
data clearly show a laminar behavior on the first ramp, however, turbulent levels in the area of
peak heating on the second ramp were measured. For what concerns the RSM with laminar first
ramp, the Stanton number decreases correctly along the first ramp following the laminar result
and a further abrupt decrease occurs when the separation takes place. Also in this case, the size
of the separation is smaller than that observed in a laminar simulation and is in agreement with
the experiments. After the kink the Stanton number recovers but the values it takes are always
higher than those from the wind tunnel experiment.

5.1.2. Adaptive Results

(a) Pressue coefficient (b) Stanton number

Figure 5: Distributions along a double wedge with sharp leading edge using adaptation.

The test case presented in the above paragraph with sharp leading edge has been used for
testing the adaptive module. Adaptation is performed considering the five main variable and
the first turbulent variable. Seven level of adaptation are performed (i.e. l = 7) in order to
reach a correct grid resolution in the boundary layer. Figure 5 presents the pressure coefficient
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and the Stanton number along the double wedge. For what concerns the pressure coefficient
the numerical results with and without adaptation are in good agreement. The separation size is
larger in the laminar adaptive simulation for unknown reasons. Considering the Stanton number,
the numerical results show a similar behavior along the first ramp but significant differences can
be seen along the second ramp. In the fully turbulent solution a considerable disagreement can
be seen in the peak value and in the general behavior of the curve. A better agreement is shown
in the laminar simulation. The reason for these discrepancies are still under investigation.

5.2. 3D inlet
A three-dimensional inlet with side walls, cowl and isolator has been considered as in Figure
6. As inflow conditions a free stream Mach number of 7, a Reynolds number of 4 Millions, a
temperature of 46 K and a turbulence intensity of 0.2% have been chosen. The wall temperature
is fixed at 300 K. A grid of approximately 6 Millions cells has been used for the simulation and
the results are compared with experimental results [13]. A fully turbulent simulation has been
performed at the moment as preliminary study. A laminar/turbulent simulation has been started
but numerical instabilities, to be further investigated, did not allow the solution to converge.
Further on adaptive simulation on 3D test cases will be run. Figure 7 shows the Mach number

Figure 6: Sketch of the intake.

distribution resulting from a fully turbulent Reynolds stress model simulation using the model
described here. A first ramp shock can be identified as a difference in Mach number along
the vertical planes. Because of the turbulent boundary layer prescribed in the simulation, no
separation can be seen in the kink region and a second shock originates at the beginning of
the second ramp. This shock hits then the bow shock generated by the cowl lip in a point
above the cowl. A separation bubble is created where the cowl shock impinges on the lower
isolator wall and its size is approximately half of the isolator height. Because of the sidewalls,
further shocks are generated and these help increasing the compression of the incoming flow.
Vortices are generated along the side walls and the ramps whose sizes increase as they move
downstream and influence the separation bubble in the isolator which is larger near the wall.
The pressure coefficient along the wall at both ramp and cowl side has been investigated and
compared with the experimental results. In Figure 8, we see the behavior, along the ramp. The
use of a fully turbulent simulation has a strong influence on the shocks positions and on the
peak pressure value achieved. It seems that the shock train along the isolator is anticipated.
This hypothesis is confirmed from the pressure coefficient along the cowl side. Also in this case
the shock position is different between numerical and experimental result and in the simulation
the shock reflection is anticipated. Figure 9 show the Stanton distribution along the wall in
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Figure 7: Mach number distribution along different planes.

(a) Ramp side (b) Cowl side

Figure 8: Pressure coefficient distributions.

the kink region, the experimental results are obtained using infrared thermography. Once again
it can be seen that the fully laminar solution is not able to predict the correct behavior of the
heat fluxes. A sudden increase in the Stanton number can be seen just after the kink while
in the experimental results the increase takes place in a smoother way. The two curves reach
approximately the same peak value and then the coefficient decreases. A peak can be observed
for the numerical simulation and this is due to some numerical instabilities caused by the strong
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separation due to the impinging shock. Finally, in Figure 10 we present the value of Mach

Figure 9: Stanton number distribution in the kink region at symmetry plane.

number and pitot pressure coefficient at the isolator exit symmetry plane. The value obtained for
the Mach number show a general agreement with the experimental results. For what concerns
the pitot pressure there is a great discrepancy concerning the third pressure probe from above.
This is due to the fact that in this simulation the reflected shock does not ’hit’ the measurement
point and no peak pressure can be detected.

(a) Mach number (b) Pitot pressure

Figure 10: Distributions at isolator exit symmetry plane.

6. Conclusion
The differential Reynolds stress model has been successfully implemented in the in-house code
QUADFLOW. Results on a two-dimensional test case show a good agreement with other nu-
merical and experimental results. The application of the adaptive module to hypersonic con-
figuration is still under study and discrepancies with non-adaptive solution have to be further
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investigated. Three-dimensional results show the need of a combined laminar-turbulent simu-
lation to match the experimental results.
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