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Summary. Starting in the early nineties, wavelet and wavelet-like techniques have
been successfully used to design adaptive schemes for the numerical solution of
certain types of PDE. In this paper we review two representative examples of the
development of such techniques for Hyperbolic Conservation Laws.

1 Introduction

In the context of Hyperbolic Conservation Laws (HCL henceforth), singular-
ities and sharp transition regions model such important physical phenomena
as the formation and evolution of shock waves. There is a general agreement
that shock related phenomena need an adequate numerical treatment that
usually involves a considerable increase in computational resources.

Solutions to systems of HCLs tend to be highly nonuniform in their spa-
tial behavior. Large regions of smooth, slowly varying behavior are separated
by highly localized transition regions of non-smooth behavior. Fine grids are
often necessary in order to resolve adequately regions of strong variation, but
uniformity in the computational meshes necessarily implies that the solution
is over-resolved in smoothness regions, usually the largest part of the compu-
tational domain.

The need to solve realistic problems has motivated the development of
adaptive techniques, for which the computational effort concentrates near re-
gions where singularities or sharp transitions occur.

Classical Adaptive Mesh Refinement (AMR) techniques [BO84, BC89]
rely on a sequence of nested grids of increasing resolution and on certain error
estimators that seek to determine locally whether the current resolution of the
numerical solution is sufficient or a finer grid is necessary. These techniques
involve a considerable effort in programming and data management but are
now routinely used in realistic simulations.



2 G. Chiavassa et al.

In recent years, the development of the theory of wavelets has provided an
additional tool to design numerical schemes that seek to adapt the computa-
tional resources to the local structure of the solution to be computed.

Working within a Galerkin framework, Liandrat and Tchamitchian [LT]
developed a numerical scheme in which adaptive refinement is implemented
by adding layers of successive “details” that locally increase the resolution
of the approximation. Time adaptivity was incorporated in [BMP92], where
the authors present a wavelet-based numerical method for hyperbolic and
parabolic PDEs that adapts the space and time resolutions to the properties
of the PDE and the local structure of the solution.

Being translates and dilates of a single function, wavelet bases are often
too ‘rigid’ for certain applications. Indeed, in [LT, BMP92] only periodic
problems for scalar hyperbolic and parabolic equations in one dimension are
handled, mainly because of various technical difficulties related to the wavelet
basis considered. Even though some of the problems related to the poor repre-
sentation of boundaries by wavelet basis have been addressed in recent years
(see [Coh03, Dah97] for good reviews on wavelet methods for PDEs), success-
ful multiresolution-based adaptive techniques for HCL have followed instead
the path laid out by A. Harten in his seminal work [Har95].

In the early 90’s, A. Harten developed a general framework for multireso-
lution (MR) that exhibits a larger degree of flexibility, while retaining many
of the properties associated to wavelet-decompositions. A distinctive feature
of Harten’s framework is that a discrete data set is always interpreted as the
result of the application of a particular discretization operator on a func-
tion belonging to an appropriate functional space. This feature is well suited
for computing solutions to PDEs by numerical techniques, since the values
obtained are interpreted as discrete realizations of the solution on a compu-
tational mesh.

A MR decomposition of a discrete realization of a given function gives
precise information on the local regularity of that function. Harten’s adaptive
strategy is based on the smoothness information contained on an appropriate
MR decomposition of the numerical data obtained, at each time step, by an
underlying numerical scheme.

In its simplest implementation the goal of the MR-based adaptive scheme
is, essentially, to gain computational time while remaining within the same
accuracy as the reference scheme, i.e. the scheme on the finest computational
mesh for which the user is pleased with the computational results. Successful
implementations of this strategy have been carried out for two-dimensional
Cartesian meshes [BH95, BH97, CDO1], curvilinear meshes [DGMO0] and
unstructured meshes [Abg97, CDKP00, BOLRO1].

A more elaborate implementation has been developed in [CKMPO03]. Here,
the MR, decomposition of the numerical data is used to reduce not only the
computational cost, but also the memory requirements of the computation,
while remaining within the same accuracy as the reference scheme. The imple-
mentation in [CKMPO03] is indeed a spatial AMR technique, in which adaptive
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refinements are based on the smoothness information obtained from the MR
decomposition of the data.

In this paper we shall review these two main directions in which Harten’s
methodology for the design of adaptive schemes for HCLs has evolved during
the last ten years. The paper is organized as follows: In section 2 we briefly
describe the essential ingredients of Harten’s framework for MR, with par-
ticular attention to the interpolatory and cell-average frameworks. Section 3
describes the basic strategy of MR-based adaptive schemes. In section 3.1 we
briefly review the cost-reduction implementation and in section 3.2 the fully
adaptive one. We close in section 4 with a summary.

2 Data Representation and Multiscale Analysis

The numerical values obtained by a given numerical scheme are understood
as approximations to a discrete realization of the solution on an underlying
computational mesh. When using a sufficiently robust scheme, these numerical
values reflect in one way or another the behavior of the true solution. In those
regions where the solution is smooth, the discrete data displays a ’smooth
discrete behavior’. At shocks and/or contact discontinuities, the discontinuous
behavior of the true solution is represented by a sharp profile. In fact, the
robustness of the scheme is often measured by the ability to represent a shock
transition as a sharp, oscillation-free, discrete profile.

Smoothness regions can be handled with rather unsophisticated (and non-
expensive) numerical techniques, while compression regions and shocks require
a very specialized numerical treatment. A multiscale decomposition of the
numerical solution at each time step can provide the necessary information
about the local smoothness of the underlying data to allow for an adaptive
computation.

A multiresolution (MR) decomposition of a discrete data set is an alterna-
tive (i.e. equivalent) representation that encodes the information as a coarse
realization of the given data set plus a sequence of detail coefficients of ascen-
ding resolution. The detail (scale, wavelet) coefficients represent the difference
in information between consecutive resolution levels.

In the following we give a brief overview of the core ingredients of Harten’s
MR concept namely: (i) a sequence of nested discretization operators and (ii)
a sequence of consistent reconstruction operators.

Discretization and Decimation The starting point is a sequence of
vector spaces Vj, | € Ny. The index [ represents the resolution level (increas-
ing | means more resolution). For the application that we have in mind,
the resolution levels are specified by a sequence of computational meshes
G = {2 k}tres, ! = 0,...,L on a domain (2, and V; represents a linear
space of discrete data, related to G; via a particular discretization operator.

The discretization operators are linear operators acting on a function space
D; : F — V; (F is usually the solution space for the PDE). Given u € F, Dju
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assigns a discrete value to each (2 € G,
’L_Lfk = (D) =: A(Ql,k)u Y2, C G (1)

The grid elements, (2, can be either grid-points or mesh-cells (structured
or unstructured). The chosen notation reflects the fact that we think of the
discretization as an averaging operator. For point-value discretizations, the
elements of the grid are its nodes and the averaging is done with respect to
Dirac’s delta function. For cell-average discretizations, the elements of the
mesh are the cells (quadrilateral, triangles, hexahedra) and the averaging is
done with respect to the indicator function of each cell.

To obtain multiscale decompositions associated to a sequence of meshes
{Gi} on a domain 2 C R?, the associated discretization operators D; have to
satisfy two essential properties

1. Dy is onto.
2. The null spaces satisfy N (D;) C N (Di41).

Property 2 gives the sequence {D;} a nested structure. For our intended ap-
plication, this property derives from the structure of the averaging operator
and a nested structure in the sequence {G;}, i.e. each cell (2, on level [ can
be subdivided into subcells 2,11, on the finer level / 4 1 so that

1k = Uremy 41, (2)

As a consequence of properties 1 and 2 we can associate to the sequence
{D;} asequence of decimation operators, by which coarse data is obtained from
fine data [Har96]: If u € F and 4™ = Dpu for each m, then @' = D}, u'*!
for all I. For local averaging operators we obtain

D;+1 Vg — W (Df+1ﬂl+1)k = Z mi:’g'ﬂi‘—’_l? ke Ji 3)
TEM
where the coefficients mL’?T depend only on the sequence {D;}.
Reconstruction and Prediction To represent the difference between
discrete values on two consecutive resolution levels, a sequence of consistent
reconstruction operators is introduced. For each resolution level R; : V; — F,
where consistency means that

DR =a Vi € V. (4)

Notice that if @' = Dju, u € F, then R;@' is interpreted as an approximation
to u. In general u # R;@', but (4) implies that u and R;@' have the same
discrete information on G;.

In our context, R;u' is constructed by defining appropriate piecewise poly-
nomial functions. For each element (2 € G; we construct a polynomial
RZJ}; : 2 — R of degree N that is determined by the recovery conditions
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A(QI,T)RIJY,C(-,'L_LI) = 'L_I,L, r e Sl,k- (5)
Here S; ) is the stencil of the polynomial R{Yk (z,@'). It denotes an index set
on level ! with as many indices as degrees of freedom for R;VJC. These indices
correspond to a local neighborhood of the element (2 ; and they provide an
admissible configuration, in the sense that (5) leads to a uniquely solvable
RY..

The reconstruction operators are then defined by piecing together these
polynomial reconstructions. If the elements are mesh-cells, then

Rlﬂl(!ﬂ) = Rﬂ(w;ﬂl), x € Ql,k- (6)

Notice that consistency follows from the fact that (2 belongs to S k.-
Remark The linearity of D; and the recovery conditions imply that the
reconstruction process has polynomial exactness of degree N, i.e.

RY(,7) =p() Vp e Py with 7 = Dip. (7)

The sequences {R;}, {D;} are used to define prediction operators, P/, :
Viy1 — V;, that compute fine grid values from coarse grid values. These are
defined as P}, ; = D41 Ry, hence

attt = (PIat), = A1) R (LaY), re My, 1€N.  (8)
The prediction errors, computed as

e m gt gt ke g,

contain the information in @*! which cannot be predicted from the coarser

data @ = Df +la’+1 by the prediction scheme Pll +1- These errors represent,

hence, the difference in information between consecutive resolution levels.
Clearly, the discrete sets a'+! and (u! = D!, jul*!, et = gl — p/tlal)

are equivalent. However there is an inherent redundancy in the information

contained in e'**. In fact D ;e =0, see [Har96], i.e.

(Dipae™ = D> mlet =0, kel 9)
T‘EMl,k

A non-redundant two scale representation of @‘*t!, can be obtained by
defining the scale coefficients, or detail coefficients, as the coordinates of the
prediction error expressed in a basis of V(D! ,), the null space of D}, ,. In
[DGMO0], following the guidelines of the standard theory in wavelet-type mul-
tiscale decompositions, the authors resort to the concept of stable completions
to provide a working definition of the scale coefficients.

Notice that for each (2, there are #.M;; non-independent prediction
errors. Because of (9), these can be adequately represented by #M; , — 1 in-
dependent quantities: the scale coefficients. When S; 1, is chosen independently
of k, one finds that
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dy= > mplet, ke (10)
TEMz,k

where J 1 is an index set associated to (2 ; and such that #J;, = #M;—1.
A one-to-one two-scale representation of a data set @!t! is obtained by
considering @' = D}, a'*! and d, in (10).
Let 4* = Dpu for u € F , where L is the index of a sufficiently fine mesh
G1.- Repeating the previous process for the grid hierarchy {G;}% , we obtain
a multi-scale decomposition of @.

ul e (Wt dF Y e (W% d0dY - dETY = Ml

ul s ol sul2 5 54d

N gLt Negi-z N Ny (11)
Let us consider v € F and u” = Dpu. Relations (1) and (8) lead to
et =att —at = (D (u = RY(@Y)) . reMy  (12)
Notice that for any p € Py, (12) and (7) imply that for r € M, C Ji41
et = A1) (u = p) = A1) R (5 Di(u = p)). (13)

Since smooth functions are well approximated by polynomials, the above re-
lation shows that prediction errors are expected to be small in regions of
smoothness. Because of (10) the same will hold for the scale coefficients dy .
It is precisely because of this relation that MR decompositions can be consid-
ered as a tool to adapt computational refinements to the local regularity of
the solution.

In numerical simulations for time dependent HCLs, the starting point at
each time step is a discrete data set u’ = {uF}/”, so that each value u} is
linked to a particular element of an underlying mesh Gr,. The grid elements can
be either mesh cells, as in standard finite volume schemes, but also mesh points
as in the ENO numerical schemes considered in [SO88]. Within Harten’s
framework for MR, each interpretation (cell-averages or point-values) has an
associated natural MR setting.

As an example, we briefly review next the point-value MR setting.

2.1 Interpolatory MR

In the point-value framework for MR the grid elements are the mesh nodes.
In what follows, it will be convenient to be a bit more specific in our de-
scription. For this, we consider a sequence of uniform nested grids on [0, 1]
G = {z}};",, obtained by recursive dyadic refinement of Gy, which we con-
sider as the coarsest resolution level associated to our underlying problem.
Hence Q4121 = 51" = of = Q14 (see Fig. 2.1-left), hy = 27 'hg, J; = 2!.Jo.
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Cartesian meshes in 2D or 3D are obtained by a tensor product construction
using these 1D meshes, see Fig. 2.1-right (see e.g. [BH97] for more specific de-
tails). Within the Harten’s general framework, the extension to unstructured
meshes is conceptually straightforward, although its particular application
requires a certain degree of familiarity with the technical aspects of using un-
structured meshes for the solution of PDEs (see [AH98, Abg97] for specific
details).

The transfer of information from fine to coarse is done by retaining those
values attached to points in G! C G'*! and discarding the rest. In the 1D
case of Fig. 2.1-left, the decimation by restriction process is defined as uf,c =
(D}, u*1)), = ubt!. For the case 2D of Fig. 2.1-right Uy = (Df W) m =
ul2-|1;,12m‘

Decimation by restriction has a natural correspondence with the inter-
pretation of the discrete sets as being the values of an underlying func-
tion u(z) at the mesh points of each grid, i.e. if D,,u = u(G,,), Vm, then

L_pl 41— pl _ _
w' =Dy u™ = Di Dipru = u(Gy) = Dyu.

Fig. 1. +: mesh points in G'*'; e: Mesh points in G'. Left 1D, right 2D uniform
meshes. Prediction errors are computed at points in G'*! — G'.

Given a grid element z} € G;, we consider the polynomial L}, character-
ized by the recovery conditions

LY@hu)y=ul, r=k-p....k+p+1 (14)
where p > 0 is a fixed integer, chosen independently of [ and k. Notice that
L} (z;u') is the Lagrange interpolation polynomial of degree N = 2p + 1
based on the stencil S, = {wi}fiif; and the data attached to it.

Following (6) we have (see also Fig. 2)
Ryl (z) == Lf}rk(x;ul), z € [zh,ah ], k=0,...0—-1 (15)
and following (8) we get the prediction operator, which obtains fine data from
coarse data, @bt = (P/ T ul), = LN (@it?, u'). Hence

! = Ll (a5 u') = Lk (2, ') = uj, (16)

P
1 I
“2-}911 = L;Yk(x;/;ip“l) = Z /Bl(ui;—i-r + uic—r—i—l) (17)

r=1
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where the coeflicients 3,,, depend on N (see e.g. [Har96]).

Since ubt! = u}, (16) implies that e, = 0. The prediction error for the odd
values will not be zero in general, hence in this setting the scale coefficients
are defined as d}, := ujt}, — @b} . The invertible two-scale transformation is

(k=0,...J,—1)

[ _ 41 +1 _ 1
Up = Ugg o Ugp, = Uy (18)
dl _ ul+1 _ ﬂl+1 ul+1 _ ﬂl+1 + dl :

k — “2k+1 2k+1 2k+1 — Y2k+1 k

Notice that the two discrete sets u!*! and {(u!,d")}, which have exactly the
same cardinality, are absolutely equivalent.

The interpretation of a multiscale decomposition within the point-value
setting is straightforward: The information contents of the sequence u”, which
is understood as the point-values of u(z) on the (fine) grid Gr,, is decomposed
as u?, those same values but on a much coarser mesh plus a sequence of scale
coefficients at each resolution level between Gy and Gr,. The scale coefficients
d’, represent the difference in information between discretizations of the func-
tion at two consecutive resolution levels, or in other words, the information
on level [ that cannot be predicted from the coarse values one level below. In
this framework the scale coefficients are simply interpolation errors.
Remark The centered-stencil construction for L7, was used in [DD89] within
the context of binary subdivision schemes, which were the basis of Donoho’s
construction of the Interpolatory Wavelet Transform (IWT) [Don92]. The
IWT has been used to design adaptive schemes for scalar HCLs independently
by Homlstrém [Hol99]

The relation between scale coefficients and smooth behavior. Let us
assume that the discrete data u” = u(Gr), where u(z) is a piecewise smooth
function. The scale coeflicients in the point-value setting are simply interpo-
lation errors, hence the relation between the behavior of the scale coefficients
with respect to the regularity of u can be analyzed using elementary argu-
ments in interpolation theory.

Figure 2 shows the piecewise polynomial interpolatory reconstruction (15)
of a piecewise smooth function. We clearly observe that the quality of the ap-
proximation is degraded around the singularity, leading to large interpolation
errors. Note that the region affected by the singularity is larger for higher
degree polynomials.

A precise estimate of the size of the scale coefficients, can be given by
expressing the error in Lagrange interpolation in its so-called Newton form

w(z) = L)} (x) + ulSip, Tlwik(x) @ € [z, Tpg] (19)

where u[S;k, z] denotes the N + 1st divided difference of u(x) at the points

of the stencil and z and wy(2) = I ¢s, , (T — zl).
Since dl, = u[S;x, 255" Jw(zht! ), the relation between the smoothness

of a function and the behavior of the scale coefficients can be obtained by
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o 05 1 0 05 1

Fig. 2. A piecewise smooth signal (solid line) and its point-values on a uniform grid
(dots on solid line). Interpolatory reconstructions (Dotted lines). Left: p =1, N = 3.
Right p=2,N=5

considering the behavior of the divided differences with respect to singularities
of the function. Let us assume that «(®) has a jump discontinuity in the convex
hull of S, while u(™ is smooth 0 < m < s. Then it is shown in [Har95]
that
di, =2°dytt,, i=0,1

Notice that the decay rate of the scale coefficients is intimately related to
the smoothness of the underlying function and the uniform coarsening of the
hierarchy of meshes. In particular, coefficients belonging to a region of smooth
variation of u(x) should approximately satisfy

di m 2V i=0,1 (20)

so that any deviation from this behavior can be interpreted as lack of smooth-
ness. This observation, which will be revisited later, lies at the heart of
Harten’s heuristics in designing adaptive multiresolution schemes for HCLs.

1t o o o 4 i+ e o o o o

o o5 1 o o5

Fig. 3. Scale coefficients larger than 10~2 for the piecewise smooth signal of Fig. 2.
Left: p=1, N =3. Right: p=2, N=5

2.2 Discretization by cell-averages

In finite volume formulations for HCL, the discrete numerical values are in-
terpreted as approximations to the averages of the solution over the computa-
tional cells defined by the underlying grid. In this case it is more appropriate
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to analyze the data within the cell average framework, in which the grid ele-
ments are the mesh-cells.

Given any locally integrable function u(x) : 2 — R, the cell-average dis-
cretization operator is defined as

1

D) = A2 )u = ——
(Dyu)g (21,1) 2l S,

u(z)de, k=1,...,J. (21)

Notice that because of the additivity of the integral, relation (3) becomes

—

il = (Dl ), = & (a+ L)

for the 1D meshes considered in the previous section and

1
[ S N g A5 _I41 _1+1 _I41
(D@ Ik = 1 (u2k,2j t Uspq105 T Usppjyr T u2k+1,2j+1) (22)

for the 2D (tensor-product) extension.

The remaining ingredient in the MR transformation is the reconstruction
process. The choice of centered stencils of mesh cells in 1D leads to MR
transformations that are closely related to the biorthogonal wavelet framework
(see e.g. [Har95, Coh03]). We refer the reader to [BH97] and [Got98] for
specific descriptions related to our current application.

Relation between scale coefficients and smoothness. In 1D there
is a natural relation between the cell-average and the interpolatory settings
which can be exploited to give a simple proof that, for a given reconstruction
of degree N, the scale coefficients in the MR representation also satisfy (20).

In Fig. 4 we observe that, as in the interpolatory case, the scale coefficients
‘pile up’ around the location of a jump discontinuity. The relation between
scale coefficients and local regularity can be extracted by employing (13) (see
[BHI97, Got98] and also [Coh03]).

oooooooooooooooooooooo

(a) (b) (c)

Fig. 4. (a) A piecewise smooth function (Solid line) and its cell-averages on a
uniform grid (dots on solid line) . Polynomial reconstruction p = 1 (Dotted line);
(b)-(c) Detail coefficients above e¢; = 1072/2777 j=1,...,6. (b) p=1, (c) p=2
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3 Multiresolution schemes within Harten’s framework

We give next a brief 1D description of the basic strategy used in MR schemes
for multidimensional computations.

Let us consider a conservative discretization of a 1D system of conservation
laws

ug + F(u)y =0 (23)
which can be written as
0,
urtt =up - 5—t B(U™). (24)

Conservativity means that the numerical divergence B(U");, has the form
B(Un)k = F(Ulzlfsfl’ R U/:L—FS) - F(Ulyfs,...,k+s+1) (25)

where the function F'(wy,ws,...,wssy1) is the numerical flux function.

Let M be a linear MR transformation based on a hierarchical set of com-
putational meshes {G;}~_, on the domain of interest. Let us consider (24) on
the finest mesh (the reference mesh) and denote the numerical values at time
tn as UL . Since M is a linear transformation, we can write

MUY = MU}, — A\, M B}, (26)

with A\f, = (5,5/}7,[ and Bg,k = B(Uﬁ)k

Harten’s development of multiresolution schemes for HCLs was tightly
linked to previous work on Essentially Non Oscillatory (ENO) schemes, a
class of HRSC schemes for HCLs that obtain very good resolution properties
by performing an elaborate, but very costly, computation of the numerical
flux functions at cell interfaces. With the aim of reducing the cost inherent
to such schemes, in [BH95, BH97] the authors concentrate on the idea of
eliminating heavy flux computations wherever the multiscale analysis reveals
that the solution is smooth. This cost-reduction alternative was further ex-
plored in different contexts, e.g. [Abg97, Bih96, BOLRO1] and the work of
the first two authors [CD01, CDMO01, RCDO03]. In section 3.1 we outline the
implementation in [CDO1].

Starting with the work in [GM99], a parallel development seeks to perform
the time evolution of the numerical values only for a locally refined grid deter-
mined from the smoothness information contained in the MR decomposition
of the numerical data at the beginning of the time step [Miil02, CKMPO03].
In section 3.2 we describe the essential features of this development.

These are two options that lead to essentially different MR-based adap-
tive schemes for HCL. They both evolved from Harten’s original MR-based
adaptive concept and share several common ingredients:

The multiresolution transform. The choice of M is dictated by the
interpretation of the numerical values. Hence, MR transformations within the
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cell-average framework are used for the finite-volume schemes considered in
[BH95, BH97, Abg97, Bih96, BOLRO1] and also in [GM99, Miil02, CKMP03].
Following the work in [SO88], many state of the art HRSC schemes in
conservation form consider the numerical values as approximations to the
point-values of the solution. This simplifies the implementation on Cartesian
meshes in 2D and 3D and was the main motivation in [CDO01] for considering
the point-value framework as the appropriate multiresolution framework.

The thresholding algorithm. A key point lies in the analysis of the
local regularity of both U™ and U™t!, where the latter is of course unknown
at time n, and how this information is used within the adaptive scheme.

The user introduces a thresholding parameter €, which controls the dif-
ference between the reference simulation (the numerical values on the finest
grid) and the outcome of the multilevel computation.

Given UP and MUP = (UR,d*(U™),...d"(U™)), the set of indices of sig-
nificant coefficients is constructed as

D} = {(l,k); |dp(U™)| > e, k€ J, 1€{0,...,L—1}} (27)

where ¢; is a level-dependent threshold value related to €. This set identifies
those locations where the prediction operator produces large errors, hence it
is related to locations where data U* display non-regular behavior.

In practice ¢, = ¢ VI in the point-value framework and er_1 = ¢, g =
€i+1/2,1 < L —1 in the cell-average framework. This choice is motivated by
the stability properties of M ~!. We refer the interested reader to [Har96].

The prediction step. The corresponding set for Uf“, i.e. Dz’tl, is also
needed for the design of the adaptive strategy, but since Uf“ is not known at
the beginning of the time step, we can only give an estimation, ﬁﬁil, which
is computed so that

D UDpE C Dyt (28)

To compute the set ﬁf,tl, which marks the non-smooth regions of both

U and UE‘H, all implementations of MR-based schemes known to us employ
Harten’s heuristic approach: In solving HCLs there are two effects that have
to be taken into account: Finite speed of propagation and compressibility (i.e.
convergence of characteristics which is ultimately responsible for the creation
of shock waves). If a singularity is formed, the CFL condition of the underlying
scheme will limit its speed of propagation. If compression mechanisms are
steepening up a numerical profile, this should be detected as a loss of local
regularity in the behavior of the scale coefficients.

Based on the results of section 2.1 Harten’s heuristics for the computation
of D! in 1D proceeds as follows:

if (I,k) €D}, = (Lk—i)eDpt' i=-2,.,2
if |di| > 2V g and I < L = (I+1,2k+i) € DFT' i=-1,0,1
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The first test takes into account the propagation of information (recall that
the propagation of 'real’ information is limited by the CFL condition). The
second one aims at detecting shock formation. In a smooth region the local
rate of decay of the detail coefficients is determined by the accuracy of the
interpolation and the local regularity of the function. The second test measures
whether the decay rate is that of a smooth function, if this is not the case,
compression leading to shock formation might be taking place and the location
is also marked.

To the best of our knowledge, Harten’s heuristic strategy has not been
rigorously verified to satisfy condition (28). In [CKMPO3] the authors are able
to give a theoretical justification of (28) for a slight modification of Harten’s
heuristics. For this modification, the reliability of the adaptive scheme is fully
ensured, since (28) guarantees that no significant future feature of the solution
is missed. In practice, however, Harten’s heuristics seems to be sufficient.

3.1 Cost-Effective Multiresolution schemes for shock computations

State of the art HRSC schemes succeed in computing highly accurate numer-
ical solutions, (third order or higher) in regions of smoothness, while main-
taining at the same time sharp, oscillation free, numerical profiles at discon-
tinuities. These desirable features are achieved by performing a specific, and
often very expensive, computation of the numerical flux functions at each cell
boundary.

When the underlying grid is uniform, the implementation of these shock
capturing schemes is quite straightforward. Fine grid simulations with HRSC
schemes render very precise numerical approximations to the solution of HCLs,
but the heavy-duty flux computations increase the computational cost in such
a way that for some HRSC schemes 2D fine mesh simulations on personal
computers are out of reach simply because they cost too much.

It is common knowledge that the high-powered flux computations involved
in these schemes are only strictly needed at existing singularities or when
these are about to form. Hence, if both U™ and U™t! are smooth around
a specific location on the underlying computational mesh, it means that no
singularity is present or will be created in the course of the computation,
hence we could avoid using the numerical flux functions of the HRSC scheme
in the computation of the numerical divergence at that location. On the other
hand, around a discontinuity (or when a steep gradient makes it imminent),
the full power of the HRSC scheme is needed, if the high-resolution properties
of the scheme are to be maintained.

This observation forms the basis of the cost-effective alternative: The goal
is to substitute the direct (HRSC) computation of the numerical divergence
on the finest mesh by a multilevel computation based on the smoothness in-
formation obtained from the MR transformation M. The basic cost-reduction
assumption is that interpolating numerical divergences is considerably faster
than computing the necessary fluxes.
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The cost-reduction alternative involves no memory savings. However, and
precisely because of this feature, there is no need for special data structures
and the necessary MR modules can be easily incorporated into any existing
CFD code. When memory requirements are not a major concern (as it is
the case in many 2D computations), this technique often provides the neces-
sary cost-reduction factors to allow very fine HRSC simulations on personal
computers [CD01, RCDO03].

The boolean flag. Thresholding and prediction, as described in the pre-
vious section, are combined so that the set D7 is converted into the deter-
mination of a boolean flag whose value, 0 or 1, will determine the choice of
procedure to compute the numerical divergence.

For a given tolerance parameter €, starting from a zero value for all b,
one applies for each detail coefficient the following two tests:

if |dy| > = b, ;=1 i=-2,.,2
if |dj,| > 2" g and I <L = bLfL, =1 i=-1,0,1

In the point-value setting, the extension to 2D is straightforward (see [CDO01]).
For the cell-average framework see [BH95, DGMO0].

The multilevel evaluation of the numerical divergence within the
point-value setting. Instead of computing B} with the HRSC scheme at
all points in Gr,, in [CDO01] we apply the following procedure involving the
boolean flags defined previously

1) Compute B (i.e for all points of the coarsest grid Go) directly with the
HRSC scheme.
2) Repeat for I =0 to L — 1 to obtain B}:
For each z4t}, € Gy — G
- if bﬁc =1 the location is flagged as non-smooth, so that a precise com-
putation of the numerical divergence is required: Compute B o511
directly with the HRSC scheme.
— if b, = 0 the location belongs to a smooth region and a direct (ex-
pensive) computation can be avoided: Compute B, 5, using the

- . . I+1
prediction operator in M, i.e. B oy = (P B")apy1-

The cpu gain of this algorithm lies in the fact that the cost of the prediction
operator is negligible compared to the expensive HRSC evaluation.
As an example, in our implementation for the 2D Euler equations [CDO01],
the prediction operator is based on a 2D Lagrange polynomial interpolation
of degree 3 (see [BH97]) and we use a (formally) third order HRSC described
in [DM96] for which the effective ratio for the evaluation of one numerical
divergence is about 1/100.
Remark: Since the grids {G;}; are embedded, and the numerical values are
attached to mesh points in the point-value setting, each direct (HRSC) eval-
uation must be done with the values of U™ on the finest grid Gr, (they are
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always available in this method). This guarantees that the numerical diver-
gence is always computed by the HRSC with a precision related to the finest
spatial discretization step.

This multilevel strategy has been detailed, analyzed and tested on several
benchmark tests involving the 2D Euler equations. Numerical results, which
are reported in a series of papers [CD01, CDM01, RCDO03], indicate that the
quality of the multilevel approximation (the difference between the outcome
of the multilevel algorithm and the reference simulation) is directly controlled
by the tolerance parameter € used in the thresholding algorithm.

The efficiency of the multilevel scheme is, of course, problem dependent.
We refer again to the aforementioned papers for a specific evaluation of the
efficiency of the multilevel scheme in several situations. Here we present a
specific simulation that illustrates its performance. We have represented on
Fig. 8 the result of the interaction between a Taylor vortex and a Mach 4
shock. This interaction is difficult to handle numerically for Mach numbers
larger than 2, where the use of robust HRSC methods are necessary in order to
represent correctly the physics of the problem. Using the multilevel method
outlined in this section, we performed in [RCDO03] a detailed study of the
phenomenology of these interactions.

The parameters used for the simulation in Fig. 8 are the following: The
computational domain is [0, 1]x[0, 2], the finest grid G, has 512x256 uniformly
spaced points and the coarsest Gg is 8 X 4 points (6 levels of refinement). The
thresholding parameter is e = 5.10~%. We display a numerical Schlieren plot
of the density at times ¢ = 0 and ¢ = 0.4. Associated to each density plot we
show a display where only the points for which the numerical divergence has
been evaluated by the HRSC scheme are represented.

After the interaction the flow becomes much more complex, the vortex is
highly distorted and a strong acoustic wave develops ahead of it. All these
features are correctly identified by the adaptive strategy, which validates the
smoothness analysis done by the wavelet coefficients.

In this simulation, the percentage of points where a direct evaluation is
done grows only from 3.4% to 10.6%, leading to an effective cpu time reduction
of a factor 6.8 compared to a reference simulation without the multilevel
strategy.

3.2 Fully Adaptive Finite Volume Schemes

A modified approach has been developed that is aiming at reducing the com-
putational costs with regard to both computational time and memory require-
ments but still maintaining the accuracy of the reference scheme. The main
idea is to evolve in time only the cell averages of a locally refined grid, so that
the finest (reference) mesh does not need to be available.

We emphasize that the ultimate goal is to provide an algorithm that can
be realized with an optimal complexity, i.e., the number of floating point
operations is proportional to the number of cells in the adaptive grid. This
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requires new data structures supporting the local structure of the algorithm.
Here hash tables turned out to be a very efficient tool. For details on the
implementation and the realization of the algorithms in terms of these data
structures we refer to [MV00]. Tree structures have also been considered in
[RSTBO03]

In the following we summarize the main ingredients specific to this fully
adaptive concept, namely, local grid refinement and evolution of local cell av-
erages. For more specific details we refer to [Miil02].

Local Grid Refinement

The starting point is a locally refined grid characterized by the index set
Gr.C{(l,k); k€ Ji, 1=0,...,L} such that

2 = U(l,k)egf,e -Ql,k-

that is provided with cell averages {U/" }(,r)egy,. corresponding to time step
n. It is required that the set G7  has the structure of a graded tree.

We will now summarize the six steps of the local grid refinement proce-
dure in the context of cell averages, namely, (i) local MR transformation, (ii)
thresholding, (iii) prediction, (iv) grading, (v) local grid refinement and (vi)
local inverse MR transformation.

Local MR transformation. As outlined in sections 2 and 2.2 we perform
a MR analysis of the cell averages at hand which provides a new data for-
mat composed of data on a coarsest discretization level and arrays of details
describing the difference information between the data on two consecutive
discretization levels. For this purpose we proceed level by level from fine to
coarse as indicated in (11). Note that the two-scale transformation is per-
formed locally only for the indices corresponding to the adaptive grid instead
of the full levels. In particular, applying the local two-scale transformation
can be interpreted as a successive coarsening of the grid where fine-grid cells
are agglomerated to a coarse-grid cell and the difference information is stored
by the detail coefficients.

Thresholding. We now apply a hard thresholding to the sequence of
detail coefficients, i.e., discard all details dfc that fall in absolute value below a
certain threshold value. Here we apply the same strategy as in section 3. For
this purpose we compute the index set D} . corresponding to the significant
details according to (27).

Prediction. To perform the evolution step, we have to determine the
adaptive grid on the new time level. Therefore we predict all significant de-
tails on time level n + 1 that may become significant due to the evolution.
In practice, we use Harten’s heuristic strategy summarized in section 3 to
compute the prediction set ﬁzﬁl.

Grading. In order to perform the grid adaptation procedure level by level
we need that the index set of significant details corresponds to a graded tree,



MR-adaptive schemes for HCLs 17

i.e., the levels of neighboring cells differ at most by one. Since the set D"+1
is in general not graded, we have to apply in addition a grading procedure
This will slightly inflate the index set of significant details but has so far been
observed not to spoil the complexity reduction of floating point operations in
any significant way. In fact, from the nature of singularities occurring in flow
computations one expects the distribution of significant details to exhibit at
least nearly tree structure (see figures 3, 4).

Grid adaptation. Then we exploit the inflated set ﬁftl to determine an

associated index set g"+1 which characterizes the adaptive grid at the new

time level. The index set Q"H is initialized by all indices of the coarsest dis-
cretization. Then, traversing through the levels from coarse to fine we proceed
as follows: if (I, k) D"+1 then the cell (2;; is locally refined, i.e., the index

(1, k) is removed from g"+1 and the indices of the subcells on the finer level

are added to g"+1 Flnally we obtain the locally adapted grid which naturally
corresponds to the leaves of the graded tree of significant details.

Local inverse MR transformation By the previous step the grid has
locally changed due to local refinement and coarsening. In order to determine
the cell averages {U(’;’k)}(l’k) egptt, We employ a local inverse MR transfor-

mation interrelating the local cell averages (Ul’}k)?l Keay . and the significant

details (di:)(l’k)e'pg .- Again we proceed level by level from coarse to fine where
we locally replace a cell average on the coarse scale by the cell averages of its
subcells whenever there is a significant detail associated to this coarse cell in
D”+1 Note that the computation of these cell averages can be simultaneously
determmed when performing the grid adaptation.

Evolution of Local Cell Averages

The time evolution of the cell averages is now performed on the new adaptive
grid determined by the index set g”“

Ut =Ul% = N Bl A= II(ZSTtkI (k) e Grth, (29)
where Bl’fk denotes the numerical divergence of cell (2; .

In principle, the adaptive grid could be interpreted as an unstructured grid
and the numerical divergence could be computed by the local data at hand,
see for instance [RSTBO03]. Since the ultimate goal is the design of an adaptive
scheme with an error still corresponding to the discretization of the finest grid,
this strategy could result in a severe accuracy deficiency. Therefore we have
to be more careful in the computation of the local numerical divergence. For
this purpose, we assume that a reference FVS is given on the uniform finest
grid G, similar to (29) with the numerical divergence

L,n
Biy=)Y_ rt.|F.
L.k FkL),Cf?QL,k | k,T| k,r
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Fig. 6. Local flux balances, (®) boundary

Fig. 5. Finite volume discretization flux, (o) internal flux

determined by the sum of all fluxes over all cell edges of the cell 2 ;. Here
F,il denotes the interface of the cell {2, ; to the neighbor cell {2, , and FkI: o
the corresponding numerical flux. See Fig. 5 for clarification of notation. The
numerical fluxes are assumed to be conservative, i.e.,

n L,n
it =—F5" (30)

Applying (virtually) the linear MR transformation M for cell averages
similar to (26) results in local evolution equations for the cell averages on the
coarser scales [ = 0,..., L — 1, see (29), where the local numerical divergence
is recursively defined by

B ::Z B, . 31
Lk R4p1.-C g +1,r ( )

This is sketched in Fig. 6 for a dyadic grid refinement. According to (31) we
have to compute all fluxes marked by e and o. However, the internal fluxes
corresponding to o cancel each other out due to the conservation property (30)
resulting in a significant reduction of the computational complexity. Finally,

we end up with
n o _ l l,n
Bl,k - ZF,IC),.CBQt,k |Fk,r| Fk,r (32)

where the local numerical fluxes are defined by

Fl,n o Z |F]l,_'s_1 Fl+1,n _ Z |F]L,s| FL,n (33)
k,r * p]?:lcl“,é,r |Fl€,r| J»s rr.crt, |Fl€,r| j.s °

Together with (29) this specifies the fully adaptive scheme. Note that we never
employ the complexity of the finest grid.

Remark. In 1D the local flux computation simplifies because there are
no hanging nodes in the adaptive grid. Due to the nestedness of the grids, see
Fig. 2.1, the numerical fluxes on level [ coincide with the numerical fluxes on
the higher scales, i.e.,
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Fig. 7. Exact (left), locally structured (middle) and unstructured (right) flux com-
putation, (e) numerical flux, (o) cell average

n __ n — —_ n — n
Fl,k - Fl+1,2k — s — FLp2Ll-lp = F(UL,ZL—’k—s,...,ZL—’k+s+1)' (34)

Since the numerical divergence on the coarser levels is recursively defined we
further conclude

2L-1_

n ._ nn n _ n _rmn _
By, := Bjlop + Bllogq1 = E By or-tpyi = FLor—1(py1) = FL o1
=0

Remark. According to (33) the numerical fluxes have to be computed by
the data on the finest scale. In order to provide these data we have to perform
locally an inverse two-scale transformation. In 1D this does not degrade the
complexity of the algorithm but it will in higher space dimensions. For HRSC
we may perform the local flux computation by means of the local data at
hand instead of the data on the finest scale, see Fig. 7 (middle and right). In
practice, this does not affect the accuracy but preserves the computational
complexity. In this case, the number of flux computations is proportional to
the number of significant detail coefficients #D7 . or #G7 ., respectively.

Remark. In Harten’s original approach [Har95, BH97], the complexity
is not reduced. To see this, we consider Fig. 6. Here expensive fluxes based
on higher—order upwind discretizations are computed at e and, in addition,
cheap finite difference flux approximations have to be computed at o.

Data Structures, Error Control and Real World Applications

In the previous section we outlined an adaptive MR scheme with an optimal
complexity in the sense that the number of operations is proportional to the
number of unknowns, i.e., # Dr . and # G, respectively. In order to design
an optimal code, i.e., the memory requirements and the CPU time are pro-
portional to the complexity of the adaptive algorithm, it turns out that the
choice of the data structures and the memory management has a significant
influence on the performance of the computation. In particular, the design
of appropriate data structures crucially depends on the underlying adaptive
algorithm, i.e., the data structures have to be adapted to the algorithmic re-
quirements and should not be designed independently. For our purposes the
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concept of hashing turns out to be an efficient tool. To this end, we devel-
oped the template library igpm_t_1ib, see [MVO00], from which we derive the
appropriate data structures for the realization of the adaptive code.

Concerning the quality of the computation we are aiming at the accuracy of
the reference scheme. For this purpose, the local data provided by the adaptive
scheme are projected onto the finest mesh applying the inverse MR transfor-
mation where the non-significant details are put to zero. The ideal strategy
would be to determine the threshold value € such that the discretization error
of the reference scheme, i.e., difference between exact solution and reference
scheme, and the perturbation error, i.e., the difference between the reference
scheme and the adaptive scheme, are balanced. For scalar conservation laws
this concept was rigorously verified, see [CKMPO03].

By now the new adaptive MR concept has been applied by several groups
with great success to different real world applications, e.g., 2D/3D-steady
state computations of compressible fluid flow around air wings modeled by the
Euler and Navier—-Stokes equations, respectively, as well as fluid-structure in-
teractions on block-structured curvilinear grid patches [BGMH'03, BLMO03],
non-stationary shock-bubble interactions on 2D Cartesian grids for Euler
equations [Miil02], backward—facing step on 2D triangulations [CKP02] and
simulation of a flame ball modeled by reaction—diffusion equations on 3D
Cartesian grids [RSTBO03].

An example is shown for the transonic flow over a NACA0012 airfoil at
My, = 0.95, a = 0°, see figures 9 and 10. The flow pattern downstream of
the trailing edge is characterized by a complex shock configuration frequently
referred to as fish-tail. The oblique shocks extend about 10 to 12 chord lengths
into the flow domain. The steady—state computation was carried out using an
implicit local-time stepping using the QUADFLOW solver [BGMH™"03]. The
final adaptive grid consists of 55084 cells which provides a very high resolution
over the complete extent of the shocks. Such a high shock resolution is not
feasible using standard structured grids. Discretization of the shock region
only by a uniform structured mesh equals about 29.5-10° grid cells. A uniform
discretization of the complete flow domain would result in about 10% cells.

4 Conclusion

Harten’s early developments on the use of MR techniques for numerical com-
putations involving HCLs were presented as an attractive alternative to the
adaptive grid methodology. The schemes currently in use show that the MR
decomposition of the numerical data at each time step provides an adequate
tool to adapt the computational resources to the nature of the data.
Cost-effective MR-based schemes provide an easy to use adaptive tool that
has been succesfully used to investigate the behavior of new HRSC schemes.
Fully adaptive MR-based schemes become a novel AMR technique, where the
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refinement criteria is based on the smoothness information contained in the
MR representation of the data.
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Fig. 8. Schlieren pictures of the density field of a Mach 4 shock-vortex interaction
and associated multilevel grids. a) time t =0, b) time t = 0.4.
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Fig. 9. Total view of NACA0012 airfoil, M = 0.95, a = 0.0°. Left Figure: Com-

putational grid. Right Figure: Pressure distribution, Mmin = 0.0, Mmaz = 1.45,
AM = 0.05
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Fig. 10. Detail of Fig. 9



