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Coupling of compressible Euler equations

Michael Herty · Siegfried Müller · Aleksey Sikstel

Abstract The Riemann problem for coupled Euler equations is analysed. The coupling condi-
tions at a steady interface impose continuous pressure and temperature while momentum differs.
The outtake of the momentum models the influence of a gas-powered generator linked to a
high-pressure gas network. We prove the existence and uniqueness of the solution to the cou-
pled Riemann problem in case the drop in the momentum is sufficiently small. Furthermore,
we analyse the coupling problem for the special case of isentropic Euler equations and obtain
similar results. The behaviour of coupled isentropic and coupled compressible Euler equations is
compared numerically.

Keywords Gas networks · compressible Euler equations · isentropic Euler equations · coupling
conditions · coupled Riemann problem · Lax curves

1 Introduction

Coupled systems of one-dimensional hyperbolic balance laws have recently gained interest in
the engineering and mathematical community due to numerous applications and we refer e.g.
to [3] for a recent overview in this field. We are interested in the modeling and simulation
of high–pressure gas pipeline systems, that have been studied e.g. in [30,2,4,26]. The coupled
system proposed in this work is in part inspired by questions arising in combined natural gas and
electricity networks. The integration of both sectors has gained recent interest in the engineering
community due to the rise of combined cycle natural gas thermal power plants [13,36,1,40,
31]. For instance, a dramatic change on the gas pipelines in the north–east of the US has been
observed where natural gas-fired electrical generation increased from 5% of total capacity to
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50% in only two decades [40]. Similar changes are observed in Brazil, Europe and expected in
other countries also due to the parallel development in electrical grids to expand intermittent
renewable generation such as solar and wind power. Consequently, it is expected that electric
power plants become one of the major natural gas consumers and the modeling of high–pressure
gas pipelines need to account for those influences in order to meet the requirements for natural
gas flows in pipelines. In general, the modeling of natural gas-fired power generator involves two
networks: the natural gas transportation and the electric transmission network [36,1,40,5]. We
are interested in the effect of the gas-fired generator on the natural gas transportation network
and we are in particular interested in the fine–scale resolution of the resulting flow pattern in the
gas network. Therefore, we consider a fine–scale model given by the Euler equations for such a
dynamics. The relevant regime and the underlying scaling leading to such a model can be found
e.g. in [4]. Depending on the level of detail relevant to the operator simplified models as e.g. the
p-system or algebraic–differential equations might be employed [21,18,39,28,33,38].

The gas–fired generator is usually a turbine and there exist many detailed models to describe
turbine action dynamics, see e.g. [25,32,27]. However, the impact of the gas turbine on the gas
transmission network can be modelled by conditions that leave pressure and temperature of the
transmitted gas constant and only account for the mass loss due to the turbine action [5]. Clearly,
this mass loss induces pressure fluctuations along the gas network which we analyse using the
Euler equations and the p-system, respectively. We focus here on the mathematical aspects and
influence of the turbine on the adjacent transmission network. So far, in mathematical literature
only compressors and valves have been considered [20,23,8,34,12,39]. Compared to this analysis
our contributions are different in two aspects: first, we consider the full Euler system and second,
we do not have mass conservation across a gas–fired turbine. On the contrary it is reasonable to
assume that strong time–dependent changes appear according to the demand of the electricity
network. This leads to pressure fluctuations along the natural gas pipe network. Compared to the
analysis of the coupled Euler system in [9] we do not assume mass conservation and we present
explicit formulas to construct solutions usable in numerical schemes. Furthermore, we present
numerical results that where absent in [9]. However, the analysis of the coupled system is driven
by the recent advances in this direction and it relies as many of the presented approaches on
detailed analysis of suitable Riemann problems. We refer again to [3] for a detailed review of the
literature on this topic.

2 Coupled Riemann Problem for the Euler equations

We analyse the mathematical properties of coupled Euler equations. The coupling conditions
imposed will be used as a fine-scale model for turbine effects on high-pressure gas networks as
motivated in the previous section. The following part is devoted to the mathematical analysis
and the solvability of the coupled problem. The derived formulas will also serve as a numerical
method later on. The problem will be set up as follows: two one-dimensional, compressible gas
flows are coupled at position x = 0 such that the momentum ρv(t, x = 0) has a negative jump
of magnitude ε ∈ R+ while the pressure at the interface p(t, x = 0) as well as the temperature
T (t, x = 0) are assumed to be continuous. As a convention it is assumed that the gas flows in
positive direction, i.e. ρv ≥ 0. To distinguish the left state (inflow) from the right state (outflow)
we denote the states with or without bar, respectively. Then the coupling conditions read

ρv = ρv + ε,

p = p,

T = T.

(1)

Here, ε models the outtake of gas to the turbine. This mass flow is converted to electric power by
the turbine. Usually, the gas turbines are external and therefore do not influence the pressure and
the temperature of the gas inside the pipes. In applications as well as in our numerical results ε
will be time dependent. This does not restrict the following discussion. The gas flow is modelled



Coupling of compressible Euler equations 3

by the compressible Euler equations in one spatial dimension

∂ρ

∂t
+
∂ρv

∂x
= 0, (2)

∂ρv

∂t
+

∂

∂x
(ρv2 + p) = 0, (3)

∂ρE

∂t
+

∂

∂x
(ρv(E + p/ρ)) = 0, (4)

where E = ρe+ 1
2ρv

2 denotes the total energy per unit volume and e the internal energy per unit
mass. The system is closed by the ideal gas law

p = ρRT = ρe(γ − 1) (5)

with specific gas constant R and the constant ratio of specific heat capacities γ ≥ 1. Thus the
speed of sound is given by

c =

√
γp

ρ
. (6)

Furthermore, the flow at the coupling interface is assumed to be subsonic, that is |v(t, x = 0±)| <
c(t, x = 0±). This assumption is typically satisfied in high-pressure gas networks, see [2,30]. The
construction of a solution by means of a Riemann problem (RP) is described in following and
the formulas are given in the Appendix. A RP is a Cauchy problem where the initial data is
constant except for a single discontinuity that, without loss of generality, is located at x = 0. The
solution of the RP for compressible Euler equations is well-known and can be found in classical
textbooks, e.g. in [35,16,10]. The main idea is to connect the two constant initial states via three
Lax curves in the phase space that correspond to the three characteristic k-fields, k = 1, 2, 3.
This results in a nonlinear system of three equations. The 1-wave and the 3-wave corresponding
to the 1-field and the 3-field, respectively, are composed of two branches related to a rarefaction
wave (RW) or a shock wave (SW). However, the 2-wave is a contact discontinuity across which
the pressure p and the velocity v remain constant while other physical quantities may exhibit
a discontinuity. This fact is exploited to transform the system of three equations into a scalar
equation by projecting the three-dimensional phase space to the pressure-velocity space. More
precisely the compressible Euler equations are transformed to primitive variables u := (ρ, v, p)T

and the Lax curves are parameterised by the pressure p. The resulting scalar equation consists of
the difference of the velocity curves corresponding to the forward 1-wave and the backward 3-wave
Lax curve. The unique solution of the resulting scalar equation is the pressure that determines
the intermediate states. The Lax curves in primitive variables are listed in equations (49), (50)
and (61), (62) in the Appendix A.

x

t

0

inflow outflow

uL uR

u(p) u(p)
L+
1 (p;uL) L−

3 (p;uR)

Fig. 1 Wave structure in the t-x-plane. uL and uR - constant initial states at the in- and outflow, respectively.
L+

1 - 1-wave forward Lax curve, L−3 - 3-wave backward Lax curve. u(p) and u(p) - states connected via the
Lax curve to the initial data uL and uR, respectively.

We employ a similar construction to obtain a solution to the coupling problem. Given the
subsonic states uL at the inflow and uR at the outflow the solution of the coupling problem is



4 Michael Herty et al.

0 0.5 1

·107

0

2

4

6

8

p

ρ+1
ρ−3

0 0.5 1

·107

−2,000

0

2,000

p

v+1
v−3

Fig. 2 Left: densities along the 1- and 3-wave in positive and negative direction, respectively. Right: Intersec-
tion of wave curves in the v-p plane.

defined as the solution of two half–RPs u(p) and u(p) that satisfy the coupling conditions (1),
see [22].

We recall some basic properties of conservation laws of the type

∂tw + ∂xf(w) = 0, x ∈ R, t ≥ 0 (7)

for w ∈ Rm. For initial data w(0, x) given by two constant states uL for x < 0 and uR for
x > 0, sufficiently close, the problem admits an entropy weak solution composed of m + 1
constant states separated by m elementary waves [10]. The solution can therefore be written as
w = w(xt ;uL,uR). We assume equation (7) holds for x > 0 and initial data w(x, 0) = uR for
x > 0. Also, we assume equation

∂tw̄ + ∂xf̄(w̄) = 0, (8)

holds for w̄ ∈ Rm̄, a possibly different flux function f̄ and initial data w(x, 0) = uL for x < 0.
At the point x = 0 we prescribe a general condition Ψ = 0 where Ψ : Rm̄+m → R`. As weak
solution to the coupled problem we understand a pair of weak entropy solutions w̄(x, t),w(x, t)
to equation (8) and equation (7) for x < 0 and x > 0, respectively. Further the trace at x = 0
fulfills a.e. in t the coupling condition, i.e.,

Ψ(w̄(0−, t),w(0+, t)) = 0, t > 0. (9)

We refer to [8] for a precise definition in the case of 2×2 conservation laws. Note that in the case
` = m̄ = m, f = f̄ and Ψ(w̄,w) = f̄(w̄)− f(w) the solution should coincide with the solution to
a classical RP for the initial data uL and uR.

A half–RP associated with equation (8) on (−∞, 0) consists of the solution w to the RP for
equation (8) with initial data w(x, 0) = uL for x < 0, and w(x, 0) = v for x > 0 restricted to

x < 0. Similarly, we can consider a half–RP associated with equation (7) on (0,∞) with initial
data w(x, 0) = v for x < 0 and w(x, 0) = uR for x > 0 by restriction to x > 0. Particularly
interesting solutions in view of the coupling conditions are solutions to the half–RP where on
(−∞, 0) the trace of the solution fulfills w(0−, t) = v and on (0,∞) the trace of the solution
fulfills w(0+, t) = v.

In the following we will only consider those solutions. They exist provided that v and v are
suitably chosen. Given a state uL we introduce the notion of admissible boundary states v as
follows. For a given constant state uL the set of admissible boundary data V̄ (uL) consists of
states v ∈ V̄ (uL) such that the solution to the half–RP on (−∞, 0) fulfills w(0−, t) = v. Similarly,
for a given state uR the set of admissible boundary data V (uR) consists of states v ∈ V (uR)
such that the solution to the half–RP on (0,∞) fulfills w(0+, t) = v.
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Definition 1 Having the sets V̄ (uL) and V (uR) at hand the solution to the coupled problem is
constructed as follows: we need to prove that there exist unique states v ∈ V̄ (uL) and v ∈ V (uR)
such that Ψ(v,v) = 0. Provided we have such states the solution to the coupled problem is
given by the solution to the two half–RPs with the corresponding initial data (uL,v) and (v,uR),
respectively.

Due to the definition of the sets V (uR), V̄ (uL), the trace of the solution fulfills the coupling condi-
tion. In order to obtain the solution to the half–RPs we consider states on the p-parameterised Lax
curves corresponding to the forward (+) and the backward (−) i-wave: L±i (p;u) := (ρ±i , v

±
i , p)

T

originating from ũ := (ρ̃, ṽ, p̃)T , i.e. L±i (p̃; ũ) = ũ, i = 1, 2, 3. Since the 2-wave is a contact dis-
continuity, the admissible interfacial states u(p) and u(p) lie on L−1 (·;uL) and L+

3 (·;uR). This
guarantees that the solution to the half–RP has solutions propagating to x > 0 and x < 0,
respectively [11,15].

Applying the ideal gas law (5) the coupling conditions (1) can be rewritten as

p = p,

ρ = ρ,

v = v +
ε

ρ
.

(10)

Note that the continuity of mass is implied by (1) and (5). Thus, the coupling condition on the
momentum is replaced by a condition on the velocity v. Plugging in the states at the correspond-
ing Lax curves into (10) the coupling conditions read

ρ+
1 (p;uL) = ρ−3 (p;uR),

v+
1 (p;uL) = v−3 (p;uR) +

ε

ρ+
1 (p;uL)

.
(11)

Since the density on the Lax curve ρ±i is independent of v±i the coupling condition corresponding
to the continuity of the density is satisfied for any p and the coupling conditions are reduced to
one equation. Incorporating (11) we finally obtain a single equation for one unknown. For this
purpose we define the function

gε : R→ R, p 7→ v+
1 (p;uL)− v−3 (p;uR)︸ ︷︷ ︸

=:g1ε(p)

− ετ+
1 (p;uL)︸ ︷︷ ︸
=:g2ε(p)

(12)

for fixed states uL and uR. Here τ±i := 1/ρ±i denotes the specific volume. Then solving the
coupling problem (11) is equivalent to solving the scalar nonlinear equation

gε(p) = g1
ε(p)− g2

ε(p) = 0. (13)

In case of ε = 0, the coupling problem corresponds to the classical RP that has a unique
solution if vacuum is admitted. Note that in the present work we only consider initial states that
do not result in a vacuum solution for the RP.

Proposition 1 (Solution of the classical RP) Assume that

vL +
2cL
γ − 1

> vR −
2cR
γ − 1

(14)

holds then the classical RP has a unique solution that is not vacuum.

Proof In the setting of the classical RP the function gε reduces to

g0(p) = g1
0(p) = v+

1 (p;uL)− v−3 (p;uR). (15)

The limits of v±i listed in Table 1 in the Appendix A imply the following properties of the velocity:

1. v+
1 is strictly decreasing and convex:

v+
1 (0;uL) = vL +

2cL
γ − 1

> −∞ = lim
p→∞

v+
1 (p;uL). (16)
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2. (v+
1 )′, the first derivative of v+

1 with respect to p, is negative:

(v+
1 )′(0;uL) = −∞ < 0− = lim

p→∞
(v+

1 )′(p;uL). (17)

3. v−3 is strictly increasing and concave:

v−3 (0;uR) = vR −
2cR
γ − 1

<∞ = lim
p→∞

v−3 (p;uR). (18)

4. (v−3 )′, the first derivative of v−3 with respect to p, is positive:

(v−3 )′(0;uR) =∞ > 0+ = lim
p→∞

(v−3 )′(p;uR). (19)

Note that v±i corresponds to a rarefaction wave solution and a shock wave solution in case p
tends to 0 and to ∞, respectively. Because we have assumed that no vacuum states are admitted
and since v+

1 is strictly decreasing and v−3 is strictly increasing there exists a unique root of g0,
see Figure 2.

ut

Since there exists a unique solution of gε(p) = 0 for ε = 0 we may obtain locally the existence
of a solution for ε > 0.

Theorem 1 (Local solutions of gε(p) = 0) Let ε ≥ 0 be sufficiently small. Then, in a neighbourhood

of the solution to the classical RP, there exists a unique root of gε solving the coupling conditions (1).

Proof To prove the local existence of a solution of (13) for ε > 0 we make use of the implicit
function theorem. For this purpose note that gε ∈ C2(R2,R) as a mapping

g : R+ ×R+
0 → R, (p, ε) 7→ g(p, ε;uL,uR) ≡ gε(p). (20)

Let p0 denote the unique root of gε in case of ε = 0, i.e. g0(p0) = 0 according to Proposition 1.
Since by (17) and (19)

∂g

∂p
(p0, 0;uL,uR) =

(
v+
1 (p0;uL)

)′ − (v−3 (p0;uR)
)′
< 0 (21)

there exist open neighbourhoods U(p0) ⊂ R, V (0) ⊂ R and a continuously differentiable map
p : V (0)→ U(p0) such that for all ε ∈ V (0)

g(p(ε), ε;uL,uR) = 0. (22)

ut

Definition 2 Theorem 1 implies that in the neighbourhood of (p0, 0) there exists a family of
unique one-parametric solutions of gε(p) = 0. Since p(ε) ∈ C1(V (0), U(p0)), i.e. these solutions
depend continuously on the unique solutions of the classical RP, we will call them physically

admissible.

Theorem 1 guarantees the existence of a local solution to gε(p) = 0, in a neighbourhood of
the solution of the classical RP. In the next theorem we show that for ε > 0 in fact gε can have
two roots.

Theorem 2 (Behaviour of gε) For ε > 0 gε has a unique maximum located at 0 < p∗ < ∞. For

sufficiently small ε > 0 the maximum value is positive, i.e. gε(p
∗) > 0, and gε has two roots p− and

p+ such that p− < p∗ < p+.
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Fig. 3 Behaviour of gε for varying ε and p for uL = (1, 30, 1.5 · 105)T and uR = (1, 30, 1.2 · 105)T . Colour
blue indicates the area where p corresponds to a two rarefaction wave solution, red to a two shock solution and
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Fig. 4 Behaviour of gε for the classical RP and ε1 = 100, ε2 = 1000. For gε1 the left root p−, the maximum
p∗ and the right root p+ are annotated.

Proof Table 1 in the Appendix A entails the limits of gε towards the boundaries p → 0+ and
p→∞. Since the limits of (g1

ε)′ and (g2
ε)′ coincide:

lim
p→0+

(g1,2)′(p) RW= −∞, lim
p→∞

(g1,2)′(p) SW= 0−, (23)

they do not provide any information about the limits of g′ε. Therefore, we investigate the limit
of the derivative separately. Let 0 ≤ p ≤ min{pL, pR}, then

lim
p→0

g′ε(p)
RW
= −p−

γ+1
γ︸ ︷︷ ︸

→∞

((
cL
γpL

p
γ+1
2γ

L +
cR
γpR

p
γ+1
2γ

R

)
p
γ+1
2γ − ετL

γ

)
︸ ︷︷ ︸

→−ετL/γ

> 0. (24)
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Now let p ≥ max{pL, pR}, then

lim
p→∞

g′ε(p)
SW
= − 1√

2ρL

(γ + 1)p+ (3γ − 1)pL
(γ + 1)p+ (γ − 1)pL︸ ︷︷ ︸

→1

− 1√
2ρR

(γ + 1)p+ (3γ − 1)pR
(γ + 1)p+ (γ − 1)pR︸ ︷︷ ︸

→1

+ ε
4c2L

((γ + 1)p+ (γ − 1)pR)
2︸ ︷︷ ︸

→0

< 0.

(25)

Since gε ∈ C2(R+) (see Appendix A.3) the mean value theorem implies that g′ε(p) has at least
one root in R+. Thus, gε has at least one local maximum because of (24) and (25). The uniqueness
of the maximum is obtained by examining the monotonicity of (g1

ε)′ and (g2
ε)′ respectively. As

stated in equations (59), (60), (72) and (76) in Appendix A we have

(v+
1 )′′ > 0, (v+

1 )′′′ < 0, (26)

(v−3 )′′ < 0, (v−3 )′′′ > 0 (27)

on R+
0 . Thus, for (g1

ε)′ = (v+
1 )′ − (v−3 )′ we conclude

(g1
ε)′′ > 0, (g1

ε)′′′ < 0, (28)

i.e. (g1
ε)′ is strictly monotone increasing and concave. This also holds true for (g2

ε)′ = ε(τ+
1 )′ since

by equations (56), (57), (69) and (70):

(τ+
1 )′′ > 0, (τ+

1 )′′′ < 0. (29)

Consequently, (g1
ε)′ and (g2

ε)′ can have at most one intersection, otherwise g1,2
ε would exhibit

inflection points, contradicting the monotonicity of (g1,2
ε )′. Thus, g′ε has a single root in R+. Let

p∗ denote the location of the unique maximum.
Theorem 1 implies the existence of εmax > 0 such that for all ε ∈ [0, εmax) a root p+ of gε

exists. Since gε has a unique maximum and gε(p)
p→∞−−−−→ −∞ we have that p∗ < p+. Furthermore,

a second root of gε at p− with p− < p∗ has to exist by reason of gε(p)
p→0−−−→ −∞. Finally, since

p∗ is the unique maximum and p− < p∗ < p+ it must hold that gε(p
∗) > 0.

ut

For ε sufficiently small the location of p∗ of the unique maximum can be determined explicitly.

Theorem 3 In case ε is sufficiently small such that the states u and u solving the coupling prob-

lem (10) are both located on the rarefaction branch of the Lax curves, the maximum value of gε and

its location is known in closed form. Let

A :=

(
cLp

1−γ
2γ

L + cRp
1−γ
2γ

R

)
, B :=

τLp
1
γ

L

A
and C :=

2

γ − 1
A, (30)

then

p∗(ε) = (εB)
2γ
γ+1 (31)

and

gε(p
∗(ε)) = gε(0)−

(
B
γ−1
γ+1C + τLp

1
γ

LB
− 2
γ+1

)
ε
γ−1
γ+1 . (32)

Furthermore, we determine ε̄max ∈ R+ as the largest value for which holds gε(p
∗) > 0 ∀ε ∈ [0, ε̄max),

ε̄
γ−1
γ+1
max = gε(0)

(
τLp

1
γ

L

) 1−γ
γ+1 γ − 1

γ + 1
A−

2
γ+1 . (33)
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Proof In Appendix A.1 the addends of g′ε, (v±1,3)′ and (τ+
1 )′, are defined by equations (58) and (55),

respectively. Solving the equation g′ε = 0 for the case of two rarefaction waves, i.e. p < min{pL, pR}
by means of elementary algebra yields the assertions.

ut

Remark 1 For increasing values of ε the maximum p∗(ε) decreases and thus the roots p−(ε) and
p+(ε) are approaching each other until they coincide at some ε = εmax. Note that ε̄max coincides
with εmax in Theorem 2 if p∗ < min{pL, pR}. For ε > εmax the maximum of gε is negative, i.e.
gε(p

∗(ε)) < 0 and thus there exists no root of gε and, equivalently, no solution to the coupling
problem (1).

Remark 2 For ε ∈ (0, εmax) the singularity of gε at p = 0 behaves as g2
ε ∼ ε

p since g1
ε(0) ∈ R+ in

absence of vacuum states, cf. Appendix A. Hence, for ε→ 0 the singularity becomes increasingly
steep and p−, the left root of gε, approaches 0. At the same time, p+, the right root of gε remains
in the neighbourhood of the solution to the classical RP, as shown in the proof of Theorem 1.
Consequently, p− cannot be the physically admissible solution to the coupling problem.

Figures 3 and 4 demonstrate this behaviour. In particular, p+ varies slowly for growing ε and
even for comparably large values of ε the root p+ is in a neighbourhood of the solution to the
classical RP.

Conclusion 1 For ε small enough gε = 0 has two solutions p−(ε) and p+(ε) where p+(ε) is the

unique physically admissible solution of the coupling problem (1).

Finally, to obtain p+ iterative methods such as of Newton type can be applied because gε
is smooth and its derivative is known explicitly. The initial value p0 has to be chosen such that
p0 > p∗. In case of p∗ < min{pL, pR}, i.e. the case of two rarefaction waves, p∗ is given in closed
form (31), otherwise g′ε = 0 can be solved efficiently, since g′ε has a unique root.

3 Coupled Riemann problem for the p-System

Since for many applications temperature dynamics can be neglected, the p-system is used as a
simplified model for gas dynamics in pipe networks. In the following we show that a similar result
as Theorem 2 is obtained for the p-system. Clearly, the analysis strongly shortens due to the
simplified wave structure of the solutions to the p-system. For an isentropic flow the compressible
Euler equations (2) reduce to the p-system

∂ρ

∂t
+
∂ρv

∂x
= 0,

∂ρv

∂t
+

∂

∂x

(
ρv2 + p(ρ)

)
= 0.

(34)

For the closure of the system we choose the γ-law

p(ρ) = αργ (35)

with γ ≥ 1 and α > 0. For ρ > 0 the pressure satisfies p′(ρ) > 0 and p′′(ρ) ≥ 0. Thus, the speed of
sound is given by c(ρ) =

√
p′(ρ) and we also assume that the flow at the interface is subsonic. We

denote u := (ρ, ρv)T and adopt the same notation for the Lax curves as in the previous section.
In an isentropic flow the temperature is constant and the coupling conditions (1) reduce to

ρv = ρv + ε,

p = p.
(36)

The p-system is hyperbolic and the coupling problem in the sense of Definition 1 can be
approached by means of Lax curves. However, in contrast to the compressible Euler equations,
the solution of the classical RP is obtained in conserved variables (ρ, ρv)T [35]. Thus, the solution
to the two half–RPs satisfying the coupling conditions (36) is constructed in the same manner
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as for the compressible Euler equations in Chapter 2, except that the Lax curves parameterised
by the density ρ yield a scalar equation straightforwardly [2,22,7,3]. The Lax curves L±i (ρ;u) =

(ρ, ρv±i )T and their derivatives are summarised in Appendix B.
The coupling conditions (36) transform to

ρv+
1 (ρ,uL) = ρv−2 (ρ,uR) + ε,

p = p.
(37)

Since the pressure p depends continuously and monotonously on the density ρ, p = p implies ρ = ρ.
Due to the assumption of a subsonic flow the density in the solution of the RP is continuous at
the coupling interface. The Lax curves are parameterised by ρ and therefore coupling conditions
(37) reduce to a scalar equation. In order to solve the coupling problem we define the function
hε(ρ) as

hε : R→ R, ρ 7→ (ρv)+
1 (ρ)− (ρv)+

2 (ρ)− ε (38)

and solve the equation hε(ρ) = 0. The behaviour of hε is illustrated in Figure 5 and analysed in
Theorem 4 following hereafter.

−400

−200

0

200 hε

0 0.5 1 1.5

0

2,000

ρ

h′ε

0 0.5 1 1.5

−200

0

200

ρ

ρv+1
ρv−2

Fig. 5 Left from top to bottom: hε and its derivative h′ε. The horizontal axes are aligned. Right: 1-wave and
2-wave for the momentum of the p-system in positive and negative direction respectively.

Theorem 4 Let γ ∈ (1, 3) and ε > 0 sufficiently small. Then the coupling problem for the p-system

has a unique solution.

Proof As shown in Appendix B
h′′ε (ρ) < 0 (39)

for non-negative ρ. That implies that h′ε(ρ) is strictly decreasing. Furthermore, for all ε ≥ 0 and
γ ∈ (1, 3)

lim
ρ→0+

hε(ρ) = −ε, lim
ρ→∞

hε(ρ) = −∞, (40)

lim
ρ→0+

h′ε(ρ) > 0, lim
ρ→∞

h′ε(ρ) = −∞. (41)

Since hε is smooth, concave and has a positive derivative at ρ = 0 there must exist a global
maximum whose position we denote by ρ∗. Thus, for ε small enough hε(p

∗) > 0 and hε has two
roots ρ− and ρ+ as well as a maximum at ρ∗ such that ρ− < ρ∗ < ρ+.

For ε = 0 the left root ρ− = 0 corresponds to the vacuum state while the right root ρ+ is the
parameter that solves the classical RP. Applying the implicit function theorem as in the proof
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of Theorem 1 yields an εmax such that for ε ∈ (0, εmax) ρ+ is located in an open neighbourhood
of the solution to the classical RP. In contrast to the compressible Euler equations the left root,
viewed as a function of ε, ρ−(ε) approaches ρ∗ continuously as ε > 0 increases. For ε ∈ (0, εmax)
ρ− is located in an open neighbourhood of 0 and cannot be considered a physically admissible
solution.

Hence, ρ+ is the unique physically admissible solution of the coupling problem (36).
ut

Remark 3 In an ideal gas the heat capacity ratio γ is linked with the degrees of freedom of a
molecule f as

f =
2

γ − 1
, (42)

see e.g. [37]. Since f ∈ N implies γ ∈ (1, 3) the assumption on γ in Theorem 4 is not particularly
restrictive.

Across rarefaction waves the density and the momentum of the solutions of the p-system and
the compressible Euler equations are identical [35]. However, across shock waves the total energy
may jump and the solutions can differ significantly. The p-system is suitable for many industrial
applications such as natural gas pipeline networks where the gas is isothermal [30,4]. However, if
variations of the temperature become considerably high the p-system is not an adequate model
and the full Euler equations yield the physically relevant description. This will also be illustrated
in the numerical results.

4 Numerical results for the coupled Euler equations and the p-system

In order to solve the coupled problem we apply to both systems a Runge-Kutta discontinuous
Galerkin method [6]. The performance is enhanced by local multi-resolution based grid adapta-
tion, see [24,14]. The solver is implemented in the Multiwave library [29]. The coupling procedure
is carried out by computing the roots of gε and hε defined in (12) and (38), respectively, and
setting the boundary conditions for the inflow and the outflow part. The details of the coupling
procedure have been described in previous works, cf. [22].

We apply a third order DG scheme using polynomial elements of order p = 3 and a third-
order SSP-Runge-Kutta method with three stages for the time-discretisation [17]. Both solvers
use the same numerical flux, applied in the interior of each domain, and limiter, namely, the
local Lax-Friedrichs flux and the minmod limiter from [6].

The start, operation and shutdown of a gas turbine are modelled by applying a time-
dependent ε = ε(t) to a steady flow where initially ε(0) = 0. We compute the solution of the
coupling problem for three cases where each ε(t) increases up to a constant value, maintains this
constant value for a period of time and decreases back to zero.

The computational domain is ΩS = [−200, 0] m for the inflow part and ΩF = [0, 200] m for
the outflow part. In each domain we use a base grid of 50 cells and L = 8 levels of refinement.
Thus, the uniformly refined grid would consist of 50 × 28 cells that are never all used in the
course of the computation. However, due to grid adaptation the locally refined grids consist of
about 100 cells. The CFL number is set to 0.1 and the final time is T = 0.55 for the first case
(Section 4.1) and T = 0.09s for the second and the third case (Section 4.2).

The parameters of the equation of state (EoS) for the compressible Euler equations for the
natural gas are given in [4] as

γEuler = 1.29, R = 518.8. (43)

In order to compare the solutions of the compressible Euler equations and of the p-system we
set the pressure law for the p-system to

p(ρ) = 146820.4ρ, (44)

i.e. γ = 1 for the p-system, since the EoS for the compressible Euler equations depends linearly
on the density ρ.
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4.1 The case of continuous outtake ε(t)

For the first case ε = ε(t) is imposed to increase and decrease linearly and continuously,

ε(t) =

{
min{0.6, 3t} if 0 ≤ t < 0.3

max{0,−3t+ 0.6} if t ≥ 0.3
. (45)

We set the initial density ρ(0, x) = 1kg/m3, the velocity v(0, x) = 1m/s. In addition for the
compressible Euler equations the initial pressure is p(0, t) = 146820.4Pa. The resulting solution
is presented in Figure 6.

t = 0.045s
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Fig. 6 Case 1. Continuously varying ε(t). Dashed line - p-system, solid line - compressible Euler equations.
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4.2 The case of discontinuous outtake ε(t)

In the second case we apply same initial conditions and EoS for the gas as in the first case,
however, ε exhibits discontinuities,

ε(t) =

{
ε̃ if 0.01 ≤ t < 0.05

0 otherwise
, (46)

where ε̃ = 0.1 is the magnitude of the jump, i.e. the momentum drained by the operating turbine.
The results at final time are shown in Figure 7.

t = 0.09s
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ρ
v

Fig. 7 Case 2. ε jumps from zero to 0.1 in a slower gas flow. Dashed line - p-system, solid line - compressible
Euler equations.

For the third case we consider a faster gas flow in the pipe, i.e. we set v(0, x) = 250m/s which
corresponds to approximately Ma = 0.56. Furthermore, the jump in the momentum is ε̃ = 20.0
while other data is as in the second case. Velocity that high is rarely found in a gas network,
however, it allows to emphasise the differences between the p-system and the compressible Euler
equations. Figure 8 presents the results for the faster flow at final time.

t = 0.09s
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x

ρ
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v

Fig. 8 Case 3. ε jumps from zero to 20.0 in a faster gas flow. Dashed line - p-system, solid line - compressible
Euler equations.

4.3 Comparison and discussion of the numerical results

In the first and second case, where the flow velocity is comparably low, the differences between
the compressible Euler equations and the p-system are moderate. In the solution of the compress-
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ible Euler equations one can observe a variation of the temperature of a magnitude of 0.05K.
Furthermore, the waves in the solution of the p-systems are moving at a slightly higher speed
since the gamma law does not account for the temperature. Hence, there is a difference in the
pressure and therefore in the characteristic speeds.

In the third case, where the flow velocity is higher, the left and right moving leading waves
emanating from the coupling interface are rarefactions. The magnitude of the rarefaction in the
p-system solution is about 25% lower at the inflow and at the outflow as shown in Figure 9.
The rarefaction waves are followed by shock waves corresponding to the turbine shutdown, i.e. ε
jumping to zero. As mentioned in Section 3, the solution located on rarefaction waves is equal for
the p-system and the compressible Euler equations. This can be seen in our simulations, albeit
the magnitude and the different characteristic speeds.

−15 −10 −5

250

252

254

x
ρ
v

Fig. 9 Case 3. Zoom on the left-going waves at the inflow.

5 Conclusions

We have solved a coupling problem for the one-dimensional compressible Euler equations and the
p-system, respectively. The coupling conditions impose a drop in the momentum at the coupling
interface while other conserved quantities are continuous. This coupling problem has been solved
by means of a generalised Riemann problem. The existence and uniqueness have been proven for
constant initial data at the inflow and the outflow, respectively, and sufficiently small outtake
of the momentum. Furthermore, the structure of the equation for the solution of the generalised
Riemann problem has been analysed. In special cases the solution is given in a closed form and
otherwise can be obtained efficiently by Newton type methods. Finally, theoretical results have
been verified by numerical simulations of a gas turbine in the case of slow and fast moving gas.
A comparison between the p-system and the Euler system has been conducted.

A Lax curves of the compressible Euler equations

The compressible Euler equations are a system of hyperbolic equations and therefore there exists an eigenvec-
tor decomposition of the flux Jacobian. For that reason, the self-similar solution of the classical RP can be
constructed by means of Lax curves [35]. In this chapter we list the Lax curves for the simple waves in the
subsonic case, i.e. the 1- and 3-wave, parameterised by the pressure p in primitive variables of the compressible
Euler equations together with their first three derivatives with respect to p. Throughout we assume that the
EoS is given by the ideal gas law (5).

The density along the Lax curves has the form

ρ±i (p) = ρ0 − s±i θ
±
i (p) (47)

where i denotes the i-wave, ± the direction on the Lax curve and s±i := ±(2− i) ∈ {−1, 1}, i ∈ {1, 3} is a sign
term depending on these two parameters. The subscript 0 denotes the foot-point of the Lax curve. The term
θ±i will be specified in the following sections where we distinguish between the rarefaction and the shock wave.
The velocity Lax curves will also be specified in the next two sections, since its structure differs for the simple
wave types.
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A.1 Rarefaction wave

For the rarefaction wave the term θ±i reads

θ±i (p) := −ρ0

((
p

p0

) 1
γ

− 1

)
s±i . (48)

Thus, by means of elementary algebra the density Lax curve for the rarefaction case can be written as a rational
function of p:

ρ±i (p) = ρ0

(
p

p0

)1/γ

. (49)

The velocity Lax curve is given by

v±i (p) = v0 ±
2c0

γ − 1
r±i (p), (50)

where

r±i (p) := s±i

1−
(
p

p0

) γ−1
2γ

 . (51)

Since by definition of the compressible Euler equations p, p0, ρ0 > 0 and γ > 1, we have

θ±i ≥ 0⇔ s±i p0 ≥ s±i p (52)

and
r±i ≤ 0⇔ s±i p0 ≥ s±i p. (53)

Recall that the specific volume at the foot-point of the Lax curves reads τ0 = 1/ρ0, thus we have

τ±i (p) :=
1

ρ±i (p)
= τ0

(
p0

p

) 1
γ

. (54)

The derivatives of τ have the following sign:

dτ±i
dp

(p) = −
τ0

γ
p

1
γ

0 p
−
(
1+ 1

γ

)
< 0, (55)

d2τ±i
dp2

(p) = (γ + 1)
τ0

γ2
p

1
γ

0 p
−
(
2+ 1

γ

)
> 0, (56)

d3τ±i
dp3

(p) = −(γ + 1)
τ0p

1
γ

γ3
(2γ + 1)p

− 3γ+1
γ < 0, (57)

while the derivatives of the velocity Lax curves read

dv±i
dp

(p) = ∓s±i
c0

γp0

(
p

p0

)− γ+1
2γ

, (58)

d2v±i
dp2

(p) = −
γ + 1

2γp

dv±i
dp

(p), (59)

d3v±i
dp3

(p) = ∓s±i
c0(γ + 1)(3γ + 1)

4γ3p3
0

(
p

p0

)− 5γ+1
2γ

, (60)

where sgn

(
d3v±i
dp3

)
= ∓s±i .

A.2 Shock wave

This section resembles Section A.1 for the case of shock wave Lax curves. The density Lax curves read

ρ±i (p) = ρ0
(γ + 1)p+ (γ − 1)p0

(γ − 1)p+ (γ + 1)p0
(61)

and the velocity Lax curve

v±i (p) = v0 ±
(
r±i (p)

)− 1
2
c0θ
±
i (p) = v0 ± s±i

(
r±i (p)

)− 1
2
c0(ρ0 − ρ±i (p)), (62)
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where

θ±i (p) := s±
2ρ0(p0 − p)

(γ − 1)p+ (γ + 1)p0
= s±i (ρ0 − ρ±i (p)) (63)

and

r±i (p) :=
1

2

(
2ρ0 + s±i (γ − 1)θ±i (p)

)
ρ±i (p). (64)

By definition of the compressible Euler equation p, p0, ρ0 > 0 and γ > 1 holds and thus we obtain

θ±i ≤ 0⇔ s±i (p0 − p) ≤ 0 (65)

and

r±i ≥ 0⇔ c20 ≥ 0. (66)

The specific volume Lax curve reads

τ±i (p) :=
1

ρ±i (p)
= τ0

(γ − 1)p+ (γ + 1)p0

(γ + 1)p+ (γ − 1)p0
(67)

and its derivatives are

dτ±i
dp

(p) = −
4c20

((γ + 1)p+ (γ − 1)p0)2
< 0, (68)

d2τ±i
dp2

(p) =
8c20(γ + 1)

((γ + 1)p+ (γ − 1)p0)3
> 0, (69)

d3τ±i
dp3

(p) =
−24c20(γ + 1)2

((γ + 1)p+ (γ − 1)p0)4
< 0. (70)

The derivatives of the velocity Lax curves are slightly complicated for the shock wave case and we examine
them separately. The first derivative of the velocity Lax curve reads

dv±i
dp

(p) = ∓s±i
1
√

2
ρ
− 1

2
0

(γ + 1)p+ (3γ − 1)p0

((γ + 1)p+ (γ − 1)p0)
3
2

, (71)

and the second derivative is

d2v±i
dp2

(p) = ±s±i c0
1

γ − 1

1
√

8γp0

((γ + 1)p+ (γ − 1)p0)−
5
2

(γ − 1)p+ (γ + 1)p0
q(p), (72)

where q(p) is polynomial in p defined as

q(p) := (γ2 − 1)2p2 + 2(γ2 − 1)q1(γ)pp0 + (γ2 + 1)2q2(γ)p2
0 (73)

with

q1(γ) := 4γ2 − 3γ + 1 > 0, (74)

q2(γ) := 7γ2 − 8γ + 1 = (γ − 1)(7γ − 1) > 0 (75)

for γ > 1. Finally, we state the third derivative of the velocity Lax curve:

d3v±i
dp3

(p) = ∓s±i
c0(γ + 1)

4
√

2γp0

((γ + 1)p+ (γ − 1)p0)−
7
2

((γ − 1)p+ (γ + 1)p0)2

(
q′1p

3 + q′2p
2p0 + q′3pp

2
0 + q′4p

3
0

)
, (76)

where the coefficients q′i ∈ R read

q′1 = 3(γ2 − 1)2 > 0, (77)

q′2 = (39γ2 − 24γ + 9)(γ2 − 1) > 0, (78)

q′3 = (69γ2 − 66γ + 9)(γ + 1)2 > 0, (79)

q′4 = (33γ2 + 30γ − 3)(γ + 1)2 > 0. (80)

The inequalities hold for γ > 1.
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A.3 Properties of the Lax curves derivatives and convexity of gε

The functions τ±i and v±i belong both to C2(R+\{0}) but the third derivatives have a jump in p0 and thus
are are not continuous:

lim
p→p−0

d3v±i
dp3

= ∓s±i
c0(γ + 1)

(3γ + 1)
4γ3p3

0 6= ∓s
±
i

c0(γ + 1)2

γ3p3
0

= lim
p→p+0

d3v±i
dp3

, (81)

lim
p→p−0

d3τ±i
dp3

= −
(γ + 1)(2γ + 1)

γ3

τ0

p3
0

6= −
3

2

(γ + 1)2

(γp0)3
τ0 = lim

p→p+0

d3τ±i
dp3

. (82)

Furthermore, we can conclude from the previous discussion of the Lax curves for the compressible Euler
equations the following Lemma.

Lemma 1 sgn(g′′ε ) is varying, however gε is concave for p� 1 and convex for p� 1.

Proof By equations (59) and (72) v+
1 is convex and v−3 is concave, hence g1

ε is convex. Furthermore, by (56)
and (69), g2

ε is also convex, i.e.

gε(p) = g1
ε(p)︸ ︷︷ ︸

convex

− g2
ε(p)︸ ︷︷ ︸

convex

. (83)

Note that g1
ε dominates the behaviour of gε for p→ 0 and g2

ε for p→∞.

A.4 Limits of the Euler equations Lax curves and its derivatives

We state the limits of the Lax curves for the compressible Euler equations towards 0 and ∞ in Table 1.

Rarefaction Shock

f limp→0 f limp→∞ f limp→0 f limp→∞ f

τ±i ∞ 0 τ0
γ+1
γ−1

τ0
γ−1
γ+1

v±i v0 ± 2c0
γ−1

s±i sgn(∓s±i ) · ∞ v0 ± 2c0
γ−1

s±i sgn(∓s±i ) · ∞

(τ±i )′ −∞ 0− − 4γ
(γ−1)2

τ0
p0

0−

(v±i )′ sgn(∓s±i ) · ∞ 0 · sgn(∓s±i ) ∓s±i
1√
2γ

c0
p0

3γ−1

(γ−1)3/2
0 · sgn(±s±i )

(τ±i )′′ ∞ 0+ 8c20(γ+1)

((γ−1)p0)3
0+

(v±i )′′ sgn(±s±i ) · ∞ 0 · sgn(±s±i ) ±s±i
c0√
8γ

(γ+1)

(γ−1)5/2
7γ−1

p20
0 · sgn(±s±i )

(τ±i )′′′ −∞ 0− − 24c20(γ+1)2

((γ−1)p0)4
0−

(v±i )′′′ sgn(∓s±i ) · ∞ 0 · sgn(∓s±i ) ±s±i
c0

4
√

2γ

(γ−1)−9/2

(γ+1)2p30
q4 0 · sgn(±s±i )

Table 1 Compressible Euler equations: Limits of the Lax curves, τ±i and v±i , and their derivatives for the
rarefaction wave and the shock wave branches.
Notation: By lim f = 0± we emphasise that f approaches 0 either from the positive or from the negative
direction.
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B Lax curves of the p-system

In this section we summarize the Lax curves and their derivatives and limits for the p-system which is, like
the full Euler equations, a hyperbolic system. Furthermore, we prove that hε is convex, an important property
employed in the proof of Theorem 4. The analysis performed in Appendix A simplifies a lot since the Lax curves
are parameterised by ρ and the solution of the coupling problem is found by solving the equation hε(ρ) = 0
which depends only on the momentum Lax curves.

First, we state the 1-wave and 2-wave momentum Lax curves for the rarefaction and shock case [7]. We
adopt the notation of Appendix A. Recall that the pressure is governed by the γ-law, i.e. p(ρ) = αργ with
α > 0 and γ ≥ 1. Then the 1-forward Lax curve and the 2-backward Lax-curve are

L+
1 (ρ,u0) =

{
R1(ρ;u0) if ρ < ρ0

S1(ρ;u0) if ρ > ρ0
, (84)

L−2 (ρ,u0) =

{
S2(ρ;u0) if ρ > ρ0

R2(ρ;u0) if ρ < ρ0
, (85)

where Ri and Si denote the rarefaction and the shock wave, respectively. The rarefaction branches of the
Lax curves are given by

Ri = ρv0 − siρ
∫ ρ

ρ0

c(r)

r
dr =

ρv0 − siρ
√
α(ln ρ− ln ρ0) if γ = 1

ρv0 − si
√
αγ 2

γ−1

(
ρ
γ+1
2 − ρ

γ−1
2

0 ρ

)
if γ > 1

, (86)

where

si :=

{
1 if i = 1

−1 if i = 2

is a sign term depending on the i-wave. The shock branches of the Lax curves read:

Si(ρ;u0) = ρv0 − si
√
s(ρ;u0) , (87)

where the discriminant is defined as s(ρ;u0) := ρ
ρ0

(ρ− ρ0)(p(ρ)− p(ρ0)).

Lemma 2 The γ-law for the pressure has the following properties:

p′(ρ) = αγργ−1 = γp(ρ)/ρ > 0, (88)

p′′(ρ) = γ(γ − 1)p(ρ)/ρ2 ≥ 0, (89)

p′′′(ρ) = γ(γ − 1)(γ − 2)p(ρ)/ρ3. (90)

Proof The derivatives are obtained using elementary calculus. ut

Next, we compute the derivatives of the momentum Lax curves. For the rarefaction branches we obtain:

dRi

dp
(p) = v0 + si

∫ ρ0

ρ

c(r)

r
dr − sic(ρ), (91)

d2Ri

dp2
(p) = −si

c(ρ)

ρ
+ sic

′(ρ) = −si
2c2(ρ) + ρp′′(ρ)

2ρc(ρ)︸ ︷︷ ︸
>0

, (92)

where the inequality holds by Lemma 2. For the shock branches we have the following derivatives:

dSi

dp
(p) = v0 − si

s′(ρ)

2
√
s(ρ)

, (93)

d2Si

dp2
(p) = −si

1

2
√
s(ρ)

(
s′′(ρ)−

(s′(ρ))2

2s(ρ)

)
. (94)

(95)

We assume that s′′′(ρ) > 0 holds. Then it was proven in [19] that for ρ ≤ ρ0 the rarefaction branches R1 and
R2 are concave and convex, respectively, whereas for ρ > ρ0 the shock branches S1 and S2 are concave and
convex, respectively. We conclude that the function

hε(ρ) = L+
1 (ρ;u0)︸ ︷︷ ︸
concave

−L−2 (ρ;u0)︸ ︷︷ ︸
convex

−ε

defined for the sake of finding the solution to the coupling problem for the p-system is concave, i.e. h′′ε (ρ) < 0.
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Finally, we calculate the limits of the momentum Lax curves and their derivatives for ρ → 0 and ρ → ∞.
For ρ→ 0 the state on the Lax curve corresponds to the rarefaction branch:

lim
ρ→0+

R1,2(ρ;u0) = 0, (96)

whereas for ρ→∞ to the shock branch:

lim
ρ→+∞

S1,2(ρ;u0) = −si · ∞. (97)

Thus, limρ→0 hε = −ε and limρ→0 hε = −∞.
Next, we calculate the limit of the derivative of hε. For ρ ≤ min{ρ̄L, ρR}

lim
ρ→0+

h′ε(ρ) = vL − vR +

{
2c · ∞, γ = 1

2
γ−1

(c(ρ̄L) + c(ρR)) γ > 1
=

{
∞, γ = 1

v̄L − vR + 2
γ−1

(c̄L + cR) γ > 1
. (98)

For subsonic states and γ > 1 it follows

lim
ρ→0+

h′ε(ρ) = v̄L − vR +
2

γ − 1
(c̄L + cR) (99)

≤ c̄L + cR +
2

γ − 1
(c̄L + cR) (100)

=
γ + 1

γ − 1
(c̄L + cR) (101)

and

lim
ρ→0+

h′ε(ρ) = v̄L − vR +
2

γ − 1
(c̄L + cR) (102)

≥ −c̄L − cR +
2

γ − 1
(c̄L + cR) (103)

=
3− γ
γ − 1

(c̄L + cR) (104)

Hence,
3− γ
γ − 1

(c̄L + cR) ≤ lim
ρ→0+

h′ε(ρ) ≤
γ + 1

γ − 1
(c̄L + cR) (105)

and for γ ∈ (1, 3) we conclude
lim
ρ→0+

h′ε(ρ) > 0. (106)

In a similar manner, after cumbersome calculations we obtain

lim
ρ→∞

hε =∞.
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