Dynamics Of Collapsing Bubbles Near Walls
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Summary. The influence of an adjacent wall on a collapsing bubble is investigated numerically. For this
purpose, the two phase fluid is modeled by a single equation of state using the van der Waals equation
of state and applying the Maxwell construction in the mixture region. Thereby the possibility of phase
transition is included. The numerical simulations are performed using an adaptive finite volume scheme
where the grid refinement strategy is based on multiresolution techniques.

1 Introduction

The formation and collapse of vapor bubbles in a liquid is called cavitation. Lord Rayleigh dis-
covered that pressure waves emitted during the process of cavitation [8] may damage solids, e.g.,
marine screw propellers. However, up to now little is known about the mechanisms causing the
damage of the solid.

Cavitation is induced by a pressure drop in the liquid below vapor pressure. Such a pressure
decrease may occur due to local acceleration of the liquid flow caused by geometrical constraints,
e.g., if the liquid flows through a narrow orifice or around an obstacle. In case, the pressure drops
below vapor pressure, the liquid bursts and creates a free surface filled with gas and vapor — the
bubble. Due to changes in the flow field, the pressure in the liquid may increase again causing the
bubble to collapse. The collapse is accompanied by strong shock and rarefaction waves running
into the bubble and the surrounding liquid. The shock wave focuses in the center of the bubble.
This leads to extreme physical states in the interior. In addition, the shrinking of the bubble leads
to a compression of the vapor. Both effects evoke an increase of pressure which bulges the bubble.
Hereby, a dynamic oscillation process is initiated which finally leads to the collapse of the bubble. If
the collapse takes place next to a solid, the pressure distribution becomes asymmetric and a liquid
jet develops [7] which is either directed towards or away from the solid boundary. The direction
of the jet depends on the elasticity of the solid and on a ratio determined by the initial distance
between the boundary and the center of the bubble divided by the maximum extension of the
bubble. This has been shown experimentally by Brujan et al. in [1], [2].

In order to investigate experimentally the dynamics of a bubble collapse, the bubble is produced
by a laser pulse. Thereby the fluid is heated in the focus of the laser and forms a small, hot gas
bubble at very high temperature. This experimental setup provides an exact positioning of the
bubble. The processes taking place in the interior of the collapsing and oscillating bubble and
the prediction of onset and extent of the cavitation damaging are still subject of theoretical and
experimental research. However, small time and space scales as well as the complicated dynamics
make an experimental approach difficult. Therefore numerical investigations are needed to reveal
information about the wave dynamics in the fluid as well as the damaging of the solid. Of particular
interest are pressure contours and velocity vectors in the liquid phase as requested in [2].

The primary objective of the present work is to provide an accurate prediction of all occuring wave
phenomena. This concerns waves running into the liquid and the center of the bubble as well as the
interaction of these waves with a neighboring solid. Normally, a collapsing gas bubble in a liquid is
modeled as a two phase flow problem which means for each fluid a different equation of state is used.
This can be done by using two meshes, whereby each mesh has to be updated in every step. Other
techniques are tracking the boundary using a level-set or a volume-of-fluid method. Consequently,
the phase boundary is modeled as a mathematically sharp boundary without a transition zone
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which is not physical. Actually, there is a region where vapor as well as liquid may be present,
as will be discussed in Sec. 2.2. To overcome that problem a homogeneous description of both
phases with one equation of state is used. The equation of state has to provide a physically correct
representation of the transition zone as well as liquid and gas phase, see Sec. 2.1. Since cavitation
may occur in injection nozzles, fuels should be included as possible fluids. Some of them belong
to the group of retrograde and even BZT (Bethe-Zel’dovich-Thompson) fluids which make certain
demands on the equation of state and possibly generate additional nonclassical wave effects. For
details on BZT fluids and nonclassical waves see Thompson [9] and Cramer [3], respectively, as
well as the literature cited there. BZT fluids will be discussed in Sec. 2.3.

The small time scales of the unsteady problem require the numerical scheme to be highly efficient
regarding computational time and memory requirements. This is realized by a local grid refinement
strategy. Furthermore, all physical relevant phenomena have to be reliably detected and adequately
resolved. Moreover, the scheme has to be robust and must not exhibit numerical oscillations, e.g.,
pressure oscillations at the phase boundary. The details of the numerical scheme are presented in
Sec. 3.

In Sec. 4 numerical results for a bubble collapse near a rigid wall are presented and the arising
dynamic wave patterns are discussed.

2 Physical Model

For our investigations the fluid is modeled by the van der Waals equation of state. This gives a
qualitatively good representation of the fluid in various important regions, namely the regimes of
high compression during the collapse of the bubble, the area with negative nonlinearity near the
critical point on account of BZT fluids, and the mixture region to allow for phase transition.

2.1 Van der Waals Equation of State

A vital assumption of the ideal gas model is that the particles are non-interacting masspoints,
i.e., an appreciable force acts on them only during a collision. Furthermore, the volume of the
particles is negligible compared to the total volume occupied by the gas. This is no longer valid if
the density is so high that the distance between two particles is of the order of their interaction
diameter. Such extreme densities can be reached during the collapse of the bubble. In this case,
the range of validity of the ideal gas is exceeded which is investigated in [4].

The van der Waals equation of state is an extension of the ideal gas model with two material
parameters a and b to take into account the attraction of particles and the reduction of free
volume. The thermal equation of state is determined by

RT a

PO.T) =~ = 5 (1

with pressure p, temperature T, specific volume v, specific gas constant R, internal pressure a/v>
and covolume b covolume. The internal pressure is subtracted from the pressure to take into account
that the attraction of particles diminishes the pressure. The covolume b reduces the volume v to
the available free volume v — b. The caloric equation of state reads

e, T) = o+ cs(0,T)T = & 2)

where ¢, denotes the heat capacity at constant volume and e the internal energy.
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2.2 Mixture Region

Since we want to apply the van der Waals equation of state to gases and liquids as well, there is a
need for describing of what happens in the region of phase transition. In the p-v diagram in Fig. 1,
three isotherms are plotted corresponding to (i) a temperature above the critical temperature (7,),
(ii) the critical temperature (the critical isotherm) and (iii) a temperature below 7. In the mixture
region, liquid and gas are present in a continuous changing fraction where the fraction of liquid rises
when the volume decreases. In the mixture area, the van der Waals equation shows an unphysical
inclination in the p-v-diagram. Considering an isotherm crossing the mixture region, we observe
two local extrema called spinodal points. They correspond to the endpoints of supersaturated
vapor (maximum) and overexpanded liquid (minimum), respectively. Between these two points the
derivative % |7 is positive and hence physically excluded. In order to provide physically meaningful
data, we calculate the equilibrium pressure pe, see Fig. 1, as a function of volume and temperature
using the Maxwell construction. For details on the implementation see [10], [11].

2.3 BZT Fluids

BZT fluids are high molecular hydrocarbons or -fluorids. They are a subgroup of retrograde fluids
which exhibit a characteristic overhang of the saturation curve in the 7-s-diagram. Fig. 3 and 4
show the difference between a generic and a retrograde fluid, respectively. The T-s-diagram for the
generic fluid shows that the fluid has to be cooled for an equilibrium condensation [9]. However,
the overhang in the T-s-diagram for the retrograde fluid implies that the retrograde fluid has to be
heated for an equilibrium condensation. For the BZT fluid the curvature of the saturation curve
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Fig. 3. T-s-diagram for CoH4 Fig. 4. T-s-diagram for PP
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is so intense that it leads to a concave bending of the isentropes near the critical point in the p-v-
plane, see Fig. 2. This is in contrast to the behavior of the most common fluids which isentropes
are convex. A measure for the bending is the fundamental derivative of gas dynamics

v 8%p
=23 g2 (3)

which becomes negative in the respective region. Here, ¢ denotes the speed of sound. The gasdy-
namic peculiarity of the I'<O—region implies the possibility of compression waves and expansion
shocks [3]. In the later case, the pressure jump has to be positive to fulfill the entropy condition.
The chosen van der Waals equation of state provides a good representation of the effects in the
region of negative I'. For more details on BZT fluids see Thompson [9].

3 Governing Equations and Method of Solution

The fluid flow is modeled by the time-dependent 2D Euler equations for compressible fluids.

g/UdV—k% (F¢ —=FY)-n dS=0 with (4)
ot Jy ov

p pu 0
U=| pu |, F¢=| puou+pl |, FY = T

PE u(pE + p) u-T-q

U is the array of the mean conserved quantities: density, momentum, and specific total energy. T
is the viscous strain tensor and q the heat flux vector. The quantity V' denotes a time-independent
control volume with the boundary dV and the outer normal n. The flux array is divided into its
convective (F¢) and diffusive (FV) part.

The transport equations are solved using an explicit finite volume method. For the convective terms
a Godunov-type upwind scheme is applied. To improve the spatial accuracy we apply a higher order
ENO reconstruction. The efficiency of the finite volume method is significantly improved by an
adaptive grid refinement strategy which is based on multiresolution techniques that have been
recently developed and investigated in [6].

Since BZT fluids exhibit wave phenomena different from common fluids, these have to be properly
addressed by the numerical algorithms. For this purpose, the approximate Riemann solver due to
Roe has to be modified with regard to a general equation of state, i.e., p = p(v, e). The derivation
is analogously to the approach of Liu and Vinokur, see [5]. As shown in [11] the numerical method
is able to resolve expansion shocks as well as wave splitting phenomena.

4 Numerical Results

The focus of the current work is to verify the ability of the scheme to handle steep density gra-
dients and to resolve the dynamic wave patterns accurately. Therefore, as a first step a generic
fluid with initial conditions away from the phase transition is considered for the two-dimensional
case. However, the initial conditions exhibit data differences which may be comparable to a phase
boundary. Where a hot bubble at low pressure is enclosed by cold air at high pressure, see Fig. 5.
The fluid is modeled by the van der Waals equation. Here we still assume constant heat capacity
¢y, ¥ = 1.4 and R = 287.J/mol/K . The initial conditions correspond to a Riemann problem where
three types of waves occur: an inward running compression shock, an outward running rarefaction
wave and a contact discontinuity. At time ¢ = 0.01640ms the fastest wave - the inward running
shock - has reached the center of the bubble and is reflected, see Fig. 7. The pressure in the focus
exceeds 40 x 105N/m?. The outward running rarefaction is visible in the pressure as well as in
the density. Whereas the contact discontinuity is only seen in the density (see Fig. 6 at 0.068m).
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Fig. 5. Initial conditions and computational domain of the planar problem

It just reaches the solid wall. After the reflection in the center, the shock wave runs outward and
passes the contact discontinuity. Hereby, the shock is partly transmitted and partly reflected. The
reflected part runs again into the center, is reflected and passes the contact discontinuity again.
The rarefaction wave is reflected at the solid wall as rarefaction. The corresponding doubling of the
amplitude produces a region of low pressure which increases the shock pressure ratio and, therfore,
accelerates the shock wave towards the wall, see Fig. 8 and 9, where it is reflected, see Fig. 11. The
reflection area extends along the wall developing a Mach stem, see Fig. 12, at time ¢ = 0.14925ms.
In the density contours the slip line, a contact discontinuity originating at the triple point of the
Mach stem, is clearly visible. The discontinuity separates two regions of different values of entropy
that are caused in the material passing through shocks of different strength. The Mach stem The
pressure distribution on the solid (right) and the density contours (left) are presented to display
the loading jump on the solid evoked by the Mach stem (visible at y = 0.074m and y = 0.006m,).
To identify the remainder of the bubble, Fig. 13 shows the pressure and density distribution on
the symmetry line at y = 0.04 for the same time. The contact discontinuity is characterized by a
jump in density and nearly constant pressure between x = 0.062m and = = 0.067m.

As mentioned earlier, the initial conditions determine whether the bubble is repelled from or
attracted towards the wall. In addition, the surrounding fluid is accelerated such that a jet of cold
gas occurs in wall direction or opposite. In this configuration cold gas flows away from the wall,
repells the hot bubble from the solid and finally splits it. This is observable by the velocity in
z-direction and the integral curves of the velocity direction field which is marked by arrow-lines
in Fig. 14 at time ¢t = 0.70417ms. In the experiments [1] for rigid wall a jet directed versus the
wall was observed. The opposite in this computation is caused by the discrepancy of the initial
conditions concerning the velocity field on both sides of the bubble surface.

5 Conclusion and Future Work

The numerical method is able to handle the small time scales occuring during the collapse of a
bubble due to the grid refinement strategy. Besides, it is quite stable even at steep density gradients.
The interaction of the shock wave and the rarefaction wave as well as the reflection of both waves
on the rigid wall are well resolved. In particular, the development of the Mach stem is traced
accurately. The contact discontinuity exhibits instabilities which are due to the Cartesian grid.

In future work, the position of the bubble will be varied in order to compute the prediction of
Brujan et al. [1] that the direction of the jet depends on the distance between boundary and
bubble. Furthermore, initial states near the critical point will be considered to investigate the
influence of retrograde behavior and effects caused by phase transition.
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