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Summary. A fully adaptive multiscale finite volume scheme for solving the 2D
compressible Euler equations on moving grids is presented. The scheme uses a mul-
tiscale analysis based on biorthogonal wavelets to adapt the grid in space. Refine-
ment in time is performed using a locally varying time stepping strategy that has
been recently developed. The CFL condition is satisfied locally and the number of
grid adaptations is reduced. The performance of the scheme using global and local
multilevel time stepping, respectively, is investigated by a flow past an oscillating
boundary.

1 Introduction

The solutions of hyperbolic conservation laws typically exhibit locally steep
gradients and large regions where they are smooth. To account for the highly
nonuniform spatial behavior, we need numerical schemes that adequately re-
solve the different scales, i.e., use a high resolution only near sharp transition
regions and singularities but a moderate resolution in regions with smooth,
slowly varying behavior of the solution.

In [2, 7] multiresolution techniques have been used to construct locally
refined meshes on which the discretization is performed. The basic idea is to
represent the cell averages on a given highest level of resolution as cell averages
on some coarse level where the fine scale information is encoded in arrays of
detail coefficients of ascending resolution. If the detail information of a cell is
small, the grid is locally coarsened. By now the fully adaptive multiresolution
concept has been applied by several groups with great success to different real
world applications, cf. [1] and references cited there.

This work has been performed with funding by the Deutsche Forschungsge-
meinschaft in the Collaborative Research Center SFB 401 ”Flow Modulation and
Fluid-Structure Interaction at Airplane Wings” of the RWTH Aachen, Germany
and the "Ramén y Cajal” program of the Ministerio de Educacion y Ciencia, Spain.



2 Philipp Lamby, Ralf Massjung, Siegfried Miiller, and Youssef Stiriba

So far a short-coming of this approach has been the lack of temporal adap-
tivity, i.e., all cell averages are evolved in time by the same time step size
At satisfying the CFL condition for the cells on the finest mesh. Recently,
a local time stepping strategy has been incorporated to the concept of fully
adaptive multiresolution schemes, cf. [8, 5]. This has to be adjusted to the re-
quirement that the resulting scheme provides an accuracy that is comparable
to the accuracy of the reference mesh.

In the present work we apply this concept to 2D inviscid compressible
fluid flows taking into account moving boundaries. This flow is governed by
the arbitrary Lagrangian Eulerian (ALE) formulation of the Euler equations,
cf. Sect. 2, that are discretized by a finite volume scheme, cf. Sect. 3. The
efficiency of the reference scheme is improved by employing multiscale-based
grid adaptation and local multilevel time stepping strategies, cf. Sect. 4. The
adaptive scheme is applied to an oscillating boundary problem. Here we focus
on the gain by the multilevel time stepping in comparison to the global time
stepping, cf. Sect. 5.

2 The ALE Formulation of the Euler Equations

In the present study, inviscid fluid flow is described by the Euler equations
for a compressible gas. In order to solve problems in time dependent domains,
including moving boundaries, we consider the governing equations in its ar-
bitrary Lagrangian Eulerian formulation. Neglecting body forces and volume
supply of energy, the conservation laws for any moving control volume V C 2
of the d-dimensional domain 2 C R? with boundary 8V and outward unit
normal vector n on the surface element dS C 9V can be written in integral
form as:
0]

= udV-I-?{ flu,z) - ndS=0. (1)
ot Jy oV (#)

This system of conservation laws has to be supplemented by initial values and
boundary conditions, respectively. Here u = (p, pv, pE)T denotes the vector
of the unknown conserved quantities and f¢ represents the convective flux:

p(v — &)
Fewd) = | po—@)ov+pT | = F,0) ~uos, 2)
pE(v— &)+ pv

where p denotes the density, p the static pressure, v the velocity vector of the
fluid and E the total energy. Here o is the dyadic product. The motion of the
grid is considered by the convective fluxes, where & expresses the grid velocity.
The static pressure is related to the specific internal energy according to the
equation of state for a perfect gas p = p (y — 1) (E — 1/2v?), where v is the
ratio of specific heats, which is taken as 1.4 for air.
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3 Finite Volume Discretization

The balance equations (1) are solved approximately by a finite volume
method. For this purpose the finite fluid domain 2(t) is split into a finite
set of moving subdomains, the cells V;(t), such that all V;(¢) are disjoint at
each instant of time and that their union gives 2(t). Furthermore let N'(i) be
the set of cells that have a common edge with the cell i, and for j € N'(i) let
ei;(t) := 9Vi(t) N 9V;(t) be the interface between the cells i and j. The time
interval is discretized by #"*! = t" 4+ At assuming a constant time step size.
On this particular discretization the finite volume scheme can be written as

Vi ot = (VP el = At Y ey | F(of, 0] g, mig) (3)

JEN ()
using an explicit time discretization to compute the approximated cell aver-
ages v?“ on the new time level. Here the numerical flux function F'(u, v, &, n)
is an approximation for the flux f(u,&,n) in normal direction on the edge

e;j. It is assume to be consistent, i.e.,
F(u,u,z,n) = f(u,&,n) := f(u, ) n. 4)

For simplicity of presentation we neglect that due to higher order reconstruc-
tion the numerical flux usually depends on an enlarged stencil of cell averages.

3.1 Grid Generation and Grid Movement.

For the simulation of moving boundaries the grid generator has to cope with
time dependent domain boundaries. To accomplish this task efficiently we em-
ploy for each time level ¢ a parametric mapping x : [0,1]?> — 2 from a logical
space to the physical domain (2(¢"). In this setting grid cells are the images of
the corresponding cells in logical space, i.e., V; = ®(R;) corresponding to the
interval R; C [0, 1]?. Then the discrete grid is determined simply by function
evaluation.

For the representation of such a parameter mapping we use tensor product
B-splines, i.e., z(u,v) = Zﬁio Z].Aio P; j Nip,.v(u) Njp, v(v). Here N; , r de-
notes the i-th normalized B-spline of order p with respect to the knot vector
T. In our applications we usually choose cubic splines (p = 4), cf. [1].

The p,; are the control points that are not to be confused with grid points.
Typically, the number of control is much smaller than the number of grid
points in the discrete grid. This makes grid deformation by parametric B-
spline mappings highly efficient; only few control points have to be moved
instead of all the grid points in the discrete grid. More elaborate details on
grid generation via B-Splines can be found in [4].

From the grid functions we compute a space-time grid function that is
realized by a two-level time discretization: before the timestep t" — t"+!
is performed the grid generation module provides two grid representations
x(€,t") and z(£,t"F1) at time levels t" and "1, respectively. Then for t €
(t",t"*1) the grid function is determined by linear interpolation.
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3.2 The Geometric Conservation Law.

The “geometric conservation laws” are discrete consistency conditions for the
finite volume scheme. They stem from the requirement, that a reasonable
numerical method should at least be able to maintain a constant flow field: if
u(x,t) = uy for all (x,t), then we require that the numerical solution fulfills
ul! = u for all index pairs (4,n), too. In the special case of a stationary grid
we then get for each cell V; the consistency condition for discretizations of the

form (3)
0= leylni;. (5)
JEN(3)
What people usually understand to be ”the” geometric conservation law stems
form the requirement, that the constant homogeneous flow should also be
reproduced if the mesh is moving. If we assume equation (5) to be satisfied,
we end up for each cell V; with the condition

VI = (VP = A Y el (6)
JEN(9)

Here ki; = m;; - &;; denotes the normal grid velocity on the face e;;. The
grid generator has to provide the quantities |e;;|, m;, ki; and |V;| for the flow
solver such that the consistency conditions (5) and (6) hold. On a curvilinear
grid where these quantities are not uniquely defined this can be achieved by
evaluating the integrals

tn+1
N;j:= / n(s,t)ds, S;j:= / / x(s,t) - mi;(s,t) dsdt.
eij (t) tr eij (t)

exactly and then setting

eijl == [INijll2,  mij = Nij/leijl, Kij = Sij/(At]ei;]). (7)

3.3 The Numerical Flux.

The fluxes in normal direction are approximated by an approximate Riemann
solver. Since the cell edges are time-dependent we have to take into account the
grid movement when solving the Riemann problem at the interfaces. For this
purpose, we exploit the rotational and Galilean invariance of the underlying
balance equations (1). Then we can rewrite the fluxes in normal direction as

1 o7
flu,z,n) =S f(S'u,0,n) with S=| & I
2
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cf. [6]. Carrying this identity over to the numerical flux we obtain
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F(uj,u,,&,n)=SF(S "u,8 " u,,0,n). (8)

Hence, we may derive a numerical flux over moving edges from standard nu-
merical fluxes on stationary grids. Note, that in the computations only the
normal grid velocity & is essentially needed. To perform the transformation
(8) step by step it is sufficient to use xkn instead of @. This is admissible
provided that the numerical flux is rotational invariant.

In the present work we use Roe’s approximate Riemann solver. In order to
avoid non-physical expansion shocks we use Harten’s entropy fix. The spatial
and temporal accuracy are improved by using a quasi one-dimensional second-
order ENO reconstruction and Taylor expansion according to [3]. Here the
reconstruction is applied to the characteristic variables.

4 Adaptive Multiscale Method

The efficiency of the reference finite volume scheme presented in Section 3
is significantly improved by employing recent multiscale-based grid adapta-
tion techniques. Here we briefly summarize the basic conceptual ideas. For
technical details we refer the reader to the book [7] and [1], respectively.

4.1 Multiscale-Based Spatial Grid Adaptation

Step 1: Multiscale analysis. The fundamental idea is to present the cell aver-
ages 1y, representing the discretized flow field at fixed time level ¢ on a given
uniform highest level of resolution | = L (reference mesh) associated with a
given finite volume discretization (reference scheme) as cell averages on some
coarsest level | = 0 where the fine scale information is encoded in arrays of

detail coefficients dyj, 1 =0,..., L — 1 of ascending resolution, see Figure 2.
The multiscale decomposition is performed on a hierarchy of nested grids G,
with increasing resolution | = 0, ..., L determined by dyadic grid refinement of

the logical space, see Figure 1. Note that this grid hierarchy can be efficiently
realized by the parametric B-spline mappings in Section 3.1.

o o U < U 1+ <> 0 = 1
N NN N

1=0 1=1 1=2
Fig. 1. Sequence of nested grids Fig. 2. Multiscale transformation

Step 2: Thresholding. It can be shown that the detail coefficients become small
with increasing refinement level when the underlying function is smooth. In
order to compress the original data this motivates us to discard all detail
coefficients d;  whose absolute values fall below a level-dependent threshold
value g; = 2! Le. Let Dp, . be the set of significant details. The ideal strategy
would be to determine the threshold value € such that the discretization error
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Fig. 3. Synchronized time evolution on space-time grid

of the reference scheme, i.e., difference between exact solution and reference
scheme, and the perturbation error, i.e., the difference between the reference
scheme and the adaptive scheme, are balanced, see [2].

Step 3: Prediction and grading. Since the flow field evolves in time, grid adap-
tation is performed after each evolution step to provide the adaptive grid at
the new time level. In order to guarantee the adaptive scheme to be reliable in
the sense that no significant future feature of the solution is missed, we have
to predict all significant details at the new time level n 4+ 1 by means of the
details at the old time level n. Let ﬁztl oDj . UDZTE1 be the prediction set.
The prediction strategy is detailed in [2]. In view of the grid adaptation step
this set is additionally inflated such that it corresponds to graded tree.

Step 4: Grid adaptation. By means of the set ﬁztl a locally refined grid is
determined. For this purpose, we recursively check proceeding levelwise from
coarse to fine whether there exists a significant detail to a cell. If there is one,
then we refine the respective cell. We finally obtain the locally refined grid
with hanging nodes represented by the index set Gy, ..

4.2 Multilevel Time Stepping

Since the reference scheme (3) is assumed to use an explicit time discretiza-
tion, the time step size is bounded due to the CFL condition by the smallest
cell in the grid. Hence At is determined by the highest refinement level L,
i.e., At = 71,. However, for cells on the coarser scales I =0,...,L — 1 we may
use At = 7, = 2L7! 7y to satisfy locally the CFL condition. In [8] a multi-
level time stepping strategy has been incorporated recently to the adaptive
multiscale finite volume scheme as proposed in [7]. The basic idea is to save
flux evaluations where the local CFL condition allows a large time step. The
precise time evolution algorithm is schematically described by Fig. 3: In a
global time stepping, i.e., using At = 7 for all cells, each vertical line sec-
tion appearing in Fig. 3 (left) represents a flux evaluation and each horizontal
line (dashed or drawn) represents a cell update of u due to the fluxes. In the
multilevel time stepping a flux evaluation is only performed at vertical line
sections that emanate from a point where at least one drawn horizontal line
section emanates from. If a vertical line section emanates from a point, where
two dashed horizontal sections emanate from, then we do not recompute the



Inviscid Flow on Moving Grids 7

flux, but keep the flux value from the preceeding vertical line section. Hence
fluxes are only computed for the vertical edges in Fig. 3 (right).

Note, that on each intermediate time level (horizontal lines) u is updated
for all cells and that grid adaptation is performed at each even intermediate
time level, i.e., at t"+k 7, for k even. Hence it is possible to track, for instance,
a shock movement on the intermediate time levels instead of a—priori refining
the whole range of influence, see Fig. 3 (right).

Note further, that 7y is the time scale at which the grid movement takes
place. The grid position is only to the boundary movement at the time levels
t",t"+1 .. and on the intermediate time levels the grid movement is a linear
interpolation between the grid positions at #™ and ¢"*!. This means that the
time step size t"t! —¢” is dictated either by the time scale of the boundary
movement or the time step size 79 according to the CFL condition on the
coarsest spacial scale.

5 Numerical Results

This example shows the inviscid flow over a an oscillating plate with prescribed
deformation in time. The flow domain extends from -5 to 5 in z-direction
and from 0 to 5 in y-direction. At time ¢ = 0 the lower boundary starts a
periodic oscillation in the interval [0,1] prescribed by a B-Spline representation
z(§,t) = Zzlio pi(t)Ni,‘l,T(g)' Here T' = (0,0,0,0, 11_07 12_0: REE 19_0: 1,1,1,1) and
the movement of the control points is given by p, = (0,0)7, p,, = (1,0), p; =

(£.0)7. pry = (2,0)7. and py() = (= + 1.  sin(t/tye7) sin(Z (i — 2) for
i = 2,...,10. Due to the simplicity of the geometry the grid deformation
is performed using transfinite interpolation techniques. The flow enters the
domain from the left hand side with free-stream conditions po, = 1.2929
[kg/m?], poe = 101325 [Pa], vo, = (165.619,0) [m/s]. The reference time
is determined by tre; = 1./4/Poo/Pooc = 279.947 [m/s]. At the boundaries
we impose slip conditions, i.e., € -m = v - n, at the lower boundary and
characteristic boundary conditions elsewhere because of the subsonic free-
stream conditions (M, = 0.5). The grid is adapted after every timestep. The
maximum refinement level is Ly,4, = 5, the threshold ¢ = 0.002, the coarsest
grid consist of 1375 cells. After two cycles of the boundary oscillation the
number of grid cells varies around 40.000 grid points depending on the phase
of the boundary movement.

The bump is moving periodically up and down which is reflected in Figure
4 where the deflection in the midpoint of the bump is shown. When the
bump is moving upwards then a shock occurs at the leeward side because
of the acceleration of the flow. The shock weakens and moves in upstream
direction when the bump moves downward. This can be deduced from Figure
5 where the Mach number in the midpoint of the bump is plotted versus the
dimensionless time ¢/t,.;. When the shock is passing a steep gradient can be
seen.
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Fig. 4. Deflection at bump midpoint Fig. 5. Mach number at bump midpoint

The computation has been performed using the global and the multilevel
time stepping strategy, respectively. Although we perform no grid deformation
step for the intermediate time levels in the latter case the accuracy of the
solution is not affected as can be concluded from Figure 5. On the other hand
we gain a factor of 3.7 in comparison to a global time stepping strategy.
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