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ale �nite volume s
heme for solving the 2D
ompressible Euler equations on moving grids is presented. The s
heme uses a mul-tis
ale analysis based on biorthogonal wavelets to adapt the grid in spa
e. Re�ne-ment in time is performed using a lo
ally varying time stepping strategy that hasbeen re
ently developed. The CFL 
ondition is satis�ed lo
ally and the number ofgrid adaptations is redu
ed. The performan
e of the s
heme using global and lo
almultilevel time stepping, respe
tively, is investigated by a 
ow past an os
illatingboundary.1 Introdu
tionThe solutions of hyperboli
 
onservation laws typi
ally exhibit lo
ally steepgradients and large regions where they are smooth. To a

ount for the highlynonuniform spatial behavior, we need numeri
al s
hemes that adequately re-solve the di�erent s
ales, i.e., use a high resolution only near sharp transitionregions and singularities but a moderate resolution in regions with smooth,slowly varying behavior of the solution.In [2, 7℄ multiresolution te
hniques have been used to 
onstru
t lo
allyre�ned meshes on whi
h the dis
retization is performed. The basi
 idea is torepresent the 
ell averages on a given highest level of resolution as 
ell averageson some 
oarse level where the �ne s
ale information is en
oded in arrays ofdetail 
oeÆ
ients of as
ending resolution. If the detail information of a 
ell issmall, the grid is lo
ally 
oarsened. By now the fully adaptive multiresolution
on
ept has been applied by several groups with great su

ess to di�erent realworld appli
ations, 
f. [1℄ and referen
es 
ited there.This work has been performed with funding by the Deuts
he Fors
hungsge-meins
haft in the Collaborative Resear
h Center SFB 401 "Flow Modulation andFluid-Stru
ture Intera
tion at Airplane Wings" of the RWTH Aa
hen, Germanyand the "Ram�on y Cajal" program of the Ministerio de Edu
a
ion y Cien
ia, Spain.



2 Philipp Lamby, Ralf Massjung, Siegfried M�uller, and Youssef StiribaSo far a short-
oming of this approa
h has been the la
k of temporal adap-tivity, i.e., all 
ell averages are evolved in time by the same time step size�t satisfying the CFL 
ondition for the 
ells on the �nest mesh. Re
ently,a lo
al time stepping strategy has been in
orporated to the 
on
ept of fullyadaptive multiresolution s
hemes, 
f. [8, 5℄. This has to be adjusted to the re-quirement that the resulting s
heme provides an a

ura
y that is 
omparableto the a

ura
y of the referen
e mesh.In the present work we apply this 
on
ept to 2D invis
id 
ompressible
uid 
ows taking into a

ount moving boundaries. This 
ow is governed bythe arbitrary Lagrangian Eulerian (ALE) formulation of the Euler equations,
f. Se
t. 2, that are dis
retized by a �nite volume s
heme, 
f. Se
t. 3. TheeÆ
ien
y of the referen
e s
heme is improved by employing multis
ale-basedgrid adaptation and lo
al multilevel time stepping strategies, 
f. Se
t. 4. Theadaptive s
heme is applied to an os
illating boundary problem. Here we fo
uson the gain by the multilevel time stepping in 
omparison to the global timestepping, 
f. Se
t. 5.2 The ALE Formulation of the Euler EquationsIn the present study, invis
id 
uid 
ow is des
ribed by the Euler equationsfor a 
ompressible gas. In order to solve problems in time dependent domains,in
luding moving boundaries, we 
onsider the governing equations in its ar-bitrary Lagrangian Eulerian formulation. Negle
ting body for
es and volumesupply of energy, the 
onservation laws for any moving 
ontrol volume V � 
of the d-dimensional domain 
 � Rd with boundary �V and outward unitnormal ve
tor n on the surfa
e element dS � �V 
an be written in integralform as: ��t ZV (t) u dV + I�V (t) f(u; _x) � n dS = 0 : (1)This system of 
onservation laws has to be supplemented by initial values andboundary 
onditions, respe
tively. Here u = (�, �v, �E)T denotes the ve
torof the unknown 
onserved quantities and f 
 represents the 
onve
tive 
ux:f (u; _x) = 0� �(v � _x)�(v � _x) Æ v + p I�E(v � _x) + pv 1A = f(u;0)� u Æ _x; (2)where � denotes the density, p the stati
 pressure, v the velo
ity ve
tor of the
uid and E the total energy. Here Æ is the dyadi
 produ
t. The motion of thegrid is 
onsidered by the 
onve
tive 
uxes, where _x expresses the grid velo
ity.The stati
 pressure is related to the spe
i�
 internal energy a

ording to theequation of state for a perfe
t gas p = � (
 � 1) �E � 1=2v2�, where 
 is theratio of spe
i�
 heats, whi
h is taken as 1.4 for air.



Invis
id Flow on Moving Grids 33 Finite Volume Dis
retizationThe balan
e equations (1) are solved approximately by a �nite volumemethod. For this purpose the �nite 
uid domain 
(t) is split into a �niteset of moving subdomains, the 
ells Vi(t), su
h that all Vi(t) are disjoint atea
h instant of time and that their union gives 
(t). Furthermore let N (i) bethe set of 
ells that have a 
ommon edge with the 
ell i, and for j 2 N (i) leteij(t) := �Vi(t) \ �Vj(t) be the interfa
e between the 
ells i and j. The timeinterval is dis
retized by tn+1 = tn +�t assuming a 
onstant time step size.On this parti
ular dis
retization the �nite volume s
heme 
an be written asjV n+1i jvn+1i = jV ni jvni ��t Xj2N (i) jeij jF (vni ;vnj ; _xij ;nij) (3)using an expli
it time dis
retization to 
ompute the approximated 
ell aver-ages vn+1i on the new time level. Here the numeri
al 
ux fun
tion F (u;v; _x;n)is an approximation for the 
ux f (u; _x;n) in normal dire
tion on the edgeeij . It is assume to be 
onsistent, i.e.,F (u;u; _x;n) = f (u; _x;n) := f (u; _x) � n: (4)For simpli
ity of presentation we negle
t that due to higher order re
onstru
-tion the numeri
al 
ux usually depends on an enlarged sten
il of 
ell averages.3.1 Grid Generation and Grid Movement.For the simulation of moving boundaries the grid generator has to 
ope withtime dependent domain boundaries. To a

omplish this task eÆ
iently we em-ploy for ea
h time level tn a parametri
 mapping x : [0; 1℄2 ! 
 from a logi
alspa
e to the physi
al domain 
(tn). In this setting grid 
ells are the images ofthe 
orresponding 
ells in logi
al spa
e, i.e., Vi = x(Ri) 
orresponding to theinterval Ri � [0; 1℄2. Then the dis
rete grid is determined simply by fun
tionevaluation.For the representation of su
h a parameter mapping we use tensor produ
tB-splines, i.e., x(u; v) =PNi=0PMj=0 pi;j Ni;pu;U (u)Nj;pv ;V (v): Here Ni;p;T de-notes the i-th normalized B-spline of order p with respe
t to the knot ve
torT . In our appli
ations we usually 
hoose 
ubi
 splines (p = 4), 
f. [1℄.The pij are the 
ontrol points that are not to be 
onfused with grid points.Typi
ally, the number of 
ontrol is mu
h smaller than the number of gridpoints in the dis
rete grid. This makes grid deformation by parametri
 B-spline mappings highly eÆ
ient; only few 
ontrol points have to be movedinstead of all the grid points in the dis
rete grid. More elaborate details ongrid generation via B-Splines 
an be found in [4℄.From the grid fun
tions we 
ompute a spa
e-time grid fun
tion that isrealized by a two-level time dis
retization: before the timestep tn ! tn+1is performed the grid generation module provides two grid representationsx(�; tn) and x(�; tn+1) at time levels tn and tn+1, respe
tively. Then for t 2(tn; tn+1) the grid fun
tion is determined by linear interpolation.
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 Conservation Law.The \geometri
 
onservation laws" are dis
rete 
onsisten
y 
onditions for the�nite volume s
heme. They stem from the requirement, that a reasonablenumeri
al method should at least be able to maintain a 
onstant 
ow �eld: ifu(x; t) = u1 for all (x; t), then we require that the numeri
al solution ful�llsuni = u1 for all index pairs (i; n), too. In the spe
ial 
ase of a stationary gridwe then get for ea
h 
ell Vi the 
onsisten
y 
ondition for dis
retizations of theform (3) 0 = Xj2N(i) jeij jnij : (5)What people usually understand to be "the" geometri
 
onservation law stemsform the requirement, that the 
onstant homogeneous 
ow should also bereprodu
ed if the mesh is moving. If we assume equation (5) to be satis�ed,we end up for ea
h 
ell Vi with the 
onditionjV n+1i j � jV ni j = �t Xj2N(i) jeij j�ij : (6)Here �ij = nij � _xij denotes the normal grid velo
ity on the fa
e eij . Thegrid generator has to provide the quantities jeij j, nij , �ij and jVij for the 
owsolver su
h that the 
onsisten
y 
onditions (5) and (6) hold. On a 
urvilineargrid where these quantities are not uniquely de�ned this 
an be a
hieved byevaluating the integralsN ij := Zeij (t) n(s; t)ds; Sij := Z tn+1tn Zeij (t) _x(s; t) � nij(s; t) dsdt:exa
tly and then settingjeij j := jjN ij jj2; nij :=N ij=jeij j; �ij := Sij=(�t jeij j): (7)3.3 The Numeri
al Flux.The 
uxes in normal dire
tion are approximated by an approximate Riemannsolver. Sin
e the 
ell edges are time-dependent we have to take into a

ount thegrid movement when solving the Riemann problem at the interfa
es. For thispurpose, we exploit the rotational and Galilean invarian
e of the underlyingbalan
e equations (1). Then we 
an rewrite the 
uxes in normal dire
tion asf (u; _x;n) = S f(S�1 u;0;n) with S = 0� 1 0T 0_x I 012 _x2 _xT 11A ;
f. [6℄. Carrying this identity over to the numeri
al 
ux we obtain



Invis
id Flow on Moving Grids 5F (ul;ur; _x;n) = S F (S�1 ul;S�1 ur;0;n): (8)Hen
e, we may derive a numeri
al 
ux over moving edges from standard nu-meri
al 
uxes on stationary grids. Note, that in the 
omputations only thenormal grid velo
ity � is essentially needed. To perform the transformation(8) step by step it is suÆ
ient to use �n instead of _x. This is admissibleprovided that the numeri
al 
ux is rotational invariant.In the present work we use Roe's approximate Riemann solver. In order toavoid non-physi
al expansion sho
ks we use Harten's entropy �x. The spatialand temporal a

ura
y are improved by using a quasi one-dimensional se
ond-order ENO re
onstru
tion and Taylor expansion a

ording to [3℄. Here there
onstru
tion is applied to the 
hara
teristi
 variables.4 Adaptive Multis
ale MethodThe eÆ
ien
y of the referen
e �nite volume s
heme presented in Se
tion 3is signi�
antly improved by employing re
ent multis
ale-based grid adapta-tion te
hniques. Here we brie
y summarize the basi
 
on
eptual ideas. Forte
hni
al details we refer the reader to the book [7℄ and [1℄, respe
tively.4.1 Multis
ale-Based Spatial Grid AdaptationStep 1: Multis
ale analysis. The fundamental idea is to present the 
ell aver-ages ûL representing the dis
retized 
ow �eld at �xed time level tn on a givenuniform highest level of resolution l = L (referen
e mesh) asso
iated with agiven �nite volume dis
retization (referen
e s
heme) as 
ell averages on some
oarsest level l = 0 where the �ne s
ale information is en
oded in arrays ofdetail 
oeÆ
ients dl, l = 0; : : : ; L� 1 of as
ending resolution, see Figure 2.The multis
ale de
omposition is performed on a hierar
hy of nested grids Glwith in
reasing resolution l = 0; : : : ; L determined by dyadi
 grid re�nement ofthe logi
al spa
e, see Figure 1. Note that this grid hierar
hy 
an be eÆ
ientlyrealized by the parametri
 B-spline mappings in Se
tion 3.1.
l = 0 - l = 1 - l = 2

1

Fig. 1. Sequen
e of nested grids ûL ûL�1dL�1 : : :: : : û1d1 û0d0- - - -� � � ���R ��R ��R ��R��I ��I ��I ��I

1

Fig. 2. Multis
ale transformationStep 2: Thresholding. It 
an be shown that the detail 
oeÆ
ients be
ome smallwith in
reasing re�nement level when the underlying fun
tion is smooth. Inorder to 
ompress the original data this motivates us to dis
ard all detail
oeÆ
ients dl;k whose absolute values fall below a level-dependent thresholdvalue "l = 2l�L". Let DL;� be the set of signi�
ant details. The ideal strategywould be to determine the threshold value � su
h that the dis
retization error
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tntn + �ltn + �l�1tn + 3 �ltn + �l�2

Fig. 3. Syn
hronized time evolution on spa
e-time gridof the referen
e s
heme, i.e., di�eren
e between exa
t solution and referen
es
heme, and the perturbation error, i.e., the di�eren
e between the referen
es
heme and the adaptive s
heme, are balan
ed, see [2℄.Step 3: Predi
tion and grading. Sin
e the 
ow �eld evolves in time, grid adap-tation is performed after ea
h evolution step to provide the adaptive grid atthe new time level. In order to guarantee the adaptive s
heme to be reliable inthe sense that no signi�
ant future feature of the solution is missed, we haveto predi
t all signi�
ant details at the new time level n + 1 by means of thedetails at the old time level n. Let ~Dn+1L;� � DnL;� [Dn+1L;� be the predi
tion set.The predi
tion strategy is detailed in [2℄. In view of the grid adaptation stepthis set is additionally in
ated su
h that it 
orresponds to graded tree.Step 4: Grid adaptation. By means of the set ~Dn+1L;� a lo
ally re�ned grid isdetermined. For this purpose, we re
ursively 
he
k pro
eeding levelwise from
oarse to �ne whether there exists a signi�
ant detail to a 
ell. If there is one,then we re�ne the respe
tive 
ell. We �nally obtain the lo
ally re�ned gridwith hanging nodes represented by the index set GL;�.4.2 Multilevel Time SteppingSin
e the referen
e s
heme (3) is assumed to use an expli
it time dis
retiza-tion, the time step size is bounded due to the CFL 
ondition by the smallest
ell in the grid. Hen
e �t is determined by the highest re�nement level L,i.e., �t = �L. However, for 
ells on the 
oarser s
ales l = 0; : : : ; L� 1 we mayuse �t = �l = 2L�l �L to satisfy lo
ally the CFL 
ondition. In [8℄ a multi-level time stepping strategy has been in
orporated re
ently to the adaptivemultis
ale �nite volume s
heme as proposed in [7℄. The basi
 idea is to save
ux evaluations where the lo
al CFL 
ondition allows a large time step. Thepre
ise time evolution algorithm is s
hemati
ally des
ribed by Fig. 3: In aglobal time stepping, i.e., using �t = �L for all 
ells, ea
h verti
al line se
-tion appearing in Fig. 3 (left) represents a 
ux evaluation and ea
h horizontalline (dashed or drawn) represents a 
ell update of u due to the 
uxes. In themultilevel time stepping a 
ux evaluation is only performed at verti
al linese
tions that emanate from a point where at least one drawn horizontal linese
tion emanates from. If a verti
al line se
tion emanates from a point, wheretwo dashed horizontal se
tions emanate from, then we do not re
ompute the
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ux, but keep the 
ux value from the pre
eeding verti
al line se
tion. Hen
e
uxes are only 
omputed for the verti
al edges in Fig. 3 (right).Note, that on ea
h intermediate time level (horizontal lines) u is updatedfor all 
ells and that grid adaptation is performed at ea
h even intermediatetime level, i.e., at tn+k �L for k even. Hen
e it is possible to tra
k, for instan
e,a sho
k movement on the intermediate time levels instead of a{priori re�ningthe whole range of in
uen
e, see Fig. 3 (right).Note further, that �0 is the time s
ale at whi
h the grid movement takespla
e. The grid position is only to the boundary movement at the time levelstn; tn+1; ::: and on the intermediate time levels the grid movement is a linearinterpolation between the grid positions at tn and tn+1. This means that thetime step size tn+1 � tn is di
tated either by the time s
ale of the boundarymovement or the time step size �0 a

ording to the CFL 
ondition on the
oarsest spa
ial s
ale.5 Numeri
al ResultsThis example shows the invis
id 
ow over a an os
illating plate with pres
ribeddeformation in time. The 
ow domain extends from -5 to 5 in x-dire
tionand from 0 to 5 in y-dire
tion. At time t = 0 the lower boundary starts aperiodi
 os
illation in the interval [0,1℄ pres
ribed by a B-Spline representationx(�; t) =P12i=0 pi(t)Ni;4;T (�): Here T = (0; 0; 0; 0; 110 ; 210 ; : : : ; 910 ; 1; 1; 1; 1) andthe movement of the 
ontrol points is given by p0 = (0; 0)T , p12 = (1; 0), p1 =( 130 ; 0)T , p11 = ( 2930 ; 0)T , and pi(t) = (� 110 + i10 ; 15 sin(t=tref ) sin(�8 (i�2))) fori = 2; : : : ; 10. Due to the simpli
ity of the geometry the grid deformationis performed using trans�nite interpolation te
hniques. The 
ow enters thedomain from the left hand side with free-stream 
onditions �1 = 1:2929[kg/m3℄, p1 = 101325 [Pa℄, v1 = (165:619; 0) [m/s℄. The referen
e timeis determined by tref = 1:=pp1=�1 = 279:947 [m/s℄. At the boundarieswe impose slip 
onditions, i.e., _x � n = v � n, at the lower boundary and
hara
teristi
 boundary 
onditions elsewhere be
ause of the subsoni
 free-stream 
onditions (M1 = 0:5). The grid is adapted after every timestep. Themaximum re�nement level is Lmax = 5, the threshold � = 0:002, the 
oarsestgrid 
onsist of 1375 
ells. After two 
y
les of the boundary os
illation thenumber of grid 
ells varies around 40.000 grid points depending on the phaseof the boundary movement.The bump is moving periodi
ally up and down whi
h is re
e
ted in Figure4 where the de
e
tion in the midpoint of the bump is shown. When thebump is moving upwards then a sho
k o

urs at the leeward side be
auseof the a

eleration of the 
ow. The sho
k weakens and moves in upstreamdire
tion when the bump moves downward. This 
an be dedu
ed from Figure5 where the Ma
h number in the midpoint of the bump is plotted versus thedimensionless time t=tref . When the sho
k is passing a steep gradient 
an beseen.
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h number at bump midpointThe 
omputation has been performed using the global and the multileveltime stepping strategy, respe
tively. Although we perform no grid deformationstep for the intermediate time levels in the latter 
ase the a

ura
y of thesolution is not a�e
ted as 
an be 
on
luded from Figure 5. On the other handwe gain a fa
tor of 3.7 in 
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