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2 Philipp Lamby, Ralf Massjung, Siegfried M�uller, and Youssef StiribaSo far a short-oming of this approah has been the lak of temporal adap-tivity, i.e., all ell averages are evolved in time by the same time step size�t satisfying the CFL ondition for the ells on the �nest mesh. Reently,a loal time stepping strategy has been inorporated to the onept of fullyadaptive multiresolution shemes, f. [8, 5℄. This has to be adjusted to the re-quirement that the resulting sheme provides an auray that is omparableto the auray of the referene mesh.In the present work we apply this onept to 2D invisid ompressibleuid ows taking into aount moving boundaries. This ow is governed bythe arbitrary Lagrangian Eulerian (ALE) formulation of the Euler equations,f. Set. 2, that are disretized by a �nite volume sheme, f. Set. 3. TheeÆieny of the referene sheme is improved by employing multisale-basedgrid adaptation and loal multilevel time stepping strategies, f. Set. 4. Theadaptive sheme is applied to an osillating boundary problem. Here we fouson the gain by the multilevel time stepping in omparison to the global timestepping, f. Set. 5.2 The ALE Formulation of the Euler EquationsIn the present study, invisid uid ow is desribed by the Euler equationsfor a ompressible gas. In order to solve problems in time dependent domains,inluding moving boundaries, we onsider the governing equations in its ar-bitrary Lagrangian Eulerian formulation. Negleting body fores and volumesupply of energy, the onservation laws for any moving ontrol volume V � 
of the d-dimensional domain 
 � Rd with boundary �V and outward unitnormal vetor n on the surfae element dS � �V an be written in integralform as: ��t ZV (t) u dV + I�V (t) f(u; _x) � n dS = 0 : (1)This system of onservation laws has to be supplemented by initial values andboundary onditions, respetively. Here u = (�, �v, �E)T denotes the vetorof the unknown onserved quantities and f  represents the onvetive ux:f (u; _x) = 0� �(v � _x)�(v � _x) Æ v + p I�E(v � _x) + pv 1A = f(u;0)� u Æ _x; (2)where � denotes the density, p the stati pressure, v the veloity vetor of theuid and E the total energy. Here Æ is the dyadi produt. The motion of thegrid is onsidered by the onvetive uxes, where _x expresses the grid veloity.The stati pressure is related to the spei� internal energy aording to theequation of state for a perfet gas p = � ( � 1) �E � 1=2v2�, where  is theratio of spei� heats, whih is taken as 1.4 for air.



Invisid Flow on Moving Grids 33 Finite Volume DisretizationThe balane equations (1) are solved approximately by a �nite volumemethod. For this purpose the �nite uid domain 
(t) is split into a �niteset of moving subdomains, the ells Vi(t), suh that all Vi(t) are disjoint ateah instant of time and that their union gives 
(t). Furthermore let N (i) bethe set of ells that have a ommon edge with the ell i, and for j 2 N (i) leteij(t) := �Vi(t) \ �Vj(t) be the interfae between the ells i and j. The timeinterval is disretized by tn+1 = tn +�t assuming a onstant time step size.On this partiular disretization the �nite volume sheme an be written asjV n+1i jvn+1i = jV ni jvni ��t Xj2N (i) jeij jF (vni ;vnj ; _xij ;nij) (3)using an expliit time disretization to ompute the approximated ell aver-ages vn+1i on the new time level. Here the numerial ux funtion F (u;v; _x;n)is an approximation for the ux f (u; _x;n) in normal diretion on the edgeeij . It is assume to be onsistent, i.e.,F (u;u; _x;n) = f (u; _x;n) := f (u; _x) � n: (4)For simpliity of presentation we neglet that due to higher order reonstru-tion the numerial ux usually depends on an enlarged stenil of ell averages.3.1 Grid Generation and Grid Movement.For the simulation of moving boundaries the grid generator has to ope withtime dependent domain boundaries. To aomplish this task eÆiently we em-ploy for eah time level tn a parametri mapping x : [0; 1℄2 ! 
 from a logialspae to the physial domain 
(tn). In this setting grid ells are the images ofthe orresponding ells in logial spae, i.e., Vi = x(Ri) orresponding to theinterval Ri � [0; 1℄2. Then the disrete grid is determined simply by funtionevaluation.For the representation of suh a parameter mapping we use tensor produtB-splines, i.e., x(u; v) =PNi=0PMj=0 pi;j Ni;pu;U (u)Nj;pv ;V (v): Here Ni;p;T de-notes the i-th normalized B-spline of order p with respet to the knot vetorT . In our appliations we usually hoose ubi splines (p = 4), f. [1℄.The pij are the ontrol points that are not to be onfused with grid points.Typially, the number of ontrol is muh smaller than the number of gridpoints in the disrete grid. This makes grid deformation by parametri B-spline mappings highly eÆient; only few ontrol points have to be movedinstead of all the grid points in the disrete grid. More elaborate details ongrid generation via B-Splines an be found in [4℄.From the grid funtions we ompute a spae-time grid funtion that isrealized by a two-level time disretization: before the timestep tn ! tn+1is performed the grid generation module provides two grid representationsx(�; tn) and x(�; tn+1) at time levels tn and tn+1, respetively. Then for t 2(tn; tn+1) the grid funtion is determined by linear interpolation.



4 Philipp Lamby, Ralf Massjung, Siegfried M�uller, and Youssef Stiriba3.2 The Geometri Conservation Law.The \geometri onservation laws" are disrete onsisteny onditions for the�nite volume sheme. They stem from the requirement, that a reasonablenumerial method should at least be able to maintain a onstant ow �eld: ifu(x; t) = u1 for all (x; t), then we require that the numerial solution ful�llsuni = u1 for all index pairs (i; n), too. In the speial ase of a stationary gridwe then get for eah ell Vi the onsisteny ondition for disretizations of theform (3) 0 = Xj2N(i) jeij jnij : (5)What people usually understand to be "the" geometri onservation law stemsform the requirement, that the onstant homogeneous ow should also bereprodued if the mesh is moving. If we assume equation (5) to be satis�ed,we end up for eah ell Vi with the onditionjV n+1i j � jV ni j = �t Xj2N(i) jeij j�ij : (6)Here �ij = nij � _xij denotes the normal grid veloity on the fae eij . Thegrid generator has to provide the quantities jeij j, nij , �ij and jVij for the owsolver suh that the onsisteny onditions (5) and (6) hold. On a urvilineargrid where these quantities are not uniquely de�ned this an be ahieved byevaluating the integralsN ij := Zeij (t) n(s; t)ds; Sij := Z tn+1tn Zeij (t) _x(s; t) � nij(s; t) dsdt:exatly and then settingjeij j := jjN ij jj2; nij :=N ij=jeij j; �ij := Sij=(�t jeij j): (7)3.3 The Numerial Flux.The uxes in normal diretion are approximated by an approximate Riemannsolver. Sine the ell edges are time-dependent we have to take into aount thegrid movement when solving the Riemann problem at the interfaes. For thispurpose, we exploit the rotational and Galilean invariane of the underlyingbalane equations (1). Then we an rewrite the uxes in normal diretion asf (u; _x;n) = S f(S�1 u;0;n) with S = 0� 1 0T 0_x I 012 _x2 _xT 11A ;f. [6℄. Carrying this identity over to the numerial ux we obtain



Invisid Flow on Moving Grids 5F (ul;ur; _x;n) = S F (S�1 ul;S�1 ur;0;n): (8)Hene, we may derive a numerial ux over moving edges from standard nu-merial uxes on stationary grids. Note, that in the omputations only thenormal grid veloity � is essentially needed. To perform the transformation(8) step by step it is suÆient to use �n instead of _x. This is admissibleprovided that the numerial ux is rotational invariant.In the present work we use Roe's approximate Riemann solver. In order toavoid non-physial expansion shoks we use Harten's entropy �x. The spatialand temporal auray are improved by using a quasi one-dimensional seond-order ENO reonstrution and Taylor expansion aording to [3℄. Here thereonstrution is applied to the harateristi variables.4 Adaptive Multisale MethodThe eÆieny of the referene �nite volume sheme presented in Setion 3is signi�antly improved by employing reent multisale-based grid adapta-tion tehniques. Here we briey summarize the basi oneptual ideas. Fortehnial details we refer the reader to the book [7℄ and [1℄, respetively.4.1 Multisale-Based Spatial Grid AdaptationStep 1: Multisale analysis. The fundamental idea is to present the ell aver-ages ûL representing the disretized ow �eld at �xed time level tn on a givenuniform highest level of resolution l = L (referene mesh) assoiated with agiven �nite volume disretization (referene sheme) as ell averages on someoarsest level l = 0 where the �ne sale information is enoded in arrays ofdetail oeÆients dl, l = 0; : : : ; L� 1 of asending resolution, see Figure 2.The multisale deomposition is performed on a hierarhy of nested grids Glwith inreasing resolution l = 0; : : : ; L determined by dyadi grid re�nement ofthe logial spae, see Figure 1. Note that this grid hierarhy an be eÆientlyrealized by the parametri B-spline mappings in Setion 3.1.
l = 0 - l = 1 - l = 2

1

Fig. 1. Sequene of nested grids ûL ûL�1dL�1 : : :: : : û1d1 û0d0- - - -� � � ���R ��R ��R ��R��I ��I ��I ��I
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Fig. 2. Multisale transformationStep 2: Thresholding. It an be shown that the detail oeÆients beome smallwith inreasing re�nement level when the underlying funtion is smooth. Inorder to ompress the original data this motivates us to disard all detailoeÆients dl;k whose absolute values fall below a level-dependent thresholdvalue "l = 2l�L". Let DL;� be the set of signi�ant details. The ideal strategywould be to determine the threshold value � suh that the disretization error
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tntn + �ltn + �l�1tn + 3 �ltn + �l�2

Fig. 3. Synhronized time evolution on spae-time gridof the referene sheme, i.e., di�erene between exat solution and referenesheme, and the perturbation error, i.e., the di�erene between the referenesheme and the adaptive sheme, are balaned, see [2℄.Step 3: Predition and grading. Sine the ow �eld evolves in time, grid adap-tation is performed after eah evolution step to provide the adaptive grid atthe new time level. In order to guarantee the adaptive sheme to be reliable inthe sense that no signi�ant future feature of the solution is missed, we haveto predit all signi�ant details at the new time level n + 1 by means of thedetails at the old time level n. Let ~Dn+1L;� � DnL;� [Dn+1L;� be the predition set.The predition strategy is detailed in [2℄. In view of the grid adaptation stepthis set is additionally inated suh that it orresponds to graded tree.Step 4: Grid adaptation. By means of the set ~Dn+1L;� a loally re�ned grid isdetermined. For this purpose, we reursively hek proeeding levelwise fromoarse to �ne whether there exists a signi�ant detail to a ell. If there is one,then we re�ne the respetive ell. We �nally obtain the loally re�ned gridwith hanging nodes represented by the index set GL;�.4.2 Multilevel Time SteppingSine the referene sheme (3) is assumed to use an expliit time disretiza-tion, the time step size is bounded due to the CFL ondition by the smallestell in the grid. Hene �t is determined by the highest re�nement level L,i.e., �t = �L. However, for ells on the oarser sales l = 0; : : : ; L� 1 we mayuse �t = �l = 2L�l �L to satisfy loally the CFL ondition. In [8℄ a multi-level time stepping strategy has been inorporated reently to the adaptivemultisale �nite volume sheme as proposed in [7℄. The basi idea is to saveux evaluations where the loal CFL ondition allows a large time step. Thepreise time evolution algorithm is shematially desribed by Fig. 3: In aglobal time stepping, i.e., using �t = �L for all ells, eah vertial line se-tion appearing in Fig. 3 (left) represents a ux evaluation and eah horizontalline (dashed or drawn) represents a ell update of u due to the uxes. In themultilevel time stepping a ux evaluation is only performed at vertial linesetions that emanate from a point where at least one drawn horizontal linesetion emanates from. If a vertial line setion emanates from a point, wheretwo dashed horizontal setions emanate from, then we do not reompute the



Invisid Flow on Moving Grids 7ux, but keep the ux value from the preeeding vertial line setion. Heneuxes are only omputed for the vertial edges in Fig. 3 (right).Note, that on eah intermediate time level (horizontal lines) u is updatedfor all ells and that grid adaptation is performed at eah even intermediatetime level, i.e., at tn+k �L for k even. Hene it is possible to trak, for instane,a shok movement on the intermediate time levels instead of a{priori re�ningthe whole range of inuene, see Fig. 3 (right).Note further, that �0 is the time sale at whih the grid movement takesplae. The grid position is only to the boundary movement at the time levelstn; tn+1; ::: and on the intermediate time levels the grid movement is a linearinterpolation between the grid positions at tn and tn+1. This means that thetime step size tn+1 � tn is ditated either by the time sale of the boundarymovement or the time step size �0 aording to the CFL ondition on theoarsest spaial sale.5 Numerial ResultsThis example shows the invisid ow over a an osillating plate with presribeddeformation in time. The ow domain extends from -5 to 5 in x-diretionand from 0 to 5 in y-diretion. At time t = 0 the lower boundary starts aperiodi osillation in the interval [0,1℄ presribed by a B-Spline representationx(�; t) =P12i=0 pi(t)Ni;4;T (�): Here T = (0; 0; 0; 0; 110 ; 210 ; : : : ; 910 ; 1; 1; 1; 1) andthe movement of the ontrol points is given by p0 = (0; 0)T , p12 = (1; 0), p1 =( 130 ; 0)T , p11 = ( 2930 ; 0)T , and pi(t) = (� 110 + i10 ; 15 sin(t=tref ) sin(�8 (i�2))) fori = 2; : : : ; 10. Due to the simpliity of the geometry the grid deformationis performed using trans�nite interpolation tehniques. The ow enters thedomain from the left hand side with free-stream onditions �1 = 1:2929[kg/m3℄, p1 = 101325 [Pa℄, v1 = (165:619; 0) [m/s℄. The referene timeis determined by tref = 1:=pp1=�1 = 279:947 [m/s℄. At the boundarieswe impose slip onditions, i.e., _x � n = v � n, at the lower boundary andharateristi boundary onditions elsewhere beause of the subsoni free-stream onditions (M1 = 0:5). The grid is adapted after every timestep. Themaximum re�nement level is Lmax = 5, the threshold � = 0:002, the oarsestgrid onsist of 1375 ells. After two yles of the boundary osillation thenumber of grid ells varies around 40.000 grid points depending on the phaseof the boundary movement.The bump is moving periodially up and down whih is reeted in Figure4 where the deetion in the midpoint of the bump is shown. When thebump is moving upwards then a shok ours at the leeward side beauseof the aeleration of the ow. The shok weakens and moves in upstreamdiretion when the bump moves downward. This an be dedued from Figure5 where the Mah number in the midpoint of the bump is plotted versus thedimensionless time t=tref . When the shok is passing a steep gradient an beseen.
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