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ABSTRACT. The paper is concerned with the analysis of the so-
called composite curve. This is a special type of curve in phase
space which arises in the construction of the solution of a Riemann
problem for a system of strictly hyperbolic conservation laws which
exhibits non-genuinely nonlinear characteristic fields. It will be
shown by means of a bifurcation approach that this curve uniquely
exists near a degeneration point of the corresponding characteristic
field. Additionally the main result also states that it is tangentially
connected to the admissible part of the rarefaction curve breaking
off at this point. The proof is mainly based on Liapunov-Schmidt
reduction which reduces the system to an equivalent scalar equa-
tion. The result applies to central models in mathematical contin-
uum mechanics such as nonlinear elasticity, magnetohydrodynam-
ics and equilibrium hydrodynamics.

1. Introduction

We are concerned with the Riemann problem for a system of conservation laws

(]—) Uy + f(u)z =0
and piecewise constant initial data

_Jow , <0
@ w00 ={ 15

for two states u;, u, in the admissible phase space D C R". Here u : Ry x R - D
denotes the vector of n conservative quantities and f : D — R™ is the flux vector
which is supposed to be sufficiently smooth, i.e., f € C3(D).

The Riemann problem has been subject of extensive research. Significant con-
tributions concerning the construction of its solution have been made by Lax [4],
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Gelfand [2], Wendroff [8] and Liu [5]. In the sequel, we consider the general frame
as in [5]. For this purpose, we assume that the system of conservation laws (1) is
strictly hyperbolic, i.e., there is a complete set of eigenvalues Ax(u), kK =1,...,n,
of the Jacobian of f such that

A(u) < ... < Ap(u) YueD.
The corresponding right eigenvectors r¢(u) and left eigenvectors Iy (u) satisfy
IF(u) rj(u) =6k; 1<k,j<n, VuéeD.

The eigenvalues A\ denote the characteristic velocities corresponding to the char-
acteristic k—field which is characterized by the nonlinearity factor

X (u) := (Vure (u))T ri(u) u € D.

Whenever X vanishes for all u € D the k—field is called linearly degenerated. How-
ever, if Xy is not equal to zero in the admissible phase space, the k—field is called
genuinely nonlinear. In the classical case the k—field is supposed to be either lin-
early degenerated or genuinely nonlinear. Here, we also consider the case of a non—
genuinely nonlinear field, i.e., Xy locally vanishes at certain points of the phase
space. To be precise, we assume that there is an (n — 1)—dimensional hypersurface
M C D such that

i) the characteristic k-field X, vanishes on M, i.e., Xj(u) = 0 for all u € M,
ii) X is simply degenerated on M, i.e.,

3) X'k () := (VuXpo(u) T ri(u) 0 ue M.

A state u € M is called a degeneration point of the nonlinear k-field.

In this frame Liu [5] outlined the general principles for constructing the solution
of the Riemann problem. In particular, he introduced the composite curve near
degeneration points of nonlinear fields which is the composite of a rarefaction curve
and certain states located on shock curves. In order to describe the composite curve
we first introduce some notations, starting with a rarefaction curve. All states of a
k-rarefaction curve lie on a trajectory satisfying the ordinary differential equation

(4) u'(§) = rr(u())

where ¢ is an appropriately chosen parameter. Note that the rarefaction curve is
uniquely characterized by imposing an initial value. Moreover we conclude from (3)
and (4) that the rarefaction curve intersects the hypersurface M only at isolated
points.

Furthermore we introduce the Hugoniot locus H(u*) which is composed of all
states u € D such that the Rankine—Hugoniot jump condition

(5) o(u—u’) = f(u) - f(u")
holds. Here o = o(u*,u) denotes the speed of the discontinuity. In [4] Lax verified

that there is a family of n one—parametric smooth curves all satisfying the jump
conditions (5) and lim,_,,+ o (u*,u) = A\;(u*). Since the system is supposed to be
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strictly hyperbolic, these curves are usually enumerated with increasing velocity
Ak (u*). The corresponding Hugoniot curve is denoted by Hy(u*).

Finally the composite curve C; can be determined by means of the k-rarefaction
curve denoted by Ry and the Hugoniot curves Hy(u*) emanating from a state on
the rarefaction curve. To be precise, for any state u* € Ry near 4 € M we move
along Hp(u*) until we reach the first state u € Hp(u*) with u # u* satisfying the
sonic condition

(6) o(u”,u) = A (u®).

According to Liu’s definition in [5] Cj, is the set of all these states w. Liu proved
that the shock curve H(u*) is tangent to the composite curve C, at u and tangent
to Ry at u*. In particular, he verified that the shocks corresponding to the states
on the composite curve satisfy the physical entropy condition. The situation is
sketched in Figure 1.

FI1GURE 1. Composite: Ry — Cp FIGURE 2. Composite: Hr — Ry

The admissible part of a rarefaction curve is characterized by increasing wave
speed A. This guarantees the non-folding of the rarefaction fan in the z-t plane.
In case of A reaches a maximum a composite starts. Note that the construction
of this composite curve is admissible as long as two conditions hold: first, the
corresponding state u* on the rarefaction branch does not coincide with the state
uo, and second, o(u*,u) does not equal A(u), or equivalent, o is decreasing along
the corresponding shock curves. The second condition indicates a double sonic
shock. Then the wave curve has to be continued with a rarefaction.

Finally, we would like to remark that there is the possibility of sonic states
without having started a composite curve. To this end, we start with a shock
curve. Then there might be a sonic state provided that the shock curve intersects
the hypersurface M at an earlier state. This situation is sketched in Figure 2. Note
that this configuration is obtained by reversing the roles of u and ug in Figure 1.

In the present work we consider an issue that was not investigated in Liu’s work
for general systems, see [5]. This concerns the unique existence of the compos-
ite curve at a degeneration point uw. For convenience the following definition is
introduced.

Definition 1.1. Let k denote a nonlinear field that degenerates at an isolated state
u € M, i.e, Xx(w) = 0. Furthermore let u*(s) : [—¢,0] = R™ a parameterized
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k—rarefaction curve characterized by the initial value problem
ug(s) = rr(u’(s)), v (0)=a.

Then the composite curve is composed of all roots u € D of the function

(7) B(u,5) = fu) — f(u™(s)) — A (s))(u —u*(s)) = 0
with
(8) u#u*(s) for s#0.

Now the main result of this paper reads:

Theorem 1.2.

Let uw € M be a simple degeneration point. Then there uniquely exists a composite
curve in a local neighborhood of w. In particular, if we are approaching locally
u on the rarefaction curve, then the corresponding state on the composite curve
approaches u as well.

The proof of this theorem is given in Section 2. First of all, we consider the scalar
case. This will give us some inside to the underlying techniques from bifurcation
theory. For systems of conservation laws we reduce the n dimensional problem in
n + 1 unknowns to a scalar problem of two unknowns by means of the Liapunov—
Schmidt reduction.

Finally, we would like to remark that several models in mathematical continuum
mechanics such as nonlinear elasticity and equilibrium hydrodynamics, fit into the
frame of strictly hyperbolic conservation laws with non—genuinely nonlinear char-
acteristic fields, cf. [9]. Another example is related to magnetohydrodynamics, see
[7]. A general class of systems is considered in [1].

2. Existence of the Composite Curve

2.1. The Scalar Case

First of all, we consider a single conservation law. In the scalar case the setting
reducesto A= f',r =1, X = f"" and X' = f"". The simplest example that fits into
the setting is the cubic flux function f(u) = u3. There is an inflection point @ = 0
and, in particular, f"(u) # 0. According to Definition 1.1 the composite locus is
characterized by the roots of

9) ®(u,s) =u® — s> —35*(u—5)= (u—s)?(u+2s)=0

where the rarefaction curve is the identity, i.e., u*(s) = s. The double root u = s
is the trivial solution of (7) which is of no interest because of (8). There is exactly

one non-trivial solution u(s) = —2s. We note that the derivatives of the function
& satisfy the following conditions at the point (z,s) = (0,0) denoted by a bar:
(10) P=9%,=%,=0, &, =5 =o,,=0,
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We like to remark that this setting is characteristic for so-called recognition
problems. Unfortunately, problem (9) is not strongly equivalent to some of the
normal forms for singularities, given, for instance, in [3]. In particular, it is not
strongly equivalent to the well-known pitchfork bifurcation 2% —sz. Some difficulties
arising in the bifurcation analysis stem from the fact that (9) has a double root.
The reader might find an extensive discussion on recognition problems in general
also in [3], Chapter V.5.

In order to verify the unique existence of a composite curve for more general
scalar fluxes, we now proof the following result motivated by the above example.
In particular, it is the key tool for proving Theorem 1.2.

Lemma 2.1.
Let be g(x,8) : B— R, BC R x R containing (0,0), a function in C* satisfying

(]_]_) J=092=39s=0, Gue=0es =7ss =0,
Jzzz = C; Jras = 07 Jzss = —C, Jsss = 2c

with a constant ¢ € R, ¢ # 0. Here the bar again denotes the evaluation at (0,0)
and the indez is the derivation with respect to x or s.
Then there is a unique non—trivial solution h = h(s) # s near (0,0) such that

(12) g(h(s),s) =0, s sufficiently small,
(13) h(0) =0, hs(0) = h'(0) = —2.

Proof: First of all, we verify that there exists a solution near (0,0) such that
(12) and (13) hold. For this purpose, we expand g in a Taylor series’

P P P 1— 2 — 1— 2
g(.CL',S) = g+gz$+gss+§gzmx +gzsx3+§gsss +

1 1 1 1
Egzzm .Z’3 + igzws 123 + Egzss xSQ + ggsss 83 + |klz_4ryk(x7s) (.Z‘,S)k.

Incorporating the relations (11) this expansion simplifies to

(14) g(z,s) = éc£$3 —3zs® + 233),+ Z i (z, 8) (z, 5)*.

(z—s);Ez+2s) Ik|=4

Now we use an ansatz that is common in bifurcation theory. To this end, we
consider the function

N 1
(15) 82, 9) = g, 5).
By means of (14) this function can be written as

g(z,s) = éc(a:3 —3x+2)+s Z i (s, s) (x,1)*

(2—1)2(2+2) |k|=4

Lk = (k1, ko) is a multiindex with |k| = k1 + k2 and (z, s)* = zF1sk2,
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From this representation we deduce

3(=2,00=0, §a(=2,0) = gc £0.

Then the Implicit Function Theorem, see [6], p. 59, shows that there is a ball around
s =0 and a unique function x = z(s) such that

9(z(s),s) =0 and =z(0) =-2.
Hence h(s) := z(s)s locally solves (12). In particular, h(0) = 0 and the derivative
of h satisfies
K (s) =2'(s)s+ z(s), Hh'(0) =z(0) = —-2.

Finally, we have to verify that the function h is the only solution. To this end,
we assume that there exists yet another function h # h with g(h(s),s) = 0 for s
sufficiently small and h(0) = 0, h'(0) = —2. Introducing #(s) = h(s)/s we conclude
from (15)

0= g(@(s)s,s) = §(Z(s),s) s°.
Again the Implicit Function Theorem implies uniqueness for the solution z(s) and
therefore we obtain locally

h(s) = &(s)s = z(s)s = h(s).

In particular, the condition #(0) = h(0) holds by assumption. This proves the
assertion. H

2.2. The System Case

By means of the Lemma 2.1 we are now able to prove Theorem 1.2 which is pre-
sented here once more but in terms of Definition 1.1.

Theorem 2.1%

Consider the setting in Definition 1.1. In particular, u € M is a simple degenera-
tion point of the nonlinear field, i.e., Xgx(u) = 0 and X' (w) # 0. Furthermore, let
r € C? and X\ € C3. Then there is a unique non—trivial solution u = u(s) # u*(s)
in a ball around s = 0 that solves (7). In particular,

us(0) = —2u3(0) = —2r(w).
Proof: Without loss of generality we may assume that k¥ = 1 and
(16) @ =0, A@) =0, r(@) = (1,0,...,0)T, fu(@) = diag (0, Xa(@),. .., A\ (@)).

Otherwise we first transform the system of conservation laws as outlined in [9] such
that the type of the characteristic fields are invariant under this transformation.
In order to employ Lemma 2.1 we have to reduce problem (7) for n equations in
n + 1 unknowns to a scalar equation of two unknowns such that the roots remain
invariant. For this purpose, we perform a Liapunov-Schmidt reduction, cf. [3]. First
of all, we introduce the matrices

J = ®yl0,0 = fu(@), E:=diag(0,1,...,1)
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and choose vector spaces M and N which are the complements of ker J and range J,
ie.,

(17) R® =ker J@®& M, R" =N @range J.
Note that due to our settings we have in particular
ker J =R x {0}""!, range J = {0} x R =range E, kern E = N.
Then we may rewrite (7) equivalently as
(18) E®(u,s) = 0,
(19) (I—-E)®(u,s) 0.

We now apply the Implicit Function Theorem to (18) and show that n — 1 of the
n + 1 unknowns depend on the two remaining ones. Then we can substitute the
n— 1 variables into (19) and obtain an equation in two unknowns. For this purpose,
we first define F': M x (ker J x R) — range J by

F(w,v,s) = E®(v+w,s), w€ M, v € ker J,

which is feasible because of the decomposition (17). Differentiation of F' with
respect to w yields

Fy(w,v,8)]000 =E®yloo0=EJ=J.

If we restrict to M, the map J : M — range J is invertible. This implies that there
is a unique solution of (18) for w near 0. We denote this solution by

w=W(v,s), W:ker JxR— M.
In particular, it satisfies

E®(v+ W(v,s),s) =0 near 0 and W (0,0) =0.

We now introduce the mapping ¢ : ker J x R — N defined by

d(v,8) = (I — E)®(v + W(v,s),s).
Then we note that the roots of ® and ¢ coincide, i.e.,

o(v,8) =0 <<= Dw+W(,s),s)=0.

So far ¢ is a mapping with two parameters v and s where v is an element of a
one-dimensional vector space. However, for our purpose it is more convenient to
work with a scalar function g : R x R — R determined by two scalar parameters.
To this end, we finally perform a coordinate transformation by which ¢ is reduced
to such a scalar function g. Therefore we choose vy € ker J and v} € (range J)*
and define

g(z,8) = <v§,d(zvo,8) > =< 0§, (I — E)®(xvg + W (209, 5),58) >
= <}, ®(zvo + W(zv0,5),8) > .

In particular, we may choose vg = v§ = r(a) = (1,0,...,0)T. Since ¢ € N, we
conclude
g(z,8) =0 <=  é(xv9,8) =0
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and, moreover, the zeros of g correspond one-to-one to the solutions of (7).

Note, that the function ¢ is implicitly determined because it depends on the
function W which is known to exist but without explicit representation. In order
to apply Lemma 2.1 we need to determine the derivatives of g. To this end, the
derivatives of ® and W have to be computed. The technical details of their com-
putation can be found in [9]. Finally, from evaluating the derivatives at (0,0) we
verify (11) with constant ¢ = X'(@) # 0. Therefore there is a unique solution of (7).
Finally we have to determine the derivative of u at the degeneration point. For this
purpose we consider the representation of u resulting from the Liapunov—-Schmidt
reduction and the function h(s) according to the proof of Lemma 2.1

u(s) = u(h(s),s) = h(s)vo + W (h(s)vo, 5).
From this we conclude
us(0) = ((vo + Wywo)h' + Ws)(0) = woh'(0) = —2r.
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