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Abstract

The numerical simulation of compressible two–phase fluid flows exhibits severe dif-
ficulties, in particular, when strong variations in the material parameters and high
interface velocities are present at the phase boundary. Although several models and
discretizations have been developed in the past, a thorough quantitative validation
by experimental data and a detailed comparison of numerical schemes are hardly
available.

Here two different discretizations are investigated, namely, a non-conservative ap-
proach proposed by Saurel and Abgrall (SIAM J. Sci. Comput. 21, 1115 (1999)) and
the real ghost fluid method developed by Tang, Liu and Khoo (SIAM J. Sci. Com-
put. 28, 278 (2006)). The validation is performed for the case of laser-induced
cavitation bubbles collapsing in an infinite medium. For the computations, initial
data are deduced implicitly from the experimental data. In particular, the influ-
ence of numerical phase transition caused by smearing of the phase boundary is
investigated.
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1 Introduction

The investigation of cavitation bubbles is of interest for different real world
applications arising, for instance, in engineering, medicine and biology. The
processes taking place in the interior and exterior of a collapsing and oscillating
bubble are still subject of theoretical and experimental research [2]. However,
small time and space scales as well as the complicated dynamics make any
theoretical and experimental approach a challenge.

In the present work we will focus on the modeling and simulation of the
collapse and rebound of a single vapor-filled spherical bubble in a liquid en-
vironment. This configuration has been subject of numerous analytical and
experimental investigations. An overview of the field is given in the review
article by Lauterborn el al. [14].

Numerical investigations have verified that the fluid state inside the bubble
does not stay homogeneous during the collapse [8]. Moreover, shock waves
develop in the liquid when the bubble gets maximally compressed, as is con-
firmed by experiments [2]. Presumably, strong waves are also generated inside
the bubble, where they may interact with the phase boundary due to the
small radius. Thereby, the frequently made assumption of incompressibility
of the liquid and the homogeneity of the bubble medium are inappropriate
when considering strong bubble collapse. In addition it could be verified that
the modeling of the gas inside the bubble by a perfect gas is only valid at
moderate changes in volume [8].

In recent years, several numerical investigations on compressible two–phase
fluid flow for even more complex configurations have been published using the
stiffened gas law [4–6,15,16,25]. This model was introduced by Harlow and
Amsden [9] and can be considered a combination of the perfect gas law and
the barotrop Tait equation supplemented with an appropriate energy law [22].
Here the material parameters depend on the phase.

For the numerical discretization of the Euler equations equipped with the
stiffened gas law, different approaches have been used, for instance, the real
ghost fluid method [25], a characteristics-based matching scheme [16] and a
stratified flow model [6]. The main objective of this work is to compare two
different discretizations, namely, (i) the Saurel and Abgrall (SA) approach [19]
and (ii) the real ghost fluid method (rGFM) [25]. Both rely on a finite volume
discretization of the Euler equations that only differs in the flux computation
at cell interfaces next to the phase boundary. Here the SA approach uses a
two-phase Riemann solver whereas in the rGFM two single-phase Riemann
problems with appropriate values for the ghost fluid are solved. The main
difference inherent in the discretizations is the choice of the phase indicator
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function, namely, (i) the gas fraction in the SA approach and (ii) the level set
function in the rGFM. The evolution of both phase indicator functions is de-
scribed by the same non-conservative evolution equation but its discretization
differs significantly: The evolution equation for the gas fraction is discretized
by a non-conservative upwind scheme adapted to the underlying finite volume
discretization of the flow equations. On the other hand, for the discretization
of the level set function well-known techniques are applied to the transport
equation. To ensure the property of a distance function the level set function
is reinitialized in a postprocessing step.

The two discretizations are to be compared by means of quasi-1D computa-
tions of a spherical bubble in order to investigate the influence of numerical
phase transition. We do this by means of the physically relevant configuration
of laser-induced cavitation bubbles. One problem is the choice of initial data
that can not be directly deduced from the experiment. Therefore another fo-
cus of the present work is to suggest a strategy how to determine initial data
that are implicitly fitted to the time evolution of the measured bubble radius.

The outline is as follows. In Section 2 we summarize the stiffened gas model.
This model is discretized by the SA approach as well as the rGFM summarized
in Section 3. Then, in Section 4, we propose a strategy for the computation of
the initial data fitted to experimental data that are provided by the collapse
of a laser-induced spherical bubble. Finally, in Section 5, we present several
numerical computations for two test cases corresponding to a small and a large
equilibrium radius of the bubble. In particular, we compare the two different
discretizations and validate them by the experimental data.

2 Mathematical Model

Compressible fluid flow is characterized in continuum mechanics by the fields
of density ρ, velocity v, internal energy e and pressure p. The balances of
mass, momentum and energy for inviscid flow lead to the Euler equations. In
spherical coordinates and employing rotational symmetry, they read

∂

∂ t
(r2 ρ) +

∂

∂ r
(r2(ρ vr)) = 0,

∂

∂ t
(r2 ρ vr) +

∂

∂ r
(r2(ρ v2

r + p)) = 2 p r, (1)

∂

∂ t
(r2 ρE) +

∂

∂ r
(r2(ρ vr(E + p/ρ))) = 0,

where E = e + 1
2
v2

r is the total energy and vr the radial velocity.
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In order to close the system, we have to provide a pressure law. In this work,
we consider the stiffened gas law suggested in [1,7]. It reads

p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe− γ(ϕ)π(ϕ), (2)

where the two phases (here a gas and a liquid) are distinguished by an addi-
tional unknown ϕ. Note that with ϕ = 0 we recover a standard perfect gas law.
In the following we will consider two choices for the phase indicator function
ϕ. It will represent either the gas fraction or the level set function.

2.1 Evolution of phase boundary by gas fraction

In this approach we identify ϕ with the gas fraction. We decide that ϕ = 0
and ϕ = 1 correspond to pure liquid and vapor, respectively. Because we
are interested in very high speed flows and very short observation times we
suppose that phase transition can be neglected so that there is no mass transfer
between the two fluids. Thus the fraction satisfies a homogeneous transport
equation, i.e., its material derivative is vanishing,

∂ ϕ

∂ t
+ vr

∂ ϕ

∂ r
= 0. (3)

If at initial time t = 0 the fraction ϕ takes only the values 0 or 1, it will
retain its value for t > 0. Thus there is no physical mixing in the continuous
model. However, the numerical model will introduce artificial mixture zones
where 0 < ϕ < 1. This causes some difficulties that are discussed later in this
section.

If we were only studying the continuous model, it would be sufficient to provide
the values of the pressure law coefficients γ and π for ϕ = 0 or ϕ = 1. But
because of the numerical mixture, it is necessary to interpolate γ and π for
0 < ϕ < 1. An arbitrary choice of interpolation would lead to numerical
difficulties that are studied in many works, see for instance Ref. [1]. It appears
that a good choice consists in a linear interpolation of the two special quantities
β1 = 1/(γ − 1) and β2 = γπ/(γ − 1), i.e.,

β1(ϕ) = ϕβ1(1) + (1− ϕ)β1(0), β2(ϕ) = ϕβ2(1) + (1− ϕ)β2(0). (4)

The mixture pressure law coefficients γ(ϕ) and π(ϕ) are then obtained from
the reverse relation, i.e.,

γ(ϕ) = 1 + 1/β1(ϕ), π = β2(ϕ)/(1 + β1(ϕ)) (5)
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Table 1
Material coefficients

Vapor Liquid

γ [-] 1.4 1.1

π [Pa] 0 2.045e+9

For pure water and air the material parameters γ and π are listed in Table
1. Here the minimal pressure pmin = −π for the pure liquid is deduced from
the sound speed c2 = γ (p + π)/ρ where we choose cl = 1500 m/s, γl = 1.1,
ρl = 1000 kg/m3 and pl = 105 Pa. Usually in the stiffened gas model for a
liquid, higher values of γl are proposed as in Ref. [7]. However, smaller values
for γl result in a higher minimal pressure πl and, hence, the variation of the
sound speed in the liquid is smaller.

2.2 Evolution of phase boundary by level set function

An alternative approach to distinguish between the two phases is based on
the level set technique first proposed by Osher and Sethian [17,20]. The basic
idea is to embed the phase boundary in a higher-dimensional manifold. In the
quasi-1D case considered here it is characterized by the bubble radius rI , i.e.,
Φ = Φ(t, r), where at time t the phase boundary is characterized by the zero
level Φ(t, rI) = 0.

The interface is evolved in time according to the fluid velocity vr. Therefore,
an observer sitting on the interface rI detects no change in Φ and, hence, a
natural choice for the evolution of the level set function Φ is

∂ Φ

∂ t
+ vr

∂ Φ

∂ r
= 0. (6)

In order to identify the phase present at an arbitrary position r by the sign of
Φ, we initialize Φ as the signed distance function to the interface, i.e.,

Φ(0, r) = sign(r − rI) |r − rI |. (7)

Note that Φ remains no longer a distance function with increasing time. In
Ref. [23], Sussman et al. proposed a reinitialization method for the scalar
field that preserves its character of a distance function. For this purpose they
suggest to solve

∂Φ̃

∂τ
= S(Φ̃)

(
1−

∣∣∣∣∣∂ Φ

∂ r

∣∣∣∣∣
)

resp.
∂ Φ̃

∂ τ
+ a(Φ̃)

∂ Φ̃

∂ r
= S(Φ̃) (8)
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with a = S(Φ̃)∂ Φ̃
∂ r

/|∂ Φ̃
∂ r
| and S = S(Φ̃) = sign(Φ̃) the sign-function. Note that

τ is an artificial time. Here we denote the reinitialization function by Φ̃ to
distinguish it from the level set function Φ. It is initialized by

Φ̃(0, r) = Φ(t, r) (9)

for some fixed time t. Thus, after each evolution step of the level set func-
tion the stationary solution to equation (8) is determined to ensure that Φ
remains a distance function and that the zero level is kept. Note that the def-
inition of the sign-function S together with (8) guarantees that the zero level
is preserved, i.e., Φ̃(τ, rI) = Φ(t, rI) = 0 for τ ≥ 0.

3 Discretization

In order to discretize the inviscid flow equations (1) and the evolution equa-
tions of the phase indicator function (3) and (6), respectively, we will employ
the Saurel-Abgrall approach [19] and the real ghost fluid method [25]. These
two approaches have in common that the flow equations for the conserved
quantities are approximated by a second-order finite volume scheme in space
and an upwind discretization is used for the non-conservative transport equa-
tions of the phase indicator. Due to the nonstationary behavior of the flow,
time integration is performed explicitly. The efficiency of the resulting scheme
is improved by applying multiscale-based grid adaptation techniques [3,15].

The key ideas are briefly summarized below where, in particular, we address
the main differences between the two approaches.

3.1 The Saurel-Abgrall approach

The main idea in the SA approach is to couple the discretization of the flow
equations (1) with the gas fraction equation (3).

First of all, a finite volume discretization is applied to (1) that reads

vn+1
i = vn

i −
∆t

∆r3

(
r2
i+ 1

2
F n

i+ 1
2
− r2

i− 1
2
F n

i− 1
2

)
+

∆r∆t

∆r3
Sn

i (10)

for cell Ii = [ri− 1
2
, ri+ 1

2
] with ∆r := ri+ 1

2
−ri− 1

2
the spatial discretization length

in radial direction. The volume is determined by ∆r3 := 1
3

(
r3
i+ 1

2

− r3
i− 1

2

)
and
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the interface area by r2
i+ 1

2

. Here v = (ρ, ρ vr, ρE)T is an approximation of

the cell averages of the conserved quantities and F n
i± 1

2
denote the numerical

fluxes at the interfaces ri± 1
2

approximating the flux in radial direction F r =

(ρ vr, ρv2
r + p, vr(%E + p))T . The numerical flux is determined by (i) a second-

order reconstruction of the primitive variables ρ, vr, p and the gas fraction ϕ
and (ii) the exact solution of a Riemann problem. The numerical source term
Sn

i is approximated by evaluating the right-hand side of Eq. (1) in the cell
center r̂i = (ri− 1

2
+ ri+ 1

2
)/2 with pressure pn

i , i.e.,

Sn = (0, 2r̂i p
n
i , 0). (11)

This is consistent with vr = 0 and p = const.

In order to avoid pressure and velocity oscillations at the phase boundary
Saurel and Abgrall [19] suggested an upwind discretization of the evolution
equation for the fraction ϕ. It is derived from the finite volume discretization
for the homogeneous fluid equations, i.e., Sn

i = 0 in Eq. (10), applied to a flow
field exhibiting constant velocity and pressure states. In order to maintain
these constant states the upwind discretization for ϕ has to be chosen such
that

ϕn+1
i = ϕn

i −
∆t

∆r3

(
r2
i+ 1

2
v n

r,i+ 1
2
(ϕn

i+ 1
2
− ϕn

i )− r2
i− 1

2
v n

r,i− 1
2
(ϕn

i− 1
2
− ϕn

i )
)

(12)

where ϕ and vr are the gas fraction and the velocity given by the solution of
the two-phase Riemann problem at the interface i± 1

2
. Alternatively, we could

evolve the vector β = (β1, β2)
T of the material parameters by

βn+1
i = βn

i −
∆t

∆r3

(
r2
i+ 1

2
v n

r,i+ 1
2
(β

n

i+ 1
2
− βn

i )− r2
i− 1

2
v n

r,i− 1
2
(β

n

i− 1
2
− βn

i )
)
.(13)

Note that the terms ϕn
i and βn

i in (12) and (13), respectively, would cancel
for a homogeneous velocity field in the genuine multidimensional case but not
for the quasi-1D case.

Finally we summarize the numerical discretization of the Saurel-Abgrall ap-
proach. It consists of the following actions at each time step:

(1) compute the reconstruction of the primitive variables,
(2) solve the Riemann problem for each cell interface,
(3) evolve density, momentum and energy in time by (10),
(4) evolve the gas fraction in time by (12) where the transport velocities at

each cell interface are determined by the Riemann solutions.
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Fig. 1. Sketch of the computation of the real and ghost fluid states from the interfa-
cial states uI , pI and ρIL, ρIR determined by solving a two-phase Riemann problem
for the states uL and uR.

3.2 The real ghost fluid method

In this approach the fluid equations are also discretized by a finite volume
approximation

vn+1
i = vn

i −
∆t

∆r3
i

(
r2
i+ 1

2
F n,−

i+ 1
2

− r2
i− 1

2
F n,+

i− 1
2

)
+

∆ri∆t

∆r3
i

Sn
i (14)

that is similar to (10) but near to the phase boundary we define two fluxes
F n,±

i+ 1
2

, i.e., the resulting scheme is not conservative. These fluxes are deter-

mined by first solving a two-phase Riemann problem. If the phase boundary
is lying between cell i and cell i + 1 where cell i corresponds to fluid A and
cell i + 1 to fluid B, then the left and right state are taken from cells i − 1
and i + 2, respectively, to ensure access to states of the pure phases. The Rie-
mann solution provides interfacial states for density ρIL, ρIR, pressure pI and
velocity vI left and right to the phase boundary. For fluid A, the state of cell
i is substituted by pI , uI , ρIL and also for the ghost cells on the other side of
the phase boundary. Then a single-phase Riemann problem is solved for each
cell interface of fluid A to provide the numerical fluxes with the ghost cells as
boundary conditions at the phase boundary. Then the same procedure is used
for fluid B. This procedure is sketched in Fig. 1. After having computed the
numerical fluxes, the solution is advanced to the next time step by Eq. (14).
Note that away from the phase boundary only one numerical flux if computed
at a cell interface by solving a single-phase Riemann problem. Again the spa-
tial order is improved by using a second-order reconstruction of the primitive
variables ρ, vr, p as well as the level set function Φ.

8



Opposite to the SA approach the evolution equation (6) of the level set func-
tion is discretized independently of the finite volume discretization using stan-
dard techniques. For the sake of completeness they are briefly summarized in
the following. Here we employ a first-order time discretization

Φn+1
i = Φn

i −∆t vn
i (∂Φ/∂r)n

i , (15)

where the spatial derivative is approximated by the upwind discretization

(∂Φ/∂r)i =

m(A, B) , A ·B ≥ 0

0 , else
. (16)

Here, the terms A and B correspond to a second-order approximation of ∂Φ/∂r
according to an ENO discretization, see Harten et al. [10]. They are determined
by

A = D−Φi + ∆ri/2 ·m(D+D−Φi, D
+D−Φi−1) , (17)

B = D+Φi −∆ri/2 ·m(D+D−Φi, D
+D−Φi+1) , (18)

using the minmod function m(a, b) = a, if |a| < |b| and m(a, b) = b else. The
one-sided approximations D+ and D− and the central difference D+D− of the
first and second derivative of Φ are defined by

D+Φi =
Φi+1 − Φi

∆ri

, D−Φi =
Φi − Φi−1

∆ri

, D+D−Φi =
Φi+1 − 2Φi + Φi−1

(∆ri)2
.(19)

Note that the upwind discretization has a stabilizing effect similar to finite
volume discretizations of conservation laws. Due to the transport, the gradi-
ents may steepen and the level set function develops discontinuities. In that
case, it is no longer a distance function.

In order to maintain smoothness of the level set function and to preserve its
character of a distance function, it is reinitialized after each time step. For
this purpose we approximate the steady state solution of the initial value
problem (8) and (9). For the spatial discretization an upwind discretization
as proposed by Sussman et al. [24] is applied whereas in time we use a first
order approximation, i.e.,

Φ̃n+1
i = Φ̃n

i −∆τSε(Φ̃
n
i )
(
1−

∣∣∣(∂Φ̃/∂r
)n

i

∣∣∣) . (20)
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Here Sε(Φ̃) = 2(Hε(Φ̃)− 1/2) is the smoothed sign function defined by

Hε(Φ̃) :=


0 , Φ̃ <−ε

1
2

(
1 + Φ̃

ε
+ 1

π
sin

(
πΦ̃
ε

))
, |Φ̃| ≤ ε

1 , Φ̃ > ε

. (21)

Note that the smoothed Heaviside function Hε guarantees that the zero level
set is reproduced. Herein, ε is chosen to be three times the discretization length
on the finest resolution in the grid. The reinitialization step needs a pseudo
time τ depending on the discretization, here we use ∆τ = 0.3 ∆r. Unlike in
Eq. (16) the spatial derivative ∂Φ̃/∂r is approximated – as proposed by Shu
and Osher [21] – by an upwind ENO-type scheme, i.e.,

(
∂Φ̃/∂r

)
i
=


A , wl > 0 and wl + wr > 0

B , wr < 0 and wl + wr < 0

0 , else

(22)

with wl = Sε

(
Φ̃
)
·A, wr = Sε

(
Φ̃
)
·B and A, B defined according to Eq. (17).

Finally we summarize the numerical discretization of the real ghost fluid
method. It consists of the following actions at each time step:

(1) solve a two-phase Riemann problem to determine the interfacial states at
the phase boundary,

(2) determine the states in the ghost cells and modify the real fluid by the
interfacial states,

(3) compute the reconstruction of the primitive variables,
(4) solve the single-phase Riemann problems at the cell interfaces,
(5) evolve density, momentum and energy in time by (14)
(6) evolve the level set function in time by (15) where the transport velocities

are determined by the new velocities,
(7) reinitialize the level set function by some iteration steps with (20).

4 Computation of initial data

In order to start the computation we need initial data not only for the liquid
state but also for the medium inside the bubble. However, it is not yet possible
to measure the pertaining variables inside the bubble. Therefore we propose an
indirect way to obtain the initial pressure and temperature in the bubble from
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the experimentally measured radius vs. time curve. The solution of a second-
order ODE (the Keller-Miksis model) describing the radial bubble dynamics
is fitted to the measured data points to find consistent initial conditions.

4.1 Laser-induced cavitation bubbles

Cavitation bubbles can be produced by laser pulses. The experiments de-
scribed here have been performed with a Q-switched Nd:YAG laser (Lumon-
ics HY750). This laser delivers pulses at a wavelength of 1064 nm having
a duration of 8 ns. After tuning the energy to a few mJ by an attenuator,
the laser pulse is focused into a cuvette of size 50 × 50 × 50 mm3 filled with
clean, distilled water. The liquid temperature is kept fairly constant at 20◦

C during the experiment. A lens system built into the cuvette produces a
breakdown plasma at a distance of about 25 mm from the wall. The heated
spot expands rapidly and forms the bubble that is subsequently investigated
by photographic means.

Images of the bubble are taken by a CCD camera with short exposure time
(500 ns) at different times after the instant of bubble generation (Fig. 2). Image
sequences of the bubble dynamics are compiled from single exposures taken
of different bubbles at increasing delay time. Due to laser energy fluctuations
and variations in the breakdown process the maximum radius and collapse
time of the bubbles may vary slightly about their average values. Therefore,
the acoustic pulses emitted at breakdown and at first collapse are measured
by a hydrophone. The time between the two pulses allows to determine the
collapse time precisely. Recordings of bubbles with a collapse time outside a
specified range are discarded. As an example, Fig. 2 shows the collapse and
rebound of a bubble having a collapse time of 140 µs. The first frame was
acquired 10 µs after laser nucleation, the time between the frames is also 10
µs.

The images are used to determine the radius-time curve R(t) of the bubble
(Fig. 3). As the laser-generated bubbles are, in general, not perfectly spherical
an ’equivalent’ radius of a sphere is calculated that gives the same cavity
volume as measured on the pictures. For the example presented, a maximum
radius Rmax = 747 µm ± 0.5% and an upper bound for the minimum radius,
Rmin ≤ 12 µm, are found. At this size the measurement precision is severely
limited by the optical resolution of the lenses and by image blurring due to
the finite exposure time of the camera.
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Fig. 2. Expansion and collapse of a laser-generated bubble. The exposure time is
500 ns, the time between frames, 10 µs. The first image was taken 10 µs after the
laser shot.

4.2 The Keller-Miksis Model

In case of the undisturbed bubble collapse, the movement of the bubble wall
characterized by the radius Rb = Rb(t) can be modeled by the Keller-Miksis
model for gas and vapor filled bubbles [12,18]. This model is derived from
the Navier-Stokes equations written in spherical coordinates and employing
spherical symmetry of the bubble. It is of first order in the Mach number and
thus accounts for weak compressibility:(

1− Ṙb

c0

)
RbR̈b +

3

2
Ṙ2

b

(
1− Ṙb

3 c0

)
=

(
1 +

Ṙb

c0

)
PR − p0

ρ0

+
Rb

ρ0c0

ṖR. (23)

Here, p0 denotes the ambient pressure, ρ0, the density, and c0 the speed of
sound, which is assumed to be constant. The pressure in the liquid at the
bubble wall, PR, is given by

PR = p0

(
R3

eq − b R3
eq

R3
b − b R3

eq

)κ

(24)

where Req is the equilibrium radius of the bubble, i.e., the radius at which
the static bubble is at (unstable) mechanical and thermal equilibrium with
the surrounding liquid. Here the terms corresponding to vapor pressure, liq-
uid viscosity and surface tension have been neglected because there effect is
negligibly small for the configurations at hand. The medium inside the bubble
is described by a van der Waals hard core law with excluded volume fraction
b and polytropic exponent κ.
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The following numerical values were chosen for the calculations: b = 0.0016,
κ = 4/3, pv = 2330 Pa, c0 = 1482 m/s, ρ0 = 998 kg/m3, µ = 0.001 N/m2,
p0 = 100 kPa, and σ = 0.0725 Pa m.

To perform the ODE simulation we have to fix the equilibrium radius Req and
the initial values t0, Rb(t0) and Ṙb(t0). The simulation is started at t0 = tmax,
when the bubble reaches its maximum expansion and the interface stops, thus
Rb(tmax) = Rmax and Ṙb(tmax) = 0. Since the measured radius-time curve is
sampled at intervals of 5 µs and does not hit the maximum point exactly, values
for tmax and Req are determined by a least-squares fit, so that the calculated
dynamics matches the experimental data as closely as possible. Note that
the time from maximum expansion to the first collapse is nearly independent
of the equilibrium radius. For tmax = 70.7 µs the collapse time equals the
experimental value of 140 µs, and the equilibrium radius is found to be Req =
69.2 µm. It can be assumed that these parameters, if not exact, give a reliable
numerical approximation of the bubble’s radial dynamics. In Figure 3 the
numerical simulation of the Keller-Miksis model based on these parameters is
compared with the experimental radius-time curve, showing good agreement.
Even the first rebound is captured quite well, though the bubble tends to get
distorted and shape-unstable at this stage (compare Fig. 2).

Fig. 3. The points (2) give the experimentally measured bubble radii as a function
of time. The solid curve starting at maximum radius presents a numerical solution
of the Keller-Miksis model with its parameters fitted to the experiment as described
in the text.
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4.3 Choice of initial gas state

Finally we have to specify the initial state inside the bubble for a given radius
Rb. Since neither the fluid equations (1) nor the Keller-Miksis model (23,24)
incorporate mass transfer of the non-condensable gas, the equilibrium radius
Req fixes the amount of gas in the bubble. Req has to be be extracted from
the experimental data.

In ultrasonic cavitation the gas content of oscillating bubbles typically changes
slowly over many oscillation cycles due to diffusion across the interface, and ac-
cordingly depends on the concentration of dissolved gas. On the other hand,
the initial gas content of laser-generated bubbles virtually does not depend
on the gas concentration in the liquid, as the volume of vaporized liquid is
too small to contain a significant amount of gas molecules. However, in the
laser breakdown the liquid (here, water) is superheated and hydrolyzed, yield-
ing a reactive mixture of ions (e.g., H, OH, O) during the first nanoseconds.
Upon expansion and rapid cooling of the plasma these species recombine to
give mainly vapor, oxygen and hydrogen gas, and smaller amounts of other
components. Oxyhydrogen gas has been shown to be produced in repetitive
laser-induced breakdown in water. Unfortunately, it is not well known, and
difficult to measure, how much gas is produced in the laser breakdown pro-
cess compared to water vapor. However, it is safe to say that when a large
laser-generated bubble reaches its maximum radius the vapor has reached
phase equilibrium with the surrounding liquid, and that the amount of non-
condensable gas in the bubble will remain approximately constant during the
first few oscillation cycles. With the definition of the equilibrium radius,

pi(Req) = peq = p0 +
2σ

Req

, (25)

and assuming that the bubble medium is an ideal gas undergoing adiabatic
compression or expansion, the pressure in the bubble at radius Rb is given by

pi(Rb) = peq

(
Req

Rb

)3 κ

≈ p0

(
Req

Rb

)3 κ

, (26)

where in the last step the surface tension has been neglected, which is admis-
sible for large enough Req. As the temperature in the bubble at equilibrium is
the ambient temperature T0, the inner temperature at radius Rb is accordingly
given by

Ti(Rb) = T0

(
Req

Rb

)κ−1

. (27)
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The mass in the bubble, Mi, is assumed to be constant, so the density in the
bubble scales inversely with the volume,

ρi(Rb) = ρeq

(
Req

Rb

)3

, (28)

where the equilibrium density is calculated by means of the ideal gas law,

ρeq =
Mi

Veq

=
ν W

Veq

=
peq W

<T0

. (29)

Here, ν denotes the number of moles in the bubble, W the molar mass of the
gas, and < = 8.314 J/mol the universal gas constant.

As an example we consider a bubble with an equilibrium radius of Req =
0.692 · 10−4 m, filled with air (κ = 1.4, W = 0.029 kg/mol). With an ambient
temperature of T0 = 293.15 K, an ambient pressure of p0 = 105 Pa, and liquid
density of ρ0 = 1000 kg/m3 we obtain for a bubble at radius Rb = 746.9 µm
an internal pressure of pi(Rb) = 4.579 Pa and a temperature of Ti(Rb) = 16.9
K. The density in the bubble is ρi(Rb) = 0.957 · 10−3 kg/m3.

The calculated values, in particular the temperature and the pressure, appear
to be unrealistic. In fact, because the vapor pressure has been neglected, they
cannot faithfully represent the real conditions in the bubble at maximum ex-
pansion, as the bubble will be filled with vapor at low pressure. This vapor
largely condenses when the bubble shrinks, and the remaining gas determines
the evolution of pressure and density during the final collapse phase and re-
bound, which are at the focus of the present investigation.

5 Results

We investigate the collapse of a spherical bubble using the real ghost fluid
method and the Saurel-Abgrall approach. This configuration can be consi-
dered as a benchmark problem to validate modeling, discretization as well as
implementation, because the results can be compared with experiments and
simplified 1D models. Since the flow field is inherently one-dimensional, we
would like to emphasize that in 1D there are other models and discretizations
available that might give better results for the problem at hand such as inter-
face fitting strategies, cf. [8,11] but these are not feasible for multidimensional
flows or they can not deal with strong variations in the material parameters
and high interface velocities

By means of this configuration we want to compare the two approaches and
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validate them by the Keller-Miksis model, which is fitted to the experimental
data. In particular, we will discuss the influence of grid refinement on nu-
merical phase transition and grid convergence. For this purpose we perform
computations for two cases that only differ in the initial data for the gas.

5.1 Case 1

The computations have been performed on the interval Ω = [0, 0.4] m in radial
direction. The maximum radius of the bubble is Rmax = 0.7469× 10−3 m. For
the initial state in the air bubble we choose ρair = 0.957 × 10−3 kg/m3 and
pair = 4.579 Pa according to Section 4.3. The ambient state in the liquid
is determined by ρwater=1000 kg/m3 and pwater = 105 Pa. Both phases are
assumed to be at rest. The material parameters for the stiffened gas law are
those given in Table 1.

At the left boundary, i.e., the bubble midpoint, we impose symmetry condi-
tions whereas in the far field we use reflecting boundary conditions at a wall.
The reason for choosing a large computational domain is to avoid unphysical
reflections at the far field boundary. The time for the numerical investigation
of the phase boundary is therefore limited by twice the time needed for a wave
to run from the interface to the wall and back again.

The coarse discretization consists of N0 = 20 cells. The number of refinement
levels for the multiscale-based grid adaptation is determined by L, i.e., the
uniform grid on the finest level consists of NL = 2L N0 cells. The threshold
value in the grid adaptation is chosen as ε = 10−4. This turned out to be
reasonably small such that the overall accuracy of the reference scheme on the
uniform fine grid was not affected by the threshold error. For details on the
multiscale-based grid adaptation we refer to Refs. [3,15]. Since time discretiza-
tion is explicit the time step is limited by a fixed CFL number of 0.8 in case of
the SA approach and 0.2 for the rGFM for all of the presented computations.

Although the physical model, i.e., the inviscid fluid equations coupled with
the stiffened gas law, is the same for both the S-A approach and the rGFM,
the numerical discretization differs essentially in the approximation of the
evolution equation for the phase boundary. This causes a sharp representation
of the phase interface by the zero level set in the rGFM whereas in the Saurel-
Abgrall approach the interface is smeared due to numerical diffusion resulting
in severe numerical phase transition.

Therefore we first investigate the numerical diffusion of the phase boundary
using the SA approach. Since the phase boundary can not be identified by a
unique value of the gas fraction ϕ, we choose two values ϕ = 10−5 (”pure”
water) and ϕ = 1− 10−10 (”pure” air) by which we characterize the limits of
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Fig. 4. Case 1: Numerical phase transition of SA approach

the pure phases. In Figure 4 we present the two isolines for the gas fraction
corresponding to different computations with increasing refinement level L.
We note that these isolines are diverging until the first rebound. The distance
reaches its maximum when the bubble radius becomes minimal. Thereafter the
isolines are converging again as long as the bubble is growing in the rebound.
The thickness of the numerical phase transition regime is severe. However,
it decreases significantly under grid refinement. Hence, we conclude that this
regime might vanish under further grid refinement. However, as is seen from
Table 2 the thickness ∆R of the phase transition zone measured at the first
rebound is converging numerically of order 1 with a reduction factor of about
c = 0.8. To reduce the zone thickness of ∆RL = 59 µm at L = 18 to a size
comparable to the minimum size of the bubble at first collapse as given by
the Keller-Miksis model (Table 3), Rmin = 10 µm, we have to reduce the
thickness by another factor of ∆RL/Rmin = ∆RL/∆RL+1 ≈ 6, i.e. we need
l ≥ log(∆RL+l/∆RL)/ log(c) ≈ 8 additional refinement levels. Since by each
additional refinement level the computational time increases by a factor of
about 3, a computation on level L = 26 would be about 6600 times longer.
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Table 2
Case 1: Grid convergence of numerical phase transition regime at the 1st rebound

L 13 14 15 16 17 18

∆R [mm] 0.176 0.169 0.129 0.099 0.072 0.059

p = log ∆RL/ log ∆RL−1 — 1.023 1.152 1.129 1.138 1.076

c = ∆RL/∆RL−1 — 0.960 0.763 0.767 0.727 0.819

This is not feasible.

Next we want to discuss the influence of grid refinement on the phase boundary
where we identify the bubble wall by the gas fraction ϕ = 1−10−10 (”pure” air)
in the SA approach and use the zero level set Φ = 0 for the rGFM. In Figures
5 and 6 the moving bubble wall is shown for several computations using an
increasing number of refinement levels. We note that in the first collapse and
the first rebound the bubble radius seems to be grid converged. However, in
the second rebound we still can observe a significant difference with increasing
refinement levels. This observation holds true for both methods.

Fig. 5. Case 1: Parameter study with SA
approach w.r.t. moving bubble wall

Fig. 6. Case 1: Parameter study with
rGFM w.r.t. moving bubble wall

Next the numerical results are validated by means of the Keller-Miksis model
introduced in Section 4.2 and fitted to the experimental data as described
in Section 4.3. For this purpose, we present in Figure 7 the computations
with L = 18 refinement levels for the SA approach and the rGFM as well
as the curve obtained with the Keller-Miksis model, shown in Fig. 3. We
observe a good agreement for the rGFM. For the SA approach the rebound is
significantly overpredicted. Obviously, the numerical phase transition regime
still has a strong influence on the computation and further grid refinement
is needed to reduce its influence on the rebound. However, this will exhaust
available computational resources as has been discussed above, in particular,
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for genuinely multidimensional computations.

Fig. 7. Case 1: Validation of numerical methods with L = 18 for Eqs. (1,2) by
comparison with the solution of the Keller-Miksis model (Eqs. (23,24)) that gives
best fit to the experimental data.

For a quantitative comparison we summarize in Table 3 the bubble radius and
the pressure in the gas for the instant of the first and second collapse as well
as the first rebound. Several computations with increasing number of refine-
ment levels with the SA approach and the rGFM have been performed and are
compared with the Keller-Miksis model. Since the Keller-Miksis model has
been tuned to the experiment, see Section 4, we suppose that this model gives
the most realistic values, at least the order of magnitude should be reliable.
We note a fairly good agreement in the first bubble collapse time. However, in
comparison to the Keller-Miksis model, the pressure is underpredicted by the
SA approach and the rGFM due to the fact that the minimum bubble radius
is overpredicted by a factor of about 2. For the first rebound the rGFM and
the Keller-Miksis model are in good agreement, whereas the maximum bubble
radius is overpredicted by the SA approach resulting in a very low pressure.
Of course, this affects significantly the second collapse that makes a compar-
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Table 3
Case 1: Comparison of Saurel-Abgrall approach, the real ghost fluid method and
the Keller-Miksis model at the instance of the 1st and 2nd collapse as well as the
1st rebound corresponding to the minimum and maximum bubble size

Saurel-Abgrall Approach Real Ghost Fluid Method K-M

Levels of refinement L14 L16 L18 L14 L16 L18 Model

1st time µs 65.4 67.0 67.7 69.2 68.5 68.5 69.3

collapse radius µm 17.5 17.54 15.9 25.8 17.5 18.7 9.2

pressure 105 Pa 87.0 196 410 101 398 300 1510

1st time µs 114.3 115.2 112.7 84.5 83.6 83.7 85.8

rebound radius µm 487 500 476 167 162 165 168

pressure Pa 4 12 24 3450 3226 3140 4348

2nd time µs 163.8 163.8 157.5 101.2 99.3 99.5 101.2

collapse radius µm 17.2 20.1 19.8 29.5 22.6 22.0 16.4

pressure 105 Pa 41 83 147 58 130 150 369

ison obsolete. For the rGFM and the Keller-Miksis model the agreement is
still fairly good. Finally for the collapses, the SA approach gives a better ap-
proximation of the minimum radius than the rGFM but needs more levels of
refinement to obtain an accurate pressure corresponding to this radius.

To conclude with the discussion we point out the main benefit of the Euler
equations (1) in comparison to the simplified model (23) of Keller and Mik-
sis. The spatial discretization of (1) in the SA and rGFM approach allows to
represent the evolving inhomogeneous state of the medium inside the bubble
during collapse and rebound, whereas the simplified model (23) is based on the
approximation of a spatially homogeneous state. In Figures 8 and 9 we show
the Mach number distribution for the computations with L = 14 refinement
levels using the SA approach and the rGFM. Both computations show a com-
pression wave running inside the bubble that is reflected in the bubble center
and interacts with the bubble wall. The waves travel back and forth several
times in the first collapse resulting in an acceleration of the bubble wall. The
main difference in the two computations is the interface velocity that becomes
supersonic for the rGFM but remains subsonic for the SA approach.

5.2 Case 2

In this case the computational setup is identical to the previous case except for
the initial data of the gas. These are determined according to Section 4.3 where
we assume an equilibrium radius that is 10 times larger than determined in
Section 4.2, i.e., Req = 0.692×10−3 m. From this radius we deduce ρair = 0.957
kg/m3 and pair = 72.56 kPa. Since the bubble size will oscillate around this
radius, the minimal bubble radius reached in the bubble collapse will be much
larger than before and the influence of numerical phase transition will not
be as severe. In addition, grid convergence should be observed already for a
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Fig. 8. Case 1: Mach number with SA approach on L = 14

Fig. 9. Case 1: Mach number with rGFM on L = 14

moderate number of refinement levels. By this test case it will be possible to
verify numerically that the SA approach and the rGFM will converge to the
same solution under grid refinement.

First of all, we investigate the numerical diffusion of the phase boundary ap-
plying the SA approach to this test case. In Figure 10 we present the two
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Fig. 10. Case 2: Numerical phase transition of SA approach

isolines for the gas fraction as in test case 1 corresponding to different com-
putations for two refinement levels L. We note that the isolines for the two
pure phases are still diverging but less severe as in case 1, see Figure 4 and
Table 4. Obviously, the numerical phase transition regime is decreasing signif-
icantly under grid refinement and is approaching a sharp interface. In order
to quantify this observation we again compute the empirical order of accuracy
where we measure the thickness ∆R of the phase transition zone at the first
rebound. As we can conclude from Table 4, ∆R is converging numerically of
order 1 with a reduction factor of about c = 0.7. Note that the thickness
∆R18 = 15.1 µm of the transition zone is of the order of the minimum bubble
size in the first collapse, see Table 5, i.e., additional refinement levels are not
needed to meet the tolerance as in the previous case. Therefore the effect of
the numerical phase transition regime on the bubble collapse is not as strong
as in test case 1.

The influence of grid refinement on the phase boundary is shown for several
computations using an increasing number of refinement levels for both ap-
proaches, see Figures 11 and 12. In the first collapse and the first rebound the
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Table 4
Case 2: Grid convergence of numerical phase transition regime at the 1st rebound

L 13 14 15 16 17 18

∆R [mm] 0.1116 0.0737 0.0483 0.0320 0.0219 0.0151

p = log ∆RL/ log ∆RL−1 — 1.189 1.162 1.136 1.110 1.097

c = ∆RL/∆RL−1 — 0.660 0.655 0.663 0.684 0.689

solution seems to be almost grid converged on L = 18. This is more obvious for
the rGFM but for the SA approach the difference to L = 17 (not shown here)
is small. However, in the second rebound we still can observe a significant dif-
ference with an increasing number of refinement levels. This observation holds
true for both methods.

Fig. 11. Case 2: Parameter study with SA
approach w.r.t. moving bubble wall

Fig. 12. Case 2: Parameter study with
rGFM w.r.t. moving bubble wall

Opposite to test case 1, shown in Fig. 7, both schemes seem to converge to
the same limit. In particular, the phase interface computed by the rGFM fully
lies in the numerical phase transition regime determined by the SA approach.
This holds true for all of our computations corresponding to L = 13, . . . , 18
for test case 2. Exemplarily, it is shown for L = 18 in Fig. 13.

The results by the rGFM and the SA approach are both in fairly good agree-
ment with the solution of the Keller-Miksis model, see Figure 14. However,
there is a slight phase shift in time in the first collapse and rebound that is
increasing with time. This is due to the different modeling. Since the Keller-
Miksis model (23) is a simplified model derived from the fluid equations of
continuum mechanics, it can not be considered the limit of the rGFM and
the SA approach discretizing the fluid equations (1) where viscosity and heat
conduction are neglected. In particular, the Keller-Miksis model does not take
into account the inhomogeneity of the gas state.
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Fig. 13. Case 2: Comparison of phase boundary (rGFM) and the numerical phase
transition regime (SA approach) for L = 18

Table 5
Case 2: Comparison of Saurel-Abgrall approach, the real ghost fluid method and
the Keller-Miksis model at the instance of the 1st and 2nd collapse as well as the
1st rebound corresponding to the minimum and maximum bubble size

Saurel-Abgrall Approach Real Ghost Fluid Method K-M

Levels of refinement L14 L16 L18 L14 L16 L18 Model

1st time µs 103 104 105 107 106 106 110

collapse radius µm 606 626 634 644 642 641 640

pressure 105 Pa 1.38 1.39 1.39 1.35 1.37 1.38 1.36

1st time µs 203 208 211 212 212 212 220

rebound radius µm 691 723 736 736 741 743 745

pressure 105 Pa 0.74 0.74 0.74 0.77 0.75 0.74 0.75

2nd time µs 302 312 316 319 319 319 330

collapse radius µm 594 622 634 654 647 645 642

pressure 105 Pa 1.34 1.36 1.37 1.27 1.33 1.34 1.34

The agreement is confirmed by the quantitative comparison in Table 5 for
the bubble radius and the pressure in the gas for the instant of the first and
second collapse as well as the first rebound.
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Fig. 14. Case 2: Validation of numerical methods by the Keller-Miksis model

Finally, Figures 15 and 16 show the Mach number distribution for the compu-
tations with L = 14 refinement levels using the SA approach and the rGFM,
respectively. For both computations we note that the bubble wall is only
weakly accelerated and stays subsonic. In particular, the Mach number in-
side the bubble is much smaller than in case 1. At a Mach number less than
0.005 the fluid can be considered incompressible. Therefore the compression
wave is running much faster relative to the gas velocity and, hence, the bub-
ble wall, i.e., the process of reflection in the bubble center and interaction at
the bubble wall takes place more frequently. This causes the wiggles in the
isolines. Note that both computations give qualitatively comparable results.

6 Conclusion

The SA approach and the rGFM have been applied to investigate the spherical
bubble collapse of laser-induced cavitation bubbles. Initial data are derived by
first fitting the equilibrium radius in the Keller-Miksis model to minimize the
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Fig. 15. Case 2: Mach number with SA approach on L = 14

Fig. 16. Case 2: Mach number with rGFM on L = 14

least-squares error of the model solution relative to the experimental data on
the bubble dynamics. Then the gas state for an arbitrary bubble radius is
deduced applying an ideal and adiabatic gas law.

The CFD computations verify that the SA approach results in a severe nu-
merical phase transition regime that is unphysical because mass transfer is
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excluded in the physical model. This regime can be reduced by grid refine-
ment but grid convergence is too slow and the needed resolution to reduce
this effect significantly can not be afforded. On the other hand, the rGFM
leads to fairly good results that are comparable to experimental data even for
a moderate resolution.

Therefore we conclude that a sharp interface model is needed to obtain phys-
ically reasonable results for the investigation of laser-induced cavitation bub-
bles. In particular, the smearing of the phase boundary has to be avoided
to reduce the influence of numerical mass transfer between the two phases.
Hence, future work is concerned with the implementation of the rGFM in
multidimensions.
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