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Abstract The new flow solver Quadflow, developed within the SFB 401, has been
designed for investigating flows around airfoils and simulating the interaction of the
structural dynamics and aerodynamics. This article addresses the following issues
arising in this context. After identifying proper coupling conditions and settling the
well-posedness of the resulting coupled fluid-structure problem, suitable strategies
for successively applying flow and structure solvers needed to be developed that
give rise to a sufficiently close coupling of both media. Based on these findings the
overall efficiency of numerical simulations hinges, for the current choice of struc-
tural models, on the efficiency of the flow solver. In addition to the multiscale-based
grid adaptation concepts, proper parallelization concepts are needed to realize for
such complex problems an acceptable computational performance on parallel archi-
tectures. Since the parallelization of dynamically varying adaptive discretizations is
by far not straightforward we will mainly concentrate on this issue in connection
with the above mentioned multiscale adaptivity concepts. In particular, we outline
the way the multiscale library has been parallelized via MPI for distributed mem-
ory architectures. To ensure a proper scaling of the computational performance with
respect to CPU time and memory, the load of data has to be well-balanced and
communication between processors has to be minimized. We point out how to meet
these requirements by employing the concept of space-filling curves.
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1 Introduction

In this paper we present an overview of the work conducted in our research group
concerning the numerical simulation for fluid-structure interaction problems in the
context of aeroelasticity. There have been two major focus points, namely (i) the
coupling of fluid and structure solvers, and (ii) parallelization of the fluid solver.

As for (i), a typical approach to solving the coupled fluid-structure problem is
the successive application of highly developed solvers for each separate task cou-
pled through appropriate interface conditions. We shall first briefly recall the essence
of our findings from an early stage of the research program concerning some foun-
dational issues of coupling mutual fluid and structure response. In particular, this
covers well posedness of a coupled problem formulation based on proper coupling
conditions as well as the development of discretization concepts that ensure a cor-
rect energy balance at the interface. Needless to stress that the latter issue is essential
for a time accurate integration of the inherently nonstationary processes. Once suit-
able coupling strategies for flow and structure solvers had been identified the focus
of the work shifted towards improving the performance of the individual solvers.

Here the primary demands arise on the fluid side which brings us to topic (ii). In
order to be able to meet the requirements of highly accurate nonstationary simula-
tions based on the full Navier Stokes equations as a fluid model a new fully adaptive
solver Quadflow has been developed [6, 7]. More specifically, it has been designed
to handle (i) unstructured grids composed of polygonal(2D)/polyhedral(3D) ele-
ments [5] and (ii) block-structured grids where in each block the grid is determined
by local evaluation of B-Spline mappings [17]. While the solver can handle also
grids provided by an external grid generator grid adaptation has been implemented
only for block-structured grids where in each block the grid is locally refined using
the concept of multiscale-based grid adaptation [19]. In order to treat both settings,
two different data structures were developed for the flow solver and the grid adap-
tation, respectively. The time evolution is performed on one unsorted list of all cell
averages not distinguishing between data that might correspond to different blocks.
On the other hand, grid adaptation is carried out for each block separately sweeping
through the different refinement levels. It turned out that hash maps are well suited
for this purpose rather than tree structures. Therefore, in each adaptation step the
data have to be transferred back and forth between unsorted lists and hash maps.

Although multiscale-based grid adaptation leads to a significant reduction of the
computational complexity (CPU time and memory) in comparison to computing on
uniform meshes, this by itself is ultimately not sufficient to warrant an acceptable
efficiency when dealing with realistic 3D computations for complex geometries. In
addition, parallelization techniques are indispensible for further reducing the com-
putational time to an affordable order of magnitude. In a first step, the unstructured
finite volume solver was parallelized via MPI [12, 13] for distributed memory ar-
chitectures. Here load-balancing was performed by graph partitioning techniques
using the Metis software [16, 15] together with PETSc [4, 2, 3]. This parallelized
flow solver was used together with the concept of adaptive, block-structured grids.
However, in this case all data had to be transferred to one processor. Since this ruins
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the overall performance, we have parallelized the multiscale library, which realizes
local grid refinement in each block by means of the multiscale-based grid adaptation
concept.

The performance of a parallelized code crucially depends on load-balancing and
minimal interprocessor communication. Since due to hanging nodes, the underlying
adaptive grids are unstructured this task is by no means trivial. In contrast to the
flow solver, instead of employing graph partitioning methods, we use space-filling
curves [25]. Here the basic idea is to map level-dependent multiindices identifying
the cells in the grid hierarchy to a one dimensional line. The interval is then split
into different parts each containing the same number of entries. For this mapping
procedure we employ the same cell identifiers as in case of the hash maps.

After briefly recalling in Section 2 the results concerning fluid-structure coupling,
the main objective of the present work is to present the subsequent developments
concerning the parallelization of multiscale-based grid adaptation. For this purpose,
we first summarize in Section 3 the basic ingredients of the multiscale library: (i) the
multiscale analysis of the discrete cell averages and grid adaptation, (ii) algorithms
and (iii) data structures.

The key issues of parallelization are load-balancing and interprocessor communi-
cation. These issues are addressed in Section 4. An optimal balancing of the compu-
tational work load can be realized using the concept of space-filling curves. Mainly
in connection with local multiscale transformations we discuss the data transfer at
processor boundaries. Finally in Section 6, we present some performance studies
with the parallelized version of the multiscale-based grid adaptation and show first
adaptive, parallel 3D computations of a Lamb-Oseen vortex.

2 Fluid-Structure Coupling

This section is devoted to discretization issues concerning the numerical solution of
fluid-structure interaction problems. Numerical solution methodologies for solving
such problems are typically based on employing an already available fluid solver and
a given structural solver. The task is then to incorporate them into a fluid-structure
solver or, referring to our application background, into an aeroelastic solver. Similar
to constructing efficient and reliable fluid solvers and structural solvers, by making
those solvers obey certain discretization principles, one faces the question, how to
configure a good fluid-structure solver from the given individual fluid and structure
solvers, or expressed shortly, how to realize a good fluid-structure coupling. For this
purpose we shall explain first the setting in which this question has been analyzed.

Consider first the following physical model. The aeroelastic system consisting of
an aircraft wing in transonic flow can develop the nonlinear vibration phenomenon
of limit cycles which exhibit constant amplitude structural vibrations. It is important
to know the parameter ranges, in which these unstable phenomena occur. The limit
cycles are self-excited oscillations caused by the aerodynamic coupling of structural
modes in linear theory. Among other effects, shock movements in the flow play a
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significant role in the destabilizing mechanisms which finally activate nonlinearities.
These features can also be found in the panel flutter problem [9], which serves as our
model problem. The panel flutter problem analyzed in this work consists of a plate
(panel) over which a compressible fluid (air) flows at transonic speed. We assume
that the panel is infinitely long in the spanwise direction (z–coordinate), so that a 2D
flow in the x-y plane passes over a strip of the panel, compare Figure 1. The flow is
modeled by the 2D Euler equations of gas dynamics and the structure by a strip of a
von–Karman plate. The panel is supported at its ends in fixed hinges. It is placed on
the x–axis between solid walls as drawn in Figure 1. Numerical results visualized in
[18] show structural deflections and shock movements present in typical limit cycle
oscillations for the panel flutter problem.

Second, let us make more precise, what the fluid-structure coupling is about.
Typically the fluid-structure solver is based on the following 5 ingredients.

• Fluid solver
• Structural solver
• Geometrical transfer (at nonconforming grid interface)
• Load transfer (at nonconforming grid interface)
• Coupling Scheme = rule to process above 4 steps in time

Here we assume that fluid and structural solvers are given. In the fluid, which is com-
pressible in our case, we have chosen a Finite Volume MUSCL approach and for the
structure we have chosen the Finite Element Method, which are currently the most
popular methods in use in the respective disciplines. What remains, is to specify
geometrical transfer, load transfer and coupling scheme. Together all 5 items define
the discrete fluid-structure system with its intrinsic properties. In particular, the grid
interface of fluid and structure are typically nonconforming, i.e. the structural nodes
and the fluid nodes do not match, and the deflected structure and the deforming fluid
grid do not coincide as spatial objects at the interface. As an illustration of this point
see Figure 2, where the situation is shown for the panel flutter problem. Here, at
least each fluid node can be fixed to a material point of the structure, a property
we have employed in our discretization, and which can already be interpreted as
the geometrical transfer. Note that the nonconformity is much more involved, when
considering a flow around an aircraft wing, having in mind the way in which air-
craft wings are modeled, and that deformations in 3D can be more complex. The
load transfer determines how the load distribution for the structure is determined
from the discrete fluid quantities. Finally as an example for a coupling scheme we
show the simplest choice, namely the loose coupling illustrated in Figure 3. Here
the fluid state, respectively the structural deflection, on time level n, are denoted
by Un, respectively wn. One fluid-structure time step is performed by first applying
the load transfer (Step 1), then advancing the structural solution in time (Step 2),
then applying the geometrical transfer (Step 3), which means to deform the fluid
grid according to the structural deformation, and finally by advancing the fluid in
time (Step 4) on the grid that moves during the time step from its position at the
beginning to that at the end of the time step.
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The property which we impose on the coupling is that the discrete fluid-structure
system satisfies the same energy balance as the continuous system, see (6) below.
Obviously this is an important property. A consistent energy transfer between fluid
and structure is essential, in particular, when the objective is to accurately determine
where unstable behaviour occurs in parameter space, or more generally, when de-
termining bifurcations of the system. Using a Finite Volume Method in the fluid and
a Finite Element Method in the structure, we have constructed in [18] a geometrical
transfer and a load transfer such that the discrete fluid-structure system satisfies the
same energy balance as the continuous system. In fact we have given a discretiza-
tion of the equations (1)–(5), resulting in a discrete fluid-structure system, implicit
in time, such that for each time step a coupled set of fluid-structure equations has to
be solved. This is done approximately by iterating the loose coupling within each
time step until a convergence criterion is met. In order to give an idea about the
energy argument, we restrict ourselves to a description of the continuous model and
its energy balance for the time-dependent interaction of a compressible inviscid and
non-heatconducting fluid and a linear elastic plate with geometrical nonlinearity ac-
cording to von-Karman for a plate with fixed ends in two space dimensions.

h
x1

x2

p∞

l

flow ρ∞,u∞,p∞

? ? ?
p

Fig. 1 Geometry of the 2D panel flutter problem.

The fluid equations are

d
dt

∫
Ω(t)

U dx1 dx2 +
∫

∂Ω(t)
U (v− ẋ)T nds =

∫
∂Ω(t)


0
−pn1
−pn2
−pvT n

 ds (1)

for arbitraryly moving domains Ω(t). The conservative state vector U = (ρ,ρ u,ρ v,
1
2 ρ |v|2 + p

γ−1 )T involves the density ρ , the velocity vector v = (u,v)T and the pres-
sure p. On a point of the boundary ∂Ω(t), n = (n1,n2)T is the outward unit normal
of Ω(t) and ẋ is the velocity of a boundary point x(t).

For the formulation of the plate equation we introduce the space V := H2(0, l)∩
H1

0 (0, l) . The variational formulation is to find the plate deflection w(t,x) satisfying
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Fig. 2 Representation of the interface in fluid
and structure.

U0 U1 U2

w0 w1 w2
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Fig. 3 Loose coupling.

D(wxx,ϕxx) + N(w) · (wx,ϕx) + m(ẅ,ϕ) = (p2− p1,ϕ) (2)

for all test functions ϕ ∈ V , where the nonlinear term models a restoring force due
to the mid-surface stretching with

N(w) =
E h
2 l

∫ l

0
w2

x dx .

The constants in the panel equation are the stiffness D = Eh3/12(1−ν2) , the mass
per unit area m = ρsh , the panel thickness h and length l, the density ρs, Young’s
modulus E and the Poisson ratio ν .

Now the aeroelastic problem can be formulated. For convenience, all interface
and boundary conditions are given in the strong sense.

• The fluid domain at time t is defined as the space above the deflecting panel
and solid walls and is denoted by ΩF(t), i.e. for each fluid interface point x(t)
associated with a panel point ξ ∈ [0, l] ,

x(0) = (ξ ,0)T , x(t) = (ξ ,w(t,ξ ))T . (3)

• For all moving domains Ω(t)⊆ΩF(t) (1) holds.
• (2) holds with the r.h.s. determined from the fluid pressure on top of the panel

and p∞ on the bottom,

p1(t,ξ ) ≡ p(t,ξ ,w(t,ξ )), ξ ∈ [0, l],
p2 ≡ p∞ .

(4)

• At infinity we have ρ = ρ∞ , u = u∞ , v = 0, p = p∞ .
• On the remaining boundary of ΩF(t) the fluid velocity in normal direction n

equals the velocity of the boundary in direction n, in particular on the fluid–
structure interface,
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vT n = ẋT n = ẇn2 . (5)

The energy equations for fluid and structure are given by

d
dt

EF +
∫

∂ΩF (t)

(
1
2

ρ v2 +
p

γ−1

)
(v− ẋ)T n ds =

∫
∂ΩF (t)

−pvT n ds ,

d
dt

ES =
∫ l

0
(p2 − p1) ẇ dx ,

where we have denoted the energy in fluid and structure by

EF(t) ≡
∫

ΩF (t)

1
2

ρ v2 +
p

γ−1
dx ,

ES(t) ≡
∫ l

0

m
2

ẇ2 +
D
2

w2
xx dx +

E h
2 l

(
1
2

∫ l

0
w2

x dx
)2

.

The energy equation of the fluid is the fourth component of (1) and the energy
equation of the structure is derived by plugging ϕ = ẇ into (2).

Summation of the two energy equations yields the energy equation of the aeroe-
lastic system. Here we restrict the fluid solution to a finite domain ΩF(t) with non–
moving inflow and outflow boundary. Due to the boundary and coupling conditions
(3), (4), (5), we end up with

EF(tn+1)+ES(tn+1)−EF(tn)−ES(tn) =

=
∫ tn+1

tn

(
−
∫

∂Ωin/outflow

(
1
2

ρ v2 +
pγ

γ−1

)
vT n ds +

∫ l

0
p∞ ẇ dx

)
dt .

(6)

To illustrate the influence of the coupling on the accuracy when predicting bi-
furcations in the transonic regime, we show an example taken from [18], where
further details are given. Increasing the dynamic pressure at a fixed Mach number
of M∞ = 0.95 we consider the panel flutter problem for an aluminium panel for a
nondimensional dynamic inflow pressure λ in the range 2000 ≤ λ ≤ 4000. A bi-
furcation in the system behaviour occurs in that range and we run calculations with
several coupling schemes at various (fluid)-CFL numbers, to compare how the dif-
ferent schemes manage to track that bifurcation. The bifurcation points obtained are
shown in Figure 4 and reveal a strong variation depending on the coupling scheme,
when using moderate CFL numbers. Here a CFL number of 50 corresponds to 120
time-steps per limit cycle oscillation and shocks in the fluid moving half the grid
size during a time-step. The dotted line shows the λ -value for which each coupling
scheme predicts the bifurcation as ∆ t → 0. The method denoted as FPI, solves in
each time step the discrete system that satisfies (6), by a fixed-point iteration, which
iterates the loose coupling until a convergence criterion is met. On average this hap-
pens after two iterations. In contrast the method denoted by LOOSE performs only
one such iteration, i.e. it is the loose coupling. The method PRED performs a loose
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coupling but uses a prediction of the fluid load data from previous time steps, in
order to obtain a better approximation of the equations that satisfy (6). The details
of all methods are given in [18].

In summary, one can conclude that the validity of (6) was identified as an impor-
tant design criterion for the fluid-structure coupling, and that it can be achieved in
conjunction with standard solution methods available for fluids and structures.

CFL

!

0 10 20 30 40 502000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000 LOOSEBDF
LOOSE
LF
PREDBDF
PRED
FPI
converged bifurcation

Fig. 4 Determination of bifurcation point with various time step sizes.

3 Multiscale Decompositions–Basic Ingredients

In this section we summarise the ingredients to successively decompose a sequence
of cell averages given on a uniform fine grid (reference grid) into a sequence of
coarse-scale averages and details. The details describe the update between two dis-
cretisations on successive resolution levels corresponding to a nested grid hierarchy.
They reveal insight in the local regularity of the underlying function. In particular,
whenever the details become negligible small in certain locations this gives rise to
data compression. From the remaining significant details, an adaptive grid, i.e., a
locally refined grid with hanging nodes can be determined. In principle, the concept
can be applied to any hierarchy of nested grids, no matter whether these grids are
structured or unstructured. However, here we will confine ourselves to structured
grids and uniform dyadic refinement,s where on each refinement level the grids can
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be determined by evaluating a grid mapping. This has been successfully realised in
the multiscale library, see [19] for details, and incorporated into the Quadflow solver
[6, 7].

3.1 Multiscale Analysis and Grid Adaptation

Grid mapping. The starting point is a smooth function x : R := [0,1]d →Ω , which
maps the parameter domain R onto the computational domain Ω (which is typically
one of several blocks in a composite grid). The Jacobian is assumed to be regular,
i.e., det(∂ x(ξ )/∂ ξ ) 6= 0, ξ ∈ R. In our applications we represent the grid function
by B–splines, see [17]. This admits control of good local grid properties, e.g., or-
thogonality and smoothness of the grid, and a consistent boundary representation by
a small number of control points depending on the configuration at hand.

Nested Grid Hierarchy. A nested grid hierarchy is defined from the grid map-
ping by means of a sequence of nested uniform partitions of the parameter domain.
To this end, we introduce the sets of multi–indices Il := ∏

d
i=1{0, . . . ,Nl,i−1} ⊂Nd

0 ,
l = 0, . . . ,L, with Nl,i = 2Nl−1,i initialised by some N0,i . Here l represents the re-
finement level where the coarsest partition is indicated by 0 and the finest by L.
The product denotes the Cartesian product, i.e., ∏

d
i=1 Ai := A1×·· ·×Ad . Then the

nested sequence of parameter partitions Rl := {Rl,k}k∈Il , l = 0, . . . ,L, is given by
Rl,k := ∏

d
i=1 [ki hl,i,(ki +1)hl,i], with hl,i := 1/Nl,i = hl−1,i/2, see Figure 5. Finally,

a sequence of nested grids Gl := {Vl,k}k∈Il , l = 0, . . . ,L, of the computational do-
main Ω is obtained by Vl,k := x(Rl,k), see Figure 6 for an illustration. Each grid Gl

Fig. 5 Dyadic grid hierarchy in parameter
space. Fig. 6 Transformation from parameter to com-

putational domain.

builds a partition of Ω , i.e., Ω =
⋃

k∈Il Vl,k, and the cells of two neighbouring levels
are nested, i.e., Vl,k =

⋃
r∈M 0

l,k
Vl+1,r, k ∈ Il . Because of the dyadic refinement, the

refinement set is determined by M 0
l,k = {2k+ i ; i∈ E := {0,1}d} ⊂ Il+1 of 2d cells

on level l +1 resulting from the subdivision of the cell Vl,k.
Multiscale decomposition. For any scalar, integrable function u ∈ L1(Ω ,R) we

define the average ul,k := 〈u,φl,k〉L2(Ω) as the inner product of u with the L1–
normalised box function φl,k(x) := |Vl,k|−1χ

Vl,k
(x), x ∈Ω , where |Vl,k| :=

∫
Vl,k

1dx
denotes the cell volume and χ

Vl,k
the characteristic function on Vl,k. With each grid

Gl we can associate then the sequence of averages ûl := {ûl,k}k∈Il . The nestedness
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of the grids as well as the linearity of the integration functional imply the two–scale
relation

ûl,k = ∑
r∈M 0

l,k

ml,0
r,k ûl+1,r, ml,0

r,k :=
|Vl+1,r|
|Vl,k|

, (7)

i.e., the coarse–grid average can be represented by a linear combination of the cor-
responding fine–grid averages. Consequently, starting on the finest level, the flow
field represented by the corresponding array of cell averages can be successively
downsampled by computing averages on coarser levels. Since information is, of
course, lost by the averaging process, it is not possible to reverse (7). Therefore,
we have to store the update between two successive refinement levels by additional
coefficients, so-called details representing the fluctuation between two successive
refinement levels. From the nestedness of the grid hierarchy we infer that the linear
spaces Sl := span{φl,k ; k ∈ Il} are nested, i.e., Sl ⊂ Sl+1. Hence there exist com-
plement spaces Wl such that Sl+1 = Sl ⊕Wl . These are spanned by some basis, i.e.,
Wl := span{ψl,k,e ; k ∈ Il , e ∈ E∗ := E\{0}} whose elements are oscilatory. For
the construction of an appropriate wavelet basis we refer to [19]. In analogy to the
cell averages, the details can be encoded by inner products dl,k,e := 〈u,ψl,k,e〉L2(Ω)
of the function u now with the wavelet ψl,k,e. The rationale is that for us an ”appro-
priate” basis means that it is a Riesz basis in L2 say, and therefore has a companion
Riesz basis consisting of elements ψ̃l,k,e which form a biorthogonal system, i.e.
〈ψl,k,e, ψ̃l′,k′,e′〉L2(Ω) = δ(l,k,e),(l′,k′,e′). Therefore, the details are just the expansion
coefficients of u with respect to the dual companion basis. Moreover, the choice of
the companion basis determines, in particular, the order of vanishing moments of
the ψl,k,e which, in turn, determine how small the details are when u is smooth on
the respective wavelet support. In fact, a local Taylor argument readily shows that
vanishing moments of order m imply that |dl,k,e| is of the order 2−ml when u has
bounded derivatives of order m on the corresponding wavelet support.

Since the box functions and the wavelets are linearly independent, there exists a
two–scale relation for the details, i.e.,

dl,k,e = ∑
r∈M e

l,k⊂Il+1

ml,e
r,k ûl+1,r. (8)

On the other hand, we deduce from the change of basis the existence of an inverse
two–scale relation

ûl+1,k = ∑
r∈G 0

l,k⊂Il

gl,0
r,k ûl,r + ∑

e∈E∗
∑

r∈G e
l,k⊂Il

gl,e
r,k dl,r,e. (9)

Note that the mask coefficients ml,e
r,k and gl,e

r,k in (7), (8) and (9) do not depend on the
data but only on the bases and their underlying geometric information.

Grid Adaptation. The multiscale analysis outlined above allows us to gen-
erate a locally refined grid in the following way. First we perform the multi-
scale decomposition according to (7), (8), as illustrated in Figure 7. As indi-
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Fig. 7 Pyramid scheme of multiscale transformation. Fig. 8 Locally refined grid.

cated above, the details become small where the underlying function u is locally
smooth. The basic idea is therefore to perform data compression on the vec-
tor of details using hard thresholding. This means we discard all detail coeffi-
cients dl,k,e whose absolute values fall below a level-dependent threshold value
εl = 2(l−L)dε and only the significant details identified by the index set DL,ε :={
(l,k) ; |dl,k,e|> εl , k ∈ Il , e ∈ E∗, l ∈ {0, . . . ,L−1}

}
are retained. In order to ac-

count for the dynamics of a flow field, due to the time evolution, and to appropriately
resolve all physical effects on the new time level, this set is to be inflated in such a
way that the prediction set D̃L,ε ⊃DL,ε contains all significant details of the old and
the new time level. Here one exploits roughly speaking the finite speed of informa-
tion propagation in a (dominantly) hyperbolic problem. In a last step, we construct
the locally refined grid, see Figure 8, and the corresponding cell averages. For this
purpose, we proceed levelwise from coarse to fine, see Figure 7, and we check for
all cells of a given level whether there exists a significant detail. Whenever we find
one, we refine the respective cell, i.e., we replace the average of this cell by the
averages of its children by locally applying the inverse multiscale transformation
(9). The final grid is then determined by the index set G̃L,ε ⊂

⋃L
l=0{l}× Il such that⋃

(l,k)∈G̃L,ε
Vl,k = Ω . Note that a locally refined grid always corresponds to a tree

that represents the refinement history. The index sets resulting from the threshold-
ing do not necessarily form a tree yet. Therefore we have to inflate the prediction
set somewhat so as to form even a graded tree. This means that there is at most one
hanging node at a cell edge which is not strictly necessary but greatly simplifies data
management, see [19].

3.2 Algorithms

In order to benefit from the reduced complexity offered by the fact that the cardinal-
ity of the set of significant details and hence of the locally refined grid is typically
much smaller than the corresponding uniform grid on level L, all transformations
have to be performed locally. In particular, we are not allowed to operate on the full
arrays corresponding to the uniformly refined grids, i.e., the summation in the trans-
formations (7), (8) and (9) have to be restricted to those indices which correspond
to non–vanishing entries of the mask coefficients. Introducing the mask matrices
Ml,e = (ml,e

r,k)r∈Il+1,k∈Il and Gl,e = (gl,e
k,r)r∈Il ,k∈Il+1 , these two-scale relations may be

rewritten in terms of matrix-vector products as yT = xT A. Note that the mask matri-
ces are sparse due to an appropriate choice of the wavelet basis. In order to confine
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the summation in the matrix-vector product only to non-vanishing entries of the ma-
trices it is helpful to introduce the following notion the support of matrix columns
and rows

Ak := supp(A,k) := {r ; ar,k 6= 0}= support of kth column of A,

A ∗
k := supp(AT ,k) := {r ; ak,r 6= 0}= support of kth row of A.

The support Ak of a column is comprised of all non–vanishing matrix elements that
might yield a non–trivial contribution to the kth component of the matrix–vector
product, i.e., yk. Therefore Ak can be interpreted as the domain of dependence for
yk, i.e., the components xr which contribute to yk. The support A ∗

k of a row con-
tains all non–vanishing matrix entries of the kth row that might yield a non–trivial
contribution to the vector y of the matrix–vector product. Therefore A ∗

k can be in-
terpreted as the range of influence, i.e., the components yr which are influenced by
the component xk.

With this notation in mind, we now can formulate efficient algorithms for locally
performing the decoding and encoding processes as they have been realised in the
multiscale library:

Algorithm 1 (Encoding) Proceed levelwise from l = L−1 downto 0:

I. Computation of cell averages on level l:

1. For each active cell on level l +1 determine its parent cell on level l:
U0

l :=
⋃

r∈Il+1,ε
M ∗,0

l,r where Il+1,ε := {k ∈ Il+1 : (l +1,k) ∈ G̃L,ε}
2. Compute cell averages for parents on level l:

ûl,k = ∑r∈M 0
l,k

ml,0
r,k ûl+1,r, k ∈U0

l

II. Computation of details on level l:

1. For each active cell on level l + 1 determine all cells on level l influencing
their corresponding details:
Ue

l :=
⋃

r∈Il+1,ε
M ∗,e

l,r , e ∈ E∗

2. For each detail on level l determine the cell averages on level l + 1 that are
needed to compute the detail:
Pl+1 :=

⋃
e∈E∗

⋃
k∈Ue

l
M e

l,k\Il+1,ε

3. Compute a prediction value for the cell averages on level l + 1 not available
in adaptive grid:
ûl+1,k = ∑r∈G 0

l,k
gl,0

r,k ûl,r, k ∈ Pl+1

4. Compute the details on level l:
dl,k,e := ∑r∈M e

l,k
ml,e

r,kûl+1,r, k ∈Ue
l , e ∈ E∗

Algorithm 2 (Decoding) Proceed levelwise from l = 0 to L−1:

I. Computation of cell averages on level l +1:

1. Determine all cells on level l +1 that are influenced by a detail on level l:
I+
l+1 :=

⋃
e∈E∗

⋃
l∈Jl,ε

G ∗,el,l where Jl,ε := {k ∈ Il : (l,k) ∈ D̃L,ε}
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2. Compute cell averages for cells on level l +1:
ûl+1,k = ∑

r∈G 0
l,k

gl,0
r,k ûl,r + ∑

e∈E∗
∑

r∈G e
l,k

gl,e
r,k dl,e,r, k ∈ I+

l+1

II. Remove refined cells on level l:

1. For each cell on level l +1 determine its parent cell on level l:
I−l :=

⋃
k∈I+l+1

M ∗,0
l,k

2. Remove the parent cells on level l from the adaptive grid:
delete ûl,k, k ∈ I−l , i.e., Il,ε := I+

l /I−l (Note: I+
0 = I0)

3.3 Data Structures

In order to fully benefit from the above principal complexity reduction, we need
appropriate supporting data structures. These have to be designed in such a way
that the computational complexity (storage and CPU time) remains proportional to
the cardinality of the adaptive grid and hence of the significant details, respectively.
For this purpose, the C++-template class library igpm t lib [20, 24] has been
developed. This library provides data structures that are tailored to the requirements
set by Algorithms 1 and 2, from which the fundamental design criteria are deduced,
namely, (i) dynamic memory operations and (ii) fast data access with respect to
inserting, deleting and finding elements.

Due to refinement and coarsening operations in the algorithm, memory opera-
tions are frequently performed and therefore should be very fast. This can be realised
more efficiently by allocating a sufficiently large memory block and by managing
the algorithm’s memory requirements with a specific data structure. In addition,
since the overall memory demand can only be estimated, the data structure should
provide dynamic extension of the memory.

In order to facilitate an efficient memory management and a fast data access we
use the well-known concept of hash maps, cf. [8], that is composed of two parts,
namely, a vector of pointers, a so–called hash table, and a memory heap, see Figure
9. The hash table is connected to a hash function f : U → T , which maps a key,
here (l,k), to the hash table of length #T , i.e., a number between 0 and #T − 1.
Here the set U can be identified with all possible cells in the nested grid hierarchy
(universe of keys), i.e., U = {(l,k) : k ∈ Il , l = 0, . . . ,L}, and T corresponds to
the keys of the dynamically changing adaptive grid, i.e., (l,k) ∈ G̃L,ε .

The set of all possible keys is much larger than the length of the hash table, i.e.,
#T � #U . Hence, the hash function cannot be injective. This leads to collisions
in the hash table, i.e., different keys might be mapped to the same position by the
hash function. As collision resolution we choose chaining: the corresponding values
of these keys are linked to the list that starts at position f (key). Each element in the
hash table is a pointer to a linked list whose elements are stored in the heap. Here
each element of the list can be a complex data structure itself. It contains the key
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and usually additional data, the so–called value. In general, the value consists of the
data corresponding to a cell.

The performance of the hash map crucially depends on the number of collisions.
In order to optimise the number of collisions, the length of the hash table #T
and the number of collisions #{key ∈U : f ({key}) = c} have to be well-balanced.
Several strategies have been developed for the design of a hash function, see [23, 8].
For our purpose, choosing the modulo function and appropriate table lengths turned
out to be sufficient, see [19].

Since the local multiscale transformations are performed level by level, see Algo-
rithms 1 and 2, the hash map has to maintain the level information. For this purpose,
the standard hash map is extended by a vector of length L. The idea is to have a
linked list of all cells on level l: the lth component of the vector contains a pointer
that points to the first element of level l put into the memory heap. Additionally, the
value has to be internally extended by a pointer that points to the next element of
level l. This is indicated in Figure 10. Then we can access all elements of level l by
traversing the resulting singly linked list.

Fig. 9 Hashing (Courtesy of [25]). Fig. 10 Linked hash map.

4 Parallelisation

In the following we will present how we have parallelised the multiscale library by
which we perform local grid adaptation in one block using multiscale techniques.
For this purpose, we first outline the strategy of load-balancing using space-filling
curves, see Section 4.1. In a second step, see Section 4.2, we explain how to perform
the multiscale transformation in parallel. Here the crucial point is the handling of
the cells on the partition boundary and interprocessor communication. Note that the
multiscale-based grid adaptation consists of additional steps such as thresholding,
prediction, grading and decoding. The parallelisation of these steps is in complete
analogy and therefore not detailed here.
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4.1 Load-Balancing via Space-Filling Curves

Regarding parallelization, a first essential issue is the mesh partitioning or the load-
balancing problem. This is fairly straightforward for uniform grids. But having
to deal with locally refined grids where not all cells on all levels of refinement are
active, complicates matters significantly. A natural representation of a multilevel
partition of a mesh is a global enumeration of the active cells. We need a method to
do this at runtime, as the adaptive mesh is also created at runtime using the multi-
scale representation techniques sketched above. Such an enumeration can be based
on space-filling curves (SFC) by mapping a higher-dimensional domain to a one-
dimensional curve. Specifically, the unit square or the unit cube is mapped to the
unit interval. Using space-filling curves, each of the cells of the adaptive grid has
a corresponding unique number on the curve. So, instead of assigning portions of
the geometric domain to different processors, we only have to split the interval of
numbers on the curve into parts that have roughly equal length. Each of these parts
is mapped to a different processor, so that we obtain a well-balanced data partition.
However, concerning the second major issue, we also have to pay the cost of inter-
processor communications, because neighbours within a grid block may belong to
different processors. We shall indicate below that the concept of space-filling-curves
offers favorable features in this regard as well.

Space-Filling Curve. Space-filling curves have been originally created for purely
mathematical purposes , cf. [22]. Nowadays, these curves have found several ap-
plications, one of them being a good load-balancing for numerical simulations on
parallel computer architectures. They can be used for data partitioning and, due to
self-similarity features, multilevel partitions can also be constructed.

In the mathematical definition, a space-filling curve is a surjective, continuous
mapping of the unit interval [0,1] to a compact d-dimensional domain Ω with pos-
itive measure. In our context, we restrict our attention to Ω being the unit square
or the unit cube. In fact, as our grids have finite resolution, the iterates — so-called
discrete space-filling curves — are applied, instead of the continuous space-filling
curve. The construction of these curves is extremely inexpensive, as the SFC index
for any cell in the grid can be computed using only local information, making it
suitable for parallel computations.

Hilbert Space-Filling Curve. One of the oldest space-filling curves, the Hilbert
curve, can be defined geometrically, cf. [25]. The mapping is defined by the recur-
sive subdivision of the interval I and the square Q. In 3D, the Hilbert curve is based
on a subdivision into eight octants. The construction begins with a generator tem-
plate, which defines the order in which the quadrants are visited. Then the template
(identical, mirrored or rotated) is applied to each quadrant and, by connecting the
loose ends of the curve, the next iterate of the space-filling curve is obtained. Actu-
ally, the mapping between the cells of the adaptive grid and the space-filling curve
is realised using the finest iterate of the curve, which is constructed by recursively
applying the template to the subquadrants (2D) and suboctants (3D) until the num-
ber of refinement levels is reached. Figures 11 and 12 show the first iterates of a
2D and 3D Hilbert SFC, respectively. A detailed discussion on the construction of
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the Hilbert space-filling curve is beyond the scope of this paper. For corresponding
detailed expositions we refer the reader to [22, 25]. Here, we only summarise the
procedure of the Hilbert curve construction and focus our attention on how the curve
can contribute to an efficient parallelisation of the multiscale-based grid adaptation
scheme.

Fig. 11 First 4 iterates of 2D Hilbert SFC.

Fig. 12 1st and 2nd iterate of 3D Hilbert SFC
(Courtesy of Gilbert [11]).

Encoding the Hilbert SFC ordering. By inverting the mapping induced by
a discrete space-filling curve, multi-dimensional data can be mapped to a one-
dimensional interval. The basic idea is to map each cell of our adaptive grid to a
point on the space-filling curve, so that we obtain a global enumeration of the grid
cells. In the data structures, we use the key comprised of the cell’s refinement level
and the cell’s multidimensional index on that level (l,k) to identify each cell. Since
each cell of the adaptive grid is uniquely identified by this key, the aim is to use
it in order to determine for each cell a corresponding number on the space-filling
curve. Also, due to locality properties of the curves, each visited cell is directly
connected to two face-neighbouring cells which remain face neighbours in the one-
dimensional space spanned by the curve. In this way, the cell’s children are sorted
according to the SFC numbers and they will be nearest-neighbours on a contigu-
ous segment of the SFC. Since we are dealing with multilevel adaptive rectangular
grids, we restrict ourselves to recursively defined, self-similar SFC based on rectan-
gular recursive decomposition of the domain.

Encoding and decoding the Hilbert SFC order requires only local information,
i.e., a cell’s 1D index can be constructed using only that cell’s integer coordinates in
the d-dimensional space and the maximum number of refinement levels L that exist
in the mesh. In a 2D space, consider a 2L×2L square (0≤ X ≤ 2L−1, 0≤Y ≤ 2L−1)
in a Cartesian coordinate system. Note that the variable L used for determining
the Hilbert SFC order might be larger than the one introduced in Section 3.1 for
the number of refinement levels, since N0,i > 1 in general and for the space-filling
curve construction we should have a coarsest mesh with N0,i = 1. Any point can be
expressed by its integer coordinates, (X ,Y ), where X , Y are two sequences of L-bit
binary numbers, as follows:
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X = x1x2 . . .xr . . .xL, Y = y1y2 . . .yr . . .yL.

Each sequence of two interleaved bits {xl ,yl}l=1,...,L determines on each level l
one of the four quadrants the cell belongs to, recursively. Thus by simply inspecting
the cell’s integer coordinates and using a finite state machine, the cell’s location on
a curve can easily be computed, cf. [25]. In the 3D case we proceed similarly.

An important aspect that should be mentioned is that the construction of the
space-filling curve on an adaptive mesh ensures that a parent cell (l,k) has exactly
the same number on the SFC as one of its children (l + 1,2k + e), e ∈ {0,1}d ,
cf. [25]. This leads to the minimisation of the interprocessor communication in the
case of a parallel MST using the Hilbert space-filling curve as partitioning scheme,
because in most of the cases the parent cell should be computed on the same pro-
cessor as its children.

Load-Balancing. After computing the SFC indices for all the cells in the mesh,
these indices are taken as sort keys and the mesh may be ordered along the curve
using standard sorting routines, such as introsort in our case. Having all the cells
sorted along the curve, the partition can be easily determined, just by choosing the
number of cells that each processor should get. So the mesh cells are distributed
to the different processors according to their index on the curve. Since the position
of each cell on the curve can be computed very inexpensively at any time in the
computation, there is no need to store all the keys. Instead, it is sufficient to store
the separators between the elements of the partition of the interval, i.e., the first
index on a processor, in order to determine for any cell’s multidimensional index
the corresponding processor number.

There are two options for handling the data partitioning and the load-balancing
problem in the beginning of the computation, namely, (i) master-based partition-
ing and (ii) symmetric multiprocessing. In case of master-based partitioning, as its
name says, the entire adaptive mesh is initialised on a master processor, according
to the input file. Once the grid is initialised, the same master processor is also re-
sponsible for the entire partitioning procedure already described: the mapping of the
cells to the SFC, the sorting of the keys, the load-balancing and separators’ deter-
mination. After having performed these steps once, the cells can be distributed to
the corresponding processors. This approach is straight forward if the starting point
is a running serial algorithm, as no data transfer and no barrier points are needed
before the distribution of the data to processors actually begins. On the other hand,
this implies that there is only one processor active during all the initialisation and
sorting of the SFC procedures, while the others are idle, waiting to receive the data
from the master for initialising their own data structures.

The second possibility is symmetric multiprocessing: this avoids the use of a
master processor, i.e., all processors should work in parallel, executing the same
code and initialising only their corresponding part of the grid. For this, a set of
initial separators on the space-filling curve has to be assumed, without knowing in
advance anything about the structure of the adaptive grid. So the worst case has to be
taken into account, when the grid would be uniformly refined, which is equivalent
to the fact that, for each number on the discrete space-filling curve, there exists an
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active cell in the grid. In the case of a fully refined grid, the number of cells in
the grid (2L× 2L and 2L× 2L× 2L, in 2D and 3D, respectively) corresponds to the
last number on the SFC and the guess of the initial separators is straight forward.
The main drawback of this second approach is that this initial guess might and
is very likely to be far from the optimal choice, so the possibility of not having
a remarkable performance improvement in the initialisation part is very high, also
due to the interprocessor communication costs that arise. A rebalancing of the initial
data is then required in order to obtain a well-balanced distribution of data among
processors and a new set of separators is computed for the new partition.

Applying either of these two strategies leads to a well-balanced data distribution
as shown in Figure 13.

Fig. 13 Well-balanced distribution of a locally refined grid to 5 processors.

Parallel rebalancing. A reordering of the cells along the curve is also needed
whenever the load-balancing is significantly spoiled due to the adaptivity of the
grid. When this occurs, a new set of separators — that determine a new well bal-
anced partition — has to be computed. There is no need to gather all cells on a
master processor for the reordering, since all the cells on a processor p have smaller
numbers on the SFC than the cells on processor p + 1 for all p = 0, . . . ,nproc− 2.
The parallel rebalancing is described in Algorithm 3.

Algorithm 3 (Parallel Rebalancing)

1. Sort local cells along the SFC according to the old list of separators sepold[i]
for i = 0, . . . ,nproc−1.

2. Compute the total workload from all processors:
total workload = ∑

nproc−1
p=0 #cells(p)
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3. Compute the positions of the new separators on the SFC:

a) new positions[0] = 0
b) For i = 1, . . . ,nproc−1 do

new positions[i] = new positions[i−1]+ i · (total workload/nproc)

4. For pos = 1, . . . ,nproc−1 do

If new positions[pos] belongs to the local processor, then determine the new
separator
sepnew[pos] at position new positions[pos].

5. Distribute new separators to all processors.
6. Redistribute data according to the new separators.

4.2 Parallel Grid Adaptation and Data Transfer

Once load-balancing is achieved, each processor should perform the grid adapta-
tion, see Section 3.1, on the local data. Special attention must be paid to the cells
located at the processor’s boundary, i.e., the cells that have at least one neighbour
belonging to another processor. Since these are the only ones that make the differ-
ence between serial and parallel algorithms and because they are similarly handled
in all the steps of the grid adaptation, we shall address below only the parallelisation
of the encoding step in some detail. More specifically, we shall mainly discuss the
special treatment of the boundary cells. As described in Section 3.2, the encoding
step consists of computing the cell averages on level l starting from data on level
l +1 and the computation of the details on level l. Since the approach to parallelis-
ing the coarsening is different from the one for computation of details, they will be
discussed separately.

Parallel coarsening. To compute the parent’s cell average ûl,k on the processor
indicated by the parent’s position on the SFC and the separators between the ele-
ments of the partition, all its children ûl+1,r, r ∈M 0

l,k, should already be available
on the same processor. Due to the locality properties of the SFC and the compact-
ness of each element of the partition, i.e., the ratio of an element’s volume and its
surface is large, ensured by its construction, the children are nearest neighbours in
the one-dimensional space. This entails that only a few cells at the boundaries
between partition elements have to be transferred between processors before com-
puting the cell averages on level l, see Figure 14. When running through the active
data on level l +1 for constructing the set of parent cells that need to be computed,
the processor the parent belongs is also determined and so a buffer is set up, con-
taining the children cells that need to be transferred to a neighbour processor. The
buffer is transferred to the corresponding processor before the computation of the
averages on level l actually begins. Once the cell averages of all cells’ parents have
been computed, the ghost cells transferred from other processors can be deleted
from the local hash map.
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Algorithm 4 (Parallel Coarsening) Proceed levelwise from l = L− 1 downto 0:
(cf. Algorithm 1, Step I)

I. Computation of cell averages on level l:

1. For each active cell (l +1,r), r ∈ Il+1,ε , determine
a) the parent cell on level l;
b) the processor p to which the parent belongs to.
If p is the current processor then U0

l = U0
l ∪M ∗,0

l,r ;
else transfer cell (l + 1,r) to processor p and there add it to the local hash
map.

2. Compute cell averages for parents on level l:
ûl,k = ∑r∈M 0

l,k
ml,0

r,k ûl+1,r, k ∈U0
l

3. Delete the cells received from other processors.

Parallel details computation. In the case of the computation of details, more
data from the neighbour processors have to be transferred, see Figure 15. For the
parallel coarsening, a single step data transfer is made, since each processor can
determine the cells on level l+1 that are necessary for the neighbours to compute the
averages on level l by itself. In case of the multiscale decomposition for computing
the details a two step transfer has to be performed. In a first step, each processor has
to send a request to the others for the cells that influence the details computation of
the local cells, so we obtain a first pair of MPI Isend and MPI Recv calls. A new
pair of such calls is needed to fulfil the requests, when actually all the data located at
the geometrical boundary of the partitions has to be transferred to the neighbouring
processors.

Algorithm 5 (Parallel Details Computation) Proceed levelwise from l = L− 1
downto 0: (cf. Algorithm 1, Step II)

I. Computation of details on level l:

0. On each processor initialise the index sets Ue
l,p = /0, p = 0, . . . ,nproc−1

1. For each active cells on level (l +1,r), r ∈ Il+1,ε do
a) determine all cells on level l influencing their corresponding details:

(l,k) ∈M ∗,e
l,r , e ∈ E∗;

b) for each (l,k) ∈M ∗,e
l,r determine the processor p where the details of cell

(l,k) should be computed:
if p = ploc (current processor) then Ue

l,p := Ue
l,p∪{k};

else transfer index (l,k) to processor p and there add it to the index set
Ue

l,p := Ue
l,p∪{k} and transfer cell (l +1,r) to processor p and there add

it to the local hash map.
2. For each detail on level l determine the cell averages on level l + 1 that are

needed to compute the detail:
Pl+1 :=

⋃
e∈E∗

⋃
k∈Ue

l
M e

l,k\Il+1,ε
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3. For all indices (l +1,r) ∈ Pl+1 that belong to other processors p 6= ploc (cur-
rent processor), p = 0, . . . ,nproc−1 do
a) send requests to processor p to transfer the unavailable data;
b) receive needed data from processor p.

4. Accept requests from other processors and send back the data to the other
processors requested from the current processor.

5. Compute a prediction value for the cell averages on level l + 1 not available
in the adaptive grid:
ûl+1,k = ∑r∈G 0

l,k
gl,0

r,k ûl,r, k ∈ Pl+1

6. Compute the details on level l:
dl,k,e := ∑r∈M e

l,k
ml,e

r,kûl+1,r, k ∈Ue
l , e ∈ E∗

7. Delete data received from other processors from the local hash map.

Fig. 14 Cells to be transferred for parallel coarsening.

5 Embedding of Parallel Multiscale Library into the Quadflow
Solver

The finite volume solver Quadflow [6, 7] has been designed to handle (i) unstruc-
tured grids composed of polygonal(2D)/polyhedral(3D) elements [5] and (ii) block-
structured grids where in each block the grid is determined by local evaluation of
B-Spline mappings [17]. Therefore the solver can handle grids provided by an ex-
ternal grid generator. However, grid adaptation is only available for block-structured
grids, where in each block the grid is locally refined using the concept of multiscale-
based grid adaptation [19].
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Fig. 15 Cells to be transferred for parallel details computations.

Note that the flow solver and the multiscale-based grid adaptation pose totally
different algorithmic requirements: on one hand, there is a finite volume scheme
working on arbitrary, unstructured discretisations. On the other hand, there is the
multiscale algorithm assuming the existence of hierarchies of structured meshes.
The flow solver module is face-centred, since the central issue is the computation
of the fluxes at the cell faces, while the adaptation module is cell-centred, analysing
and manipulating cell averages. Moreover, the data structures used in the two parts
are also different: while for the adaptation part a special implementation of hash
maps is used, see Section 3.3, for the flow solver module the FORTRAN style data
structures remained optimal. The link between these two modules is done by a data
conversion algorithm, which organises all the data communication — the transfer
of the conservative variables, volumes, cell centres, the registration of the knots, the
construction of the faces and determination of their neighbouring cells and nodes —
between the two modules in a connectivity list.

In order to embed the parallelised version of the multiscale library into Quadflow,
the transfer had to be adjusted: besides the special treatment required by some cells
located at the physical boundary or at the far field boundary of the domain even in
the serial case, cf. [17], in parallel special attention is needed also by the cells at the
partition’s boundary. Since the adaptive mesh is determined at runtime, as well as
the partition, and since the adaptive mesh and implicitly the shape of the elements of
the partition could change at any time step, there is no way of knowing in advance
which cells are located on a processor’s boundary. This entails that the partition
boundary on each processor should be reconstructed each time the connectivity list
is built, in order to transfer the cells on the boundary to the neighbour processors,
see Figure 16. In this way, the boundary faces of the partition and the flux at these
faces can be properly computed on each processor.
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Fig. 16 Parallel Transfer and Conversion.

6 Numerical Results

First of all, we investigate in Section 6.1 the performance of the parallelised mul-
tiscale library. For this purpose, we focus on the multiscale transformation (MST),
i.e., the encoding of the data. Note that a complete cycle of grid adaptation also
includes thresholding, prediction, grading and decoding. In Section 6.2 we then
present numerical simulations of the behaviour of a Lamb-Oseen vortex using the
parallelised Quadflow solver.

6.1 Performance Study for Multiscale Transformation

The performance of the multiscale based grid adaptation has been investigated by
means of a data set corresponding to a locally refined grid that consists of 437236
cells. The underlying grid hierarchy is determined by L = 10 refinement levels and
a coarse grid discretisation of 8× 8 cells. For this configuration, we performed the
adaptation process using an increasing number of processors.

The experiments were performed on a Sun Fire X4600 system, with 2 AMD
Opteron 885 nodes having 8 sockets per node (a total of 16 processors), 32 GB
memory and a high speed low latency network (InfiniBand) for parallel MPI and
hybrid parallelised programs.

Table 1 shows the results of these experiments with respect to the different num-
ber of processors mentioned in the first column. The second column contains the
values for the initial workload, i.e. the number of cells on each processor. Columns
3 and 4 show the times measured when running one MST step and the time spent
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No. of Initial MST time Transfer time No. of cells No. of cells
procs. workload [CPU s] [CPU s] sent received

1 437236 10.21580 0 0 0
2 218618 5.55433 0.066706 2020 2020
3 145746 3.45852 0.170083 5985 5975
4 109309 2.81636 0.125800 2048 2048
5 87448 2.13640 0.127011 10826 10706
6 72876 1.78998 0.126228 7240 7190
7 62464 1.55737 0.133888 9097 9078
8 54658 1.47147 0.103048 6899 6954
9 48588 1.33229 0.105228 7112 7068

10 43729 1.23401 0.135434 8856 8791

Table 1 Performance study for parallel multiscale transformation.

in the MPI Isend and MPI Recv routines, respectively. The number of cells sent by
one processor during this MST step is shown in the fifth column, while the sixth
column contains the number of cells received by the same processor.

After the partitioning is done, each processor is getting a number of cells equal
to the total number of cells in the adaptive grid over the number of processors. Note
that the processor with the highest rank also takes the few cells that remain if the
total number of entries cannot be divided by the number of processors. Better per-
formance and good scaling may be observed in column 3 as the number of proces-
sors increases (see also Figure 17). When it comes to the transfer of cells between
neighbour processors, the number of entries sent by one processor is different than
the one received on most processor configurations chosen due to the adaptive grid:
one processor might have more finer cells sitting on the partition boundary than its
neighbours have on the other side of the boundary, which gives the difference in
the number of ghost cells needed to be transferred from one processor to the other.
The number of processors chosen also influences the shape of the elements of the
partition created at runtime. Thus, having a symmetric adaptive grid on a single pro-
cessor and choosing to run a parallel computation on 2 or 4 processors might lead to
a symmetric partitioning of the grid on all refinement levels. This implies the min-
imisation of the interprocessor communication. The consequences of this symmetry
can be observed in Table 1, where the minimum number of cells to be transferred is
achieved on 2 processors. At small difference, the computation on 4 processors also
gives few entries to be transferred in comparison with the rest of the configurations
tested. The fact that on 2 and 4 processors a symmetric partitioning is obtained is
also emphasised when inspecting the number of cells sent and received across the
partition boundary: here the number of cells sent to the neighbours is equal to the
number of cells received. The opposite is observed on a configuration of 5 proces-
sors, where the number of cells on the partition’s boundary reaches the maximum
value and implicitly increases the interprocessor communication. A partitioning to 5
processors is shown in Figure 13, where the asymmetry of the partitions is obvious.
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Fig. 17 CPU time for performing MST.
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Fig. 18 Amount of data on each processor.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  2  4  6  8  10

T
ra

ns
fe

r 
C

P
U

 ti
m

e 
[s

]

No. proc.

Fig. 19 CPU time for performing data transfer.
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Fig. 20 Amount of data to be sent and received
between processors.

Speedup. According to Amdahl’s law [1] for a given problem the maximal
speedup of a computation on p processors is bounded by smax ≤ p

1+ f (p−1) , where f
is the fraction of the runtime of the code that is not parallelised.

We compared the scaling of our experiment with Amdahl’s law and therefore
assumed that the maximum speedup was measured. Using a nonlinear least squares
fit, we were able to estimate the fraction of the code that is not parallelised and
obtained f = 0.0203±0.0017, cf. Figure 21.

Having a fraction of 2% of the program not parallelised, according to Amdahl’s
law, the maximum speedup that could be reached for this fixed configuration would
be 50. However, Amdahl’s law doesn’t take into account that the fraction of the
serial parts can be reduced by scaling the problem to the number of processors. So,
for a fixed configuration, infinite speedup cannot be achieved, but when the problem
size grows, also speedup could be expected on an increasing number of processors.
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Fig. 21 Speedup rates (+) and comparison with Amdahl’s
law (solid line).

6.2 Application

The system of vortices in the wake of airplanes continues to exist for a long period
of time in reality. It is possible to detect wake vortices as far as some 100 wing
spans behind the airplane, which are a hazard to following airplanes. In the frame of
the collaborative research centre SFB 401, the research aimed to induce instabilities
into the system of vortices to accelerate their alleviation. The effects of different
measures taken in order to to destabilise the vortices have been examined in a water
tunnel. A model of a wing was mounted in a water tunnel and the velocity compo-
nents in the area behind the wing were measured using particle image velocimetry.
It was possible to conduct measurements over a length of 4 wing spans. The exper-
imental analysis of a system of vortices far behind the wing poses great difficulties
due to the size of the measuring system. Numerical simulations are not subject to
such severe constraints and therefore Quadflow is used to examine the behaviour of
vortices far behind the wing. To minimise the computational effort, the grid adap-
tation adjusts the refinement of the grid with the goal to resolve all important flow
phenomena, while using as few cells as possible.

In the present study instationary, quasi-incompressible, inviscid fluid flow de-
scribed by the Euler equations for compressible low Mach number flow is consid-
ered. A first assessment is presented to validate the ability of Quadflow to simulate
the behaviour of the wake of an airplane. A velocity field based on the experimental
data from the water tunnel measurements is prescribed as boundary condition in the
inflow plane. The circumferential part of the velocity distribution vΘ (r) is described
by a Lamb-Oseen vortex according to

vΘ (r) =
Γ

2πr

(
1− e−

(
r/d0

)2
)

. (10)
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The axial velocity component in the inflow direction is set to the constant inflow
velocity of the water tunnel. The two parameters of the Lamb-Oseen vortex, circu-
lation Γ and core radius d0 are chosen in such a way that the model fits the measured
velocity field of the wing tip vortex as close as possible. The radius r is the distance
from the centre of a boundary face in the inflow plane to the vortex core.

Instead of water, which is used as fluid in the experiment, the computation re-
lies on air as fluid. The inflow velocity in x-direction u∞ is computed to fulfil the
condition that the Reynolds number in the computational test case is the same as in
the experiment. The experimental conditions are a flow velocity uw = 1.1 m

s and a
Reynolds number Rew = 1.9 ·105. From the condition Reair = Rew the inflow veloc-
ity in x-direction can be determined as u∞ = 16.21 m

s . For purpose of consistency the
circumferential velocity vθ has also been multiplied by the factor u∞

uw
. The velocity

of the initial solution is set to parallel, uniform flow u0 = u∞, v0 = w0 = 0.0.
The computation has been performed on 16 Intel Xeon E5450 processors running

at 3 GHz clock speed. The computational domain matches the experimental setup
which extents l = 6m in x-direction, b = 1.5m in y-direction and h = 1.1m in z-
direction. The boundaries parallel to the x-direction have been modelled as symme-
try walls. This domain is discretised by a coarse grid with 40 cells in flow-direction,
14 cells in y-direction and 10 cells in z-direction, respectively. The number of re-
finement levels has been set to L = 6. With this setting the vortex can be resolved
on the finest level by about 80 cells in the y-z-plane.

Fig. 22 Initial computational grid.

Since Quadflow solves the compressible Euler equations a preconditioning for
low Mach numbers has to be applied. The preconditioning is used in a dual-time
framework wherein only the dual time-derivatives are preconditioned and used for
the purposes of numerical discretisation and iterative solution, cf. [21]. The spatial
discretisation of the convective fluxes is based on the AUSMDV(P) flux vector split-
ting method [10]. For time integration the implicit midpoint rule is applied. In each
timestep the unsteady residual of the Newton iterations is reduced by four orders of
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magnitude. The physical timestep is set to ∆ t = 5 · 10−5 s which corresponds to a
maximum CFL-number of about CFLmax = 28.0 in the domain. The grid is adapted
after each timestep. After every 100th timestep the load-balancing is repeated.

To guarantee a sufficiently fine grid to resolve the vortex properly at the start
of the computation, the grid on the inflow plane is refined to the maximum level,
see Figure 22. Due to this procedure the first grid contains 384000 cells. When the
information at the inlet has travelled through the first cell layer, the forced adaptation
of the cells at the inlet is not necessary anymore. From there on the grid is only
adapted due to the adaptation criterion based on the multiscale analysis.

Fig. 23 Slices of the computational grid after 5466
timesteps at six different positions and the distribution of
λ2 =−3.

After 5466 timesteps, which corresponds to a computed real time of t = 0.27s,
the grid contains 787000 cells. Figure 23 shows six cross sections of the mesh,
which are equally spaced in x-direction with distances ∆x = 1.0m. In addition, the
isosurface of the λ2-criterion with the value λ2 = −3 is also presented. The λ2 cri-
terion has been proposed by Jeong et al. [14] to detect vortices. A negative value of
λ2 identifies a vortex, whereas the smallest of these negative values marks the core
of the vortex. As can be seen from Figure 23, the vortex is transported through the
computational domain. The locally adapted grid exhibits high levels of refinement
only in the vicinity of the vortex. A more detailed view of the grid for the cross
sections at x = 0.0m and x = 2.0m is presented in Figure 24.

It can be seen that only near the vortex core the grid is refined up to the maxi-
mum level. We conclude that Quadflow is well suited to examine the instationary
behaviour of a vortex. In particular the complexity reduction due to the grid adapta-
tion makes it possible to perform the computations in reasonable time.
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Fig. 24 Slices of the computational grid at two different positions in x-direction, the grid colour
is consistent with the value of λ2. Slice of the computational grid at x = 0.0m (left) and x = 2.0m
(right).
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