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Abstract. A class of non-equilibrium models for compressible multi-component fluids in multi-dimensions
is investigated taking into account viscosity and heat conduction. These models are subject to the choice
of interfacial pressures and interfacial velocity as well as relaxation terms for velocity, pressure, tem-
perature and chemical potentials. Sufficient conditions are derived for these quantities that ensure
meaningful physical properties such as a non-negative entropy production, thermodynamical stability,
Galilean invariance as well as mathematical properties such as hyperbolicity, subcharacteristic property
and existence of an entropy-entropy flux pair. For the relaxation of chemical potentials a two-component
and a three-component model for vapor-water and gas-water-vapor, respectively, is considered.
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1. Introduction

Flows of compressible multi-component fluids, where the single components may be in the liquid or the
gas phase, respectively, have a wide range of applications. Difficulties in the modeling result from the
interaction of the fluids, especially from the exchange of mass and energy across the phase interfaces.
So the treatment of the phase interfaces is in the focus of the modeling.

In the literature several models are available that are distinguished in sharp interface and diffuse
interface models. A detailed survey of these models can be found in Zein [26]. Here our interest is on
multi-component fluids derived from an ensemble averaging procedure of Drew [5]. A comprehensive
introduction to these models can be found in the classical book of Drew and Passman [6].

Baer and Nunziato [3] proposed a two-phase model for detonation waves in granular explosives. This
model is a full non-equilibrium model, which means, each component has its own pressure, velocity
and temperature and is governed by its own set of fluid equations. It was modified and generalized by
several authors. For instance, Saurel and Abgrall [24] also included relaxation terms for the pressure
and the velocities of the components. By instantaneous relaxation procedures equilibrium values for the
pressure and the velocity can be found. Using further relaxation procedures to drive the temperatures
and the Gibbs free energies (chemical potentials) into equilibrium mass transfer between the phases
can be modeled, see Abgrall et al. [25, 22] or Zein et al. [27].

The third author acknowledges funding by the Friedrich-Naumann-Stiftung für die Freiheit.
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There are simplified models available in the literature that can be derived from the above general
model by assuming zero relaxation times, see [15]. Typically these are classified by the number of
equations in case of two phases in one space dimension. For instance, a six-equation model with a
single velocity is derived by assuming a zero velocity relaxation time. Assuming zero relaxation time
for both the velocity and the pressure a five-equation model with mechanical equilibrium, i.e., single
velocity and single pressure, is deduced in the asymptotic limit. The four-equation model has a single
velocity, single pressure and also single temperature coinciding with the single-fluid reactive Euler
equations. While the three-equation model is the system of Euler equations. It has single velocity,
pressure, temperature, and also single Gibbs free energy, i.e., it is in full equilibrium. A detailed
discussion of these models is beyond the scope of this work. For this purpose the interested reader is
referred to [26] and the references cited therein.

Typically reduced models suffer from some short-comings. For instance, conservation of energy
might be violated or the system looses its hyperbolicity. Therefore we prefer a full non-equilibrium
model taking into account viscosity and heat conduction. For this purpose we consider a general class
of non-equilibrium models that is a generalization of the three-phase model investigated by Hèrard,
see Remark 7 in [14]. For instance, the Saurel-Abgrall approach [24] fits into this class.

Characteristic for models based on ensemble averaging is the problem to close the set of equations,
i.e., find appropriate interfacial pressures and interfacial velocity as well as relaxation terms for velocity,
pressure, temperature and chemical potentials. Since the closing procedure is not unique, there is
some freedom left for modeling. However, a reasonable model that is acceptable from a physical
point of view has to be consistent with the fundamental principles of thermodynamics, e.g., the
second law of thermodynamics. Besides this there are also constraints from a mathematical point
of view that are related to existence and uniqueness of solutions to the model, e.g., the existence
of entropy-entropy flux pairs. When it comes to the numerical solution additional properties are
helpful for the design of appropriate schemes, e.g., the hyperbolicity of the transport operator or
the sub-characteristic condition. The objective of this paper is to derive constraints for the closing
terms such that the aforementioned physical, analytical and numerical properties hold for the non-
equilibrium multi-component model. Similar investigations have been performed in case of two-phase
models [2, 10, 26, 23] and three-phase models [14]. Here we do not confine ourselves to two and three
phases but an arbitrary number of components. Drew and Passmann [6] consider multi-component
fluids from a physical point of view but do not investigate analytical and numerical properties of the
models.

The paper is organized as follows. In Section 2 we introduce the non-equilibrium multi-component
model and derive the model for the mixture as well the model at equilibrium. Then we rewrite these
models in terms of primitive quantities in Section 3. Neglecting viscosity and heat conduction some
mathematical properties of the models are investigated. In particular, we verify hyperbolicity and
the sub-characteristic condition, see Section 4. Furthermore, a physical meaningful model should be
Galilean invariant. This is investigated in Section 5. In Section 6 we are concerned with the entropies
corresponding to the non-equilibrium model and the mixture model. From the 2nd law of thermo-
dynamics we derive constraints for the definition of the interfacial velocity and pressures. By means
of the physical entropy we define in Section 7 a convex entropy function and a compatible entropy
flux that form an entropy-entropy flux pair. In particular, the compatibility conditions coincide with
constraints for the interfacial pressures and the interfacial velocity derived from thermodynamic prin-
ciples. In Section 8 we introduce the relaxation terms for mechanical and thermal relaxation as well
as relaxation of chemical potentials. In particular, we verify that they are in agreement with the 2nd
law of thermodynamics.
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2. Mathematical model

First of all, we describe the full non-equilibrium model and then derive from this the mixture model
and the equilibrium model.

2.1. Non-equilibrium model

The multi-component flow is described by a non-equilibrium model where all components are present
in each point of the space-time continuum. Each component k = 1, . . . ,K has density ρk, velocity vk
and pressure pk, The amount of each component is determined by its volume fraction αk. The volume
fractions are related by the saturation constraint

K∑
k=1

αk = 1, αk ∈ (0, 1). (2.1)

In analogy to the three-phase model of Hèrard [14] the fluid equations for each component can be
written as

∂t (αk ρk) +∇ · (αk ρk vk) = Sαρ,k, (2.2)

∂t (αk ρk vk) +∇ · (αk ρk vk vTk + αk pk I) = (2.3)

−
K∑
l=1

Pk,l∇αl +∇ · (αk T k) + Sαρv ,k,

∂t (αk ρk Ek) +∇ · (αk ρk vk (Ek + pk/ρk)) = (2.4)

−
K∑
l=1

Pk,l V I · ∇αl +∇ · (αk (vk · T k − qk)) + SαρE,k,

taking into account viscosity and heat conduction via the stress tensor T k and the heat flux qk, but
neglecting effects due to surface tension and gravity. In our notation Ek = ek+v2k/2 is the total specific
energy with ek the specific internal energy of component k. There may be other contributions to be
accounted for, see [6], p. 68 ff and 144 ff. In particular, the term Pk,l accounts for different pressures
at the phase interface. Without loss of generality we may assume

Pk,k = 0. (2.5)

Otherwise we replace Pk,l by Pk,l −Pk,k due to the saturation condition (2.1). The interfacial velocity
is denoted by V I . Obviously, the equations cannot be written in conservative form. Finally, the fluid
equations are supplemented by an equation of state

pk = pk(ρk, ek) resp. ek = ek(ρk, pk) (2.6)

for each of the components.
The evolution of the volume fractions is characterized by the non-conservative equation

∂t αk + V I · ∇αk = Sα,k, k = 1, . . . ,K. (2.7)

Due to the saturation condition (2.1) we only need K − 1 equations. Without loss of generality we
express αK by the other volume fractions, i.e.,

αK = 1−
K−1∑
k=1

αk, ∇αK = −
K−1∑
k=1

∇αk, Sα,K = −
K−1∑
k=1

Sα,k. (2.8)
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The source terms Sα,k, Sρ,k, Sρv ,k and SρE,k on the right-hand sides of (2.2), (2.3), (2.4) and
(2.7) describe the relaxation process due to mass, momentum, energy transfer and volume fraction
between the different components corresponding to the relaxation of velocity, pressure, temperature
and chemical potentials, ξ ∈ {v, p, T, µ}, i.e.,

Sα,k :=
∑
ξ

Sξα,k, Sαρ,k :=
∑
ξ

Sξαρ,k, Sαρv ,k :=
∑
ξ

Sξαρv ,k, SαρE,k :=
∑
ξ

SξαρE,k. (2.9)

These depend on the specific components at hand that will be discussed in Section 8.
So far, the model is not yet closed. For this purpose, we have to find closing conditions for the

pressures Pk,l, the interfacial velocity V I and the relaxation terms Sα,k, Sαρ,k, Sαρv ,k and SαρE,k. In
the following sections we will derive appropriate constraints. However, these will not specify a unique
model but some options are still remaining for the choice of the interfacial velocity, the relaxation
terms, the stress tensor and the heat conduction.

2.2. Mixture model

From the non-equilibrium model we can derive the equations for the mixture. For this purpose we
introduce the mixture quantities

p :=
K∑
k=1

αk pk, ρ :=
K∑
k=1

αk ρk, v :=
1

ρ

K∑
k=1

αk ρk vk, (2.10)

for pressure, density and velocity. Accordingly, we define the specific internal energy, the specific total
energy and the specific total enthalpy of the mixture as

e :=
1

ρ

K∑
k=1

αk ρk ek, E :=
1

ρ

K∑
k=1

αk ρk Ek, H :=
1

ρ

K∑
k=1

αk ρkHk = E +
p

ρ
(2.11)

with Hk := Ek + pk/ρk the total enthalpy of component k. The stress tensor and the heat flux of the
mixture are determined by

T :=

K∑
k=1

αkT k, q :=

K∑
k=1

αkqk. (2.12)

In order to ensure conservation of mass, momentum and energy of the mixture the relaxation terms
(2.9) have to satisfy the conservation constraints

K∑
k=1

Sξα,k = 0,

K∑
k=1

Sξαρ,k = 0,

K∑
k=1

Sξαρv ,k = 0,

K∑
k=1

SξαρE,k = 0 (2.13)

for each relaxation type ξ ∈ {v, p, T, µ}. In addition, we need that the interfacial pressures satisfy

Pl :=

K∑
k=1,k 6=l

Pk,l ≡ P = const ∀l = 1, . . . ,K. (2.14)
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Then by summation of the single-component fluid equations (2.2), (2.3), (2.4) and employing the
saturation constraint (2.1) as well as the conservation constraints (2.13) and (2.14) we obtain

∂t ρ+∇ · (ρv) = 0, (2.15)

∂t (ρv) +∇ · (ρv vT + p I) = ∇ · T − (2.16)

∇ ·

(
K∑
k=1

αk ρk (v − vk) (v − vk)T
)
,

∂t (ρE) +∇ · (ρv (E + p/ρ)) = ∇ · (v · T − q)− (2.17)

∇ ·

(
K∑
k=1

αk T k (vk − v)

)
−∇ ·

(
K∑
k=1

αk ρk (Hk −H) (vk − v)

)
.

We note that there are contributions corresponding to the slip between the mixture velocity v and
the velocities of the components vk. In the multi-component model of Drew and Passman these terms
are added to the mixture stress tensor and the mixture heat flux, see [6], p. 82-83. In contrast to the
non-equilibrium model, the mixture model is in conservative form if and only if the conditions (2.13)
and (2.14) hold.

2.3. Equilibrium model

If the relaxation processes are much faster than the transport and dissipation effects, then the fluid
can be considered to be at equilibrium. This state is characterized by vanishing relaxation terms, i.e.,

Sα,k = 0, Sαρ,k = 0, Sαρv ,k = 0, SαρE,k = 0. (2.18)

At equilibrium the velocities, pressures and temperatures coincide, i.e.,

v1 = . . . = vK = v, p1 = . . . = pK = p, T1 = . . . = TK = T, (2.19)

and the chemical potentials of reacting components are equal. In particular, for the interfacial pressures
and interfacial velocity it holds

Pk,l = p, k 6= l, V I = v. (2.20)

Then the mixture model (2.15), (2.16) and (2.17) reduces to the the equilibrium model

∂t ρ+∇ · (ρv) = 0, (2.21)

∂t (ρv) +∇ · (ρv vT + p I) = ∇ · T , (2.22)

∂t (ρE) +∇ · (ρv (E + p/ρ)) = ∇ · (v · T − q). (2.23)

Note that by definition (2.10) and (2.12) the mixture pressure p, the mixture stress tensor T and
the mixture heat flux q depend on the volume fractions αk. These are determined by the algebraic
conditions (2.18) and (2.19).

3. Primitive variables

For the verification of some physical and mathematical properties it will be helpful to rewrite the
systems of equations for the non-equilibrium, mixture and the equilibrium model in terms of primitive
quantities
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3.1. Non-equilibrium model

By means of the system (2.2), (2.3), (2.4) and (2.7) we derive evolution equations for the density ρk,
the velocity vk and the pressure pk for each component k. Inserting the evolution equation for the
volume fraction (2.7) into the continuity equation (2.2) we obtain

∂t ρk +
ρk
αk

(vk − V I) · ∇αk + vk · ∇ ρk + ρk∇ · vk =
1

αk
(Sαρ,k − ρkSα,k) . (3.1)

From the momentum equation (2.3) we deduce with (2.2) Cauchy’s equation of motion

∂t vk + (∇vk)vk +
1

ρk
∇ pk +

pk
αkρk

∇αk =
1

αkρk

(
−

K∑
l=1

Pk,l∇αl +∇ · (αk T k)

)
+

1

αkρk
(Sαρv ,k − Sαρ,kvk) . (3.2)

Here the gradient of the velocity is defined as ∇vk = (∇ vk,1, . . . ,∇ vk,d)T . Then we immediately
obtain the evolution equation for the kinetic energy uk := v2k/2

∂t uk + vk · (∇vk vk) +
1

ρk
vk · ∇ pk +

pk
αkρk

vk · ∇αk = (3.3)

1

αkρk
vk ·

(
−

K∑
l=1

Pk,l∇αl +∇ · (αk T k)

)
+

1

αkρk
vk · (Sαρv ,k − Sαρ,kvk) .

Since the total energy is composed of the internal energy and the kinetic energy, we derive the evolution
equation for the internal energy ek = Ek − uk from the energy equation (2.4), where we employ (2.2)
and (3.3). Finally we obtain

∂t ek + vk · (∇ ek) =
1

αkρk

K∑
l=1

Pk,l (vk − V I) · ∇αl −
pk
ρk
∇ · vk + (3.4)

1

ρk

d∑
i,l=1

∂ vk,l
∂ xi

(T k)l,i −
1

αkρk
∇ · (αkqk) +

1

αkρk
Se,k

with the relaxation term

Se,k := SαρE,k − vk · Sαρv ,k + Sαρ,k(uk − ek). (3.5)

Next we derive the evolution equation for the pressure pk. For this purpose we first note that for any
equation of state (2.6) the following relation holds

dpk = (∂pk/∂ρk) dρk + (∂pk/∂ek) dek. (3.6)

By means of the continuity equation (3.1) and the energy equation (3.4) we then derive from (3.6)

∂t pk +

K∑
l=1,l 6=k

ρk
αk
C2
k,l(vk − V I) · ∇αl + vk · ∇ pk + ρkc

2
k∇ · vk = (3.7)

(∂pk/∂ek)

 1

ρk

d∑
i,l=1

∂ vk,l
∂ xi

(T k)l,i −
1

αkρk
∇ · (αkqk)

+
1

αkρk
Sp,k

with the relaxation term

Sp,k := ρk(∂pk/∂ρk) (Sαρ,k − ρkSα,k) + (∂pk/∂ek)Se,k. (3.8)
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Here the interfacial sound speed and the phase sound speed are defined as

C2
k,l := −

(
(∂pk/∂ek)Pk,l/ρ

2
k + (∂pk/∂ρk)

)
, c2k := ∂pk/∂ρk + pk/ρ

2
k(∂pk/∂ek). (3.9)

3.2. Mixture model

Similar to the non-equilibrium model we derive evolution equations for the mixture quantities ρ, v,
e and p defined by (2.10) and (2.11) from the evolution equations (2.15), (2.16) and (2.17). First of
all, we determine Cauchy’s equation of motion from the momentum equation (2.16) where we use the
continuity equation (2.15) and the constraint (2.14):

∂t v + (∇v)v +
1

ρ
∇ p =

1

ρ
∇ · T − 1

ρ

K∑
l=1

Pl∇αl −
1

ρ
∇ ·

K∑
k=1

αkρk(vk − v)(vk − v)T . (3.10)

Since definition (2.11) of the mixture energy e implies that ρe =
∑K

k=1 αkρkek, we obtain by (3.4) and
(2.2) the evolution equation for the internal energy

∂t e+ v · ∇ e+
1

ρ

K∑
k=1

αkpk∇ · vk =
1

ρ

K∑
l,k=1

Pk,l (vk − V I) · ∇αl − (3.11)

1

ρ

K∑
k=1

αkρkek(vk − v) +
1

ρ

K∑
k=1

d∑
i,l=1

∂ vk,l
∂ xi

αk(T k)l,i −
1

ρ
∇ · q − 1

ρ

K∑
k=1

(vk · Sαρv ,k − Sαρ,kuk).

Finally we determine the evolution equation for the mixture pressure p. Applying the time derivative
to the definition (2.10) of p and using (2.7) and (3.7) we obtain

∂t p + v · ∇ p+ ρc2∇ · v = (3.12)

−
K∑
k=1

ρk

K∑
l=1,l 6=k

C2
k,l(vk − V I) · ∇αl −

K∑
k=1

αk (v · ∇ (pk − p) + (vk − v) · ∇ pk)

−
K∑
k=1

αkρkc
2
k∇ · (vk − v) +

K∑
k=1

1

ρk
(∂pk/∂ek)

αk d∑
i,l=1

∂ vk,l
∂ xi

(T k)i,l −∇ · (αkqk)


+

K∑
k=1

(
pkSα,k +

1

ρk
Sp,k

)
.

Here the sound speed of the mixture is defined as

c2 :=
1

ρ

K∑
k=1

αk ρk c
2
k. (3.13)

3.3. Equilibrium model

In case of the equilibrium model the evolution equations for the primitive variables can be directly
determined from those of the mixture model where we make use of the equilibrium assumptions (2.18),
(2.19) and (2.20) and the saturation condition (2.1). Then Cauchy’s equation of motion reads

∂t v + (∇v)v +
1

ρ
∇ p =

1

ρ
∇ · T . (3.14)
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The energy equation reduces to

∂t e+ v · ∇ e+
p

ρ
∇ · v =

1

ρ

d∑
i,l=1

∂ vl
∂ xi

(T )l,i −
1

ρ
∇ · q. (3.15)

Finally the pressure equation becomes

∂t p + v · ∇ p+ ρc2∇ · v = (3.16)

K∑
k=1

1

ρk
(∂pk/∂ek)

αk d∑
i,l=1

∂ vl
∂ xi

(T k)i,l −∇ · (αkqk)

 .

4. Mathematical properties: hyperbolicity and sub-characteristic condition

Neglecting viscosity and heat conduction as well as relaxation processes in the fluid equations intro-
duced in Section 2 the models reduce to first order systems describing transport effects only. Therefore
these systems should be hyperbolic. This ensures that all wave speeds are finite and the system may
be locally decoupled. From a mathematical point of view, this property is helpful in the construction
of Riemann solvers. Therefore we determine the eigenvalues and eigenvectors corresponding to the
non-equilibrium model. From a numerical point of view the relation between the eigenvalues of the
non-equilibrium and the equilibrium model are of special interest.

4.1. Non-equilibrium model

Starting point are the evolution equations for the primitive variables (2.7), (3.1) , (3.2) and (3.7). The
corresponding first order system then reads

∂t αk +

d∑
i=1

VI,i
∂ αk
∂ xi

= 0 (4.1)

∂t ρk +
d∑
i=1

(
ρk
αk

(vk,i − VI,i)
∂ αk
∂ xi

+ vk,i
∂ ρk
∂ xi

+ ρk
∂ vk,i
∂ xi

)
= 0, (4.2)

∂t vk +
d∑
i=1

vk,i ∂ vk
∂ xi

+
K∑

l=1,l 6=k

1

αk ρk
(Pk,l − pk) ei,d

∂ αl
∂ xi

+
1

ρk
ei,d

∂ pk
∂ xi

 = 0, (4.3)

∂t pk +
d∑
i=1

vk,i ∂ pk
∂ xi

+
K∑

l=1,l 6=k

ρk
αk

C2
k,l (vk,i − VI,i)

∂ αl
∂ xi

+ ρk c
2
k

∂ vk,i
∂ xi

 = 0, (4.4)

where ei,d ∈ Rd denotes the unit vector in the ith coordinate direction. In order to characterize
hyperbolicity of this system we consider its projection onto normal direction ξ := x · n for arbitrary
unit direction n ∈ Rd. Introducing the vector of primitive variables

w = (α1, . . . , αK−1,w
T
1 , . . . ,w

T
K)T , wk = (ρk,v

T
k , pk)

T (4.5)

the projected system can be written in quasi-conservative form as

∂tw +Bn(w)
∂w

∂ ξ
= 0. (4.6)
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The matrix Bn is determined by the block matrix

Bn :=
d∑
i=1

Bi ni =


VI,n IK−1
A1,n B1,n

...
. . .

AK,n BK,n

 , (4.7)

with the blocks defined as

Ak,n :=


ρk
αk

(vk,n − VI,n) (eTk,K−1 − 1TK−1 δk,K)

−nβTk
ρk
αk

(vk,n − VI,n)γTk

 , Bk,n :=


vk,n ρk n

T 0

0d vk,n Id
1
ρk
n

0 ρk c
2
kn

T vk,n

 . (4.8)

Here ek,K−1 is the kth unit vector in RK−1. In particular, we make the convention eK,K−1 = 0.

Furthermore, Id and IK−1 are the unit matrices in Rd×d and R(K−1)×(K−1), respectively, and 0d and
1K−1 are vectors in Rd and R(K−1) with value 0 or 1, respectively. The vectors βk and γk are defined
by its components l = 1, . . . ,K − 1 as

βk,l :=
1

αkρk
((Pk,l − pk)(1− δk,l)− (Pk,K − pk)(1− δk,K)) , (4.9)

γk,l := C2
k,l(1− δk,l)− C2

k,K(1− δk,K) (4.10)

with δk,l the Kronecker symbol. The normal components of the velocities and the interfacial velocity
are defined as

vk,n := vk · n, VI,n := V · n. (4.11)

Obviously, the eigenvalues of the matrix (4.7) can now be easily computed where we employ the block
structure:

det(Bn − λ I) = det(Vn,I IK−1 − λ IK−1)
K∏
k=1

det(Bk,n − λ Id+2) = 0 (4.12)

Since the matrices Bk,n coincide with those in case of a single-phase fluid, we then compute

det(Bk,n − λ Id+2) = (vk,n − λ)d ((vk,n − λ)2 − c2k) (4.13)

Hence we obtain the following eigenvalues:

λI,k = VI,n, k = 1, . . . ,K − 1 (4.14)

λk,i = vk,n, k = 1, . . . ,K, i = 1, . . . , d (4.15)

λk,± = vk,n ± ck, k = 1, . . . ,K. (4.16)

Motivated by the block structure of the matrix Bn we make the following ansatz for computing the
corresponding left and right eigenvectors

Rn :=


R0
I,n

R1
I,n R1,n
...

. . .

RK
I,n RK,n

 , Ln :=


L0
I,n

L1
I,n L1,n
...

. . .

LKI,n LK,n

 (4.17)

with blocks

R0
I,n := κ0IK−1,L

0
I,n ∈ R(K−1)×(K−1),

Rk
I,n,L

k
I,n ∈ R(d+2)×(K−1), Rk,n,Lk,n ∈ R(d+2)×(d+2), k = 1, . . . ,K.

9
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Here the matrix Rn and Ln are composed of the right and left eigenvectors in its columns and
rows, respectively. To determine the blocks Rk,n we note that λk,i and λk,± are also eigenvalues of the
matrix Bk,n and the eigenvalue problem for Bn decouples into eigenvalue problems for the matrices
Bk,n corresponding to a single component. In a first step, we therefore compute the eigenvectors to

these sub-problems where we first determine an orthonormal basis {n, t1, . . . , td−1} of Rd such that
ti · tj = δi,j and ti ·n = 0. Then the right and left eigenvectors to the eigenvalues (4.15) and (4.16) are

rk,d = (1,0Td , 0)T , rk,i = (0, tTi , 0)T , i = 1, . . . , d− 1, rk,± = (1,±ck/ρknT , c2k)T , (4.18)

lk,d = (1,0Td ,−c−2k )T , lk,i = (0, tTi , 0)T , i = 1, . . . , d− 1, lk,± = 0.5c−2k (1,±ckρknT , 1)T . (4.19)

Thus there exists an eigenvalue decomposition of the matrix Bk,n, i.e.,

Lk,nBk,nRk,n = Λk,n, (4.20)

where Lk,n and Rk,n are defined by the left and right eigenvectors and Λk,n is a diagonal matrix with
eigenvalues on the diagonal

Rk,n :=

 1 0 . . . 0 1 1
−ck/ρkn t1 . . . td−1 0d ck/ρkn

c2k 0 . . . 0 0 c2k

 , (4.21)

Lk,n :=
1

2c2k

 0 0 . . . 0 2c2k 0
−ckρkn 2c2kt1 . . . 2c2ktd−1 0d ckρkn

1 0 . . . 0 −2 1

T

, (4.22)

Λk,n :=

vk,n − ck 0Td 0
0d vk,nId 0d
0 0Td vk,n + ck

 . (4.23)

To calculate the eigenvectors to the multiple eigenvalue λI,i we employ the knowledge of the matrices
Rk,n. According to the block structure of the matrixRn the matrix of corresponding right eigenvectors
needs to satisfy

(Bn − λI,iI)Rn = 0⇔ (Bk,n − λI,iId+2)R
k
I,n = −Ak,nR

0
I,n = −κ0Ak,n, k = 1, . . . ,K.

Assuming that the eigenvalue λI,i does not coincide with one of the eigenvalues λk,i and λk,±, then

Bk,n−λI,iId+2 is regular and there exists a unique solution forRk
I,n. For its representation we introduce

κ0 :=
K∏
l=1

αlσk, κk :=
K∏

l=1,l 6=k
αlσk, k = 1, . . . ,K

with δnk := vk,n − VI,n and σk := (δnk )2 − c2k. Then we obtain

R0
I,n := κ0 IK−1, (4.24)

Rk
I,n := κk

 (δnk )2ρkγ
T
k + αkρkc

2
kβ

T
k

−n(αkβ
T
k + γTk )δnk

−σk(eTi,K−1(1− δk,K)− 1TK−1δk,K) + αkβ
T
k + γTk

 (4.25)

Since αk ∈ (0, 1) according to (2.1), these matrices are regular, i.e., the columns are linearly indepen-
dent, if and only if

σk 6= 0 ∀ k = 1, . . . ,K, (4.26)

10
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holds. This condition is referred to as the non-resonance condition, see [4] in case of a two-velocity-
two-pressure model in two-phase flows. Thus the corresponding left eigenvectors are determined by
the rows of the inverse of Rn. Since LnRn = I, the blocks turn out to be

Lk,n = R−1k,n, k = 1, . . . ,K, (4.27)

L0
I,n = (R0

I,n)−1 = κ−10 IK−1, (4.28)

LKI,n = −Lk,nRK
I,n(R0

I,n)−1 = −κ−10 Lk,nR
K
I,n, k = 1, . . . ,K, (4.29)

and we obtain for the right eigenvectors

rI,i := κ0
(
(r1I,0)

T , (r1I,i)
T , . . . , (rKI,i)

T
)T
, i = 1, . . . ,K − 1. (4.30)

with vectors rkI,i = (xk,i,y
T
k,i, zk,i)

T and their components

zk,i =
(
ρk(δ

n
k )2γk,i + αkρkc

2
kβk,i

)
/(αkσk), (4.31)

yk,i = −n (αkβk,i + γk,i) δ
n
k /(αkσk), (4.32)

xk,i = (−σk(δk,i(1− δk,K)− δk,K) + (αkβk,i + γk,i)) ρk(αkσk). (4.33)

These are well-defined also in case of αk = 0 or σk = 0. Similar to (4.30) the left eigenvectors are then
given by

lI,i :=
(
(l1I,0)

T , (l1I,i)
T , . . . , (lKI,i)

T
)T
, i = 1, . . . ,K − 1. (4.34)

with

l0I,i =

K∏
l=1

(αlσl)
−1 ei,K−1, lkI,i =

1

2c2kαkσk
(aik, 0, . . . , 0, b

i
k)
T

and

aik := ckρk(αkβk,i + γk,i)δ
n
k + σk(δk,i(1− δk,K)− δk,K)− αkβk,i − γk,i,

bik := −2c2kρk((δ
n
k )2γk,i + αkc

2
kβk,i)− 2σk(δk,i(1− δk,K)− δk,K) + 2(αkβk,i + γk,i).

After having determined the eigenvalues and the corresponding linearly independent right and left
eigenvectors we finally end up with the eigenvalue decomposition of the matrix Bn

LnBnRn = Λn (4.35)

with the block-diagonal matrix Λn = diag(Λ0,n,Λ1,n, . . . ,ΛK,n) and Λ0,n := VI,nIK−1. To verify

this decomposition we make use of the identity Bk,nR
k
I,n = Rk

I,nΛ0,n − Ak,nR
0
I,n. To conclude the

investigation on the hyperbolicity we summarize the findings in the following theorem.

Theorem 4.1. (Hyperbolicity) Let the interfacial pressures satisfy the conditions (2.5) and (2.14).
Let the interfacial velocity V I not coincide with one of the eigenvalues λk,i and λk,± of Bn. Then
the first order system (4.1), (4.2), (4.3) and (4.4) is hyperbolic, i.e., (i) the eigenvalues of the matrix
(4.7) are all real but not necessarily distinct and (ii) there exists a system of linearly independent left
and right eigenvectors with (4.35) if and only if the non-resonance condition (4.26) is satisfied.

This theorem holds true also for the non-equilibrium model (2.2), (2.3), (2.4) and (2.7) neglecting
viscosity and heat conduction as well as relaxation processes, because eigenvalues are invariant under a
regular, bijective change of variables and the corresponding eigenvectors can be determined by scaling
of the original eigenvectors by the Jacobian of the transformation and its inverse, respectively.

Finally we want to remark that the eigenvectors coincide with the one given in [26, 2] in case of a
7-equation model in one space dimension (K = 2, d = 1).

11
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4.2. Equilibrium model

Similar to the non-equilibrium case we can determine the eigenvalues of the equilibrium model. Starting
point are the evolution equations (2.21), (2.22) and (2.23). The corresponding first order system then
reads

∂t ρ+
d∑
i=1

(
vi
∂ ρ

∂ xi
+ ρ

∂ vi
∂ xi

)
= 0, (4.36)

∂t v +
d∑
i=1

(
vi
∂ v

∂ xi
+

1

ρ
ei

∂ p

∂ xi

)
= 0, (4.37)

∂t p+

d∑
i=1

(
vi
∂ p

∂ xi
+ ρ c2

∂ vi
∂ xi

)
= 0, (4.38)

Again we consider its projection onto normal direction ξ := x · n for arbitrary unit direction n ∈ Rd
that can be written in quasi-conservative form

∂tw +Bn(w)
∂w

∂ ξ
= 0 (4.39)

with the vector of primitive variables w = (ρ,vT , p)T and matrix

Bn :=


vn ρnT 0

0d vn Id
1
ρ n

0 ρ c2nT vn

 . (4.40)

The normal component of the velocity is defined as

vn := v · n. (4.41)

The eigenvalues of Bn are then characterized by the roots of the characteristic polynomial

det(Bn − λ Id+2) = (Vn − λ)d ((vn − λ)2 − c2).
Hence we obtain the following eigenvalues:

λ± = vn ± c, λi = vn, i = 1, . . . , d. (4.42)

With regard to a stable numerical discretization of the non-equilibrium model in the limit of vanishing
relaxation terms, the so-called sub-characteristic condition has to hold true. This condition was orig-
inally introduced by Liu [18]. For this purpose we evaluate the eigenvalues (4.14), (4.15) and (4.16)
with respect to an equilibrium state, i.e.,(2.18), (2.19) and (2.20) hold,

λI,k = V I,n = vI · n = v · n = vn, k = 1, . . . ,K − 1

λk,i = vk,n = vk · n = v · n = vn, k = 1, . . . ,K, i = 1, . . . , d

λk,± = vk,n ± ck = vn ± ck, k = 1, . . . ,K.

Here the bar indicates evaluation with respect to an equilibrium state. Then by definition (3.13) and
(2.10) of the mixture sound speed and the mixture density we conclude from the positivity of the
densities ρk and the volume fractions αk

c ∈ [mink=1,...,K ck,maxk=1,...,K ck] =: [cmin, cmax] .

A straight forward estimation gives

mink=1,...,K λk,+ ≤ λ+ ≤ maxk=1,...,K λk,+,

mink=1,...,K λk,− ≤ λ− ≤ maxk=1,...,K λk,−.

12
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In the second estimate we use that

−c ∈ [−maxk=1,...,K ck,−mink=1,...,K ck, ] = [mink=1,...,K −ck,maxk=1,...,K −ck] .

This immediately implies that the following theorem holds true.

Theorem 4.2. (Sub-characteristic condition) Let αk, ρk and ck, k = 1, . . . ,K, be non-negative. Then
the eigenvalues (4.14), (4.15), (4.16) and (4.43), (4.43), (4.43) of the non-equilibrium model and the
equilibrium model, respectively, evaluated with respect to an equilibrium state, i.e., (2.18), (2.19) and
(2.20) hold, satisfy the sub-characteristic condition

λi ∈

min

 min
k=1,...,K−1

λI,k, min
k=1,...,K

i=1,...,d

λk,i

 ,max

 max
k=1,...,K−1

λI,k, max
k=1,...,K

i=1,...,d

λk,i

 = {vn},

λ± ∈
[

min
k=1,...,K

λk,±, max
k=1,...,K

λk,±

]
.

Note that similar results have been proven recently by Flatten and Lund [9] for a hierarchy of
two-phase relaxation models.

5. Frame invariance and objectivity

Since the results of an experiment should be independent of the observer’s position in the Euclidean
space, a physical meaningful model should reflect this behavior. This property is referred to as frame
indifference and objectivity in the literature, cf. [6], p. 31 ff, and [17]: performing the general Euclidean
change of frame

t∗ = t+ a, x∗ = x∗0(t) +Q(t)(x− x0), (5.1)

with constant values a and x0 and Q an orthogonal matrix, i.e.,

QQT = QQT = I, (5.2)

then a scalar f , a vector u and a tensor T are called objective, if

f∗(t∗,x∗) = f(t, x), u∗(t∗,x∗) = Q(t)u(t, x), T ∗(t∗,x∗) = Q(t)T (t, x)QT (t). (5.3)

From the orthogonality of Q we conclude

A := Q̇QT = −QQ̇T
= −AT , (5.4)

i.e., A is a skew-symmetric matrix and it holds Aii = 0, Aij = −Aji. Then under the general Euclidean
change of frame (5.1) the velocities v := ẋ and v∗ := ẋ∗ of the different frames are linked via

v∗ − ẋ∗0 = Q(v − ẋ0) +A(x∗ − x∗0) equiv. v − ẋ0 = QT (v∗ − ẋ∗0)−A(x∗ − x∗0). (5.5)

Thus, the velocity and the acceleration are not objective under a general Euclidean change of frame.
For the rate of deformation D and the rotation tensor W defined as

D :=
1

2

(
∇xv + (∇xv)T

)
= DT , W :=

1

2

(
∇xv − (∇xv)T

)
= −W T (5.6)

we conclude from (5.1)

D∗ :=
1

2

(
∇xv∗ + (∇xv∗)T

)
= QDQT , W ∗ :=

1

2

(
∇xv∗ − (∇xv∗)T

)
= QWQT +AT , (5.7)

i.e., the rate of deformation is objective but the rotation tensor is not objective under a general
Euclidean change of frame.
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5.1. General Euclidean change of frame

In order to rewrite the fluid equations (2.2), (2.3), (2.4) and (2.7) in terms of the general Euclidean
change of frame we need some rules of calculus that will be summarized below. First of all, we determine
from (5.1) the Jacobian of the transformation

∂(t∗,x∗)

∂(t,x)
=

(
1 0Td

ẋ0 + Q̇(x− x0) Q

)
,

∂(t,x)

∂(t∗,x∗)
=

(
1 0Td

ẋ0 + Q̇
T

(x∗ − x∗0)QT ẋ∗0 QT

)
. (5.8)

Then we introduce the change of variables

f(t,x) = f(t∗ − a,x0 +QT (t)(x∗ − x∗0(t)), (5.9)

u(t,x) = u(t∗ − a,x0 +QT (t)(x∗ − x∗0(t)), (5.10)

T (t,x) = T (t∗ − a,x0 +QT (t)(x∗ − x∗0(t)). (5.11)

for a scalar f , a vector u and a tensor T . Next we consider the derivatives of these variable transfor-
mations. For a scalar we derive from (5.8) and (5.8)

∂f

∂t
=

∂f

∂t∗
+∇x∗f · (ẋ∗0 +A(x∗ − x∗0)), (5.12)

∇xf = QT∇x∗f. (5.13)

Applying these equations componentwise we obtain for a vector

∂u

∂t
=

∂u

∂t∗
+ (∇x∗u) (ẋ∗0 +A(x∗ − x∗0)), (5.14)

∇x · u = ∇x∗ · (Qu), (5.15)

∇xu ≡
(
∂ui
∂xj

)
ij

= (∇x∗u) Q. (5.16)

In particular, if u is an objective vector, i.e., u = QTu∗ according to (5.3), then we have

∂u

∂t
= QT

(
∂u∗

∂t∗
−Au∗ + (∇x∗u∗)Q(ẋ∗0 +A(x∗ − x∗0))

)
, (5.17)

∇xu = QT (∇x∗u∗) Q. (5.18)

Finally, we consider a tensor (matrix) T with ti and ti the ith column and row of T , respectively.
Then we obtain

∂T

∂t
=

∂T

∂t∗
+ ((∇x∗t1)(ẋ

∗
0 +A(x∗ − x∗0)), . . . , (∇x∗td)(ẋ

∗
0 +A(x∗ − x∗0))) , (5.19)

∇x · T ≡
(
∇x · t1, . . . ,∇x · td

)T
= ∇x∗ ·

(
TQT

)
. (5.20)

For T = fI the divergence reads

∇x · (fI) = QT∇x∗ · (fI). (5.21)

In case of an objective tensor, i.e., T = QTT ∗Q according to (5.3), we conclude from ∇x∗tm =
QT (

∑
n∇x∗t∗nQnm)

∂T

∂t
= QT

(
∂T ∗

∂t∗
Q−AT ∗Q+ T ∗Q̇+ (5.22)

∑
n

(Qn1(∇x∗t∗1)(x
∗
0 +A(x∗ − x∗0)), . . . , Qnd(∇x∗t∗d)(x

∗
0 +A(x∗ − x∗0)))

)
,

∇x · T = QT∇x∗ · T ∗. (5.23)
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5.2. Galilean transformation

It is well-known that the fluid equations for a single phase are not invariant under a general Euclidean
change of frame. For instance, Coriolis forces enter in case of a time-dependent rotation. However, the
fluid equations are invariant under a Galilean transformation where we choose

ẋ0 = 0, Q̇ = 0 equiv. Q = const, x∗0(t) = c0 + c1t, c1, c2 = const (5.24)

in (5.1). For this transformation the velocity vector is still not objective but the acceleration and the
rotation tensor are objective, because A = 0. In the following we will confine ourselves to a Galilean
transformation and derive constraints for the source terms Sα,k, Sαρ,k, Sαρv,k and SαρE,k. First of
all, we derive from the evolution equation (2.7) of the volume fractions using (5.12) and (5.13) and
assuming that the volume fractions are objective, i.e., α∗k = αk,

∂t∗ α
∗
k + V ∗I · ∇x∗ α∗k = S∗α∗,k, k = 1, . . . ,K, (5.25)

where the interfacial velocity and the source term are given as

V ∗I := ẋ∗0 +QV I + Q̇(x− x0) = ẋ∗0 +QV I = c1 +QV I , (5.26)

S∗α∗,k := Sα,k. (5.27)

Next we consider the evolution of mass. Assuming that the mass is objective, i.e., ρ∗k = ρk, and using
(5.12) and (5.15) we derive from (2.3)

∂t∗ (α∗k ρ
∗
k) +∇x∗ · (α∗k ρ∗k v∗k) = S∗α∗ρ∗,k, (5.28)

with source term

S∗α∗ρ∗,k := Sαρ,k. (5.29)

Note that (5.25) and (5.28) hold true for a general Euclidean change of frame (5.1). The transforma-
tion of the momentum equation (2.3) is cumbersome. It significantly simplifies in case of a Galilean
transformation. Starting from (2.3) one has to employ (5.14), (5.5), (5.15), (5.13), (5.23) and incor-
porate (5.28). Assuming that the pressures pk and Pk,l and the stress tensors T k are objective, i.e.,

p∗k = pk, P
∗
k,l = Pk,l and T ∗k = QT kQ

T , we obtain

∂t∗ (α∗k ρ
∗
k v
∗
k)+∇x∗ · (α∗k ρ∗k vk∗ v∗k

T + α∗k p
∗
k I) = −

K∑
l=1

P ∗k,l∇x∗ α∗l +∇x∗ · (α∗k T ∗k)+S∗α∗ρ∗v∗,k, (5.30)

with source term

S∗α∗ρ∗v∗,k := Sαρ,k ẋ
∗
0 +QSαρv ,k. (5.31)

Finally we apply the Galilean transformation to the energy equation (2.4). Since the velocity is not
an objective vector, the kinetic energy in the Galilean frame becomes

e∗kin,k = ekin,k + ẋ∗0 · v∗k −
1

2
(ẋ∗0)

2, ekin,k :=
1

2
v2k (5.32)

using (5.5). Thus the total energy and the total enthalpy are

Ek := ek +
1

2
v2k = E∗k − ẋ∗0 · v∗k +

1

2
(ẋ∗0)

2, E∗k := e∗k +
1

2
(v∗k)

2, (5.33)

Hk := Ek +
pk
ρk

= H∗k − ẋ∗0 · v∗k +
1

2
(ẋ∗0)

2, H∗k := E∗k +
p∗k
ρ∗k
, (5.34)

where we also assume objectivity of the internal energy, i.e., e∗k = ek. Again, after some tedious work
of calculus using (5.2), (5.5), (5.13), (5.15) and incorporating (5.28), (5.30), the energy equation (2.4)

15



S. Müller, M. Hantke, & P. Richter

in the Galilean frame becomes

∂t∗ (α∗k ρ
∗
k E
∗
k) +∇x∗ · (α∗k ρ∗k v∗k (E∗k + p∗k/ρ

∗
k)) = (5.35)

−
K∑
l=1

P ∗k,l V
∗
I · ∇x∗ α∗l +∇x∗ · (α∗k (v∗k · T ∗k − q∗k)) + S∗α∗ρ∗E∗,k,

with source term

S∗α∗ρ∗E∗,k := SαρE,k + (QSαρv ,k + Sαρ,kẋ
∗
0) · x∗0 −

1

2
(ẋ∗0)

2Sαρ,k. (5.36)

Here we again assume objectivity of the pressure Pk,l and the heat flux qk, i.e., P ∗k,l = Pk,l and
q∗k = Qqk.
Thus we have proven the following

Theorem 5.1. (Galilean Invariance) Let the following assumptions hold true

(1) αk, ρk, pk, ek and Pk,l are objective scalars,

(2) qk, T k are objective vectors and tensors, respectively,

(3) all material parameters, e.g., µk, λk, are objective,

(4) the source terms (5.27), (5.29), (5.31), (5.36) are invariant under a Galilean transformation,
i.e.,

S∗α∗,k = Sα∗,k, S
∗
(αρ)∗,k = S(αρ)∗,k, S

∗
(αρv)∗,k = S(αρv)∗,k, S

∗
(αρE)∗,k = S(αρE)∗,k. (5.37)

Then the non-equilibrium model (2.2), (2.3), (2.4) and (2.7) with velocity v∗k = ẋ∗0 +Qvk, interfacial
velocity (5.26) and total energy (5.33) is Galilean invariant. This also holds true for the mixture model
and the equilibrium model because they are derived from the non-equilibrium model by summation.

6. Thermodynamical properties: 2nd law of thermodynamics

From a physical point of view, a model is admissible if it is in agreement with the principles of
thermodynamics. For this purpose we first derive the entropy law for the non-equilibrium model.
Then we determine the entropy production terms of the mixture. To be consistent with the 2nd law
of thermodynamics we have to check the sign of the entropy production terms. This will provide us
with admissibility criteria for the interfacial pressures and velocity as well as the relaxation terms.

6.1. Entropy

In order to investigate thermodynamical properties of the non-equilibrium model (2.2), (2.3), (2.4)
and (2.7), we assume that the entropy of each component satisfies

dek = Tkdsk − pkdτk, (6.1)

where τk := 1/ρk is the specific volume of component k. Thus the pressure and the temperature are
the partial derivatives of ek(τk, sk) that are assumed to be positive, i.e.,

pk(τk, sk) = −∂ek
∂τk

(τk, sk) ≥ 0, Tk(τk, sk) =
∂ek
∂sk

(τk, sk) ≥ 0.
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Furthermore, to ensure thermodynamical stability we assume that the Hessian of ek is a convex
function with respect to τk and sk, i.e.,

∂2ek
∂2τk

(τk, sk) ≥ 0,
∂2ek
∂2sk

(τk, sk) ≥ 0,
∂2ek
∂2τk

(τk, sk)
∂2ek
∂2sk

(τk, sk) ≥
(

∂2ek
∂τk∂sk

(τk, sk)

)2

.

Finally, the third law of thermodynamics implies

τk ≥ 0, sk ≥ 0.

Assuming that pk and Tk are strictly positive, then ek becomes a monotone function in τk and sk and
we may change variables, i.e., sk = sk(τk, ek) satisfying

Tkdsk = dek + pkdτk (6.2)

with partial derivatives

∂sk
∂τk

(τk, ek) =
pk
Tk

> 0,
∂sk
∂ek

(τk, ek) =
1

Tk
> 0. (6.3)

It is well-known that sk = sk(τk, ek) is a concave function, i.e., the Hessian is negative-definite

∂2sk
∂2τk

(τk, ek) ≤ 0,
∂2sk
∂2ek

(τk, ek) ≤ 0,
∂2sk
∂2τk

(τk, ek)
∂2sk
∂2ek

(τk, ek) ≥
(

∂2ek
∂τk∂ek

(τk, ek)

)2

, (6.4)

if and only if ek(τk, sk) is a convex function, i.e., thermodynamic stability holds.

6.2. Entropy equation

In order to derive the entropy equation we rewrite (6.2) as

Tkdsk = dek −
pk
ρ2k
dρk. (6.5)

By means of the evolution equations (3.1) and (3.4) for the density and the internal energy we then
deduce the entropy law

∂t sk + vk · ∇ sk =
1

αkρkTk

(
K∑
l=1

Pk,l (vk − V I) · ∇αlpk(vk − V I) · ∇αk (6.6)

+αk

d∑
i,l=1

∂ vk,l
∂ xi

(T k)l,i −∇ · (αkqk) + Ss,k


with the relaxation term

Ss,k := Se,k −
pk
ρk
Sαρ,k + pkSα,k. (6.7)

For the volume specific entropy we then obtain together with (2.2)

∂t (αkρksk) +∇ · (αkρkskvk) +∇ · ( 1

Tk
αkqk) =

1

Tk

(
K∑
l=1

Pk,l (vk − V I) · ∇αl (6.8)

+pk(vk − V I) · ∇αk + αk

d∑
i,l=1

∂ vk,l
∂ xi

(T k)l,i − αk
1

Tk
qk · ∇Tk

+ Sαρs,k

with the relaxation term

Sαρs,k :=
1

Tk
Ss,k + skSαρ,k. (6.9)
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Introducing the entropy of the components of the mixture

ρs :=

K∑
k=1

αkρksk (6.10)

we finally obtain with (2.12) the entropy law of the mixture

∂t (ρs) +∇ ·

(
K∑
k=1

αkρkskvk

)
+∇ ·

(
K∑
k=1

1

Tk
αkqk

)
=

K∑
k=1

(αkΣk + αk∆k + Πk + Sαρs,k), (6.11)

where the production terms are defined as

Πk :=
1

Tk

(
K∑
l=1

Pk,l (vk − V I) · ∇αl + pk(vk − V I) · ∇αk

)
, (6.12)

Σk :=
1

Tk

d∑
i,l=1

∂ vk,l
∂ xi

(T k)l,i, (6.13)

∆k := − 1

T 2
k

qk · ∇Tk. (6.14)

Note that the total entropy of a homogeneous mixture is determined by the sum of ρs and the non-
negative mixture entropy, [19], p. 320. We discuss the mixture entropy in the context of the relaxation
terms for chemical potentials for a three-component mixture, see Section 8.3.2.

6.3. Entropy production

According to the 2nd law of thermodynamics the production terms (6.12), (6.13) and (6.14) have to
be non-negative. In the subsequent sections we will derive sufficient conditions that ensure thermody-
namical compatibility.

6.3.1. Entropy production due to viscosity and heat conduction

In order to verify the physically admissible sign of the entropy production term Σk we have to specify
the viscous stress tensor T k for each component. For an isotropic Newtonian fluid the stress tensor
reads

T k = µk

(
∇vk +∇vkT −

2

3
(∇ · vk)I

)
. (6.15)

Thus the components of this symmetric tensor are

(T k)l,i = µk

∂ vk,l
∂ xi

+
∂ vk,i
∂ xl

− 2

3

d∑
j=1

∂ vk,j
∂ xj

δl,i

 = (T k)i,l.

Then we compute for the entropy production term (6.13)

Tk
µk

Σk = 2

d∑
i=1

i−1∑
l=1

(
∂ vk,l
∂ xi

+
∂ vk,i
∂ xl

)2

+
2

3
Γ

18
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with

Γ :=
d∑
i=1

2

(
∂ vk,i
∂ xi

)2

−
d∑

j=1,j 6=i

∂ vk,j
∂ xj

∂ vk,i
∂ xi



=


2
(
∂ vk,1
∂ x1

)2
, d = 1(

∂ vk,1
∂ x1

)2
+
(
∂ vk,2
∂ x2

)2
+
(
∂ vk,1
∂ x1
− ∂ vk,2

∂ x2

)2
, d = 2(

∂ vk,1
∂ x1
− ∂ vk,2

∂ x2

)2
+
(
∂ vk,2
∂ x2
− ∂ vk,3

∂ x3

)2
+
(
∂ vk,1
∂ x1
− ∂ vk,3

∂ x3

)2
, d = 3

.

Obviously, the following theorem holds true.

Theorem 6.1. (Entropy production due to viscosity) The viscous stress tensors are determined by
(6.15). Let the temperatures Tk and the viscosity coefficients µk, k = 1, . . . ,K, be non-negative. Then
the production terms (6.13) are non-negative. In addition, because of the saturation condition (2.1),

the entropy production due to viscosity
∑K

k=1 αkΣk is non-negative.

The heat fluxes are modeled by Fourier’s law of heat conduction for a fluid with isotropic material
property

qk = −λk∇Tk. (6.16)

Then the entropy production term (6.14) reads

∆k =
1

T 2
k

λk∇Tk · ∇Tk.

From this we directly conclude

Theorem 6.2. (Entropy production due to heat conduction) The heat fluxes are determined by (6.16).
Let the temperatures Tk and the heat conduction coefficients λk, k = 1, . . . ,K, be non-negative. Then
the production terms (6.14) are non-negative. In addition, because of the saturation condition (2.1),

the entropy production due to heat conduction
∑K

k=1 αk∆k is non-negative.

6.3.2. Interfacial velocity and pressure

To investigate the admissibility of the production terms Πk we first make use of the assumptions (2.5)
and (2.14) for the interfacial pressures. Then these terms become

Πk =
1

Tk

K∑
l=1,l 6=k

(Pk,l − pk) (vk − V I) · ∇αl.

Obviously, we cannot control the sign of Πk. According to the conservation constraints (2.14) all Pk,l,
k 6= l, are coupled. Therefore we determine the interfacial pressures Pk,l and the interfacial velocity

V I such that the sum Π :=
∑K

k=1 Πk vanishes. For this purpose we substitute ∇αK by the other
gradients using (2.8). According to the saturation condition (2.1) the gradients ∇αk, k = 1, . . . ,K−1,
are linearly independent. Thus rearranging the terms in Π with respect to the K − 1 gradients of αk
the coefficients in front of these gradients must be zero when Π vanishes. This yields the following
K − 1 conditions

K−1∑
k=1,k 6=l

1

Tk
((Pk,l − pk)− (Pk,K − pk)) (vk − V I) +

1

TK
(PK,l − pK)(vK − V I) = 0 (6.17)
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for l = 1, . . . ,K−1. Next we assume that the interfacial velocity is a convex combination of the single
component velocities vk, i.e.,

V I =
K∑
k=1

βkvk, βk ∈ [0, 1],
K∑
k=1

βk = 1. (6.18)

This is motivated by Gallouët et al. [10] and Hèrard [14] for a two-phase and a three-phase model,
respectively. Then we may rewrite the velocity differences in (6.17) as

vK − V I =

k−1∑
i=1

i∑
j=1

(−βj) (vi − vi+1) +

K−1∑
i=k

K∑
j=i+1

βj (vi − vi+1).

Rearranging (6.17) in terms of the linearly independent differences vi − vi+1, i = 1, . . . ,K − 1, we
obtain the following conditions

i∑
k=1

1

Tk
((Pk,l − pk)(1− δl,k)− (Pk,K − pk))

K∑
j=i+1

βj + (6.19)

(
K−1∑
k=i+1

1

Tk
((Pk,l − pk)(1− δl,k)− (Pk,K − pk)) +

1

TK
(PK,l − pK)

)
i∑

j=1

(−βj) = 0

or, equivalently,

i∑
k=1

 1

Tk
(1− δl,k)

K∑
j=i+1

βj

Pk,l −
i∑

k=1

 1

Tk

K∑
j=i+1

βj

Pk,K −

K−1∑
k=i+1

 1

Tk
(1− δl,k)

i∑
j=1

βj

Pk,l +

K−1∑
k=i+1

 1

Tk

i∑
j=1

βj

Pk,K −
1

TK

i∑
j=1

βjPK,l = (6.20)

−
i∑

k=1

1

Tk
pkδl,k

K∑
j=i+1

βj +

(
K−1∑
k=i+1

1

Tk
pkδl,k −

1

TK
pK

)
i∑

j=1

βj

for l, i = 1, . . . ,K − 1. This gives (K − 1)2 equations for (K − 1)K unknowns Pk,l, k, l = 1, . . . ,K,
k 6= l. Thus we need additional K − 1 equations to ensure uniqueness for fixed parameters β1, . . . , βK .
These equations are determined by the conservation constraints (2.14) that read

K∑
k=1,k 6=l

Pk,l = PI = const, l = 1, . . . ,K. (6.21)

These equations are equivalent to

K∑
k=1,k 6=l

Pk,l −
K−1∑
k=1

Pk,K = 0, l = 1, . . . ,K − 1, (6.22)

Then (6.20) and (6.22) form a linear system for the interfacial pressures. For a two-component model,
i.e., K = 2, the solution is given by

P1,2 = P2,1 =
p1β2/T1 + p2β1/T2
β2/T1 + β1/T2

= PI . (6.23)
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For a three-component model Hérard [14] proved that (6.20) and (6.22) has a unique solution that is
given by

P1,2 =
β1p2T1 + β2p1T2 + β3p1T3

β1T1 + β2T2 + β3T3
, P2,1 =

β1p2T1 + β2p1T2 + β3p2T3
β1T1 + β2T2 + β3T3

,

P1,3 =
β1p3T1 + β2p1T2 + β3p1T3

β1T1 + β2T2 + β3T3
, P3,1 =

β1p3T1 + β2p3T2 + β3p1T3
β1T1 + β2T2 + β3T3

, (6.24)

P2,3 =
β1p2T1 + β2p3T2 + β3p1T3

β1T1 + β2T2 + β3T3
, P3,2 =

β1p3T1 + β2p3T2 + β3p2T3
β1T1 + β2T2 + β3T3

and, thus,

PI =
β1T1(p2 + p3) + β2T2(p1 + p3) + β3T3(p1 + p2)

β1T1 + β2T2 + β3T3
. (6.25)

As a consequence, we observe that in general Pk,l = Pl,k only holds at pressure equilibrium where
PI = 2p. Whether there exists a unique solution to (6.20) and (6.22) for K ≥ 4 and arbitrary convex
combination (6.18) for the interfacial velocity V I is still open. However, for the multi-component
model the following result can be proven.

Theorem 6.3. (Entropy production due to interfacial states) Let the assumptions (2.5) and (2.14)

hold true. Then the production term Π =
∑K

k=1 Πk vanishes provided that the interfacial pressures Pk,l
are a solution to the linear system (6.20) and the interfacial velocity V I satisfies (6.18).

In particular, if we choose β1 = 1, β2 = . . . , βK = 0, then the interfacial pressures

Pk,l = pk, k = 2, . . . ,K − 1, l = 1, . . . ,K − 1

P1,K = pK , Pk,K = pk, k = 2, . . . ,K − 1,

PK,l = pK , l = 1, . . . ,K − 1,

P1,l = Pl,K = pl, l = 2, . . . ,K − 1

are a solution of (6.20). Thus the interfacial pressure and the interfacial velocity are

PI =

K∑
k=2

pk, V I = v1. (6.26)

Note that for K = 2 and K = 3 the interfacial states (6.26) coincide with those given in [10] and [14],
respectively. In [10] another alternative is given for a two-phase model that has been proven in [23] to
cancel the term Π. Since by means of the linear system (6.20) the interfacial pressures Pk,l depend on
the convex combination (6.18) for the interfacial velocity V I there might be other options to choose the
interfacial pressures, i.e., the 2nd law of thermodynamics does not uniquely characterize the interfacial
pressure and interfacial velocity. In Section 8.3 we discuss another choice for the interfacial velocity.

6.3.3. Entropy production due to relaxation

According to the entropy law (6.8) of a single component the entropy production due to the relaxation
processes is determined by

Sαρs,k =
1

Tk
(pkSα,k + (uk − gk)Sαρ,k − vk · Sαρv ,k + SαρE,k) , (6.27)

where we plug (6.7) and (3.5) into (6.9). Here the Gibbs free energy of component k is defined as

gk = ek + pk/ρk − Tksk (6.28)
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In addition to the conservation constraints (2.13) the relaxation terms (2.9) have to satisfy

Sρs,k ≥ 0, k = 1, . . . ,K or

K∑
k=1

Sαρs,k ≥ 0. (6.29)

to ensure that the mixture is consistent with the 2nd law of thermodynamics.

7. Entropy-entropy flux pairs

From a mathematical point of view, the concept of entropy-entropy flux pairs, cf. [11], has been intro-
duced to characterize a unique weak solution of an initial (boundary) value problem of (inhomogeneous)
conservation laws that in quasi-conservative form reads

∂t u+
d∑
i=1

Ai(u)∂xi u = S(u), Ai(u) :=
∂ f i
∂ u

(u) (7.1)

where u : R+ × Ω → D ⊂ Rm with Ω ⊂ Rd, f i : D → Rm, i = 1, . . . , d and S : D → Rm, denote
the vector of m conserved quantities, the fluxes in the ith coordinate direction, i = 1, . . . , d, and the
source function, respectively. Motivated by thermodynamics, the entropy inequality

∂t U(u) +
d∑
i=1

∂xi F i(u) ≤ 0 (7.2)

has to hold in a weak sense for any convex function U : D → R and functions Fi : D → R, i = 1, . . . , d,
referred to as entropy and entropy flux, that satisfy the compatibility conditions

∇uU(u)T Ai(u) = ∇uFi(u)T , i = 1, . . . , d. (7.3)

Due to these conditions we infer for smooth solutions of (7.1) the entropy equation

∂t U(u) +

d∑
i=1

∂xi Fi(u) = ∇uU(u)T S(u), (7.4)

Obviously, the entropy inequality (7.2) holds if and only if the entropy production is negative, i.e.,

∇uU(u)T S(u) ≤ 0. (7.5)

Motivated by the entropy equation (6.11) a candidate for an entropy-entropy flux pair for our non-
equilibrium model (2.2), (2.3), (2.4) and (2.7) neglecting viscosity and heat conduction is

U(u) := −
K∑
k=1

αkρksk = −ρs, Fi(u) := −
K∑
k=1

αkρkskvk,i, i = 1, . . . , d. (7.6)

It remains to verify the convexity of U and the compatibility conditions (7.3).

7.1. Convexity of entropy function

In order to verify that U is a convex function of the quantities u := (α, α1u
T
1 , . . . , αKu

T
K)T with

α := (α1, . . . , αK−1)
T and uk := (ρk, ρkv

T
k , ρkEk)

T we extend the proof in [23], Appendix A, for a
two-phase model to our K-component model. The key idea is to employ the fact that

Uk(uk) := −ρksk
is a convex function of the quantities uk of component k. In [12], p. 99 ff, it is proven that the entropy
Uk is a convex function of uk, if ek is a convex function of (τk, sk).
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To verify the convexity of U we need to prove that the Hessian is positive semi-definite. First of all,
we note that by (2.1)

∂αk
∂αl

= δk,l − δk,K ,
∂uk
∂αl

= − 1

αk
uk(δk,l − δk,K),

∂uk
∂αlul

=
1

αk
δk,lId+2

holds for k = 1, . . . ,K, l = 1, . . . ,K − 1. Then it follows for the gradient of U :

∂U

∂αl
(u) = Ul(ul)− UK(uK)− ∂Ul

∂ul
(ul) · ul +

∂UK
∂uK

(uK) · uK ,
∂U

∂αlul
(u) =

∂Ul
∂ul

(ul). (7.7)

The Hessian of U is determined by the second order derivatives

∂2U

∂αk∂αl
(u) = δk,l

1

αl
uTl

∂2Ul
∂2ul

(ul)ul +
1

αK
uTK

∂2UK
∂2uK

(uK)uK , k, l = 1, . . . ,K,

∂2U

∂αk∂αlul
(u) = − 1

αl
(δk,l − δK,l)

∂2Ul
∂2ul

(ul)ul, l = 1, . . . ,K, k = 1, . . . ,K − 1,

∂2U

∂αkuk∂αlul
(u) =

1

αl
δk,l

∂2Ul
∂2ul

(ul), k, l = 1, . . . ,K.

For a compact representation of the Hessian we introduce the notation

Uα,α :=

(
∂2U

∂αk∂αl
(u)

)
l,k=1,...,K−1

∈ R(K−1)×(K−1),

Uαkuk,αkuk :=
∂2U

∂αkuk∂αkuk
(u) ∈ R(d+2)×(d+2),

Uαkuk,α :=

(
∂2U

∂αkuk∂α1
(u), . . . ,

∂2U

∂αkuk∂αK−1
(u)

)
∈ R(d+2)×(K−1).

According to the above second order derivatives these are determined by

Uα,α =
1

αK
uTKU

′′
KuK1K−1 + diag

((
1

αk
uTkU

′′
kuk

)
k=1,...,K−1

)
, (7.8)

Uαkuk,αkuk =
1

αk
U ′′k, (7.9)

Uαkuk,α =

(
− 1

αk
(δk,l − δK,k)U ′′kuk

)
l=1,...,K−1

= UT
α,αkuk

, (7.10)

where U ′′k denotes the Hessian of the entropy Uk = Uk(uk) of component k. Then the Hessian can be
represented as block-matrix

U ′′(u) =


Uα,α Uα,α1u1 . . . Uα,α1uK

Uα1u1,α Uα1u1,α1u1

...
. . .

UαKuK ,α Uα1uK ,αKuK

 . (7.11)

To verify positive semi-definiteness of the Hessian we introduce the vector x = (aT , bT1 , . . . , b
T
K)T with

a ∈ RK−1 and bk ∈ Rd+2, k = 1, . . . ,K. Then we obtain by the block-structure (7.11) of the Hessian

xTU ′′x = aTUα,αa+

K∑
k=1

aTUα,αkukbk +

K∑
k=1

bTk (Uαkuk,αa+Uαkuk,αkukbk) . (7.12)

23



S. Müller, M. Hantke, & P. Richter

By means of (7.8), (7.9) and (7.10) we determine

aTUα,αa =
1

αK
(auK)TU ′′K(auK) +

K−1∑
k=1

1

αk
(akuk)

TU ′′k (akuk), a :=

K−1∑
l=1

al,

aTUα,αkukbk = −
K−1∑
l=1

1

αk
(δk,l − δk,K)bTkU

′′
k (aluk),

bTkUα,αkuka = −
K−1∑
l=1

bTkUαkuk,αl
al =

1

αK
δk,Kb

T
KU

′′
K (auK)− 1

αk
(1− δk,K)bTkU

′′
k (akuk),

bTkUαkuk,αkukbk =
1

αk
bTkU

′′
k bk.

Incorporating this into (7.12) we finally conclude after some calculus with

xTU ′′x =

K−1∑
k=1

1

αk
(bk − akuk)TU ′′k (bk − akuk) +

1

αK
(bK − auK)TU ′′K (bK − auK) ≥ 0,

because the HessiansU ′′k are assumed to be positive semi-definite. Note that for x 6= 0 we cannot ensure
xTU ′′x to be positive even if U ′′k is strictly convex because all the terms bk − akuk, k = 1, . . . ,K − 1,
and bK − auK may vanish at the same time. Thus we have proven the following

Theorem 7.1. (Convexity of entropy function) Let ek be a convex function of (τk, sk), k = 1, . . . ,K.
Then the entropy U is a convex function of u, i.e, the Hessian of U is positive semi-definite.

7.2. Compatibility conditions

In order to verify the compatibility conditions (7.3) it is preferable to compute the derivatives in
terms of primitive variables instead of conserved variables for reasons of simplicity. Therefore we first
consider how an entropy-entropy flux pair transforms under a change of variables u = u(w) with
regular Jacobian

T (w) :=

(
∂ ui
∂ wj

(w)

)
i,j=1,...,d

.

Under this transformation the system of conservation laws (7.1) becomes a quasi-conservative system

∂tw +
d∑
i=1

Bi(w) ∂xi w = S(w) (7.13)

with

Bi(w) := T (w)−1Ai(u(w))T (w), S(w) := T (w)−1S(u(w)).

Introducing

W (w) := U(u(w)), Gi(w) := Fi(u(w)), i = 1, . . . , d,

we conclude by a straight-forward calculation

∇wW (w) = (T (w))T ∇uU(u(w)), ∇wGi(w)T = ∇uU(u(w))T Ai(u(w))T (w)

and, hence,

∇wW (w)T Bi(w) = ∇wGi(w)T , (7.14)
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i.e., (U,Fi) satisfies the compatibility conditions (7.3) if and only if (W,Gi) satisfies the compatibility
conditions (7.14). However, the function W must not be convex although U is a convex function. This
directly follows from the Hessian of W

∇wwW (w) = T T (w)∇uuU(u(w))T (w) +
m∑
l=1

∂ U

∂ ul
(u(w))∇wwul(w).

If the variable transformation is nonlinear, then the second term on the right-hand side must not be
positive-definite.
Neglecting viscosity and heat conduction our non-equilibrium model (2.2), (2.3), (2.4) and (2.7) can
be written in quasi-conservative form (7.1) for u = (αT ,uT1 , . . . ,u

T
K)T with α = (α1, . . . , αK−1)

T

and uk = αkρk(1,v
T
k , Ek)

T , k = 1, . . . ,K. Note that the notation slightly differs from the one
in Section 7.1. Obviously, the non-equilibrium model cannot be written in conservative form, i.e.,
the corresponding matrices Ai are not Jacobians of fluxes f i. However, this does not affect the
above discussion on entropy-entropy flux pairs. This non-equilibrium model is rewritten in terms
of w = (αT ,wT

1 , . . . ,w
T
K)T with the primitive variables wk = (ρk,v

T
k , ek)

T . The Jacobian of the
transformation is given by

T (w) =


IK−1
D1 C1

...
. . .

DK CK

 ,

Ck := αk

 1 0Td 0
vk ρkId 0d

ek + 1
2v

2
k ρkv

T
k ρk

 ,

Dk := ρk

 1
vk

ek + 1
2v

2
k

 (ek,K−1 − 1K−1δk,K)T ,

where ek,K−1 is the kth unit vector in RK−1, 1K−1 the unity vector in RK−1, 0d the zero vector in Rd
and Id the unity matrix in Rd×d. Obviously, the transformation is regular, if and only if the densities
ρk, k = 1, . . . ,K are positive. The quasi-conservative system corresponding to this transformation is
given by (2.7), (2.2), (3.2) and (3.4) where we neglect viscosity and heat conduction. The matrices Bi

in (7.13) are given by the block-matrices

Bi(w) =


VI,iIK−1
A1,i B1,i

...
. . .

A1,K BK,i

 ,

Bk,i := αk

 vk,i ρke
T
i,d 0

1
ρk

∂ pk
∂ ρk
ei,d vk,iId

1
ρk

∂ pk
∂ ek
ei,d

0 pk
ρk
eTi,d vk,i

 ,

Ak,i := ρk

 ρk
αk

(vk,i − VI,i)(ek,K−1 − 1K−1δk,K)T

ei,dβ
T
k

γTk

 ,

with

βk,l =
1

αkρk

(
(PMk,l − pk)(1− δk,l)− (PMk,K − pk)(1− δk,K)

)
,

γk,l =
1

αkρk

(
(PEk,lVI,i − PMk,lvk,i)(1− δk,l)− (PEk,KVI,i − PMk,Kvk,i)(1− δk,K)

)
.

Then W and Gi are given by

W (w) = −
K∑
k=1

αkρksk(1/ρk, ek), Gi(w) = −
K∑
k=1

αkρksk(1/ρk, ek)vk,i
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with gradients

∇αW (w) = (ρKsK − ρ1s1, . . . , ρKsK − ρK−1sK−1)T ,
∇wkW (w) = −(αk(sk − pk/(ρkTk)),0Td , αkρk/Tk)T ,
∇αGi(w) = (ρKsKvK,i − ρ1s1v1,i, . . . , ρKsKvK,i − ρK−1sK−1vK−1,i)T ,
∇wkGi(w) = −(αkvk,i(sk − pk/(ρkTk)), αkρkskeTi,d, αkρkvk,i/Tk)T .

From this we compute

∇wW (w)T Bi(w) =


∇αGi(w)− Γi
∇w1Gi(w)
...
∇wKGi(w)


with the components of Γ ∈ RK−1 defined as

Γi,l :=
pl
Tl

(vl,i − VI,i)−
pK
TK

(vK,i − VI,i)−
K∑
k=1

αkρk
1

Tk
γk,l. (7.15)

Then we finally conclude with

Theorem 7.2. (Compatibility of entropy-entropy flux pair) The entropy-entropy flux pairs (U,Fi) and
(W,Gi) satisfy the compatibility conditions (7.3) and (7.14), respectively, if the conditions

Γi,l = 0, l = 1, . . . ,K − 1, i = 1, . . . d (7.16)

hold.

Note that the conditions (7.16) are equivalent to the conditions (6.17).

7.3. Entropy production

In order to ensure the entropy inequality (7.2) it remains to verify the inequality (7.5). Adopting the
notation introduced in Section 7.1, the gradient of the entropy function U is determined by

∇uU(u) =
(
∇αU(u)T ,∇α1u1U(u)T , . . . ,∇αKuKU(u)T

)T
, (7.17)

where the gradients ∇αU(u) and ∇αkuk
U(u), k = 1, . . . ,K, are determined by (7.7). Thus, we need

the gradients ∇uk
Uk(uk), k = 1, . . . ,K, that are given by

∂ Uk
∂ ρk

= −sk +
∂ sk
∂ τk

1

ρk
+
∂ sk
∂ ek

(ek − 0.5v2k),
∂ Uk
∂ ρkvk

=
∂ sk
∂ ek

vk,
∂ Uk
∂ ρkEk

= −∂ sk
∂ ek

.

On the other hand, the vector S of the relaxation terms is defined as

S(u) :=


Sα
S1
...
SK

 , Sk(u) :=

 Sαρ,k
Sαρv,k
SαρE,k

 , S(u) :=

 Sα,1
...

Sα,K−1

 .

Thus, we obtain

∇uU(u)TS(u) =

K−1∑
k=1

(
∂ sK
∂ τK

− ∂ sk
∂ τk

)
Sα,k +

K∑
k=1

((
∂ sk
∂ τk

1

ρk
+
∂ sk
∂ ek

(ek − 0.5v2k)− sk
)
Sαρ,k +

∂ sk
∂ ek

vk · Sαρv,k −
∂ sk
∂ ek

SαρE,k

)
.
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We note that by the saturation condition (2.1) the first sum on the right-hand side can be written as

K−1∑
k=1

(
∂ sK
∂ τK

− ∂ sk
∂ τk

)
Sα,k = −

K∑
k=1

∂ sk
∂ τk

Sα,k.

Together with (6.3) and the Gibbs free energy (6.28) we finally obtain

∇uU(u)TS(u) = −
K∑
k=1

1

Tk

(
pkSα,k + (0.5v2k − gk)Sαρ,k − vk · Sαρv,k + SαρE,k

)
Because of (6.27) we thus conclude with

Theorem 7.3. (Entropy production) If the entropies sk = sk(τk, ek), k = 1, . . . ,K, satisfy (6.3), then
the entropy production is determined by

∇uU(u)TS(u) = −
K∑
k=1

Sαρs,k =: −Sρs (7.18)

and it holds

∇uU(u)TS(u) ≤ 0⇔ Sρs ≥ 0.

7.4. Entropy viscosity

So far we have neglected viscosity and heat conduction. To account for these effects we have to modify
(7.1) by

∂t u+
d∑
i=1

Ai(u)∂xi u =
d∑
i=1

Ei(u)∂xi u+ S(u), Ei(u) :=
∂ fvi
∂ u

(u). (7.19)

According to the non-equilibrium model (2.2), (2.3), (2.4) and (2.7) the viscous flux reads

fvi (u) :=


0K−1

fv1,i(α1, α1u1)
...

fvK,i(αK , αKuK)

 , fvk,i(αk, αkuk) :=

 0
αkT k,i

αk(vk · T k,i − qk,i)

 ,

where T k,i denotes the ith column of the stress tensor T k and qk,i the ith component of the heat flux
qk. Hence, the Jacobian of the viscous fluxes becomes a block matrix

Ei(u) =


0K−1
E1,i E1,i

...
. . .

EK,i EK,i

 with Ek,i :=
∂ fvk,i
∂α

, Ek,i :=
∂ fvk,i
∂ αkuk

.

Then the entropy equality (7.4) reads

∂t U(u) +

d∑
i=1

∂xi Fi(u) =

d∑
i=1

∇uU(u)TEi(u)∂xi u+∇uU(u)T S(u), (7.20)

where we apply the compatibility conditions (7.3). In the following we will rewrite the first term on
the right-hand side. First of all, we note that by (7.17) and the definition of Ei it holds

∇uU(u)TEi(u) =

(
K∑
k=1

∇αkukU(u)TE1,k,∇α1u1U(u)TE1,i, . . . ,∇αKuKU(u)TEK,i

)
,
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where due to (7.7) and (6.3) the components are determined by

∇αKuKU(u)TEK,i =
1

Tk
vk ·

∂ αkT k,i
∂α

− 1

Tk

∂ αk(vk · T k,i − qk,i)
∂α

,

∇αKuKU(u)TEK,i =
1

Tk
vk ·

∂ αkT k,i
∂ αkuk

− 1

Tk

∂ αk(vk · T k,i − qk,i)
∂ αkuk

.

Hence, we obtain

∇uU(u)TEi
∂ u

∂ xi
=

K∑
k=1

(
∂

∂ xi

(
αkqk,i
Tk

)
+
αkqk,i
T 2
k

∂ Tk
∂ xi

− αk
1

Tk

d∑
l=1

(Tk)l,i
∂ vk,l
∂ xi

)
.

Summing over all directions i = 1, . . . , d we finally obtain the entropy viscosity

d∑
i=1

∇uU(u)TEi(u)∂xi u = ∇x ·

(
K∑
k=1

αk
Tk
qk

)
+

K∑
k=1

αk
T 2
k

qk · ∇xTk −
K∑
k=1

αk
Tk

d∑
i,l=1

(Tk)l,i
∂ vk,l
∂ xi

.

Thus, the following theorem holds.

Theorem 7.4. (Entropy viscosity production) If the entropies sk = sk(τk, ek), k = 1, . . . ,K, satisfy
(6.3), then the entropy viscosity is determined by

d∑
i=1

∇uU(u)TEi(u)∂xi u = −
d∑
i=1

∂xi F
v
i (u)−

K∑
k=1

αk(∆k + Σk), (7.21)

where the entropy viscosity flux is defined as

F vi (u) := −
K∑
k=1

αk
Tk
qk,i, i = 1, . . . , d

and the entropy production due to viscosity Σk and heat conduction ∆k are determined by (6.13) and
(6.14), respectively. In particular, the entropy viscosity production is non-positive, i.e.,

−
K∑
k=1

αk(∆k + Σk) ≤ 0

provided that Σk and ∆k are non-negative.

Obviously, the entropy equality (7.20) coincides with (6.11) except for the sign due to (7.6), (7.18)
and (7.21). Note that Σk ≥ 0 and ∆k ≥ 0 hold under the assumptions of Theorem 7.4.

8. Relaxation model

The non-equilibrium model presented in Section 2.1 allows for different values for velocities, pressures,
temperatures as well as chemical potentials at the same point. Therefore one has to introduce a
relaxation mechanism, that drives all these quantities into equilibrium. Typically it is distinguished
between mechanical and thermal relaxation processes that relax either pressures and velocities or
temperatures and chemical potentials to equilibrium.

The relaxation terms are of major importance when dealing with interface problems, see for instance
Saurel and Abgrall [24] or Lallemand et al. [16] for mechanical relaxation terms. Typically, it is assumed
that pressure and velocity relax instantaneously, see [24], whereas the thermal relaxation and the
relaxation of chemical potentials are much slower, see Zein [26].
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Note that in the equilibrium model the equilibrium state is characterized by vanishing relaxation
terms rather than the transient relaxation process itself. Since the equilibrium state does not depend
on the order of relaxation, the relaxation times have not to be known explicitly.

In the subsequent sections we present the relaxation terms for mechanical, thermal and chemical
potential relaxation. For each relaxation process we verify the constraints due to conservation (2.13)
and entropy production (6.29). Note that for all relaxation processes the corresponding source terms
satisfy the constraint (5.37) due to Galilean invariance.

8.1. Mechanical relaxation

The pressure relaxation implies volume variations, that induce energy variations due to the interfacial
pressure work. Here we extend the pressure relaxation vector given in [24] for a two-phase model
according to [26] by introducing a pressure average that we choose as the mixture pressure. The
pressure relaxation terms then read

Spα,k := θp αk (pk − p), Spαρ,k := 0, Spαρv ,k := 0, SpαρE,k := θp αk p(p− pk). (8.1)

Here θp denotes the pressure relaxation parameter. Similarly the velocity relaxation terms read

Svα,k = Svαρ,k := 0, Svαρv ,k := θv αk ρk (v − vk), SvαρE,k := θv αk ρk v · (v − vk) (8.2)

with the velocity relaxation parameter θv. For more details on mechanical relaxation see Baer and
Nunziato [3] or Baer [8] for two-phase models.

Obviously, the mechanical relaxation terms (8.1) and (8.2) satisfy the conservation constraints (2.13)
as can be validated by the definition of the mixture pressure and the mixture velocity (2.10) and the
saturation condition (2.1). Furthermore we determine by (6.27) and (8.1), (8.2) the entropy production
terms

Svαρs,k = θv
αkρk
Tk

(v − vk)2, Spαρs,k = θp
αk
Tk

(p− pk)2. (8.3)

This immediately implies

Theorem 8.1. (Entropy production due to mechanical relaxation) Let ρk ≥ 0, Tk > 0 and the relax-
ation parameters θp, θv ≥ 0. Then the entropy production due to mechanical relaxation is non-negative,
i.e.,

Sp,vαρs,k ≥ 0, k = 1, . . . ,K and

K∑
k=1

Sp,vαρs,k ≥ 0. (8.4)

8.2. Thermal relaxation

For the modeling of temperature relaxation we follow in principal Zein [26]. First of all, we introduce
a general class of temperature relaxation models

STα,k := θT
Qk
κk
, STαρ,k := 0, STαρv ,k := 0, STαρE,k := θT Qk, (8.5)

with the relaxation parameter θT and

Qk = γk(T̂ − Tk). (8.6)

According to the conservation constraint (2.13) the terms Qk have to satisfy

K∑
k=1

Qk = 0 and

K∑
k=1

Qk
κk

= 0. (8.7)
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In order to guarantee the first constraint, we choose for T̂ the following expression

T̂ =

K∑
k=1

βkTk (8.8)

with coefficients

βk = γk/γ, γ :=

K∑
k=1

γk. (8.9)

Obviously, T̂ is a convex combination of the temperatures Tk because

K∑
k=1

βk = 1. (8.10)

For instance, we may choose (a) γk = αk. Then βk = αk and T̂ coincides with the mixture temperature

(6.10). In case of (b) γk = 1 or (c) γk = K we compute βk = 1/K and T̂ is given as the averaged

mixture T̂ =
∑K

k=1 Tk/K. For these three cases we obtain (a) Qk = αk(T̂ − Tk), (b) Qk = (T̂ − Tk)
and (c) Qk =

∑K
l=1(Tl − Tk), respectively.

Next we determine by (6.27) and (8.5) the entropy production term

STρs,k = θT
1

Tk
Qk

(
pk
κk

+ 1

)
. (8.11)

Thus the entropy production due to thermal relaxation becomes

STρs :=
K∑
k=1

STαρs,k = θT

K∑
k=1

1

Tk
Qk

(
pk
κk

+ 1

)
= θT

K∑
k=1

1

Tk
Qk + θT

K∑
k=1

pk
Tkκk

Qk. (8.12)

We note that by the definitions (8.6) and (8.9) of Qk and βk, respectively, the relation

K∑
k=1

1

Tk
Qk = γ

K∑
k,l=1

1

Tk
βkβl(Tl − Tk)

holds. Here we employ (8.8) and (8.10) to compute the difference T̂ −Tk =
∑K

l=1 βl(Tl−Tk). Further-
more we observe that for any bk and ak,l = −al,k, l, k = 1, . . . , k we have

K∑
k,l=1

bkak,l =

K∑
k=2

bk

k−1∑
l=1

ak,l +

K−1∑
k=1

bk

K∑
l=k+1

ak,l =

K−1∑
k=1

K∑
l=k+1

(bk − bl)ak,l.

Choosing bk = 1/Tk and ak,l = βkβl(Tl − Tk) we thus conclude with

K∑
k=1

1

Tk
Qk = γ

K−1∑
k=1

K∑
l=k+1

βkβl
(Tk − Tl)2

TkTl
.

Obviously, the sum is non-negative whenever the temperatures are positive. Thus the first term on
the right-hand side of (8.12) is non-negative. To ensure that the second term is also non-negative, we
rewrite the sum by means of the conservation constraints (8.7) as

K∑
k=1

pk
Tkκk

Qk =

K−1∑
k=1

(
pk
Tk
− pK
TK

)
1

κk
Qk.
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and choose κk such that (
pk
Tk
− pK
TK

)
1

κk
= akQk, k = 1, . . . ,K − 1

holds for some positive parameters ak, i.e.,

κk =
TKpk − TkpK
akTkTKQk

, k = 1, . . . ,K − 1. (8.13)

The missing parameter κK is determined by the conservation constrains (8.7) as

κK = −QK

(
K−1∑
k=1

Qk
κk

)−1
. (8.14)

Finally we summarize our results in the following

Theorem 8.2. (Entropy production due to thermal relaxation) Let the temperatures and the relaxation

parameter be non-negative, i.e., Tk > 0 and θT > 0. Let Qk satisfy (8.6) where T̂ is defined as convex
combination (8.8) of the temperatures Tk with coefficients βk satisfying (8.9) and (8.10). Then the
mixture entropy production due to thermal relaxation is non-negative, i.e.,

STρs = θT

K∑
k=1

1

Tk
Qk

(
pk
κk

+ 1

)
≥ 0, (8.15)

provided that the condition
K∑
k=1

pk
Tkκk

Qk ≥ 0

holds. In particular, this condition holds for the parameters κk determined by (8.13) and (8.14) with
non-negative coefficients ak. It also holds in case of pressure equilibrium, i.e., p1 = . . . = pK = p, and
constant parameters κ1 = . . . = κK = κ.

When the temperature relaxation approaches thermal equilibrium, the parameters κk, k = 1, . . . ,K−
1, tend to κk = p/(akγkT

2) provided that the pressure relaxes faster to its equilibrium state. If the
pressure is not at equilibrium when thermal equilibrium is reached, then κk =∞, i.e., STα,k = 0. How-
ever, it is widely accepted that the mechanical relaxation proceeds faster than the thermal relaxation.

Finally we conclude with some remarks on existing relaxation models. In [26] a constant parameter
κk = κ is chosen such that pressure stays at equilibrium during the temperature relaxation. More
details on its definition in case of a two-phase and a three-phase model can be found in Zein [26]
and Zein et al. [27], respectively. Note that the coefficient κ in [26] results in a non-negative entropy
production if the pressures are at equilibrium. In the non-equilibrium case (8.15) cannot be proven to
hold.

In the thermal relaxation model considered by Saleh [23] there is no relaxation term accounted
for in the evolution equations for the volume fractions, i.e., STα,k = 0. This fits into our model when
choosing ak = 0, i.e., κk = ∞, for k = 1, . . . ,K. Then the investigation of the entropy production
simplifies because the second term on the right-hand side in (8.12) does not exist.

8.3. Chemical potential relaxation

Mass transfer between different phases of the same substance occurs, whenever these phases are not
in chemical equilibrium. This physical matter of fact is the decisive factor for the idea to model the
mass transfer by relaxation of the chemical potentials. The mass transfer is driven by the difference
of the chemical potentials. It is obvious, that from now on it is necessary to identify the phases.
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8.3.1. Chemical potential relaxation for two-component mixtures

For a two-component mixture (K = 2) the relaxation of chemical potentials is modeled according to
[26] by

Sµα,1 := θµ
ṁ

%
, Sµαρ,1 := θµ ṁ, S

µ
αρv ,1 := θµ ṁV I , S

µ
αρE,1 := θµ ṁ

(
ε+

V 2
I

2

)
, (8.16)

Sµα,2 := −θµ
ṁ

%
, Sµαρ,2 := −θµ ṁ, Sµαρv ,2 := −θµ ṁV I , S

µ
αρE,2 := −θµ ṁ

(
ε+

V 2
I

2

)
,

with the relaxation parameter θµ. Since for a two-component mixture the Gibbs free energy coincides
with the chemical potential, chemical equilibrium is achieved, if the Gibbs free energies of the two
components coincide, i.e., g1 = g2.

Obviously, the conservation constraints (2.13) are satisfied. Note that due to these constraints we
are not allowed to introduce εk and %k differently for each component k = 1, 2. Furthermore, the
entropy production terms are determined by (6.27) and (8.16) as

Sµαρs,k = (−1)k+1θµ ṁ
1

Tk

(
ε+

1

2
(V I − vk)2 − gk + pk/%

)
, k = 1, 2. (8.17)

These terms may become negative also when θµ, ṁ and Tk are positive. However, for an appropriate
choice of ε, % and V I the entropy production due to the sum of the phasic entropies

Sµρs = θµ ṁ

(
1

T1

(
ε+

1

2
(V I − v1)2 − g1 + p1/%

)
− 1

T2

(
ε+

1

2
(V I − v2)2 − g2 + p2/%

))
(8.18)

can be verified to be non-negative. For this purpose, we first note that in case of mechanical and
thermal equilibrium, i.e.,

v1 = . . . = vK = v, p1 = . . . = pK = p, T1 = . . . = TK = T, (8.19)

the entropy production term becomes

Sµρs =
1

T
ṁ θµ (g2 − g1)

as was already proven in [26]. Obviously this term is non-negative if

ṁ = a(g2 − g1) (8.20)

with a ≥ 0. This is an agreement with the kinetic relation in [7].
At mechanical and thermal non-equilibrium we may enforce a non-negative entropy production by

choosing the parameters ε and % such that

1

T1

(
ε+

1

2
(V I − v1)2 − g1 + p1/%

)
− 1

T2

(
ε+

1

2
(V I − v2)2 − g2 + p2/%

)
= b (g2 − g1) (8.21)

for some non-negative b. Note that for the parameters ε and % in [26] this condition does not hold
true. To verify (8.21) we proceed in three steps to determine V I , ε and %:

(1) The interfacial velocity V I is chosen in such a way, that the velocity terms in (8.18) vanish:

1

T1
(V I − v1)2 −

1

T2
(V I − v2)2 = 0. (8.22)

This is reasonable because the entropy production (8.18) should be a product of the relaxed
mass flux θµ ṁ and an interfacial entropy sI that should not depend on any velocity. Be-
cause the interfacial velocity is assumed to be a convex combination of the single component
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velocities, i.e. V I = β1v1 + β2v2 with β2 = 1− β1 according to (6.18), we derive from (8.22)

β1 :=

√
T2√

T1 +
√
T2
, β2 :=

√
T1√

T1 +
√
T2
. (8.23)

Then the interfacial pressures are determined by (6.23) as

P1,2 = P2,1 =
p1
√
T2 + p2

√
T1√

T1 +
√
T2

= PI . (8.24)

(2) In the next step we determine ε such that

1

T1

(
ε− g1

2

)
− 1

T2

(
ε− g2

2

)
= bε(g2 − g1), with bε = (T1 + T2)

−1

resulting in

ε =
g2T1 + g1T2
2(T1 + T2)

.

(3) Finally we determine % such that

1

T1

(
p1/%−

g1
2

)
− 1

T2

(
p2/%−

g2
2

)
= b%(g2 − g1), with b% = (T1 + T2)

−1

resulting in

% =
2(T1 + T2)(p2T1 − p1T2)
(T1 − T2)(g2T1 + g1T2)

.

With the above choice of V I , ε and % we thus obtain (8.21) with b = bε + b% = ((T1 + T2)/2)−1 the
reciprocal of the mean temperature of the components. Note that in the equilibrium case ε and %
tend to g and 2p/g, respectively, assuming that the pressure relaxes faster than the Gibbs free energy.
Thus, for states close to pressure equilibrium % is positive. For arbitrary non-equilibrium states one
may determine positive % and ε depending on the local state. Since the derivation is complicate we do
not give the details here.

Thus we conclude with the following theorem.

Theorem 8.3. (Entropy production due to relaxation of Gibbs free energies) At mechanical and ther-
mal equilibrium, i.e., (8.19) holds, the mixture entropy production due to relaxation of Gibbs free
energies is non-negative, i.e.,

Sµρs ≥ 0, (8.25)

if the mass flux is chosen as the kinetic relation (8.20) and the relaxation parameter θµ as well as
the equilibrium temperature T are positive. In the non-equilibrium case, the entropy production is
non-negative, if the parameters ε and % are chosen such that (8.21) holds.

8.3.2. Chemical potential relaxation for three-component mixtures

Exemplarily, we consider three components, i.e., K = 3, with water vapor (k = 1), liquid water (k = 2)
and inert gas (k = 3). Then the vector for relaxation of chemical potentials is given by

Sµα,1 := θµ
ṁ

%1
, Sµαρ,1 := θµ ṁ, S

µ
αρv ,1 := θµ ṁV I , S

µ
αρE,1 := θµ ṁ

(
ε1 +

V 2
I

2

)
,

Sµα,2 := θµ
ṁ

%2
, Sµαρ,2 := −θµ ṁ, Sµαρv ,2 := −θµ ṁV I , S

µ
αρE,2 := −θµ ṁ

(
ε2 +

V 2
I

2

)
,

Sµα,3 := −θµ ṁ
(

1

%1
+

1

%2

)
, Sµαρ,3 := 0, Sµαρv ,3 := 0, SµαρE,3 := θµ ṁ (ε2 − ε1) , (8.26)
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with the relaxation parameter θµ. For details on the physics see the book of Müller and Müller
[20]. Again we note that the conservation constraints (2.13) are satisfied. Furthermore the entropy
production terms can be determined by (6.27) and (8.16)

Sµαρs,1 = θµ ṁ
1

T1

(
ε1 +

1

2
(V I − v1)2 − g1 + p1/%1

)
,

Sµαρs,2 = −θµ ṁ
1

T2

(
ε2 +

1

2
(V I − v2)2 − g2 − p2/%2

)
, (8.27)

Sµαρs,3 = θµ ṁ
1

T3
(ε2 − ε1 − p3(1/%1 + 1/%2)) .

These terms may become negative also when θµ, ṁ and Tk are non-negative. For the sum of the phasic
entropy production Sµρs = Sµρs,1 + Sµρs,2 + Sµρs,3 we obtain

Sµρs = ṁ θµ

(
2∑

k=1

(−1)k+1

Tk

(
εk +

1

2
(V I − vk)2 − gk − (−1)k

pk
%k

)
+

1

T3

(
ε2 − ε1 − p3

(
1

%1
+

1

%2

)))
.

(8.28)
In the following we distinguish between a non-homogeneous and a homogeneous mixture, respectively.

Non-homogeneous mixture. In a non-homogeneous mixture velocity, pressure and temperature
are not necessarily in equilibrium. Therefore we need not to account for the mixture entropy. Thus,
the chemical potentials and the Gibbs free energies of water vapor and liquid water, respectively,
coincide, i.e., gk = µk, k = 1, 2, and the mass flux is proportional to the difference in the Gibbs free
energies, i.e., (8.20) holds. Similar to the two-component case, see Section (8.3.1), we may enforce a
non-negative entropy production by choosing the parameters εk and %k such that the condition

2∑
k=1

(−1)k+1

Tk

(
εk +

1

2
(V I − vk)2 − gk − (−1)k

pk
%k

)
+

1

T3

(
ε2 − ε1 − p3

(
1

%1
+

1

%2

))
= b (g2 − g1)

(8.29)
holds for some non-negative b analogously to (8.21). Note that the parameters εk and %k in [26, 28]
do not satisfy this condition.

As already assumed in the two-component mixture, we expect that the entropy production of
the three-component mixture (8.27) should not depend on any velocity. This assumption gives us a
condition for the interfacial velocity V I and delivers us the same result as above (8.23):

β1 :=

√
T2√

T1 +
√
T2
, β2 :=

√
T1√

T1 +
√
T2
, β3 := 0.

From (6.24) and (6.25) we then conclude for the interfacial pressures

P1,2 = P2,1 =
p2
√
T1 + p1

√
T2√

T1 +
√
T2

, P3,1 = P3,2 = p3,

P1,3 =
p3
√
T1 + p1

√
T2√

T1 +
√
T2

, P2,3 =
p2
√
T1 + p3

√
T2√

T1 +
√
T2

, (8.30)

PI =
(p2 + p3)

√
T1 + (p1 + p3)

√
T2√

T1 +
√
T2

.

The remaining parameters εk, %k, k = 1, 2, can be determined similar to the two-component case. We
omit details here.
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Homogeneous mixture. In a homogeneous mixture velocity, pressure and temperature are in
equilibrium. Therefore, as already mentioned in Section 6.2, in the total entropy we also have to
account for the mixture entropy given by

SM = −
∑
k=1,3

αkρk
κb
mk

ln

(
αk

α1 + α3

)
, (8.31)

with κb the Boltzmann constant and mk the mass of a single molecule of component k, see [19], p. 54,
298, 320. Moreover, the chemical potential of the vapor phase is now given by

µ1 = g1 +
κbT

m1
ln

(
α1

α1 + α3

)
(8.32)

i.e., it does not coincide with its Gibbs free energy. Note that for vanishing third component, i.e.,
α3 = 0, the chemical potential of the vapor phase reduces to the vapor Gibbs free energy. Again, the
chemical potential of the liquid phase equals its Gibbs free energy, i.e., µ2 = g2. In chemical equilibrium
the chemical potentials of the vapor and the liquid phase equal each other. Accordingly, the mass flux
is now a function of µ2 − µ1, i.e.,

ṁ = a(µ2 − µ1) (8.33)

with a ≥ 0 that again is an agreement with the kinetic relation in [7].
For a homogeneous mixture the entropy production (8.28) reduces to

Sµρs =
1

T
ṁ θµ (g2 − g1) =

1

T
ṁ θµ

(
µ2 − µ1 +

κbT

m1
ln

(
α1

α1 + α3

))
.

Analogously to Section 6.2, we determine the entropy production of the mixture entropy SM

SµSM
= − 1

T
ṁ θµ

κbT

m1
ln

(
α1

α1 + α3

)
. (8.34)

Then the total entropy production is given by

Sµρs + SµSM
=

1

T
ṁ θµ (µ2 − µ1) . (8.35)

Thus we conclude with the following theorem.

Theorem 8.4. (Entropy production due to relaxation of chemical potentials) For a homogeneous
mixture the total entropy production is non-negative, i.e.,

Sµρs + SµSM
≥ 0, (8.36)

if the relaxation parameter θµ as well as the equilibrium temperature T are positive.

Finally we would like to remark that the above procedure for a particular three-component mixture
can be extended to a multi-component mixture.

9. Conclusion

In the present work we discussed some properties of a non-equilibrium multi-component model of Baer-
Nunziato type taking into account viscosity and heat conduction. This model is non-conservative due
to exchange terms between different components. However, these terms vanish in the mixture model
derived from the non-equilibrium model by averaging over all components and the resulting equilibrium
model, i.e., the mixture model as well as the equilibrium model are conservative. Furthermore, the
first order model, i.e., neglecting viscosity and heat conduction, could be verified to be hyperbolic, i.e.,
all eigenvalues are real and there exists a family of linearly independent eigenvectors provided that
the non-resonance condition is satisfied and none of the components of the mixture vanishes. This
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holds true for both the non-equilibrium and the equilibrium model. In particular, the corresponding
eigenvalues satisfy the sub-characteristic condition.

The main interest was on the derivation of closure conditions for the relaxation model as well as
the interfacial pressures and the interfacial velocity. These were set up by verifying the second law of
thermodynamics. It turned out that the pressures and the interfacial velocity can be chosen such that
their contribution in the entropy law of the mixture vanishes. However, this does not characterize a
unique choice for the interfacial pressures and the interfacial velocity because a physically reasonable
choice of the interfacial velocities could not be derived so far in the general case of K > 2 components.
The entropy production due to mechanical relaxation could be proven to be non-negative. The entropy
production due to thermal and chemical relaxation is non-negative when assuming mechanical and
thermal equilibrium, respectively. In the non-equilibrium case, sufficient conditions are given that
pose constraints on the relaxation parameters to ensure a non-negative entropy production. Finally,
we obtained constraints for the relaxation terms to ensure Galilean invariance.

We conclude with some remarks on the numerical discretization of the multi-component model.
The main difficulty arises from the non-conservative products in the momentum equation (2.3) and
the energy equation (2.4) as well as the evolution equation for the volume fractions (2.7). A popular
approach to deal with those products is based upon so-called path-conservative schemes, see [21].
However, it was verified by Abgrall and Karni [1] that path-conservative schemes may not be able,
in general, to compute correctly the solution of non-conservative hyperbolic problems. In case of a
stiffened gas equation of state for the single components one may employ the Saurel-Abgrall trick [24]
that couples the discretization of the evolution equations of the volume fractions with the discretization
of the fluid equations of the components resulting in a non-conservative finite volume discretization.
Numerical results for inviscid computations have been reported in [27] and [28, 13] for two-phase fluids
and three-phase fluids. There are many other publications available in the literature using different
discretizations, see the aforementioned publications and citations therein.
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Mathématiques & Applications (Paris). Springer, 1991.

[12] E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation
laws. New York, NY: Springer, 1996.

[13] E. Han, M. Hantke, and S. Müller. Modeling of multi-component flows with phase transition and
application to collapsing bubbles. IGPM Preprint 409, RWTH Aachen University, 2014.

[14] J.-M. Hérard. A three-phase flow model. Mathematical and Computer Modelling, 45:732–755,
2007.

[15] A. Kapila, R. Menikoff, J. Bdzil, S. Son, and D. Stewart. Two-phase modelling of DDT in granular
materials: Reduced equations. Phys. Fluid, 13:3002–3024, 2001.

[16] M.H. Lallemand, A. Chinnayya, and O. Le Metayer. Pressure relaxation procedures for multi-
phase compressible flows. International Journal for Numerical Methods in Fluids, 49(1):1–56,
2005.

[17] I. Liu and R. Sampaio. On objectivity and the principle of material frame-indifference. In A. Car-
dona, P.H. Kohan, R.D. Quinteros, and M.A. Storti, editors, Mecánica Computacional Vol XXXI,
pages 1553–1569, 2012. Salta, Argentina, 13-16 November 2012.

[18] T.-P. Liu. Hyperbolic conservation laws with relaxation. Commun. Math. Phys, 108:153–175,
1987.

[19] I. Müller. Thermodynamics. Pitman, London, 1985.

[20] I. Müller and W. Müller. Fundamentals of Thermodynamics and Applications. Springer-Verlag,
Berlin, 2009.

[21] C. Parés. Numerical methods for nonconservative hyperbolic systems: A theoretical framework.
SIAM Journal on Numerical Analysis, 44(1):300–321, 2006.

[22] M.G. Rodio and R. Abgrall. An innovative phase transition modeling for reproducing cavita-
tion. part 1: Formulation of a 5-equations model and theoretical generalization to six and seven-
equations models. submitted to International Journal of Heat and Mass Transfer, September 6,
2014, 2014.

[23] K. Saleh. Analyse et Simulation Numérique par Relaxation d’Écoulements Diphasiques Compress-
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