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Abstract. A novel coupling strategy for the simulation of fluid-structure interactions is intro-
duced. The strategy is motivated by recent work on coupling of flows on networks. Here the
novelty is to use an explicit approach rather an implicit approach that avoids costly nested it-
erations where the fluid solver and the solid solver are called alternatingly. This concept is
exemplified for the coupling of a linear elastic structure with an ideal gas. The coupling pro-
cedure relies on the solution of a nonlinear equation. Existence and uniqueness of the solution
is proven. The coupling conditions are validated by means of quasi-1D problems for which an
explicit solution can be determined. For a more realistic scenario a 2D application is considered
where a hot gas bubble at low pressure collapses in a cold gas at high pressure near an adjacent
structure.
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1 Introduction

We are interested in the numerical and analytical treatment of fluid–structure interactions. More
precisely, we study the coupling of material models with compressible fluid models. In particular,
we apply the linear elasticity equations on the material side and the Euler equations for the fluid
model. From continuum mechanics it is well-known that at the interface the stress tensor of
the material model has to equal the pressure of the fluid and the displacement and velocity in
normal direction should coincide, see [5], Chap. 5.1. This set of equations, the so-called transition
conditions, couple the dynamics of the fluid and the material. The accurate resolution of the
coupled dynamics poses a relevant problem for many industrial and engineering applications, e.g.,
fluid-structure interactions at airplane wings [2, 21].
A typical approach today is to iterate on the coupling condition until they are satisfied up to a pre-
scribed tolerance before moving to the next time step. In the literature there are different coupling
strategies discussed concerning their embedding into numerical methods. These differ in the dis-
cretization of the transition conditions and their incorporation into the simultaneous or alternating
application of the two solvers discretizing the fluid system and structure system, respectively. A re-
cent review can be found in [18]. In case of a strong coupling the approximations of both the fluid
and the structure are updated simultaneously within one time step by a monolithic solver including
the complete transition conditions without any splitting technique. Opposite to this, the basic idea
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of weak coupling strategies, also known as partitioned approach or Gauss-Seidel method, consists
of the alternating application of two separate solvers for the fluid and for the solid, respectively,
where each solver uses boundary values provided by the other solver, see Figure 1 (right). Both
the weak and the strong coupling strategy are global in the sense that they require an update of the
entire flow field within each iteration step. This procedure is typically computationally expensive.
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Figure 1: Illustration of explicit coupling (left) and weak coupling (right). n denotes the time step and v̄,p
denotes the variables appearing in the transition condition. The blue numbers denote the iterations required
for updating the flow field. The variables U refer to the gas and Ū to the material, respectively.

Inspired by recent results [6] on coupling of hyperbolic transport dynamics on networks we want
to present a novel way for an explicit coupling of the dynamics. The main difference to classical
approaches is to perform the coupling locally for each point on the interface independent from the
other points and, thus, can be easily and efficiently parallelized. In particular, our strategy does
not require an update of the entire flow field because a global iteration is avoided, see Figure 1
(left). The transition conditions will be reformulated such that the interface problem is equivalent
to find the solution to a (scalar) nonlinear equation. Computationally, this is attractive, since it
also resolves the dynamics locally very efficiently. We prove that the nonlinear equation admits a
unique solution and that the arising boundary conditions for the material model as well as the fluid
model are well posed. Numerical results highlighting this procedure will be discussed, too.

2 Description of the model problem

We consider a situation as in Figure 2 where an interface separates a material and a compressible
gas. For simplicity we will not discuss moving interfaces. It is assumed that the interface remains
unaffected by the interaction of material and gas flow. This is for example the case in [11]. Further,
we assume that the material properties are sufficiently described by a linear elastic model (2.1):

∂v
∂t
− 1

ρ
∇·σ=0, (2.1a)

∂σ

∂t
−λ(∇·v)I−µ

(
∇v+∇vT

)
=0. (2.1b)

Here, the density of the material is denoted by ρ and assumed to be constant. The deformation
velocities are v = (v1,. . .,vd)

T, the stress tensor is denoted by σ = (σij)i,j,=1,...,d = σT, and the
Lamé constants are λ, µ > 0. Further, the dilatation wave velocity and the shear wave velocity
are c2

1 := (2µ+λ)/ρ and c2
2 := µ/ρ, respectively. The system (2.1) is invariant under rotation

and reflection. Due to the symmetry of the stress tensor σ, the system of equations (2.1) contains
redundant equations. Those may be removed and the system can be written in the canonical form
of a system of conservation laws, see (A.1) in Appendix A.
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Figure 2: A sketch of the 2D problem with elastic material on the left and compressible gas on the right.
Shown is the interface with its normal direction n and two discretization cells aligned with the interface. The
coupling of the dynamics will be across the interface in normal direction.

In the compressible gas regime we assume that the dynamics are governed by the Euler equations

∂ρ

∂t
+∇·(ρv)=0, (2.2a)

∂ρv
∂t

+∇·(ρvTv+pI)=0, (2.2b)

∂ρE
∂t

+∇·(ρv(E+p/ρ))=0, (2.2c)

where we use the notation ρ for the gas density, v=(v1,. . .,vd)
T, for its velocity, E for the total

energy E= e+0.5v2, pressure p and internal energy e. The system is not closed and an equation
of state is required for a complete description, see [10, 20]. In the case of a perfect gas we have

p=(γ−1)ρe (2.3)

and the speed of sound is given by

c=
√

γ p
ρ

. (2.4)

Here γ denotes the ratio of specific heat capacities that is assumed to be constant. In our compu-
tations we always use γ=1.4 (air). Again, the system is invariant under rotation and reflection.
Across the interface we want to couple the gas dynamics to the material model. To this end we
project the equation onto the normal direction n of the interface. For notational convenience we
assume the normal direction n=(ni)

d
i=1 pointing from the material towards the gas regime. We

project the linear elasticity model in d∈ {1,2,3} spatial dimensions onto direction n∈Rd and
obtain a quasi–1D model in the normal direction xn :=n·x

∂u
∂t

+
∂fn(u)

∂xn
=0, (2.5a)

fn(u) :=
d

∑
i=1

fi(u)ni. (2.5b)

Here u and fi are defined by (A.1) in Appendix A. The eigenvalues of the projected system (2.5),
see (A.8), (A.9) and (A.10) in Appendix A are independent of the direction n.
Similarly, we project the gas equations onto n. Provided there is no flow of gas in tangential
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directions x̃i+1=x·ti, i=1,.. .,d−1, the system (2.2) reduces to the projected system:

∂ũ
∂t

+
∂fn(ũ)

∂xn
=0, (2.6a)

ũ :=(ρ,ρṽ,ρE)T, ṽ :=(n·v,t1 ·v,. . .,td−1 ·v)T, vn :=n·v, (2.6b)

fn(ũ) :=
d

∑
i=1

fi(ũ)ni =

 ρvn
ρvnṽ+pn

ρvn(E+p/ρ)

, (2.6c)

where fi is defined by (B.1b) in Appendix B. Since both systems (2.5) and (2.6) are invariant under
rotation and reflection, we consider only the projection into direction n=e1 =(1,0,.. .,0)T ∈Rd,
see Figure 2.
The basic problem is now to couple the projected systems at the interface located for simplicity at
the point xn = 0. Then, the projected linear elastic model is defined for xn < 0 and the projected
Euler equations for xn > 0. The coupling of hyperbolic models has been discussed analytically
and numerically in many recent publications and we refer to [6] for a survey. Particular results
for the coupling of Euler equations with Euler equations exist and have been studied e.g. in [9].
Numerical approaches have been proposed e.g. in [3, 14]. Coupling the dynamic requires to pos-
tulate conditions to be fulfilled at the interface xn = 0 for a.e. t≥ 0. Depending on the coupling
conditions different wave patterns might be observed [4].
According to the transition conditions of continuum mechanics at a material interface we model
the coupling by requiring the following conditions to be fulfilled at xn =0 :

nTσn≡σnn
!
=−p, (2.7a)

vTn≡vn
!
=vn≡vTn, (2.7b)

neglecting viscosity and heat conduction in the gas flow. These are referred to as transition and
kinematic or coupling conditions, respectively. In the following section we show that the coupling
conditions (2.7) are well-posed and in fact impose suitable boundary conditions for the material
and the gas flow domain. The conditions are still written in the general formulation but due to the
rotational invariance we only consider the coupling in xn-direction, i.e., n= e1. The conditions
prescribe an equal stress and pressure at the interface. This is due to the analogy of σ in material
models and the effect of pressure p in compressible flow models. Also, we assume that across the
interface the velocities are equal. Therefore, we model a stationary interface.

Remark 2.1. Subsequently the procedure to obtain boundary conditions will be described for
normal directions equal to the unit vector. However, due to the rotational invariance the same can
be enforced across any direction nΓ. In this case we therefore suggest the following procedure.
Assume states uL (material) and uR (fluid) are given.

1. Project the states of the structure and the fluid by means of the corresponding rotation ma-
trices G, R (see Appendix A, B). ũL =GuL and ũR =RuR

2. Evaluate the coupling conditions (2.7) providing the states ũ (material) and ũ (fluid) at the
interface.

3. Project the states of the material and the fluid back to the original normal direction n by
means of u=G−1ũ and u=RTũ.

If the material is to the right of the fluid we have to switch the sign in the normal velocity, perform
coupling and finally, switch back the sign of the normal velocity in the states determined at the
interface. The main focus will now be on the resolution of the coupling itself, i.e., Step 2.
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3 Well–posedness on the coupling conditions

The coupling conditions (2.7) impose boundary conditions at xn =0 on the material as well as on
the fluid side. This section is devoted to the understanding of the well-posedness of the boundary
conditions obtained through the coupling. A general result for coupling of the same spatially
one–dimensional conservation law has been presented e.g. in [8]. The coupling of different scalar
conservation laws has been discussed also in [17]. Further references and an application of those
techniques to other models can be found e.g. in [6] and e.g. in [14–16] and [1].

3.1 Admissible boundary states on the material side

On the material side the governing system is given by equation (2.5). The system is a linear
strictly hyperbolic system and therefore the characteristic velocities are constant, see (A.8), (A.9)
and (A.10) in Appendix A. For typical material parameters ρ̄ > 0, c̄1, c̄2 > 0 we have negative,
positive and zero eigenvalues. More precisely, for the projected system and in the case of one
spatial dimension (d=1) we have a single negative and a single positive eigenvalue, see Figure 3
(left). For d=2, we have two negative, two positive and a zero eigenvalue. For d=3 we have three
negative (two coinciding), three positive (two coinciding) and three zero eigenvalues, see Figure 3
(right). The algebraic and geometric multiplicity are equal. All fields are contact discontinuities.
The characteristic fields related to the zero eigenvalues have the following property: across this
characteristic field the velocities v̄i, i=1,.. .,d, and stresses σ̄ij for i=1 and j=1,.. .,d are constant.
For more details we refer to Appendix A.

Figure 3: Riemann problem for projected linear elastic system in the case d=1 (left) and d≥2 (right).

Due to the characteristic velocities we may prescribe a single boundary condition at xn =0 along
the fields associated to the eigenvalues of negative sign. Since for d = 3 the fields coincide we
have two degrees of freedom at the boundary xn =0. For a given state u, the states v that can be
connected by a single, self–similar wave of the kth family are given by

v(ε)=u−(ε−λk)rk,

for any ε∈R. Here, λk denotes the constant kth eigenvalue and rk the corresponding normalized
right eigenvector of the Jacobian see (A.11), (A.12) and (A.13) in Appendix A. The states v(ε)
are the kth Lax–curve L̄+

k (ε;u) emanating from a state u. In the case d= 1,.. .,3, we therefore
obtain the set of all possible boundary states for the projected system and given state ūL as

V̄ :=
{

v(ε1,. . .,εd) : v(ε1,. . .,εd)=uL+(ε1−λ1)r1+
d

∑
i=2

(εi−λ2)ri :∀εj∈R
}
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where we suppose that the eigenvalues are ordered in increasing order and denote by ri the corre-
sponding eigenvector. Across the characteristic field related to the zero eigenvalue the velocities
and stresses are constant. In view of the coupling condition (2.7) those waves cannot be used to
describe the admissible boundary states.
In order to evaluate the coupling condition (2.7) we require the stress σ11 and velocity v1 in direc-
tion n=e1 to be elements of the set V̄, i.e., for all d and a given state uL,

σ̄11(ε1,. . .,εd)=σ11,L+(ε1−λ1)ρc1β(d), (3.1a)

v1(ε1,. . .,εd)=v1,L+(ε1−λ1)β(d), (3.1b)

where according to Appendix A β is a constant depending only on d:

β(1)=1, β(2)= c2
1−c2

2, β(3)=−1/(ρc1). (3.2)

Hence, due to the eigenspaces of the projected system there is only a single degree of freedom for
determining boundary values for projected linear elasticity equations.

3.2 Admissible boundary states on the gas side

In the domain xn > 0 we consider the projected Euler equations. In the general case d≥ 1, the
eigenvalues at state u are λ1(u)=vn−c,λi(u)=vn, i=2,.. .,d+1, and λd+2(u)=vn+c where the
sound speed c is given by equation (2.4). The characteristic fields associated with the eigenvalues
vn are linearly degenerated and lead to contact discontinuities. Across the contact discontinuities
the normal velocity vn is preserved as well as the pressure p.

(a) Case 1a. (b) Case 1b.

Figure 4: Riemann problem for projected Euler system and in the case of subsonic initial data.

The other two fields are genuinely nonlinear. Since the sign of the eigenvalues depend on the state
of the system, the number of boundary conditions depends on the normal velocity relative to the
sound speed c of the state u. As in [6] we assume that the given state u is subsonic, i.e.,

λ1(u)<0<λd+2(u) or, equivalently,
|vn|

c
<1. (3.3)

In this case we have at least one degree of freedom at the boundary according to the (d+2)–
characteristic field. Note that the proposed coupling condition is stated in terms of the pressure
p as well as the normal velocity vn. Those are constant across contact discontinuities. Assume
a given subsonic state uR. Possible boundary states that can be connected by simple waves to
uR are obtained through the reversed (d+2)–Lax–curve parameterized by ε∈R and denoted by
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L−d+2(ε;uR). We choose the parameterization of the Lax–curve such that L−d+2(0;uR)=uR and
refer to equations (B.7) and (B.8) in Appendix B in the case d = 1. For d = 2,3 the tangential
velocities have to be added that are constant along the (d+2)-characteristic curve. Note that
we choose the reversed Lax–curve, since for a Riemann problem we have the right initial datum
given and need to connect it to a state on the left. In order to prevent a sonic transition by this
construction, the value of ε has to be sufficiently small. Note that we cannot connect through any
wave of the characteristic families i=2,.. .,d+1, since those waves do not change the pressure and
normal velocity but the density and the tangential velocities. Summarizing, the possible boundary
states for the projected Euler system and a given state uR are

V :=
{

v(ε) : v(ε)=L−d+2(ε;uR),∀ε∈R such that λ1(v(ε))<0<λ2(v(ε))
}

.

Due to the continuity of the Lax curves [10] the previous set is non–empty.

3.3 Analytical results on strong coupling

In order to obtain boundary conditions for the linear elastic model and the gas model, respectively,
we solve (2.7). Given the current state uL of the linear elastic model and the state uR of the Euler
equations we solve for values σnn≡σ11, vn≡v1 out of the set V̄ and p,vn≡v1 in the set V, i.e.,
this amounts to solve the following nonlinear set of equations for the parameters ε1 and ε

σ11(ε1)
!
=−p(ε), v1(ε1)

!
=v1(ε). (3.4)

The precise formulas for p, v1 are obtained from the states computed along the reverse Lax–
curve L−d+2(ε;uR). Provided the previous nonlinear system has a unique solution (ε∗1 ,ε∗), with ε∗

sufficiently small, the boundary conditions are given by

ŪR :=uL+(ε∗1−λ1)r1

at xn =0− for the linear elastic model and

UL :=L−d+2(ε
∗;uR)

at xn = 0+ for the Euler equations, see Figure 5. Note that there might be additional terms for
the fluid and the elastic material (d≥2) that do not change the coupling conditions. Numerically,
the system of nonlinear equations is solved using Newton’s method. Due to the parameterization
a possible initial guess for Newton’s method is ε1=ε=0.
Due to the construction the waves emanating from the boundary will move into each respective
domain. Also, for small t>0 the coupling condition is fulfilled at xn by construction. It remains
to prove the existence of a unique solution to equation (3.4). The given states are uL and uR,
respectively. For readability we denote by ξ =(ε1−λ1) the parameterization of the Lax curve in
the linear elastic system and by σ≡ε the parameterization of the reversed Lax curve for the Euler
system. Then, condition (3.4) reads

σ11,L+ξρc1 β=−p(σ), (3.5a)

v1,L+ξβ=v1(σ) (3.5b)

with β=β(d) determined by (3.2). This is equivalent to

g(σ) :=σ11,L+ρc1(v1(σ)−v1,L)+p(σ)=0, (3.6a)

ξ=(v1(σ)−v1,L)
1
β

. (3.6b)
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(a) Case 1a. (b) Case 1b.

Figure 5: Coupling of linear elastic system (left) and Euler system (right) for d≥2: Subsonic cases. Note that
for d=1 there exists only one wave in the elastic material.

Note that the function g is dependents on the spatial dimension d only through β(d), that is a con-
stant. Further, σ has to be sufficiently small to guarantee the subsonic condition on the boundary
states for the Euler equation. The reversed Lax–curve L−d+2 for the (d+2)–family is determined
by (B.7) and (B.8) in Appendix B. Note that the states ρ, v≡ v1 and e along these curves are the
same for all d=1,2,3. Therefore, the function g in (3.6) is given by the corresponding backward
shock curve (σ≤0)

g(σ)= σ̄L
11 + ρ̄c̄1

(
vR+

√
2

(2ρR+(γ−1)σ)(ρR−σ)
|σ|cR− v̄L

1

)

+
1
γ

2ρR−(γ+1)σ
2ρR+(γ−1)σ

ρRc2
R (3.7)

and rarefaction curve (σ≥0)

g(σ)= σ̄L
11 + ρ̄c̄1

(
vR−

2
γ−1

(
1−
(

1− σ

ρR

)(γ−1)/2
)

cR− v̄L
1

)
+ (γ−1)esR/cv(ρR−σ)γ, (3.8)

respectively. Here we use c2(ρ,e) = γ(γ−1)e derived from (2.3) and (2.4). Furthermore, s is
the entropy. For a perfect gas the relation is as follows: e(ρ,s) = es/cv ργ−1, where γ = cp/cv
with cv and cp the specific heat capacities at constant volume and pressure, respectively. The
subindex R refers to those quantities related to the given datum uR. The parameters ρ and c1 are
the constant density and dilatation wave velocity, respectively, of the elastic material. Due to the
C2–connection at σ= 0 of the reversed Lax–curve the function g is differentiable even at σ= 0.
The next lemma discusses monotonicity properties of g as a function of σ.

Lemma 3.1. Let be γ>1 and ρR, pR, ρ̄, c̄1>0. Then for a perfect gas the function g:(σm,σM]→R

consisting of the shock branch (3.7) and the rarefaction branch (3.8) is differentiable and strictly
monotonically decreasing.

Proof. The shock branch (σ≤ 0) is well-defined as long as the discriminant in (3.7) is positive,
i.e.,

σm :=− 2ρR

γ−1
<0.
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The rarefaction branch (σ≥ 0) is well–defined provided that the term (ρR−σ)(γ−1)/2 is well-
defined. For this purpose we have to distinguish between two cases

σ̃M :=

{
∞ , (γ−1)/2∈N

ρR , (γ−1)/2∈ (1,∞]\N
.

Therefore, each branch of the function g is differentiable with derivatives of the shock branch
(σm <σ≤0) and of the rarefaction branch (0≤σ≤ σ̃M) given by

g′(σ) = ρ̄c̄1
√

2cR

(
(γ−3)ρRσ−2(γ−1)σ2

2[(2ρR+(γ−1)σ)(ρR−σ)]3/2−
1√

(2ρR+(γ−1)σ)(ρR−σ)

)

− 4ρ2
Rc2

R

(2ρR+(γ−1)σ)2 , σ≤0, (3.9)

g′(σ) = − ρ̄c̄1cR

ρR

(
1− σ

ρR

)(γ−3)/2

−c2
R

(
1− σ

ρR

)γ−1

, σ≥0. (3.10)

The function g is continuously differentiable at σ=0 because

g(0−) = g(0+)= σ̄L
11+ ρ̄c̄1

(
vR− v̄L

1

)
+ρRc2

R/γ,

g′(0−) = g′(0+)=−(ρ̄c̄1+ρRcR)cR/ρR <0.

Along the shock branch (σm<σ≤0) the function g is strictly monotonically decreasing. Accord-
ing to (3.9) this holds true if

(γ−3)ρRσ−2(γ−1)σ2−2(2ρR+(γ−1)σ)(ρR−σ)≤2
√

2
ρ2

RcR

ρ̄c̄1

√
(ρR−σ)3

2ρR+(γ−1)σ

Since the left-hand side reduces to−4ρ2
R+ρRσ(γ+3) that is negative along the shock branch and

the right-hand side is positive, this inequality is satisfied. For the rarefaction branch (0≤σ≤ σ̃M)
we obtain by (3.10)

g′(σ)=−c2
Rρ−2r

R

(
α(ρr−σ)r−1+(ρr−σ)2r

)
with α := c−1

R ρr
Rρ̄c̄1>0 and r :=(γ−1)/2. Obviously, g′ has one root in ρR. If r 6∈N or r∈N is

odd, then g′ is negative for σ∈ [0,σM). However, if r∈N is even, then g′ is positive if

ρR <σ<ρR+α2/(γ+1).

Hence, g is strictly monotonically decreasing if σ does not exceed

σM :=

{
∞ , (γ−1)/2∈N, odd

ρR , (γ−1)/2∈ (1,∞]\N or (γ−1)/2∈N, even

This finishes the proof.

The monotonicity of g can be used to prove the existence of unique states (ξ
∗
,σ∗) fulfilling the

coupling condition (3.6).

Theorem 3.1. Let be γ> 1 and ρR, pR, ρ̄, c̄1 > 0. Then for a perfect gas there exists a unique
root of the function g :(σm,σM]→R and, thus a unique solution (ξ

∗
,σ∗) of the coupling condition

(3.6), respectively, provided that the initial data (vL
1 ,σL

11) and (ρR,vR,pR) satisfy

vR≤
2

γ−1
cR+ v̄L

1−
σ̄L

11
ρ̄c̄1

(3.11)

in case of (γ−1)/2∈ (1,∞]\N or (γ−1)/2∈N even.
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Proof. For σ approaching σm from the right we conclude from (3.7) that limσ→∞ g(ρ)=∞. For
σ≥ 0 we distinguish two cases. If (γ−1)/2∈ (1,∞]\N or (γ−1)/2∈N even, then σM = ρR
and g(ρR)≤0 if

σ̄L
11+ ρ̄c̄1

(
vR−

2
γ−1

cR− v̄L
1

)
≤0.

This inequality holds because of assumption (3.11). For the other case where (γ−1)/2 ∈N

odd, then σM =∞ and limσ→∞ g(ρ) =−∞. According to Lemma 3.1 the function g is strictly
monotonically decreasing in (σm,σM] and, thus, the assertion follows.

Note that we cannot guarantee with the previous theorem that the final state UL =L−d+2(σ
∗;UR)

is subsonic. However, in the numerical results we never observed a sonic transition in normal
direction at the coupling interface.

Conclusion: 3.1. Let be d= 3,γ∈ (1,3) and ρR, pR, ρ̄, c̄1 > 0. Let the fluid state be subsonic,
i.e., (3.3) holds. Then for a perfect gas a sufficient condition for a unique solution of the coupling
condition (3.6) is

v1,L≥
σ11,L

ρc1
. (3.12)

Proof. The subsonic condition (3.3) implies vr≤ cR < cR
2

γ−1 , γ∈ (1,3). Together with (3.12)
we conclude that the condition (3.11) is satisfied.

Remark 3.1. Similar results can be obtained in the case d=1,2, respectively. The only change is
the Lax curve for the Euler system. However, the monotonicity behavior is similar and the result
is therefore omitted. Further, a similar result is true for coupling linear elasticity models with the
p−system instead of the Euler system. We omit this simpler case. Further, the coupling of linear
elasticity models with itself or Euler system with itself does yield the same solutions as a classical
Riemann problem. We also omit the details here. Even so in practical applications only the cases
2D and 3D might be relevant, the result also holds in 1D as well as spatial dimensions larger than
three.

4 Numerical results

In order to solve the coupled problem consisting of the linear elastic model and the compressible
Euler equations we apply a Runge-Kutta discontinuous Galerkin (RK-DG) method [7] to each of
the systems. Both solvers are connected at the material interface via weakly enforced boundary
conditions, i.e., admissible (boundary) states are plugged into the (local) flux integrals on the
boundary of the scheme. At the material interface these states are locally determined for each
solver by solving the nonlinear problem (3.5) using states from both solvers. In the DG scheme
these boundary integrals are computed with a suitable quadrature rule. Thus, the non-linear system
is solved at each quadrature point independently. For that reason, both solvers require only local
access to the DG solution of the other solver at the interface, respectively. For that reason, the
coupling can be implemented very efficiently.
We apply on both sides a third order DG scheme using polynomial elements of order p= 3 and
a third-order SSP-Runge-Kutta method with three stages for the time-discretization. Both solvers
have the same numerical flux and limiter, namely, the local Lax-Friedrichs flux, the minmod limiter
from [7]. The time stepping of both solvers is synchronized, i.e., both solvers apply the same
(minimal) timestep size determined by the same CFL number.
The performance is enhanced by local multi-resolution based grid adaptation, see [19]. Details on
the adaptive solver can be found in [12, 13]. The grid adaptation of both solvers is intertwined,
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i.e., if in one solver the grid near the material interface is refined, this refinement is communicated
to the other solver and the grid of the other solver is refined as well.
For our computations we always choose plastics for the linear elastic material with density ρ=
1226 kg/m3 and Lamé constants µ=1.4093e9 N/m2 and λ=1.4093e9 N/m2. The correspond-
ing dilatation wave velocity and shear wave velocity are c1=1857.02 m/s and c2=1072,15 m/s,
respectively. For the fluid we consider air. The corresponding material parameters for the ideal
gas are chosen as γ=1.4 and cv =717.5 J/(kg·K).

4.1 (Quasi-)1D Validation

To validate the coupling conditions and their implementation we design (quasi-)1D test configu-
rations that can explicitly construct the exact solution as sketched in Figure 6.

Figure 6: Setup for validation test case.

To determine appropriate initial states we proceed in three steps:

• We choose some values for the normal velocity component velocity v∗, the pressure p∗ and
the density ρ∗ such that the corresponding Mach number M∗= v∗/c(ρ∗,p∗) is subsonic.
Furthermore, in the higher dimensional case, we also fix the stresses σ∗ij, 1≤i≤j≤d, i+j>2,
the tangential velocities v∗i and v∗i , i=2,.. .,d. Then we set the fluid state

ρ2=ρ∗, v2=(v∗1 ,v∗2 ,. . .,v∗d)
T, p2= p∗

and the state in the linear elastic material

v=(v∗1 ,v∗2 ,. . .,v∗d)
T, σ11=−p∗, σij =σ∗ij.

at the interface. Thus, we have fixed the state u1=(v1,σ11)
T in the elastic material and the

state u2=(ρ2,ρ2vT
2 ,ρ2(e(ρ2,p2)+0.5v2

2))
T in the fluid, see Figure 6.

• For the state uL in the elastic material we choose a state on the backward 1-Lax curve
emanating from the state u1, i.e.,

uL =u1−(ξ−λ1,−)r1,− (4.1)

where we fix the parameters ξi = ξ∗i , i=1,.. .,d.

• For the state uR in the gas we choose a state on the forward 3–Lax curve emanating from
the state u2, i.e.,

uR =L+
3 (η;u2),

where we fix the parameter η=η∗ such that the corresponding Mach number MR=v∗/c(ρR,pR)
is subsonic.
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• We solve the coupled problem with homogeneous states uL and uR in the elastic material
(left) and the gas (right), respectively.

Since the states uL and uR satisfy the sufficient condition 3.11, then there exists a unique solution
of the coupling conditions 3.5 according to Theorem 3.1. By construction the corresponding states
at the interface determined from these unique parameters must coincide with the states u1 and u2.
Thus, the solution of the problem must be the one shown in Figure 6. For the validation we perform
computations in 1D and 2D, respectively. For initial data we have chosen two setups where the
L+

3 –curve is always a shock wave.
In the following we present the validation only for the 1D case. We also performed a validation
in 2D with planar waves. The results are similar and therefore omitted here. The computational
domain is Ω∈ [0,1] m for the linear elastic system and Ω∈ [1,2] m for the Euler system. Each
domain is discretized by N0 = 16×2L cells. The CFL number is set to 0.1 and the final time is
t=0.0002s. In each domain we set uniform initial data uL (linear elastic material) and uR (fluid)
that are determined from the parameters

v∗=1, p∗=200000, ρ∗=1.0, ξ1=0.1

according to the above procedure. The data are listed in Table 1.

Elastic material Fluid
uL u1 u2 uR

v1 [m/s] 1.1 1 v1 [m/s] 1 -355.8
σ11 [N/m2] 27668.2 -200000 p [N/m2] 200000 72727.3

ρ [kg/m3] 1 0.5

Table 1: Initial data for 1D validation test case.

Note that the shock speed in the fluid corresponding to the initial data is about s = 357.8 m/s.
This is about 1/5th of the dilatation wave velocity in the elastic material. We have performed
several computations with increasing spatial and temporal resolution by a factor two with each
additional refinement level. In Tables 2, 3 we summarize the error and the empirical order of
convergence (EoC). Here the error is computed separately in the elastic material and the fluid
where the L1-error is computed as eL :=

∫
Ω |uL(x)−u(x)|dx with uL and u denoting the DG

solution for refinement level L and the exact solution, respectively. From the error we compute
EoC =−log2(eL+1/eL). The computational results indicate grid convergence. To validate the
coupling condition we present in Figure 7 for the 1D case the velocities v1 and v1 as well as the
negative stress −σ1,1 and the pressure in the elastic material and the gas, respectively. We note
that the velocities as well as the negative stress and the pressure are continuous at the interface
located at x=1 m confirming the coupling conditions (2.7).

4.2 2D Application

For the investigation of wave interactions at an interface separating an inviscid fluid and a linear
elastic material we have performed 2D simulations for a single bubble near a solid surface, see
Fig. 8. This can be considered a first step towards a more challenging problem of a single cavitation
bubble in a liquid environment near a surface of a dynamically reacting, linear elastic solid to
investigate the mechanism of cavitation damaging, see [11].
Computational setup. The bubble is a 2D-sphere with radius r=15 mm separating hot gas at low
pressure inside from surrounding cold gas at high pressure. The distance between the bubble origin
and the solid surface is d=20 mm. Again, the fluid is modeled by an ideal gas with the parameters
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Elastic material
v1 σ11

L L1-error EoC L1-error EoC
1 2.342E-03 5.331E+03
2 1.418E-03 0.724 3.227E+03 0.724
3 8.263E-04 0.779 1.881E+03 0.779
4 4.717E-04 0.809 1.074E+03 0.809
5 2.704E-04 0.802 6.157E+02 0.802
6 1.562E-04 0.792 3.557E+02 0.792
7 9.065E-05 0.785 2.064E+02 0.785
8 5.270E-05 0.783 1.200E+02 0.783

Table 2: Elastic material: error and empirical order of convergence (EoC) for 1D validation test case.

Fluid
ρ v p

L L1-error EoC L1-error EoC L1-error EoC
1 7.021E-03 1.633E+03 5.010E+00
2 3.738E-03 0.909 8.189E+02 0.996 2.445E+00 1.035
3 1.985E-03 0.913 4.450E+02 0.880 1.277E+00 0.937
4 1.002E-03 0.987 2.217E+02 1.005 6.725E-01 0.925
5 4.934E-04 1.021 1.065E+02 1.057 3.292E-01 1.030
6 2.499E-04 0.982 5.477E+01 0.960 1.637E-01 1.008
7 1.137E-04 1.136 2.388E+01 1.198 7.060E-02 1.214
8 6.497E-05 0.807 1.395E+01 0.776 3.878E-02 0.865

Table 3: Fluid: error and empirical order of convergence (EoC) for 1D validation test case.

given above. A high pressure gradient due to the gas pressure of 106 N/m2 and 20×106 N/m2

inside and outside the bubble, respectively, causes the collapse of the bubble. The temperatures of
293 K and 693 K correspond to a sound speed of about 343 m/s, and 528 m/s outside and inside
the bubble, respectively. For the solid material we again choose plastic with material parameters
given above. Initially we assume that the forces between the fluid and the adjacent structure are
in equilibrium. Therefore we set the stress component orthogonal to the contact line identically to
the cold gas pressure, i.e., σ11 =−p. All phases are supposed to be at rest. Note that the hot gas
bubble does not come into contact with the interface. Otherwise the high temperature would cause
material damage to the solid because it exceeds the melting point of plastics.
The computational domain consists of two parts Ωs=[−0.22,0]×[0,0.22] m2 and Ω f =[0,0.11]×
[0,0.22] m2 for the solid and the fluid, respectively, that are connected at the contact line Γs =
{0}×[0,0.22]. These domains are discretized each by 2×2 and 1×2 cells on the coarsest grid.
The use of up to L = 8 refinement levels can lead to a resolution of 2·2L×2·2L = 1024×1024
cells and 1·2L×2·2L = 512×1024 cells for the solid grid and the flow grid, respectively. To
reduce the computational load we perform the computation with local grid adaptation. During the
computation the number of cells varies from 1243 (0.12%) to 134848 (12.9%) and 1430 (2.73%)
to 28376 (5.41%) in the solid and the fluid, respectively, due to the evolving of waves and their
interactions. Here the percentages in comparison to the fully refined grid are given in brackets.
Both the fluid solver and the solid solver use the CFL number 0.025 from that determines the
timestep used for both solvers to synchronize the time evolution. Since the wave speeds are larger
in the elastic material and the spatial resolution is the same in both domains, the timestep size is
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(a) Deformation and fluid velocity

(b) Negative normal stress and fluid pressure

Figure 7: 1D Riemann problem: velocity and pressure of fluid and deformation velocity and negative normal
stress of elastic material. L=12.

Figure 8: Configuration of a bubble next to an elastic solid.

typically dictated by the material rather than the fluid. We perform 51861 time steps to reach the
final time t=0.00015 s.
The computations were performed on the system 4 core Intel Core i7-3770, 3.4 GHz, 16 GB
Ram. The computational time for the presented simulation was about 26.31 h. This large time
consumption was caused by (i) the high resolution that requires small time steps due to the explicit
time stepping and (ii) the fact that we have been using the same time step for both the fluid solver
and the solid solver.
Wave dynamics in the fluid. The initial conditions correspond to a Riemann problem where three
types of waves occur: an inward running compression shock followed by a contact discontinuity
and an outward running rarefaction wave, see Figs. 10(a) and 9(a). The rarefaction wave and the
shock wave are visible in the pressure, see Fig. 10, as well as in the density, see Fig. 9. Whereas
the contact discontinuity is only seen in the density gradient profile.
The shock wave is focusing in the origin of the cold gas bubble. After the reflection in the center,
the shock wave runs outward and passes the contact discontinuity. Hereby, the shock is partly



15

transmitted and partly reflected. The reflected part runs again into the center, is reflected and passes
the contact discontinuity again, see Figs. 9 (a)-(e). By this process the hot gas bubble is shrinking
and the state inside the bubble is compressed resulting in higher pressures and temperatures.
At time t= 11.57µs the leading front of the rarefaction wave has reached the interface where it
is reflected at the elastic material, see Figs. 9 (b), (c). There it is reflected as rarefaction. The
corresponding doubling of the amplitude produces a region of low pressure which increases the
shock pressure ratio and, therfore, accelerates the shock wave towards the wall, see Fig. 9 (d)-(f).
The reflected rarefaction wave interacts with the reflected shock wave, see Figs. 9 (d)-(g). Since
the sound speed is lower in the pre-shocked region than in the post-shocked region the reflected
rarefaction wave is diffracted running faster in the post-shocked region.
At time t=69.42µs the outward running reflected shock wave starts interacting with the interface
where it is reflected, see Figs. 9 (d), (e). The reflection area extends along the wall, see Fig. 9(f),
developing a Mach stem, see Fig. 9(g). In the density contours the slip line, a contact discontinuity
originating at the triple point of the Mach stem, is visible. The discontinuity separates two regions
of different values of entropy that are caused in the material passing through shocks of different
strength.
Wave dynamics in the linear elastic material. When the rarefaction wave impinges on the
material interface in x=(0,0) at time t=11.57µs it is reflected into the fluid - as mentioned above
- but by the coupling conditions it is also transmitted into the elastic material. In the material
two waves develop, namely, the faster dilatation wave and the slower shear wave. Since both
waves originate from the same point but move at different speeds another wave - the so-called von
Schmidt wave develops connecting these two waves, see Figs. 9 (d), (e).
Since the wave speeds are about 5 times higher in the material than the sound speed in the fluid
the transmitted wave propagates much faster in the material than the reflected rarefaction wave in
the fluid, see Figs. 9 (b)-(g)
The same phenomena occurs when the shock wave impinges on the interface. The corresponding
dilatation, shear and von Schmidt waves are clearly visible in Figs. 9 (e)-(g).
Coupling conditions. According to the coupling conditions (2.7) at the interface the velocity in
the fluid and the deformation velocity in the material normal to the interface coincide and the fluid
pressure equals the negative normal stress component in the material. To visualize these conditions
we exemplarily show the pressure, see Fig. 10. Similar plots for velocity do not clearly exhibit
the continuity at the interface because of the large difference in scales. Typically, the deformation
velocity in the material is much smaller than the fluid velocity in interface normal direction and
both differ by about two orders of magnitude. Therefore we do not show these pictures here.

5 Conclusion

We presented a new coupling strategy for the simulation of fluid-structure interactions using a
two-domain approach. This is motivated by recent work on coupling dynamics on networks. Here
the novelty is to use an explicit approach rather an implicit approach that avoids costly nested
iterations where the fluid solver and the solid solver are called alternatingly. We exemplify this
concept for the coupling of a linear elastic structure with an ideal gas.
In each quadrature point at the coupling interface we solve a nonlinear scalar problem. We proved
that there exists a unique solution to this problem under some constraints on the adjacent states in
the solid and the fluid. In particular, the fluid state is assumed to be subsonic with respect to the
velocity normal to the interface. During our computations we check these conditions but for all
our computations they turned out to be satisfied.
The coupling conditions and the implementation were validated by means of quasi-1D problems
for which an explicit solution can be determined. For a more realistic scenario we considered a 2D
application where a hot gas bubble at low pressure in a cold gas at high pressure collapses near a
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structure. The resulting waves in the fluid interacted with the adjacent solid causing waves in the
structure.
In future work we will extend our approach to two-phase fluids to investigate the material damage
induced by collapsing cavitation bubbles near adjacent walls similar to [11] where only a second
order discretization was used.

(a) t=11.57µs

(b) t=23.14µs

(c) t=46.29µs

Figure 9: 2D coupling: gradients of negative normal stress and fluid density. Coupling interface located at
x=0.



17

(d) t=69.42µs

(e) t=92.56µs

Figure 9: 2D coupling: gradients of negative normal stress and fluid density (continued). Coupling interface
located at x=0.
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(f) t=115.69µs

(g) t=138.83µs

Figure 9: 2D coupling: gradients of negative normal stress and fluid density (continued). Coupling interface
located at x=0.
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(a) t=11.57µs

(b) t=23.14µs

(c) t=46.29µs

(d) t=69.42µs

Figure 10: 2D coupling: contours of negative normal stress and fluid pressure. Dashed line indicates the
coupling interface.
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(e) t=92.56µs

(f) t=115.69µs

Figure 10: 2D coupling: contours of negative normal stress and fluid pressure (continued). Dashed line
indicates the coupling interface.
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(g) t=138.83µs

Figure 10: 2D coupling: contours of negative normal stress and fluid pressure (continued). Dashed line
indicates the coupling interface.
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Appendices

A Linear elastic model

Due to the symmetry of the stress tensor σ, the system of equations (2.1) has redundant equations.
Removing these redundant equations the system (2.1) can be written in the canonical form of a
system of conservation laws

∂u
∂t

+∇·(f1(u),. . .,fd(u))=0 (A.1a)

u :=(v1,. . .,vd,σ11,. . .,σ1d,σ22,. . .,σ2d,. . .,σd−1,d−1,. . .,σd−1,d,σd,d)
T (A.1b)

f l,i(u)=−ρ−1ud+l+sd,i , l=1,.. .,d (A.1c)

f l,d+j+sd,i
(u)=−λul δij−µ(ui δjl+uj δil), j= i,. . .,d, i=1,.. .,d (A.1d)

muwith sd,l :=
l−1

∑
i=1

(d−i)= sd,l−1+d−l+1, sd,1 :=0 (A.1e)

Since the system (2.1) is invariant under rotation/reflection, this holds true for the system (A.1a),
i.e., it is equivalent to

∂ũ
∂t

+∇x̃ ·(f1(ũ),. . .,fd(ũ))=0 (A.2)

under the transformation

x̃ :=Rd x, Rd =(rij)i,j=1,...,d∈Rd×d (orthogonal matrix) (A.3a)

ũ :=Gdu, Gd :=
(

Rd 0
0 Sd

)
∈R(d+md)×(d+md), (A.3b)

where the matrix Sd ∈Rmd×md with md := d(d+3)
2 −d is determined by the elements of Rd. The

matrices Rd, Sd and Gd, respectively are needed in the implementation of the coupling conditions
at an interface characterized by its local normal vector n∈Rd. For this purpose we give them
here explicitly in terms of this normal vector. Then the columns of the orthogonal matrix Rd
are determined by the normal vector n and the d−1 tangential vectors ti, i = 1,.. .,d−1, i.e.,
Rd =(n,t1,. . .,td−1). For the dimensions d=1,2,3 we then obtain:

Case 1: d=1:

R1=(1)=R−1, S1=(1)=S−1 (A.4)

Case 2: d=2:

R2=

(
n1 n2
−sn2 sn1

)
=(R−1

2 )T, n2
1+n2

2=1, s := sgn(n1), if n1 6=0, else s :=1 (A.5a)

S2=

 r2
11 2r11r12 r2

12
r11r21 r12r21+r11r22 r12r22

r2
21 2r22r21 r2

22

, S−1
2 =

 r2
11 2r11r21 r2

21
r11r12 r11r22+r21r12 r21r22

r2
12 2r12r22 r2

22

 (A.5b)
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Case 3: d=3:

R3=

 n1 n2 n3
−n2 n1+n2

3/(n1+s) −n2n3/(n1+s)
−n3 −n3n2/(n1+s) n1+n2

2/(n1+s)

=(R−1
3 )T, n2

1+n2
2+n2

3=1, (A.6a)

S3=



r2
11 2r11r12 2r11r13 r2

12 2r12r13 r2
13

r11r21 r12r21+r11r22 r13r21+r11r23 r12r22 r13r22+r12r23 r13r23
r11r31 r12r31+r11r32 r13r31+r11r33 r12r32 r13r32+r12r33 r13r33

r2
21 2r22r21 2r23r21 r2

22 2r22r23 r2
23

r21r31 r22r31+r21r32 r23r31+r21r33 r22r32 r23r32+r22r33 r23r33
r2

31 2r31r32 2r31r33 r2
32 2r32r33 r2

33

, (A.6b)

S−1
3 =



r2
11 2r11r21 2r11r31 r2

21 2r21r31 r2
31

r11r12 r12r21+r11r22 r31r12+r11r32 r21r22 r31r22+r21r32 r31r32
r11r13 r21r13+r11r23 r31r13+r11r33 r21r23 r31r23+r21r33 r31r33

r2
12 2r22r12 2r32r12 r2

22 2r22r32 r2
32

r12r13 r22r13+r12r23 r32r13+r12r33 r22r23 r32r23+r22r33 r32r33
r2

13 2r13r23 2r13r33 r2
23 2r23r33 r2

33

 (A.6c)

To derive the coupling conditions we need to determine the Lax curves corresponding to the pro-
jected system (2.5). Since this is a linear system, the k-th forward (+) and backward (−) Lax
curve corresponding to the kth field emanating from the state u are given by

L±k (ε;u)=u±(ε−λk)rk, (A.7)

where λk and rk denote the eigenvalue and the corresponding right eigenvector of the Jacobian of
the normal flux (2.5b). For the corresponding eigenvalues we obtain:

Case 1: d=1:
λ1,±=±c1, (A.8)

Case 2: d=2:
λ1,±=±c1, λ2,±=±c2, λ0=0 (A.9)

Case 3: d=3:

λ1,±=±c1 (single root), λ2,±=±c2 (double root), λ0=0 (triple root) (A.10)

Obviously, the eigenvalues are independent of the direction n. Because of the rotational invariance
the corresponding left and right eigenvectors, which are orthogonal to each other, are only given
for the direction n=e1∈Rd.

Case 1: d=1:

r1,±=(1,∓ρc1)
T (A.11a)

l1,±=
1

2ρc1
(ρc1,∓1)T (A.11b)
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Case 1: d=2:

r1,±=β(1,0,∓ρc1,0,∓αρc1)
T, β := c2

1−c2
2>0 (A.12a)

r2,±=β(0,1,0,∓ρc2,0)T (A.12b)

r0=(0,0,0,0,−1)T (A.12c)

l1,±=
1

2ρc1

1
β
(ρc1,0,∓1,0,0)T (A.12d)

l2,±=
1

2ρc2

1
β
(0,ρc2,0,∓1,0)T (A.12e)

l0=(0,0,α,0,−1)T (A.12f)

Case 3: d=3:

r1,±=(±1/ρc1,0,0,−1,0,0,−α,0,−α)T (A.13a)

r1
2,±=(0,−1,0,0,±ρc2,0,0,0,0)T (A.13b)

r2
2,±=(0,0,−1,0,0,±ρc2,0,0,0)T (A.13c)

r1
0=(0,0,0,0,0,0,−2,0,−1)T (A.13d)

r2
0=(0,0,0,0,0,0,0,−1,0)T (A.13e)

r3
0=(0,0,0,0,0,0,−1,0,−1)T (A.13f)

l1,±=
1
2
(±ρc1,0,0,−1,0,0,0,0,0)T (A.13g)

l
1
2,±=

1
2
(0,−1,0,0,±1/ρc2,0,0,0,0)T (A.13h)

l
2
2,±=

1
2
(0,0,−1,0,0,±1/ρc2,0,0,0)T (A.13i)

l
1
0=(0,0,0,0,0,0,−1,0,1)T (A.13j)

l
1
0=(0,0,0,0,0,0,0,−1,0)T (A.13k)

l
1
0=(0,0,0,α,0,0,1,0,−2)T (A.13l)

The coupling states on the forward Lax–curves for the linear elastic system are

u1=uL+(ξ
+
1 −λ1,−)r1,− (d=1) (A.14a)

u2=uL+(ξ
+
1 −λ1,−)r1,−+(ξ

+
2 −λ2,−)r2,− (d=2) (A.14b)

u2=uL+(ξ
+
1 −λ1,−)r1,−+(ξ

+
2 −λ2,−)r1

2,−+(ξ
+
3 −λ2,−)r2

2,− (d=3) (A.14c)
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B Euler equations

Introducing the vector u=(ρ,ρvT,ρE)T of conserved quantities and the fluxes fi, i=1,.. .,d, we
can rewrite the Euler equations (2.2)in analogy to (A.1) in the form

∂u
∂t

+∇·(f1(u),. . .,fd(u))=0. (B.1a)

fi(u)=(ρvi,ρvivT+peT
i ,ρvi(E+p/ρ))T. (B.1b)

Because of rotational invariance this system is equivalent to

∂ũ
∂t

+∇x̃ ·(f1(ũ),. . .,fd(ũ))=0 (B.2)

under the orthogonal transformation

x̃ :=Rx, ũ :=Ru=

 ρ
ρṽ
ρE

, ṽ :=Rv (B.3)

with

R :=

1 0T 0
0 R 0
0 0T 1

, R=(r1,. . .,rd)
T∈Rd×d orthogonal, (B.4)

To determine the coupling conditions at an interface locally characterized by the normal vector
n∈Rd we need the flow in this normal direction. For this purpose we project the system (B.1)
onto direction n. The quasi-1D projected system can be derived from (B.2) where we choose RT=
(n,t1,. . .,td−1)=(r1,. . .,rd). Assuming no flow in tangential directions x̃i+1=x·ti, i=1,.. .,d−1,
then the system (B.2) reduces to the projected system (2.6). The corresponding eigenvalues to the
projected system (2.6) are determined by

λ±=vn±c, λ0=vn (d-multiple) (B.5)

with right and left eigenvectors that are orthogonal to each other

r±=

 1
v±cn

H±cvn

, r1
0=

 1
v

1
2 v2

, ri+i
0 =

 0
cti

cv·ti

, i=1,.. .,d−1 (B.6a)

l±=
1
c2

 1
2 (

1
2 κv2∓cvn)
± 1

2 (cn+κv)
1
2 κ

, l1
0=

1
c2

c2− 1
2 κv2

κv
−κ

, li+1
0 =

1
c2

−cv·ti
t

cti
0

, i=1,.. .,d−1.

(B.6b)

Here H :=E+p/ρ denotes the total enthalpy and κ=γ−1.
For d≥ 2 the tangential velocity components do no change neither along a rarefaction curve nor
a shock curve, but may jump arbitrarily on a contact curve. On the other hand, across a contact
discontinuity the pressure and the normal velocity and the normal momentum, respectively, are
continuous whereas the tangential velocities and momentum may jump arbitrarily. Therefore, we
may solve the Riemann problem to the projected system (2.6) as in the one-dimensional case for
ρ, ρvn and ρE and then setting the tangential velocity components to their initial values to either
side of the contact discontinuity.
To derive the coupling conditions we need to determine the Lax curves corresponding to the pro-
jected system (2.6). As mentioned before it will be sufficient to consider the one-dimensional
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case only where vn = v1 = v. According to [9] the Lax curves can be parameterized by a shift
of the density ρ. The forward (+)/backward (−) Lax curves L±i emanating from the state
u0=(ρ0,(ρv)0,(ρE)0) are given by

L±i (σ;u0)=

S±i (σ;u0) if σ≤0

R±i (σ;u0) if σ≥0
, i=1,3. (B.7)

In case of a perfect gas the forward (+)/backward (−) shock curve S±i and rarefaction curve R±i
read

S±i (σ;u0)=


ρ=±(i−2)σ+ρ0

v=v0∓
√

2γ(γ−1)e0σ2

(2ρ0±(2−i)(γ−1)σ)(ρ0±(i−2)σ)

e= 1
1±(i−2)σ/ρ0

2±(i−2)(γ+1)σ/ρ0
2±(2−i)(γ−1)σ/ρ0

e0

, i=1,3 (B.8a)

R±i (σ;u0)=


ρ=±(i−2)σ+ρ0

v=v0+(2−i)2
√

γ
γ−1

(
1−
(

1±(i−2) σ
ρ0

)(γ−1)/2
)
√

e0

s= s0

, i=1,3 (B.8b)

Here s denotes the entropy that for a perfect gas is given by

s(ρ,e)= cv(lne−(γ−1)lnρ) (B.9)

or, equivalently,
e(ρ,s)=exp(s/cv+(γ−1)lnρ), γ>1 (B.10)

where γ denotes the ratio of specific heats at constant pressure and volume, respectively. In
particular, in case of a perfect gas it holds

γ=
cp

cv
=1+

R
cv

(B.11)

with R the specific gas constant.

For sake of completeness we give also the forward/backward Lax curve for the contact wave:

L±2 (σ;u0)=


ρ=ρ0±σ

v=v0

p= p0

. (B.12)

Here the velocity and the pressure remain unchanged whereas the density varies linearly across
the contact discontinuity that corresponds to a linearly degenerated field. Note that in the multi-
dimensional case there are additional d−1 contact discontinuities where only the tangential ve-
locity corresponding to the tangent vector ti, i=1,.. .,d−1,varies linearly, i.e.,

L±2,i(σ;u0)=



ρ=ρ0

vn =n·v0

vti = ti ·v0±σ

vtj = tj ·v0, j 6= i

p= p0

. (B.13)



27

In the subsonic case the coupling states on the backward Lax–curves are given by

u2=L−3 (ε3;u3) (B.14)

for the case 1a scenario and

u2=L−3 (ε3;u3), (B.15a)

u1=L−2 (ε2;u2)=L−2 (ε2;L−3 (ε3;uR)) (B.15b)

for the case 1b scenario, respectively. Since the pressure p and the normal velocity vn are contin-
uous across the contact discontinuity we obtain the same states for both cases, i.e.,(

p
vn

)
=

(
p−3 (ε3,uR)

(vn)
−
3 (ε3,uR)

)
. (B.16)
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