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1 Introduction

The solution of a nonlinear hyperbolic conservation law typically develops discontinuities. In
order to avoid instabilities in the numerical discretization, Finite Volume (FV) schemes are
frequently used. These have been developed and investigated for many decades. An overview
can be found in the textbooks of Godlewski and Raviart [20], Kröner [30] and Leveque [32].
Although these schemes have proven to be very robust in practice, they suffer from discretization
stencils that are growing with increasing order. In particular, on unstructured meshes this
turns out to be a severe drawback in particular on unstructured meshes. This problem can be
overcome by using Discontinuous Galerkin (DG) schemes which are locally conservative, stable
and high-order accurate. These methods can easily handle complex geometries and meshes with
hanging nodes as well as approximations with locally changing polynomial degree in different
elements. In particular, they are easy to implement and allow for an efficient parallelization.
After their introduction in 1973 by Reed and Hill [37] a major development was carried out
by Cockburn et al. [11, 10, 8, 12, 13]. A review on Runge-Kutta DG schemes for convection-
dominated problems can be found in [14]. By now DG methods have been applied to partial
differential equations and ordinary differential equations [9].
Due to the formation of discontinuities the solution of a nonlinear hyperbolic conservation

law often exhibits locally steep gradients and large regions where it is smooth. To account for
the highly nonuniform spatial behavior, we need numerical schemes that adequately resolve the
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different scales, i.e., use a high resolution only near sharp transition regions and singularities
but a moderate resolution in regions with smooth, slowly varying behavior of the solution.
For this purpose, strategies for DG discretizations have been discussed or are under current
investigation that aim at adapting the internal degrees of freedom, such as the spatial and
temporal discretization or the discretization order, to the local behavior of the flow field. So
far numerous refinement indicators have been developed that are based on interpolation error
estimates of some key quantity using some a priori knowledge of the solution. Although these
concepts turn out to be very efficient in practice, they offer no reliable error control. For
this purpose, error estimates are needed which provide a control of the actual error in the
approximate solution. Bey and Oden [4] obtained both a priori and a posteriori error estimates
for adaptive strategies. By now many types of a posteriori error estimates have been designed
to control the adaptive process. A lot of work has been done by Flaherty et al. [1, 38], Houston
et al. [25, 24, 26], Dedner et al. [19], and recently Mavriplis et al. [43].
All these approaches have in common that they aim at estimating the error of the solution.

However, in general there are no mathematical rigorous error estimates available for nonlinear
systems of conservation laws arising, for instance, from the balance equations of continuum
mechanics. Therefore we propose an alternative adaptation strategy that does not rely on
the existence of some error estimator. The rationale behind its design is to accelerate a given
DG scheme or a FV scheme (reference scheme) on a uniformly refined mesh (reference mesh)
through computing actually only on a locally refined adapted subgrid, while preserving (up to
a fixed constant multiple) the accuracy of the discretization on the full uniform grid. For this
purpose, a multiresolution analysis (MRA) is performed, where the data corresponding to the
current solution are represented as data on some coarse level and the fine scale information is
encoded in arrays of detail coefficients of ascending resolution. The new data format reveals
insight into the local behaviour of the solution. It can be shown that the details become
small with increasing refinement level when the underlying function is smooth. As suggested
by this so-called cancellation property, we may determine a locally refined grid performing
data compression on the array of detail coefficients using hard thresholding. This significantly
reduces the complexity of the data. Based on the thresholded array local grid adaptation is
performed, where we refine an element whenever there exists a significant detail. Of course,
the crux in this context is to arrange this procedure in such a way that at no stage of the
computation there is ever made use of the fully refined mesh. A central mathematical problem
is then to show that the solution on the adapted mesh is of the same accuracy as the solution
on the reference mesh.
Such multiresolution-based mesh adaptation methods using biorthogonal wavelets [15] have

been introduced in [33, 16] and have been quite successful with FV solvers for compressible
fluid flow, see Bramkamp et al. [5]. A comprehensive review on their development can be
found in [34] and [17] provides some overview on recent trends. Note, that the rate of decay
of the details fastens with increasing number of vanishing moments of the wavelets, i.e., more
details may be discarded in smooth regions and the adaptive mesh becomes coarser. However,
for biorthogonal wavelets to realize more vanishing moments requires to extend the support
of the wavelet functions. Its construction, in particular, becomes even more complicate on
unstructured grid hierarchies. Therefore it is natural to extend the multiresolution-based mesh
adaptation concept to higher order DG discretizations using so-called multiwavelets [41, 28].
Multiwavelets allow for higher order vanishing moments, while being defined on one mesh
element.
In the present work, we develop the concept of multiresolution-based DG (MR-DG) schemes,
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where for the sake of analysis we focus on scalar one-dimensional conservation laws. We em-
phasize that none of the conceptual ingredients are restricted to this frame but can be extended
straight-forwardly to multidimensional systems of conservation laws.
For this purpose, we first summarize in Section 2 the basic ingredients of Runge-Kutta DG

schemes and the main convergence results. These schemes will be used as the reference scheme
that will provide us with data on a reference mesh. In Section 3 we perform a MRA of these
data. For this purpose we embed the reference mesh in a hierarchy of nested grids. In Section 4,
we then derive evolution equations for these detail coefficients by means of the MRA. This set
of equations will be reduced significantly by data compression performing hard thresholding.
In order to control the threshold error that might accumulate in each time step, we have to
make sure that significant information is well-resolved on both the old and the new time level.
For this purpose we need to predict significant detail coefficients from the data of the old
time level, where we have to analyse the evolution of the detail coefficients. This evolution
process is strongly intertwined with the limiting process for the higher order coefficients. This
is investigated in detail in Section 5, where we prove that the accumulative threshold error is
uniformly bounded. Since for scalar problems there is an estimate available for the discretization
error of the reference DG scheme [11], we may then choose a priorily a threshold value that
allows to balance the discretization error with the threshold error. Finally we have implemented
the MR-DG scheme for scalar one-dimensional conservation laws. Numerical comparisons in
Section 6 demonstrate the efficiency of our concept by verifying the reliability of the estimates
of the actual error of numerical solutions.

2 The reference DG scheme

In order to simplify the notation, we confine ourselves to one space dimension. We like to
point out once more that the concepts extend to higher dimensional problems as well. In the
framework of adaptive MR-FV schemes this has been realized for the multidimensional case
and has been successfully applied to complex configurations in fluid dynamics, cf. [5]. Here we
consider the initial value problem for a scalar inhomogeneous conservation law

ut(t, x) + (f(u(t, x)))x = s(u(t, x)), t > 0, x ∈ R,
(2.1)

u(0, x) = u0(x), x ∈ R.

If the initial data u0 ∈ BV (R) ∩ L∞(R) ∩ L1(R), the flux f ∈ C1(R) and the source term
s : R → R satisfying a global Lipschitz condition with Lipschitz constant Ls and s(0) = 0,
then there exists a unique entropy solution u ∈ L∞(0, T, L1

loc(R)) for all T > 0, see [35, 31, 42].
We will assume additionally that u0 is compactly supported.

Weak formulation The entropy solution is approximated by a DG scheme. Since computa-
tions are only performed on bounded domains and convergence analysis is only performed for
compact sets, we confine ourselves to uniform finite discretizations of Ω := [a, b] =

⋃N−1
k=0 Vk,

where the cells Vk := [xk, xk+1], k ∈ Ih := {0, . . . , N − 1}, are determined by the discretization
points xk := a+ k h with uniform spatial discretization h = (b− a)/N .
On this discretization we introduce the space Sph := {w ∈ L2([a, b]) : w|Vk ∈ Πp−1, ∀ k ∈ Ih}

of piecewise polynomial functions of degree less than p. For this finite-dimensional space we
introduce two sets of basis functions, Φh := {ϕk,i}k∈Ih,i∈P and Φ̃h := {ϕ̃k,i}k∈Ih,i∈P with
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P := {0, . . . , p − 1} such that Sph = spanΦh = span Φ̃h. We assume that these functions fulfil
the biorthogonality relation

〈ϕk′,i′ , ϕ̃k,i〉Ω = δi,i′ δk,k′ (2.2)

and are compactly supported, i.e., supp ϕk,i = supp ϕ̃k,i = Vk. Here 〈f, g〉Ω :=
∫

Ω f(x) g(x) dx
denotes the standard L2-inner product. A typical example are the shifts and translates of the
Legendre polynomials normalized with respect to L∞ and L1, respectively. In order to derive
a DG discretization of the initial value problem (2.1), we now assume that the approximate
solution can be written as an expansion of the basis Φh, i.e.,

uh(t, ·) =
∑
k∈Ih

∑
i∈P

vk,i(t)ϕk,i(·) ∈ Sph, (2.3)

where the coefficients vk,i are determined by the biorthogonality relation (2.2) as

vk,i(t) = 〈uh(t, ·), ϕ̃k,i〉Ω.

Multiplying (2.1) by ϕ̃k,i and integrating over its support Vk we obtain

〈(uh(t, ·))t, ϕ̃k,i〉Vk + 〈(f(uh(t, ·)))x, ϕ̃k,i〉Vk = 〈s(uh(t, ·)), ϕ̃k,i〉Vk (2.4)

Inserting (2.3) into (2.4) and performing integration by parts we end up with

d

dt
vk,i(t) + f(uh(t, x))ϕ̃k,i(x)|x

−
k+1

x+
k

− 〈f(uh), ϕ̃′k,i〉Vk = 〈s(uh), ϕ̃k,i〉Vk , (2.5)

where we employ biorthogonality (2.2) and the local support of the basis functions. Here
x± always denote the right-sided (+) and left-sided (−) limit, respectively. Since the basis
functions and, hence, the approximate solution uh suffer from jumps at the interval points xk,
the flux evaluations f(uh(t, x±)) are replaced by numerical fluxes F (uh(t, x−k ), uh(t, x+

k )), where
F : R2 → R is a two-point flux function such that

1. F is consistent with the flux f , i.e., F (v, v) = f(v) for all v ∈ R,

2. F is Lipschitz continuous, i.e., |F (u1, v1)− F (u2, v2)| ≤ L1|u1 − u2|+ L2|v1 − v2| for all
|ui|, |vi| ≤ C, i = 1, 2, with C arbitrary but fixed;

3. F is monotone, i.e., nondecreasing in the first argument and nonincreasing in the second
argument.

Typical examples are the flux functions due to Engquist-Osher, (local) Lax-Friedrichs, Go-
dunov, Roe with entropy fix, cf. [20]. In general, monotonicity only holds if a Courant-
Friedrichs-Levy (CFL) condition is satisfied for the time and space discretization. Finally,
we obtain the semi-discrete DG method

d

dt
vk,i(t) = − F (uh(t, x), uh(t, x))ϕ̃k,i(x)|x

−
k+1

x+
k

+ 〈f(uh), ϕ̃′k,i〉Vk + 〈s(uh), ϕ̃k,i〉Vk . (2.6)
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Convergence of DG scheme in the mean The building block for a higher order time dis-
cretization is a forward Euler step applied to (2.6). For this purpose we introduce the time
discretization tn+1 := tn + τ , where for reasons of simplicity the time step τ > 0 is assumed to
be constant. Then the forward Euler step reads

vn+1
k,i = vnk,i − τ

(
Bn
k,i −Gnk,i − Snk,i

)
, (2.7)

where the numerical flux Fnk , the numerical flux balance Bn
k,i, the flux quadrature Gnk,i and the

source quadrature Snk,i are defined by

Fnk := F (uh(tn, x−k ), uh(tn, x+
k )), (2.8)

Bn
k,i := Fnk+1 · ϕ̃k,i(x−k+1)− Fnk · ϕ̃k,i(x+

k ), (2.9)
Gnk,i := 〈f(uh(tn, ·)), ϕ̃′k,i〉Vk , Snk,i := 〈s(uh(tn, ·)), ϕ̃k,i〉Vk . (2.10)

Typically, convergence of (2.7) is investigated for the averaged function of piecewise constant
data

ûh(t, x) := 〈uh(t, ·), ϕ̃k,0〉Vk = vnk,0, x ∈ Vk, tn ≤ t < tn+1, (2.11)

where the right-hand side follows by the biorthogonality of the basis functions. The convergence
proof follows from the framework for finite volume schemes. Therefore, it is naturally to
identify the zero order coefficient vnk,0 with the cell average. For this purpose, we assume in
the following that ϕ̃k,0 = h−1 χ

Vk
. Details of the convergence proof can be found in [11].

Here we briefly summarize the main ingredients that are needed later on in the analysis of
the adaptive MR-DG scheme. Following the roadmap of convergence to the entropy solution
of the initial value problem (2.1) as can be found, for instance, in [39], we have to verify
that the family of grid functions {ûh}h is uniformly bounded in L1, the total variation of the
sequence is uniformly bounded and each of the grid functions is L1-continuous in time. Then by
compactness arguments and Cantor’s diagonalization argument there exists a subsequence of
{ûh}h uniformly convergent on any bounded interval [0, T ]. Furthermore, by definition ûh(0, ·)
converges to the initial function u0 in L1(R) as h tends to 0, cf. [39]. If in addition {ûh}h is
uniformly bounded in L∞, then using the same arguments as in the proof of the Lax-Wendroff
theorem, cf. [20, pp. 100–102], the limit of the subsequence is converging in L∞(L1

loc(R); [0, T ])
to a weak solution of (2.1). Note that for initial data u0 ∈ L1(R) we may infer uniform
boundedness in L∞ as well as L1-continuity in time provided that the sequence {ûh}h is total
variation diminishing (TVD), i.e.,

TV (ûh(t, ·)) :=
∑
k∈Z
|vnk+1,0 − vnk,0| ≤ TV (ûh(0, ·), tn ≤ t < tn+1 (2.12)

or at least total variation bounded (TVB), i.e.,

TV (ûh(t, ·)) ≤ C TV (ûh(0, ·), t ∈ [0, T ], (2.13)

where C is a constant independent of the discretization h. The proof can be found in [20, p. 131],
in the context of FV schemes for homogeneous problems. Since we assume that s(0) = 0, the
proof applies also to inhomogeneous problems and the DG context as well. Since by definition
the total variation of ûh(0, ·) is bounded by the total variation of u0, cf. [39], the right-hand
sides in (2.12) and (2.13) can be bounded independently of the discretization only depending
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on the initial data u0 ∈ BV (R) and the interval [0, T ]. In order to prove convergence of the
sequence {ûh}h, it is sufficient to verify the TVD or TVB property. For homogeneous problems,
Cockburn and Shu [11] give the sufficient conditions

−θ ≤
v+
k+1 − v

+
k

vk+1,0 − vk,0
≤ 1, −θ ≤ −

v−k+1 − v
−
k

vk+1,0 − vk,0
≤ 1, (2.14)

that ensure the TVD condition under the CFL condition (L1 + L2) τ/h ≤ 1/(1 + θ), where

v−k :=
∑
i∈P∗

vk,i ϕk,i(x−k+1), v+
k := −

∑
i∈P∗

vk,i ϕk,i(x+
k ), P∗ := P\{0} (2.15)

denote the contribution of the higher order coefficients to the values of uh at the cell interfaces.
In the inhomogeneous case, we have to relax TVD by TVB, but in principle the proof works
also in this case under the above assumptions on the source function s. In order to ensure
the conditions (2.14), the values v±k are modified typically using local projection limiters. For
instance, in [11] the following two examples are given:
Example 1: (van Leer limiter)

ṽ
±
k := m

(
v±k , vk+1,0 − vk,0, vk,0 − vk−1,0

)
(2.16)

Example 2: (Shu limiter)

ṽ
±
k :=

{
v±k , |v±k | ≤M h2

m(v±k , vk+1,0 − vk,0, vk,0 − vk−1,0) , else. (2.17)

Here m denotes the standard minmod function defined as

m(a1, . . . , an) :=
{
s min1≤i≤n |ai| , sgn(a1) = . . . = sgn(an) = s
0 , else. (2.18)

The constantM in the Shu limiter has to be chosen appropriately such that the loss of accuracy
at critical points as in case of the van Leer limiter is avoided. It typically depends on the bound
M2 to be chosen such that |uxx| ≤ M2 in any region where u ∈ C2. If we now replace the
numerical flux in the discrete evolution equation (2.7) by

Fk := F (vk−1,0 + ṽ
−
k−1, vk,0 − ṽ

+
k ) (2.19)

using either the van Leer or the Shu limiter, then the conditions (2.14) hold for θ = 1 and, hence,
the sequence {ûh}h is TVD (van Leer) and TVB (Shu) in case of a homogeneous problem. In
the general inhomogeneous case, it is TVB for both limiters. Note that ṽ±k is only a modification
on some combinations of higher order coefficients vk,i, i ∈ P∗. Since the limiting process is
performed locally on each cell Vk, one might split the limiting step from the evolution step,
where we first compute modified higher order coefficients ṽk,i that are determined such that∑

i∈P∗
ṽk,i ϕk,i(x−k+1) = ṽ

−
k ,

∑
i∈P∗

ṽk,i ϕk,i(x+
k ) = −ṽ+

k . (2.20)

For p = 2, 3 this leads to uniquely determined coefficients, for p > 3 the coefficients are no
longer unique, cf. [11]. Note that by the above limiting process the zero-order coefficients
remain unchanged, i.e., the limiting process is conservative.
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Finally, if the minmod function (2.18) in the van Leer limiter (2.16) and the Shu limiter
(2.17) is replaced by m(a1, a2, a3, sign(a1)Cα hα) for some fixed Cα > 0 and α > 0, i.e.,

|ṽ±k | ≤ Cα hα (2.21)

holds, then the sequence {ûh}h converges to the unique entropy solution and the error on any
bounded domain Ω ⊂ R can be estimated by

‖û− ûh‖L∞(0,T ;L1(Ω)) ≤ C(T,Ω)hmin(1,α)/2. (2.22)

This follows from the convergence of quasi-monotone finite volume schemes, cf. [7], where the
numerical flux in the evolution equation (2.7) for the zero-order coefficients i = 0 is rewritten
as a quasi-monotone flux, i.e., a perturbation of the two-point monotone flux F where the
perturbation is uniformly bounded by hα. Then the entropy production rate vanishes when h
tends to zero.

Runge-Kutta time discretization For a higher order time discretization we have to apply an
appropriate time discretization to the semi-discrete DG scheme (2.6) that can be considered
a system of ordinary differential equations (ODE). In view of convergence, the ODE solver
has to be chosen such that the TVD property (homogeneous case) and the TVB property
(inhomogeneous case), respectively, are maintained. For this purpose, Shu and Osher [40]
introduced a new class of m-stage Runge-Kutta (RK) methods that can be written as

u(0) = vnh ≡ {vnk,i}k∈Ih, i∈P

u(s) =
s−1∑
j=0

(
αs,j u(j) + τ βs,j Lh(u(j))

)
, s = 1, . . . ,m (2.23)

vn+1
h = u(m),

where we introduce the notation u := {uk,i}k∈Ih,i∈P . Then the operator Lh(u) := {Lk,i(u)}k∈Ih,i∈P
is defined as the right-hand side in (2.6), where the piecewise polynomial function uh(t, ·) is
determined by (2.3) with coefficients u. In order to be consistent in the trivial case where the
right-hand side in (2.6) vanishes, i.e., L = 0, the coefficients have to satisfy the consistency
condition

s−1∑
j=0

αs,j = 1, s = 1, . . . ,m. (2.24)

This representation allows to rewrite the evolution on each intermediate stage in (2.23) as a
forward Euler step

u(s) =
s−1∑
j=0

αs,j

(
u(j) + τs,j Lh(u(j))

)
≡

s−1∑
j=0

αs,j E(u(j), τs,j), s = 1, . . . ,m (2.25)

with time step size τs,j := τ βs,j/αs,j . Here we assume that βs,j vanishes whenever αs,j is
zero. In addition, if the coefficients αs,j are non-negative, then the RK method (2.6) can be
interpreted as a convex combination of forward Euler steps. This allows to extend any stability
condition for the forward Euler step to the RK method. Formally a stability condition can be
written as

ρ(E(uh, τ)) ≤ ρ(uh) (1 + c τ), τ ≤ τFE , (2.26)
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where ρ denotes a sublinear functional and c ≥ 0 some constant independent of the discretiza-
tion. Assuming that the coefficients βs,j are also non-negative, then by induction on the RK
stages the stability result follows for the RK step, i.e.,

ρ(vn+1
h ) ≤ ρ(vnh) (1 + c τ), τ max

s,j
βs,j/αs,j ≤ τFE , (2.27)

This result also holds for negative coefficients βs,j , where the operator Lh is replaced by L̃h
and −L̃h is an operator approximating the time inverse problem of (2.1), i.e., t̃ = −t.

Originally, the Shu-Osher RK schemes have been designed to maintain the TVD property,
i.e., the sublinear functional ρ is chosen as the TV semi-norm, and therefore these methods
were introduced as TVD-RK methods, cf. [40]. Nowadays the notion has changed to nonlinear
strongly stability preserving (SSP) RK methods, cf. [21, 29]. Note that “strongly” refers to
c = c = 0 in (2.26) and (2.27). For the homogeneous problem the strong stability result can be
verified, but for the inhomogeneous case we have to relax the stability condition in the above
sense corresponding to TVB instead of TVD.
In summary, if we apply a TVD-RK method to the semi-discrete DG scheme (2.6), then

the higher order discretization inherits the TVB property from the DG scheme in the mean
(2.11) determined by the forward Euler step (2.7). According to the above discussion on the
convergence, the DG scheme in the mean with this higher order discretization is converging.

Convergence of DG scheme So far the convergence of the DG scheme in the mean ûh, has
been discussed. To infer now convergence of the DG scheme uh, a perturbation argument is
used. A sufficient condition is to assume that the difference of the DG scheme and its mean
value can be bounded by the total variation of the mean function, i.e.,

‖uh(t, ·)− ûh(t, ·)‖L1 ≤ c h TV (ûh(t, ·)) (2.28)

holds for any t ∈ [0, T ] , where c > 0 is a constant independent of the discretization. Then
convergence can be concluded from

‖uh(t, ·)− u(t, ·)‖L1 ≤ ‖uh(t, ·)− ûh(t, ·)‖L1 + ‖ûh(t, ·)− u(t, ·)‖L1 (2.29)

and the TVD/TVB property (2.12), (2.13) as well as the convergence of the DG scheme in the
mean. Note that the condition (2.28) holds provided that the limited higher order coefficients
ṽk,i can be estimated by

|ṽk,i| ≤ c1 min(|vk+1,0 − vk,0|, |vk,0 − vk−1,0|) + c2 h
2, i ∈ P∗. (2.30)

In case of p = 2, 3, this sufficient condition can be verified for the coefficients ṽk,i that are
uniquely determined by (2.20).

3 Multiresolution analysis

The DG discretization typically works on an array of coefficients. In order to realize a certain
target accuracy at the expense of a possibly low number of degrees of freedom, viz. a possibly
low computational effort, one should keep the size of the cells large wherever the data exhibit
little variation, reflecting a high regularity of the searched solution components. Our analysis
of the local regularity behavior of the data is based on the concept of multiwavelets, cf. [28].
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This can be considered a natural extension of the MRA for cell averages corresponding to a FV
discretization, i.e., p = 1, where biorthogonal wavelets have been used to construct an appro-
priate MRA, cf. [18, 33]. Here we will briefly summarize the basic ideas of the MRA concept.
Although we will confine ourselves to the one-dimensional case the framework is applicable
to arbitrary discretizations in higher dimensions. The core ingredients are (i) a hierarchy of
nested grids, (ii) (biorthogonal) multiwavelets and (iii) the multiscale decomposition. Note that
the multiwavelet MRA generalizes the discrete MRA in [3, 44] motivated by Harten’s original
discrete framework [23] for cell averages.

Grid hierarchy Starting point for the construction of a MRA is a sequence of nested grids.
Here we confine ourselves to 1D dyadic grid refinements on the interval Ω = [a, b], see Figure 1
for an illustration. Let Gl := {Vl,k}k∈Il , Il = {0, . . . , Nl − 1}, l ∈ N0, be a sequence of grids
with increasing resolution. These meshes are composed of the intervals Vl,k = [xl,k, xl,k+1]
determined by the discretization points xl,k := a + k hl with uniform spatial discretization
hl = (b − a)/Nl. The cell center is given by x̂l,k = (xl,k + xl,k+1)/2. Hence, the resulting grid
hierarchy is nested because of the subdivision

Vl,k = Vl+1,2k ∪ Vl+1,2k+1, ∀ k ∈ Il, l ∈ N0. (3.1)

k

2k 2k + 1

l = L

l = 1

l = 0

Figure 1: Sequence of nested dyadic grids

Multiresolution sequence On the above hierarchy of nested grids we introduce the spaces

Spl = {f ∈ L2([a, b]) : f |Vl,k ∈ Πp−1, ∀ k ∈ Il} (3.2)

of piecewise polynomial functions of degree less than p. Obviously, these spaces are nested, i.e.,

Sp0 ⊂ S
p
1 ⊂ ... ⊂ S

p
l ⊂ ... ⊂ L

2([a, b]). (3.3)

Hence, there exist complement spaces W p
l such that

Spl+1 = Spl ⊕W
p
l , Spl = Sp0 ⊕W

p
0 ⊕W

p
1 ⊕ ...⊕W

p
l−1 (3.4)

These spaces are spanned by the single-scale basis and the multiwavelet basis

Φp
l := {ϕl,k,i : k ∈ Il, i ∈ P}, Ψp

l := {ψl,k,i : k ∈ Il, i ∈ P}, (3.5)
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respectively, i.e., Spl = spanΦp
l and W p

l = spanΨp
l . The multiresolution sequence is assumed

to be dense in L2([a, b]), i.e.,

L2([a, b]) = closL2 {span (Φp)} = closL2 {span (Ψp)} , (3.6)

where Φp :=
⋃
l∈N0

Φp
l and Ψp := Φp

0∪
⋃
l∈N0

Ψp
l are the single-scale basis and themultiscale basis

of order p for L2([a, b]), respectively. Then any function u ∈ L2([a, b]) can be approximated by
the sequence of projections

uL =
∑
k∈IL

∑
i∈P

uL,k,i ϕL,k,i =
∑
k∈I0

∑
i∈P

u0,k,i ϕ0,k,i +
L−1∑
l=0

∑
k∈Il

∑
i∈P

dl,k,i ψl,k,i (3.7)

that is uniformly converging to u in L2. If there exists a dual system

Φ̃p
l := {ϕ̃l,k,i : k ∈ Il, i ∈ P}, Ψ̃p

l := {ψ̃l,k,i : k ∈ Il, i ∈ P}, (3.8)

of biorthogonal functions, i.e., Φp
l ∪Ψp

l is orthogonal to Φ̃p
l ∪Ψ̃p

l , then the single-scale coefficients
and wavelet coefficients (details) in (3.7) are determined by

ul,k,i := 〈u, ϕ̃l,k,i〉[a,b], dl,k,i := 〈u, ψ̃l,k,i〉[a,b]. (3.9)

In particular, if Φp
l ∪Ψp

l is orthogonal, then it coincides with the dual system.

Construction of bases Since the space Spl contains piecewise polynomial functions that are
not necessarily continuous at the cell edges, the design of appropriate basis functions can
be performed independently for each cell Vl,k, where we take into account the nesting (3.1).
In a first step we therefore need to construct an appropriate basis for the space Πp−1 on
Vl,k, i.e., Φp

l,k := {ϕl,k,i : i ∈ P}. In a second step, we then have to find a completion
Ψp
l,k := {ψl,k,i : i ∈ P} of Φp

l,k such that span(Φp
l,k ∪ Ψp

l,k) = span(Φp
l+1,2k ∪ Φp

l+1,2k+1). The
construction of appropriate wavelet functions is subject to certain constraints:
(i) they are locally supported, i.e.,

supp ϕl,k,i = supp ψl,k,i = supp ϕ̃l,k,i = supp ψ̃l,k,i = Vl,k (3.10)

(ii) provide vanishing moments of order Mp,i ≥ 1, i.e.,

〈P, ψ̃l,k,i〉[a,b] = 0, ∀P ∈ ΠMp,i−1 (3.11)

(iii) there exists a biorthogonal system of dual functions, i.e.,

〈ϕl,k,i, ϕ̃l,k′,i′〉[a,b] = δi,i′ δk,k′ , 〈ϕl,k,i, ψ̃l,k′,i′〉[a,b] = 0, (3.12)

〈ψl,k,i, ψ̃l,k′,i′〉[a,b] = δi,i′ δk,k′ , 〈ψl,k,i, ϕ̃l,k′,i′〉[a,b] = 0. (3.13)

The existence of a dual basis is closely related to the Riesz basis property of the infinite collection
Φp

0 ∪
⋃∞
l=0 Ψp

l of L2([a, b]). This is typically hard to satisfy. For details we refer to the concept
of stable completions, see [6].

With regard to the convergence analysis in Section 2, we assume that the primal and dual
functions are normalized with respect to L∞ and L1, respectively, i.e.,

‖ϕl,k,i‖L∞([a,b]) . 1, ‖ψl,k,i‖L∞([a,b]) . 1, (3.14)

‖ϕ̃l,k,i‖L1([a,b]) . 1, ‖ψ̃l,k,i‖L1([a,b]) . 1, (3.15)
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where “.” denotes a bound up to some constant independent of the level l and the position k.
Furthermore, we assume that ϕ̃l,k,0 coincides with the L1-normalized characteristic function,
i.e.,

ϕ̃l,k,0 = h−1
l χ

Vl,k
. (3.16)

Hence, the zero order coefficients in (2.3) coincide with cell averages, i.e., the DG scheme in
the mean (2.11) can be considered as a FV discretization.
Typically the local basis functions with respect to a cell Vl,k are deduced from a set of basis

functions on some reference element [0, 1], i.e.,

ϕl,k,i = ϕi((x− x̂l,k)/hl), ψl,k,i = ψi((x− x̂l,k)/hl), (3.17)
ϕ̃l,k,i = ϕ̃i((x− x̂l,k)/hl), ψ̃l,k,i = ψ̃i((x− x̂l,k)/hl), (3.18)

where the primal and dual mother functions ϕi, ψi and ϕ̃i, ψ̃i are normalized with respect to
L∞([0, 1]) and L1([0, 1]), respectively, satisfying biorthogonal relations similar to (3.12) and
(3.13). Later on we need to estimate the derivatives of the primal scaling functions. Obviously,
these are bounded by∥∥∥∥ dr

d xr
ϕl,k,i

∥∥∥∥
L∞(Vl,k)

≤ h−rl

∥∥∥∥ dr

d xr
ϕi

∥∥∥∥
L∞([0,1])

=: h−rl Dr,i. (3.19)

An important example that fits into the above general frame is Alpert’s orthogonal multi-
wavelet basis, cf. [2]. It is summarized in Appendix A.1.

Cancellation property The vanishing moments (3.11) and the normalization (3.15) imply that
the details become small with increasing refinement level when the underlying function is locally
smooth, i.e.,

|〈u, ψ̃l,k,i〉[a,b]| ≤ inf
P∈ΠM−1

|〈u− P, ψ̃l,k,i〉[a,b]| . 2−lM‖u‖W 1,M (Vl,k). (3.20)

Here we assume that the grid hierarchy is quasi-uniform in the sense that the diameters of
the cells on each level l are proportional to 2−l. More precisely, the details decay at a rate
of at least 2−lM , provided that the function u has sufficient regularity on the support of the
multiwavelet, i.e., u ∈ W 1,M (Vl,k), and the multiwavelet has vanishing moments of order M .
In fact, the higher M the more details may be discarded in smooth regions. Typically, the
minimal number of vanishing moments is determined by M = Mp,i ≥ p. Therefore, opposite to
biorthogonal wavelets, the number of vanishing moments can be easily improved by increasing
the order p without enlarging the support.

Multiscale transformation In order to exploit the above compression potential, the idea is to
transform the array of single-scale coefficients corresponding to a finest uniform discretization
level

uL := (uL,k)k∈IL , uL,k := (uL,k,i)i∈P (3.21)

into a sequence of coarse grid data and details

u0 := (u0,k)k∈I0 , dl := (dl,k)k∈Il , dl,k := (dl,k,i)i∈P , l = 0, . . . , L− 1, (3.22)
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representing the successive update from a coarser resolution to a finer resolution. Here the
coefficients ul,k,i and dl,k,i are defined according to (3.9). In fact, the single-scale and the
multiscale representation realize the change of basis in (3.7).
For this purpose, we first note that the nesting of the spaces (3.4) as well as the biorthogo-

nality relations (3.12) and (3.13) ensure the existence of the two-scale decomposition

ϕ̃l,k,i =
∑
j∈P

∑
s∈{0,1}

m̃0,s
i,j ϕ̃l+1,2k+s,j , i ∈ P (3.23)

ψ̃l,k,i =
∑
j∈P

∑
s∈{0,1}

m̃1,s
i,j ϕ̃l+1,2k+s,j , i ∈ P (3.24)

and its inverse

ϕ̃l+1,2k+s,i =
∑
j∈P

(
g̃0,s
i,j ϕ̃l,k,j + g̃1,s

i,j ψ̃l,k,j

)
, s ∈ {0, 1}, i ∈ P. (3.25)

Here the mask coefficients are determined by the biorthogonality conditions as

m̃0,s
i,j = 〈ϕ̃l,k,i, ϕl+1,2k+s,j〉[a,b], m̃1,s

i,j = 〈ψ̃l,k,i, ϕl+1,2k+s,j〉[a,b], (3.26)

g̃0,s
i,j = 〈ϕl+1,2k+s,i, ϕ̃l,k,j〉[a,b], g̃1,s

i,j = 〈ϕl+1,2k+s,i, ψ̃l,k,j〉[a,b]. (3.27)

In summary, according to (3.7), the change of basis provides two–scale relations for the coef-
ficients inherited from the two–scale relations of the single-scale functions and the multiwavelet
functions,

ul,k,i =
∑
j∈P

∑
s∈{0,1}

m̃0,s
i,j ul+1,2k+s,j , i ∈ P, (3.28)

dl,k,i =
∑
j∈P

∑
s∈{0,1}

m̃1,s
i,j ul+1,2k+s,j , i ∈ P, (3.29)

and, conversely,

ul+1,2k+s,i =
∑
j∈P

(
g̃0,s
i,j ul,k,j + g̃1,s

i,j dl,k,j

)
, s ∈ {0, 1}, i ∈ P, (3.30)

which reflects the typical cascadic format of a wavelet transform. The two-scale relations are
illustrated for the 1D case in Figure 2. A successive application of the relations (3.28) and
(3.29), see Figure 3, decomposes the array uL into coarse scale coefficients d0 and higher level
fluctuations d0, . . . ,dL−1. We refer to this transformation as the multiscale transformation
determined by the multiscale operator ML : uL −→ (u0,d0, . . . ,dL−1) with

ul = MT
l,0ul+1, dl = MT

l,1ûl+1.

Here the mask matrices Ml,0 and Ml,1 are defined by the mask coefficients m̃0,s
i,j and m̃1,s

i,j ,
respectively. It is reversed by recursively applying the two-scale relation (3.30). The result-
ing inverse multiscale transformation is described by the inverse multiscale operator M−1

L :
(u0,d0, . . . ,dL−1) −→ uL with

ul+1 = GT
l,0ul + GT

l,1dl.

Here again the mask matrices Gl,0 and Gl,1 are determined by the mask coefficients g̃0,s
i,j and

g̃1,s
i,j , respectively.
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Fine Coarse Detail

+=

Figure 2: Two-scale Transformation (p = 1)

uL uL−1 · · · u1 u0

dL−1 · · · d1 d0

Figure 3: Multiscale transformation

Thresholding and approximation Due to the cancellation property, details might become
negligibly small whenever the underlying function is locally smooth. This gives rise to hard
thresholding characterized by the index set

Dε := {(l, k, i) : |dl,k,i| > εl}.

Here ε denotes the threshold value. The level-dependent threshold values εl are determined by
an appropriate scaling of ε. Later on we will choose εl := 2l−L ε. Then the threshold operator
TDε : (u0,d0, . . . ,dL−1) −→ (ũ0, d̃0, . . . , d̃L−1) is defined element-wise by

d̃l,k,i :=
{
dl,k,i , (l, k, i) ∈ Dε
0 , else , ũ0,k,i := u0,k,i, k ∈ I0.

Note that thresholding is not performed on the coarse-scale averages in order to maintain the
conservation property of the adaptive DG scheme.
Later on we will perform thresholding also for an arbitrary index set D instead of Dε. Let

uL and uL,D̃ε be the projections according to (3.7) corresponding to the coefficients uL and
AD uL, where

AD :=M−1
L TDML, (3.31)

and, in particular for D = Dε,
Aε :=M−1

L TDεML. (3.32)

In order to investigate the approximation error introduced by thresholding we first note that
by (3.7) we may write for any x ∈ VL,r, r ∈ IL,

uL(x) =
L−1∑
l=−1

∑
k∈Il

∑
i∈P

dl,k,iψl,k,i(x) =
∑

(l,k,i)∈ΣL,r

dnl,k,iψl,k,i(x), (3.33)

where we define d−1,0,i := v0,0,i, ψ−1,0,i := ϕ0,0,i and I−1 := I0. Note that for x ∈ VL,r the
summation in (3.33) is performed only for those indices (l, k, i) with x ∈ supp ψl,k,i = Vl,k
according to (3.10). These indices are determined by the support ΣL,r

ΣL,r := {(l, k, i) : VL,r ∩ Vl,k 6= ∅, l = −1, ..., L− 1, i ∈ P} (3.34)
= {(l, br/2L−l+c, i) : l = −1, ..., L− 1, i ∈ P}

corresponding to VL,r. The last identity holds because of the dyadic grid hierarchy (3.1), where
l+ := max(0, l). Then we may rewrite uL locally as

uL(x) =
∑

(l,k,i)∈ΣL,r

dnl,k,iψl,k,i(x) =
∑
i∈P

L−1∑
l=−1

dn
l,br/2L−l+c,iψl,br/2L−l+c,i(x) (3.35)
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and the approximation error due to thresholding is locally determined by

uL(x)− uL,Dε(x) =
∑

(l,k,i)6∈Dε

dl,k,i ψl,k,i =
∑

(l,k,i)∈ΣL,r\Dε

dnl,k,iψl,k,i(x). (3.36)

Then we can estimate the approximation error in the Lq-metric, q ∈ [1,∞), by

‖uL − uL,Dε‖
q
Lq(Ω) ≤

∑
(l,k,i)6∈Dε

|dl,k,i|q
∫

Ω
|ψl,k,i(x)|q dx. (3.37)

Since ψl,k,i has compact support and is normalized with respect to L∞ according to (3.10) and
(3.14), we infer

‖ψl,k,i‖qLq(Ω) ≤ (supp ψl,k,i) ‖ψl,k,i‖qL∞(Ω) . 2−l+ .

The non-significant multiscale coefficients can be estimated by |dl,k,i| ≤ εl+ for all (l, k, i) 6∈ Dε.
There are at most pN0 2l+ coefficients on level l+. Hence, the approximation error is bounded
by

‖uL − uL,Dε‖
q
Lq(Ω) .

L−1∑
l=−1

(εl+)q = εqa−Lq

(
1 +

L−1∑
l=0

alq

)
≤ εq

(
1 +

1
aq − 1

)
. εq, (3.38)

where we choose εl = al+−Lε, a > 1.
In case of q =∞ we have to proceed slightly different. Since ψl,k,i is normalized with respect

to L∞, we conclude from (3.36) and (3.34)

|uL(x)− uL,Dε(x)| ≤
∑

(l,k,i)∈Σ̄L,r\Dε

|dl,k,i| · |ψl,k,i(x)| .
∑

(l,k,i)∈Σ̄L,r

εl+ =
L−1∑
l=−1

al+−Lε . ε.

A similar result holds for the approximation error of the mean function (2.11). According to
(3.36) this error is determined by

ûL(x)− ûL,Dε(x) =
∑

(l,k,i)∈ΣL,r\Dε

dnl,k,i〈ψl,k,i, ϕ̃L,r,0〉[a,b], x ∈ VL,r. (3.39)

By the normalization (3.14) and (3.15) of the basis functions the inner products are uniformly
bounded, i.e.,

|〈ψl,k,i, ϕ̃L,r,0〉[a,b]| . 1, (l, k, i) ∈ ΣL,r.

Hence we conclude in a similar way as above

|ûL(x)− ûL,Dε(x)| ≤
∑

(l,k,i)∈Σ̄L,r

εl+ =
L−1∑
l=−1

al+−Lε . ε, x ∈ VL,r. (3.40)

Then we obtain for the approximation error of the mean function in the Lq-metric, q ∈ [1,∞)

‖ûL − ûL,Dε‖
q
Lq(Ω) =

∑
r∈IL

∫
VL,r

|ûL(x)− ûL,Dε(x)|qdx . εq,

where we use
∑

r∈IL hL = (b − a) < ∞, i.e., the boundedness of the domain Ω = [a, b]. For
q =∞ the result directly follows from (3.40). Thus we have proven the following proposition.
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Proposition 1 (Approximation error)
Let Ω = [a, b] be bounded and εl = al−Lε with a > 1. Then the approximation error with respect
to the set of significant details Dε is uniformly bounded with respect to Lq(Ω), q ∈ [1,∞], i.e.,

‖uL − uL,Dε‖Lq(Ω) . ε and ‖ûL − ûL,Dε‖Lq(Ω) . ε. (3.41)

4 Adaptive multiresolution DG scheme

We now combine the MRA in Section 3 with the DG scheme presented in Section 2. The
idea is first to derive evolution equations for the single-scale and the multiscale coefficients,
respectively, and then to apply thresholding to discard non-significant contributions and, hence,
to reduce the complexity of the evolution system. The procedure is similar to the derivation of
adaptive MR-FV schemes, cf. [33]. Starting point is a given DG discretization that is defined
on the uniform highest resolution level L, i.e., vL ≡ uh with vL,k,i ≡ vk,i in (2.3). This will
be referred to as the reference scheme on the reference mesh. Since for the time discretization
a TVD-Runge-Kutta method (2.23) is used, where each stage can be interpreted as a linear
combination of forward Euler steps, we confine ourselves to the forward Euler step (2.7) with
(2.8), (2.9) and (2.10). Furthermore, the limiting process is split from the evolution process as
is justified by (2.20) and (2.30).
In a first step we now apply the two-scale relation (3.28) to the evolution equation (2.7),

where we replace ul+1,2k+s,j by v
µ
l+1,2k+s,j for µ = n and µ = n+ 1. Then we recursively obtain

for any k ∈ Il, i ∈ P, the two-scale evolution equations for the single-scale coefficients

vn+1
l,k,i = vnl,k,i − τ

(
Bn
l,k,i −Gnl,k,i − Snl,k,i

)
, (4.1)

where we proceed levelwise from fine to coarse. It turns out that the numerical flux Fnl,k, the
numerical flux balance Bn

l,k,i, the flux quadrature Gnl,k,i and the source quadrature Snl,k,i are
recursively determined by

Fnl,k := Fnl+1,2k = . . . = FnL,2L−lk = F (vL(tn, x−
L,2L−lk

), vL(tn, x+
L,2L−lk

)), (4.2)

Bn
l,k,i := Fnl,k+1 · ϕ̃l,k,i(x−l,k+1)− Fnl,k · ϕ̃l,k,i(x+

l,k), (4.3)

Gnl,k,i :=
∑

s∈{0,1}

∑
j∈P

m̃0,s
ij G

n
l+1,2k+s,j =

∫
Vl,k

f(vL(tn, x))ϕ̃′l,k,i(x) dx, (4.4)

Snl,k,i :=
∑

s∈{0,1}

∑
j∈P

m̃0,s
ij S

n
l+1,2k+s,j =

∫
Vl,k

s(vL(tn, x)) · ϕ̃l,k,i(x) dx. (4.5)

Details of the derivation can be found in Appendix A.2. Note that due to the nestedness of the
grid hierarchy and the consistency property of the numerical fluxes, the flux balances are only
computed by the fine-scale fluxes corresponding to the edges of the coarse cell, see (4.3). These,
in particular, have to be determined by the fine scale data. However, the internal fluxes cancel
and, hence, the overall complexity is reduced, because we only have to compute two fluxes for
Vl,k instead of 2L−l+1 fluxes corresponding to the cells VL,2L−lk+r, r = 0, . . . , 2L−l−1. In higher
dimensions, the subdivision of the cell faces has to be taken into account. For instance, for
a d-dimensional Cartesian grid hierarchy we would have to compute 2d 2(L−l)(d−1) fluxes that
correspond to all interfaces on level L that form a partition of an interface on a coarser scale l.
On the other hand, the volume integrals of the flux and source quadrature, (4.4) and (4.5), are
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determined by the sum of all integrals on the finest scale L according to (2.10). Hence there is
no complexity reduction, i.e., we still have the complexity of the reference grid. However, if the
integrals can be computed exactly, then this sum can be replaced by one integral on the local
scale l.
Similarly, we derive evolution equations for the details where we recursively apply the mul-

tiscale transformation (3.29) to the evolution equations (4.1) of the single-scale coefficients for
l = L − 1 ↘ 0. Then the evolution process (2.7) on the uniform reference mesh is equivalent
to the evolution of the multiscale coefficients, i.e., coarse-scale coefficients and details,

vn+1
0,k,i = vn0,k,i − τ

(
Bn

0,k,i −Gn0,k,i − Sn0,k,i
)
, (4.6)

dn+1
l,k,i = dnl,k,i − τ

(
B
n
l,k,i −G

n
l,k,i − S

n
l,k,i

)
. (4.7)

Here the numerical flux balance, the flux quadrature and the source quadrature differ from
those in (4.1):

B
n
l,k,i :=

∑
j∈P

∑
s∈{0,1}

m̃1,s
i,jB

n
l+1,2k+s,j =

Fnl,k+1 · ψ̃l,k,i(x−l,k+1)− Fnl,k · ψ̃l,k,i(x+
l,k) +

Fnl+1,2k+1 · (ψ̃l,k,i(x−l+1,2k+1)− ψ̃l,k,i(x+
l+1,2k+1)), (4.8)

G
n
l,k,i :=

∑
j∈P

∑
s∈{0,1}

m̃1,s
i,jG

n
l+1,2k+s,j =

∑
s∈{0,1}

∫
Vl+1,2k+s

f(vL(tn, x))ψ̃′l,k,i(x) dx, (4.9)

S
n
l,k,i :=

∑
j∈P

∑
s∈{0,1}

m̃1,s
i,j S

n
l+1,2k+s,j =

∫
Vl,k

s(vL(tn, x)) · ψ̃l,k,i(x) dx. (4.10)

In particular, we note that the multiwavelet ψl,k,i typically jumps at the cell center xl,k+ 1
2

=
xl+1,2k+1. Therefore the internal numerical flux Fnl+1,2k+1 does not cancel in (4.8) and we have
to split the integral in (4.9) into two subintervals. These equations are employed later on in the
analysis of the adaptive scheme. Details on their derivation can be found again in Appendix
A.2. However, in practice, it is more convenient to use (4.1) for the cells of the locally refined
grid.
According to the change of basis (3.7) applied to (2.3), the evolution step (2.7) of the reference

scheme can be rewritten as

vn+1
L =

∑
k∈I0

∑
i∈P

vn+1
0,k,i ϕ0,k,i +

L−1∑
l=0

∑
k∈Il

∑
i∈P

dn+1
l,k,i ψl,k,i, (4.11)

where the multiscale coefficients are determined by (4.6) and (4.7). As is motivated by the
cancellation property (3.20), we may reduce the degrees of freedom by applying first data
compression to the multiscale coefficients without loosing significantly in accuracy. Then the
compressed set of equations is solved on a locally refined adaptive grid.

Data compression The idea of the adaptive DG scheme is to perform the evolution step only
for significant details

Dn+1 :=
{

(l, k, i) ; |dn+1
l,k,i | > εl, i ∈ P, k ∈ Il, l ∈ {0, . . . , L− 1}

}
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and to discard all other equations. Since this set cannot be computed before the data at time
level tn+1 are known, a prediction set D̃n+1 has to be computed from Dn such that the reliability
condition

Dn ∪ Dn+1 ⊂ D̃n+1 (4.12)

holds. In particular, this condition must be satisfied after having performed the whole update
consisting of the evolution step and the limiting process. In Section 5.2 we will present a
prediction strategy satisfying the reliability condition (4.12).

Adaptive grid According to the change of basis (3.7), the reduced system of evolution equa-
tions for the significant multiscale coefficients corresponding to the prediction set D̃n+1 can
be replaced by a system of evolution equations for single-scale coefficients corresponding to a
locally refined grid G̃n+1. The adaptive grid is characterized by the index set G ⊂ {(l, k) ; k ∈
Il, l = 0, . . . , L}, i.e., R =

⋃
(l,k)∈G Vl,k with |Vl,k ∩ Vl′,k′ | = 0 for (l, k) 6= (l′, k′), which is

computed from D = D̃n+1. For this purpose we have to assume that D is a tree, i.e., the
relation

(l, k, i) ∈ D ⇒ (l, k, j) ∈ D and (l − 1, bk/2c, j) ∈ D ∀j ∈ P, (4.13)

holds for any l ∈ {1, . . . , L − 1}. Note that in case of adaptive MR-FV schemes [33] the tree
has to be graded of degree q ≥ 1. This leads to larger trees and, hence, degrades the efficiency.
Then G can be determined recursively. For this purpose, the index set G is initialized by all
indices of the coarsest discretization. Then, traversing through the levels from coarse to fine
we proceed as follows: if (l, k, i) ∈ D for some i ∈ P, then the cell Vl,k is locally refined, i.e.,
the index (l, k) is removed from G and the indices of the subcells on the finer level are added
to G. Finally, we obtain a locally adapted grid which naturally corresponds to the outer leaves
of the tree of significant details. Note that, if D is a tree, the system of evolution equations for
the single-scale coefficients on grid G is equivalent to the system of evolution equations for the
multiscale coefficients.

Change of basis By the sets D and G a local change of basis is performed that, in analogy
to (3.7), reads:

vL =
∑

(l,k)∈G

∑
i∈P

vl,k,i ϕl,k,i =
∑
k∈I0

∑
i∈P

v0,k,i ϕ0,k,i +
∑

(l,k,i)∈D

dl,k,i ψl,k,i. (4.14)

For analytical purposes it is convenient to write the evolution process in terms of the multiscale
coefficients. However, from a practical point of view, it is preferable to evolve the cell averages
according to (4.1) on a locally refined grid, because the local single-scale coefficients are needed
in the limiting process. Moreover, we need to evaluate vL when computing the numerical flux
(4.2) as well as the flux quadrature (4.4) and source quadrature (4.5). For this purpose, the
evaluation of the single-scale representation is more efficient.
Finally, we summarize the adaptive MR-DG scheme in the following algorithm. It basically

consists of three steps corresponding to (i) refinement, (ii) limiting and evolution as well as (iii)
coarsening.

Algorithm 1 (Adaptive MR-DG scheme)
Step 1. (Refinement) Determine the prediction set D̃n+1 and apply the approximation operator
AD̃n+1 to the given data, i.e., compute

vn
L,D̃n+1 := AD̃n+1vnL,Dn . (4.15)
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Step 2a. (Limiting) We apply a limiter to the data on the adaptive grid G̃n+1, where only
the higher order coefficients on the highest resolution level vn+1

L,k,i, i ∈ P
∗, (L, k) ∈ G̃n+1, are

modified, i.e.,

vnL,Dn+1 := ΠL,D̃n+1vnL,D̃n+1 with vnL,k,0 = vnL,k,0, (L, k) ∈ G̃n+1. (4.16)

Step 2b. (Evolution) Perform time evolution of the multiscale coefficients corresponding to the
prediction set D̃n+1 that are determined by the limited data vnL,Dn+1 according to (4.6), (4.7),
i.e.,

ṽn+1
L,D̃n+1

:= EL,D̃n+1vnL,D̃n+1 . (4.17)

Since D̃n+1 is supposed to be a tree, we may equivalently evolve the single-scale coefficients on
the adaptive grid corresponding to the set G̃n+1 in time according to (4.1).
Step 3. (Coarsening) Threshold the data on the new time level by applying the approximation
operator Aε, i.e.,

vn+1
L,Dn+1 := Aεṽn+1

L,D̃n+1
. (4.18)

We emphasize that all operators are applied locally, i.e., the multiscale operatorsML,M−1
L ,

the threshold operator TD and the approximation operator AD only work on the set D of
significant coefficients. Therefore, if the integrals in the flux quadrature (4.4) and the source
quadrature (4.5) can be computed exactly, then the complexity of the resulting algorithm might
be significantly reduced from the cardinality of the reference mesh to the cardinality of the set
D. Otherwise we have to approximate the local integrals such that the error can be uniformly
bounded by the local threshold value εl. This has been investigated in detail for adaptive
MR-FV schemes in [27].

5 Error analysis

The objective of the proposed adaptive MR-DG scheme is to reduce for a given DG scheme
performed on the uniform reference mesh computational cost and memory requirements while
preserving the accuracy of the reference scheme. In order to achieve this, we proceed similarly
as in case of the adaptive MR-FV scheme, cf. [33], using a perturbation argument. For this
purpose we first introduce the entropy solution u of the initial value problem (2.1) and its
projection uL to the space SpL according to (2.3). Let vL and vL,ε denote the approximate
solution functions determined by the reference DG scheme and the adaptive MR-DG scheme,
respectively. An ideal strategy would be to prescribe an error tolerance tol. Then the number
of refinement levels L should be determined during the computation such that the error meets
the tolerance, i.e.,

‖ûL(t, ·)− v̂L,ε(t, ·)‖L1(Ω) ≤ tol

for possibly small L. Here ŵL denotes the mean of a function wL ∈ SpL according to (2.11).
Since in general no error estimator is available for the adaptive scheme, we split the error into
two parts corresponding to the discretization error η̂L := ûL − v̂L of the reference DG scheme
and the perturbation error êL := v̂L − v̂L,ε, i.e.,

‖ûL(t, ·)− v̂L,ε(t, ·)‖L1(Ω) ≤ ‖η̂L(t, ·)‖L1(Ω) + ‖êL(t, ·)‖L1(Ω) ≤ tol. (5.1)

We now assume that there is an a priori error estimate (2.22) of the discretization error, i.e.,
‖η̂L(t, ·)‖L1(Ω) ∼ h

β
L where hL denotes the spatial step size and β the convergence order. Then,
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ideally we would determine the number of refinement levels L such that hβL ∼ tol. In order
to preserve the accuracy of the reference DG scheme we may now admit a perturbation error
which is proportional to the discretization error, i.e., ‖êL(t, ·)‖L1(Ω) ∼ ‖η̂L(t, ·)‖L1(Ω). From
this, we conclude

L = L(tol, β) and ε = ε(L). (5.2)

Therefore it remains to verify that the perturbation error can be controlled. Note that in
each time step we introduce an error due to the thresholding procedure. Obviously, this error
accumulates in each step, i.e., the best we can hope for is an estimate of the form

‖êL(tn, ·)‖L1(Ω) ≤ C nε.

However, the threshold error may be amplified in addition by the evolution step. In order to
control the cumulative perturbation error, we have to prove that the constant C is independent
of L, n, τ and ε. For this purpose, we will consider the following two issues in more detail,
namely, (i) the uniform boundedness of the perturbation error and (ii) the reliability of the
prediction procedure. Again, the analysis is only performed for a forward Euler time step.
Due to the stability property (2.27) it also holds for the general case of a TVD-RK time
discretization, where we apply Algorithm 1 to each Runge-Kutta stage in (2.25).

5.1 Perturbation error

In a first step we verify the uniform boundedness of the perturbation error between the reference
DG scheme and the adaptive MR-DG scheme. For this purpose, we rewrite both schemes at
some time tn in single-scale representation as

vnL(x) =
∑
k∈IL

∑
i∈P

vnL,k,iϕL,k,i(x), vnL,ε(x) =
∑
k∈IL

∑
i∈P

vnL,k,iϕL,k,i(x), x ∈ Ω (5.3)

according to (3.7). Note that for the adaptive scheme we prolongate the coefficients from the
adaptive grid to the reference grid performing a change of basis according to (3.7), where we
put all missing detail coefficients to zero.
According to (3.21) the single-scale representations are characterized by the sequence of

coefficients vL and vL, respectively. Since we assume that the initial data u0 are compactly
supported, then, by the finite speed of propagation the solution is compactly supported as well.
Therefore it is sufficient to consider an arbitrary but fixed compact set Ω = [a, b] containing
the support of u for t ∈ [0, T ].
In order to investigate the perturbation error, we introduce the following discrete operators

defined on the coefficients of the single-scale representation:

1. the limiting operator ΠL satisfying the sufficient TVB condition (2.30) on the reference
mesh and acting only on the higher order coefficients in order to maintain the conservation
property,

2. the evolution operator EL of the reference DG scheme determined by (2.7), where the
numerical flux, the numerical flux balance, the flux quadrature and the source quadrature
are determined by (2.8), (2.9) and (2.10) on the reference mesh,
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3. the prediction operator AD̃n determined by (3.31) realizing the refinement step (4.15)
in Algorithm 1; the prediction set D̃n is assumed to (i) satisfy the reliability condition
(4.12), (ii) to be a tree, i.e., (4.13) holds, and (iii) not to change the data, i.e.,

AD̃(v)v = v with v = Aεw for all w ∈ (Rp)NL . (5.4)

This, in particular, implies the inclusion D̃(v) ⊃ Dε(v).

4. the limiting operator ΠL,D̃n realizing the limiting step (4.16) in Algorithm 1, where lim-
iting is performed only for the higher order coefficients on the highest resolution level L
of the adaptive grid,

5. the evolution operator EL,D̃n realizing the evolution step (4.17) in Algorithm 1, where the
data corresponding to the adaptive grid are evolved, and

6. the approximation operator Aε determined by (3.32) realizing the coarsening step (4.18)
in Algorithm 1 with respect to the set Dn of significant details.

Then one step of the reference and the adaptive scheme can be represented by these discrete
operators as

vnL = EL ΠL vn−1
L , vnL = Aε EL,D̃n ΠL,D̃n AD̃n vn−1

L . (5.5)

In the following this step will be referred to as update.
Finally, for any mean function ŵL of a function wL ∈ SpL that is defined by (2.11), we conclude

from its single-scale representation (3.7)

‖ŵL‖qLq(Ω) = hL
∑
k∈IL

|wL,k,0|q =: ‖RwL‖qq, q ∈ [1,∞) (5.6)

‖ŵL‖L∞(Ω) = max
k∈IL

|wL,k,0| =: ‖RwL‖∞. (5.7)

Here R : (Rp)NL → RNL is the restriction of a vector of higher order coefficients wL =
(wL,k,i)k∈IL,i∈P to the vector of mean values RwL := (wL,k,0)k∈IL . Note that we may estimate
the Lq-norm, q ∈ [1,∞), by the L∞-norm

‖ŵL‖Lq(Ω) ≤ (b− a)1/q ‖ŵL‖L∞(Ω) resp. ‖RwL‖q ≤ (b− a)1/q ‖RwL‖∞, (5.8)

since the domain Ω = [a, b] is bounded. Then we can estimate the perturbation error.

Theorem 1 (Uniform boundedness of perturbation error)
Let the following assumptions hold:

(A1) The initial data are consistent, i.e.,
‖R(v0

L − v0
L)‖1 ≤ C1 ε with fixed C1.

(A2) The approximation error is uniformly bounded, i.e.,
‖R(Aε w −w)‖1 ≤ C2 ε for all w ∈ (Rp)NL with fixed C2.

(A3) Both the reference and the adaptive scheme have uniformly bounded solutions, i.e.,
‖RvµL‖∞, ‖RvµL‖∞ ≤ C(T, u0) for all µ = 0, . . . , n.
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(A4) The perturbation by the adaptive scheme in each time step is uniformly bounded, i.e.,
‖R(EL,D̃(w) ΠL,D̃(w)AD̃(w) w − EL ΠLAD̃(w) w)‖1 ≤ C4 ε

holds for all w ∈ (Rp)NL with ‖Rw‖∞ ≤ C(T, u0).

(A5) The reference scheme is locally l1-stable with uniform constants, i.e.,
‖R(EL ΠL w − EL ΠL w)‖1 ≤ (1 + Csτ)‖R(w −w)‖1 + C5 h

α
L

holds for w,w ∈ (Rp)NL with ‖Rw‖∞, ‖Rw‖∞ ≤ C(T, u0).

Then the perturbation error is uniformly bounded for τ ≤ τmax, i.e.,

‖v̂nL,ε − v̂nL‖L1(Ω) = ‖R(vnL − vnL)‖1 ≤ C(hαL + ε)/τ ∀n τ ≤ T. (5.9)

where the constant C is given by C = C̄ (T + τmax) if Cs = 0 and C = C̄eCs(T+τmax)/Cs if
Cs 6= 0 with C̄ = max

(
C1, C2 + C4, C5

)
.

This theorem can be considered a roadmap to verify the boundedness of the perturbation
error which is needed to balance the discretization error and the perturbation error in (5.1). We
have not yet specified a particular choice for the MRA, the prediction strategy, the limiter and
the reference DG scheme. The main objective and also the most original part of the present
work is the appropriate choice of these key ingredients such that the assumptions of Theorem
1 hold. For this purpose, we first comment on these assumptions before proving the theorem:

Remark 1 (Remarks on Assumptions (A1) – (A5))

(A1) The consistency of the initial values can be ensured by first computing the coefficients
v0
L,k,i := 〈u0, ϕ̃L,k,i〉 and then applying hard thresholding to vL, i.e., v0

L := Aεv0
L. Then

Assumption (A1) can be concluded from Proposition 1 for the approximation error.

(A2) The approximation error immediately follows from Proposition 1. To see this, we note that
‖R(wε−w)‖q = ‖ŵε− ŵ‖Lq(Ω), where ŵ and ŵε are the mean functions of the functions
w and wε defined by the single-scale coefficients w ∈ (Rp)NL and wε := Aε w ∈ (Rp)NL
according to (3.7).

(A3) Note that the local Lipschitz constant LF of the numerical flux F enters the constant C5

in (A5). To render this constant independent of the discretization parameters, the data of
both the reference and the adaptive DG scheme in the mean have to be uniformly bounded.
For the reference DG scheme this holds true for sufficiently small grid size hL ≤ hmax
and a sufficiently small constant ratio τ/hL, see Appendix A.3. For the adaptive scheme
this will be verified in Section 5.2.4 under a similar bound for hL and a bound on ε of the
form ε ≤ C hL with constant C.

(A4) In order to verify this assumption, we need to design a prediction strategy and an adaptive
limiter, that do not introduce an error larger than ε. By setting ΠL,D̃n = ΠL and EL,D̃n =
EL this trivially holds, but we seek a much more efficient solution using less degrees of
freedom.

(A5) The local l1-stability of the reference scheme can be proven to hold for a sufficiently small
CFL condition. It is strongly related to the convergence of the DG scheme. The basic
idea is to interpret the DG scheme in the mean (2.7) with numerical flux (2.19) as a
perturbation of a monotone finite volume scheme. Then it is crucial to assume that the
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limiter ΠL does not modify the zero order coefficients (mean values) and (2.21) holds
with uniform constant Cα. For convenience of the reader we detail the proof in Appendix
A.3. Note that there seems to be no result available verifying convergence to the entropy
solution of the initial value problem (2.1) for general fluxes that avoids the uniform bound
(2.21) of the point evaluations at the cell interfaces. Therefore we confine ourselves to
this class of converging DG schemes. Furthermore the constant Cs is related to the source
function s. It will vanish for a homogeneous problem, i.e., s ≡ 0. Finally, the constant
C5 depends on the local Lipschitz bound for the numerical flux. It can be estimated by a
uniform bound due to the boundedness of the reference scheme, see the remark on (A3).

Proof: (Theorem 1) In a first step we split the perturbation error into three parts

‖RenL‖1 = ‖R(vnL − vnL)‖1 ≤ an−1 + bn−1 + cn−1

with

an−1 := ‖R(Aε EL,D̃n ΠL,D̃n AD̃n vn−1
L − EL,D̃n ΠL,D̃n AD̃n vn−1

L )‖1,

bn−1 := ‖R(EL,D̃n ΠL,D̃n AD̃n vn−1
L − EL ΠLAD̃n vn−1

L )‖1,

cn−1 := ‖R(EL ΠLAD̃n vn−1
L − EL ΠL vn−1

L )‖1.

Then the first term can be estimated by the approximation property (A2), the second term
by the boundedness of the perturbation (A4) and the third term by the stability property (A5).
Note that by (5.4) and (5.5) we have

‖R(AD̃n vn−1
L − vn−1

L )‖1 = ‖R(vn−1
L − vn−1

L )‖1.

Hence the perturbation error can be bounded by

‖RenL‖1 ≤ ‖Ren−1
L ‖1 (1 + Cs τ) + C5 h

α
L + (C2 + C4) ε.

Repeating this argument we obtain further

‖RenL‖1 ≤ ‖Re0
L‖1 (1 + Cs τ)n + (C5 h

α
L + ε (C2 + C4))

n−1∑
i=0

(1 + Cs τ)i.

We now put C̄ = max(C1, C2 + C4, C5). In case of Cs 6= 0 we conclude with Assumption (A1)

‖RenL‖1 ≤ (hαL + ε)C̄
(1 + Csτ)n+1 − 1

Csτ
≤ (hαL + ε)C̄

eCs(n+1)τ − 1
Csτ

,

otherwise we obtain
‖RenL‖1 ≤ (hαL + ε)C̄

nτ + τ

τ
.

Since the maximal number of time steps is bounded by n ≤ T/τ for a bounded time interval
[0, T ], T <∞, and the time step is bounded by τmax, the assertion holds. �

From Theorem 1 and (5.1) we immediately conclude that the accuracy of the reference DG
scheme is preserved, provided that ε and α are appropriately chosen.

Corollary 1 (Choice of the threshold parameter) If the discretization error of the reference
DG scheme is bounded by ‖η̂L(t, ·)‖L1(Ω) ≤ C 2−β L for some β > 0 and α ≥ 1 + β in the
entropy bound (2.21), then the accuracy is preserved by the adaptive MR-DG scheme provided
that ε ∼ 2−γ L with γ = 1 + β and the time step τ is limited by a CFL condition.
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In order to apply the above perturbation analysis, we now need to design a reliable prediction
strategy and an appropriate limiting process such that the reliability condition (4.12) holds true
and the adaptive MR-DG scheme is uniformly bounded, i.e., the assumptions (A3) and (A4)
can be verified.

5.2 Prediction and limiting

The efficiency of the adaptive MR-DG scheme crucially relies on the compression rate of the
threshold process, since time evolution is only performed for the significant multiscale coef-
ficients or, alternatively, the single-scale coefficients corresponding to the adaptive grid. On
the other hand, if we miss a significant detail in the prediction step, then it might contribute
significantly to the threshold error and, hence, dominate the discretization error of the reference
DG scheme. Therefore the prediction set has to be designed such that all detail coefficients not
contained in the prediction set remain non-significant after the update (5.5) corresponding to
Algorithm 1.
Since the update contains both the limiting process and the evolution step, see Step 2 in

Algorithm 1, the prediction strategy must account for both nonlinearities.
In the context of the adaptive MR-FV scheme, a prediction strategy has been developed for

which the reliability condition (4.12) could be analytically verified, see [16, 27]. Unfortunately,
we can not apply the same strategy to the adaptive MR-DG scheme, because of the limiting
process and missing regularity of the primal multiwavelet functions.
In order to verify (A2) in Theorem 1 and later on (B2) in Theorem 4, we split the evolution

error into two parts:

‖R(EL,D̃(w) ΠL,D̃(w) v − EL ΠL v)‖q ≤ ‖R(EL,D̃(w) u− EL u)‖q + ‖R(ELΠL,D̃(w)v − ELΠL v)‖q,

where v := AD̃(w) w and u := ΠL,D̃(w) v are defined by data w ∈ (Rp)NL and q ∈ [1,∞]. Thus,
we need to bound the two terms by ε, i.e., we have to construct the prediction set in a way
such that

(E) ‖R(EL,D̃(w)u− ELu)‖q . ε and (L) ‖R(ELΠL,D̃(w)v − ELΠL v)‖q . ε

hold. This will ensure reliability of the evolution step and the limiting process: For the first
estimate (E), we thus have to verify that the detail coefficients dl,k,i, (l, k, i) 6∈ D̃, that are not
updated by the adaptive MR-DG scheme stay bounded by εl. For the second estimate (L), we
have to make sure that the difference of the two different limiters is bounded, and then employ
the Lipschitz-continuity of REL that follows from the Lipschitz-continuity of the numerical flux
function. Due to conditions (L) and (E) the evolution error is uniformly bounded and the
following theorem holds.

Theorem 2 (Uniform boundedness of evolution error) Let the prediction fulfil the estimates in
Lemma 1 stated below. Let Ω = [a, b] be bounded and εl = 2l−Lε. Then the evolution error is
uniformly bounded with respect to Lq(Ω), q ∈ [1,∞], i.e., there exist constants Cq independent
of L and ε such that

‖R(EL,D̃(w) ΠL,D̃(w)AD̃(w) w − EL ΠLAD̃(w) w)‖q ≤ Cq ε (5.10)

holds for all w ∈ (Rp)NL with Cq = Cq(w).

From the construction of the prediction to be presented in Section 5.2.1 we will conclude the
estimates (L) and (E) in Sections 5.2.2 and 5.2.3.
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5.2.1 Prediction strategy

The reliability condition (4.12) implies that for any index (l, k, i) 6∈ D̃n+1 the detail coefficient
remains bounded by the order of the threshold value εl after having performed the update, i.e.,
|dn+1
l,k,i | . εl. We therefore have to ensure that the terms on the right-hand side of the discrete

evolution equation (4.7) can be bounded by

|Bn
l,k,i| ≤ 2L εl, |Gnl,k,i| ≤ 2L εl, |Snl,k,i| ≤ 2L εl.

Note that the factor 2L cancels out because the time step size τ is proportional to the space
discretization, i.e., τ ∼ 2−L due to a CFL condition. As we will see in Section 5.2.3, these
conditions are satisfied, if the prediction strategy is designed such that the following Lemma
holds true. For this purpose, we have to consider the update composed of the evolution step
and the limiting process. In Section 5.2.2 we will state properties of the reference limiter. This
will help to enforce estimates in the prediction that will be used to control the action of the
limiter on the data.

Lemma 1 (Properties of the prediction set): Let D̃(w) be the prediction set determined by the
data w ∈ (Rp)NL and v = AD̃(w)w. Then the following estimates hold for the function vL

corresponding to the coefficients v on any cell Vl,k with (l, k, i) 6∈ D̃(w) and l < L for all i ∈ P:

• The function vL is a polynomial on Vl,k, i.e.,

vL|Vl,k ∈ Πp−1 (P0)

• Reliability of evolution step:

|vL(x+)− vL(x−)| ≤ ε, x = xl,k or x = xl,k+1 (E1)

(hl/2)p

p!

∣∣∣∣ dp+1

dxp+1
f(vL(x))

∣∣∣∣ ≤ 2lε ∀x ∈ Vl,k (E2)

(hl/2)p

p!

∣∣∣∣ dpdxp s(vL(x))
∣∣∣∣ ≤ 2lε ∀x ∈ Vl,k (E3)

• Reliability of limiter process:

– Monotonicity at cell interfaces:

(i)
sign(vL,k+−1,0 − vL(x+

l,k)) = sign(vL(x+
l,k)− vL,k+,0) or

|vL(x+
l,k)− vL,k+,0| ≤ ε and |vL(x−

L,k++1
)− vL,k+,0| ≤ ε

(ii)
sign(vL,k−,0 − vL(x−l,k+1)) = sign(vL(x−l,k+1)− vL,k−+1,0) or

|vL(x−l,k+1)− vL,k−,0| ≤ ε and |vL(x+
L,k−)− vL,k−,0| ≤ ε

with k+ = 2(L−l)k and k− = 2(L−l)(k + 1)− 1

(L4)

– Monotonicity or small curvature on cell:

vL is either monotone on Vl,k or |v′′L(x)| ≤ 1
4h2

L

ε holds for all x ∈ Vl,k (L5)
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– Entropy correction:

|v′L(x)| ≤ Cαhα−1 ∀x ∈ Vl,k (L6)

• Buffer zone to cells on lower levels:

If for the grid G̃(w) corresponding to D̃(w) the

index (L, k) ∈ G̃(w) with (L, k − 1) 6∈ G̃(w) or (L, k + 1) 6∈ G̃(w),
then (L4)–(L6) must hold for the index (L, k) as well.

(B7)

Property (P0) will directly follow from the construction of the prediction set, for which we
enforce the tree property (4.13). Then there are no detail coefficients corresponding to cells on
higher levels contained in the cell Vl,k, and, hence, vL is a polynomial on that cell. Estimate
(E1) bounds the jumps of the function vL at the cell interfaces. Thus the contribution of the
numerical fluxes in the evolution of the detail coefficients will be bounded as well. This we will
infer later on from the Lipschitz-continuity of the numerical flux and the definition (4.8) of the
numerical flux balance Bn

l,k,i. Similarly, the contributions by the flux quadrature Gnl,k,i and the
source quadrature Snl,k,i defined by (4.9) and (4.10) are also bounded. For this purpose, we
will perform a Taylor expansion and employ regularity of the flux f and the source function s,
respectively, as well as the vanishing moments of the dual wavelets.
The estimates (L4) and (L5) ensure, that in regions where the reference limiter modifies

significantly the data on level L, we resolve these modifications such that the error introduced
by the adaptive limiter is bounded. Furthermore, the estimate (L6) is needed to enforce con-
vergence to the entropy solution, see the discussion in Section 5.2.2. Note that the conditions
(L4)–(L6) are adjusted to the reference limiter that is chosen as the Shu limiter (2.17) with
entropy correction (2.21). Then the reference DG scheme is known to converge to the entropy
solution.
In order to proof Lemma 1, we will now define the prediction set judisciously, i.e., we locally

refine the adaptive grid until either the estimates hold for some l′ < L or we arrive at the
highest level l′ = L. Moreover, to estimate the evolution error, see condition (E), we need later
on that the estimates for the evolution still hold after limiting, i.e., (E1)–(E3) remain true with
v replaced by ΠL,D̃nv. For this reason we have to inflate the prediction set in the neighborhood
of cells located on the highest refinement level L, otherwise the limiter could alter the point
value of the data from outside in (E1), this is enforced by (B7).

Algorithm 2 (Construction of prediction set) Let w ∈ (Rp)NL. To compute the prediction set
D̃ = D̃(w) we perform the following nine steps:
Step 0. (Initial inclusion of D0) The prediction set has to include all indices corresponding
to non-vanishing detail coefficients of the data w contained in the support D0 = {(l, k, i) :
|dl,k,i| > 0}, i.e., D̃ ← D0. In particular, if w is the result of a thresholding process, e.g., the
thresholded data of the last time step, then w = Aεw and D0(w) = Dε(w).
Then, the Steps E1–E3 and L4–L6 are performed for any index (l, k) ∈ G0 corresponding to

all cells of the current grid:
Step E1. (Jump at cell interfaces) The jump at the left and right cell interface is determined,
i.e., JL := |vL(x+

l,k)− vL(x−l,k)| and JR := |vL(x+
l,k+1)− vL(x−l,k+1)|. If the jump at xl,k is larger

than ε, we add the left and right cell neighbors attached to the grid point xl,k on level L to the
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adaptive grid. This is enforced by the inclusion of the corresponding details on level L − 1 to
the prediction set, i.e.,

D̃ ← D̃ ∪ {(L, 2L−l−1 k − 1, i) ; i ∈ P} ∪ {(L, 2L−l−1 k, i) ; i ∈ P}.

Similarly we proceed with JR and xl,k+1. Note that by refining we create new cell interfaces.
However, the function vL is continuous at these internal grid points and, hence, (E1) also holds
for the new cells at these points.
Step E2. (Flux quadrature bound) For each cell (l, k) ∈ G0 we calculate bounds Dr

v for the
r-th derivative of vL in Vl,k, i.e.,∣∣∣∣ drdxr vL(x)

∣∣∣∣ ≤ h−rl ∑
i∈P
|vl,k,i|Dr,i =: Dr

v, ∀x ∈ Vl,k,

where the constants Dr,i are determined according to (3.19). Then we may bound the (p+ 1)st
derivative of the flux f via chain rule by∥∥∥∥ dp+1

dxp+1
f(vL(tn, ·))

∥∥∥∥
L∞(Vl,k)

≤
∑

k∈Tp+1

(p+ 1)!
k1! · · · kp+1!

D
|k|
f

p+1∏
j=1,kj≥1

(
Dj
v

j!

)kj
,

where the set Tp+1 contains all (p + 1)-tupels k = (k1, . . . , kp+1) of non-negative integers such
that

∑p+1
i=1 i ki = p+ 1 and |k| =

∑p+1
i=1 ki. The constant Dr

f is a problem-dependent bound for
the rth derivative of the flux, i.e.,

Dr
f := max

|u|≤C(T,u0)
|Drf(u)|.

Finally, we ensure (E2) by requiring

(hl/2)p
∑

k∈Tp+1

p+ 1
k1! · · · kp+1!

D
|k|
f

p+1∏
j=1,kj≥1

(
Dj
v

j!

)kj
≤ 2lε.

In order to enforce this inequality, we determine a level

l′ ≥ log2p+1

1
ε

(h0/2)p
∑

k∈Tp+1

p+ 1
k1! · · · kp+1!

D
|k|
f

p+1∏
j=1,kj≥1

(
Dj
v

j!

)kj
depending on the polynomial degree p of the basis functions. Note that due to dyadic grid
refinement hl = 2−l h0. Then we include all subcells Vl′,k′ ⊂ Vl,k of Vl,k on higher refinement
levels, i.e.,

D̃ ← D̃ ∪ {(l′, k′, i) ; Vl′,k′ ⊂ Vl,k, i ∈ P}. (5.11)

Step E3. (Source quadrature bound) We proceed similarly for derivatives of the source func-
tion s, but only up to the order p, i.e.,

l′ ≥ log2p+1

1
ε

(h0/2)p
∑

k∈Tp

1
k1! · · · kp!

D|k|s

p∏
j=1,kj≥1

(
Dj
v

j!

)kj
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with D|k|s instead of D|k|f .
Step L4. (Limiting at cell interfaces) Let be k+ = 2(L−l)k and k− = 2(L−l)(k + 1) − 1. We
calculate the mean values vL,k+−1,0, vL,k+,0 and vL,k−,0, vL,k−+1,0 of the neighbors on level L
to the cell interfaces at xl,k and xl,k+1, respectively. An efficient procedure for this is described
in Appendix A.4. Then we evaluate vL at the cell interfaces. First of all we consider the left
cell interface x+

l,k: if we do not have monotonicity, i.e.,

sign(vL,k+−1,0 − vL(x+
l,k)) 6= sign(vL(x+

l,k)− vL,k+,0),

then we check whether

|vL(x+
l,k)− vL,k+,0| ≥ ε or |vL(xL,k++1)− vL,k+,0| ≥ ε.

If this holds true, then limiting of the data on the cell VL,k+ might introduce an error greater
than ε. Therefore, we enforce refinement up to level L, i.e.,

D̃ ← D̃ ∪ {(L, k+, i) ; i ∈ P}. (5.12)

The same check is performed at the right cell interface x−l,k+1: if we do not have monotonicity,
i.e.,

sign(vL,k−,0 − vL(x−l,k+1)) 6= sign(vL(x−l,k+1)− vL,k−+1,0),

and
|vL(x−l,k+1)− vL,k−,0| ≥ ε or |vL(xL,k−)− vL,k−,0| ≥ ε,

then we refine up to level L, i.e.,

D̃ ← D̃ ∪ {(L, k−, i) ; i ∈ P}.

Step L5. (Limiting inside of cells) If vL is not monotone on Vl,k, the limiting might introduce
an error. We first find an upper bound for the second derivative of vL (see Step E2)

|v′′L(x)| ≤ D2
v , x ∈ Vl,k.

Then we must have the bound
D2
v ≤

1
4h2

L

ε,

otherwise we refine up to level L, i.e.,

D̃ ← D̃ ∪ {(L, k′, i) ; VL,k′ ⊂ Vl,k, i ∈ P}. (5.13)

Step L6. (Entropy bound on the gradient) We find an upper bound for the first derivative of
vL (see Step E2)

|v′L(x)| ≤ D1
v , x ∈ Vl,k.

Then we check, if
D1
v ≤ Cαhα−1

L ,
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where Cα and α stem from the entropy correction of the limiter, see Section 5.2.2. If the
estimate does not hold, we refine up to level L, i.e.,

D̃ ← D̃ ∪ {(L, k′, i) ; VL,k′ ⊂ Vl,k, i ∈ P}. (5.14)

Step B7. (Additional refinement of neighbors to level L) The set D̃ determined by the previous
steps characterizes an adaptive grid G̃ applying the procedure described in Section 4. The cells
in G̃ on the highest refinement level are given by

Σ(D̃, L) := {(L, k) ; ∃ (L− 1, bk/2c, i) ∈ D̃} = {(L, k) ∈ G̃}.

In order to verify Lemma 4 we enlarge the prediction set D̃ such that all neighbors of cells on
level L characterized by

Σ∂ := {(L, k) 6∈ Σ(D̃, L) ; (L, k − 1) ∈ Σ(D̃, L) or (L, k + 1) ∈ Σ(D̃, L)}

are included in the adaptive grid, i.e.,

D̃ ← D̃ ∪ {(L− 1, bk/2c, i) ; (L, k) ∈ Σ∂ , i ∈ P}.

Step 8. (Ensure tree property) Enlarge the set D̃, such that the tree property (4.13) holds.

Obviously, Lemma 1 holds true by construction of the prediction set according to the above
algorithm, where (P0) holds due to Step 8.

5.2.2 Limiting strategy

We now have to define the limiter ΠL,D̃ of the adaptive MR-DG scheme. For this purpose, we
first have to specify the limiter ΠL of the reference DG scheme: Let v ∈ SpL be determined by
the coefficients v ∈ (Rp)NL and let u ∈ SpL be characterized by u = ΠLv. Then we assume the
following properties to hold for ΠL:

(RefL1) The mean values remain unchanged, i.e., uL,k,0 = vL,k,0.

(RefL2) The effect of the limiter on the data can be described as a scaling of the difference
of the point value at the boundary and the mean value of the cell, see Figure 4,
i.e.,

u(x+
L,k)− uL,k,0 = c+

L,k

(
v(x+

L,k)− vL,k,0
)

where c+
L,k ∈ [0, 1], and analogously for u(x−L,k+1). The coefficients c+

L,k, c
−
L,k+1 only

depend on the mean values vL,k,0 of the cell, its neighbors vL,k±1,0 and the point
values at the cell interfaces v(x+

L,k), v(x−L,k+1).

(RefL3) If the gradient is bounded, i.e.,

|v′(x)| ≤ Cαhα−1
L , (5.15a)

and the data are monotone in the following sense

sign(vL,k−1,0 − v(x+
L,k)) = sign(v(x+

L,k)− vL,k,0) (5.15b)

sign(vL,k,0 − v(x−L,k+1)) = sign(v(x−L,k+1)− vL,k+1,0) (5.15c)

then the limiter does not change the data, i.e., c+
L,k = c−L,k+1 = 1.
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u(x+
L,k)

v(x+
L,k)

vL,k,0

v(x)
u(x)

Figure 4: Effect of limiter on point value at cell interface

These properties are fulfilled, for example by the Shu limiter with entropy stabilization, i.e.,

ṽ
±
L,k :=

{
v±L,k , |v±L,k| ≤M h2

L

m(v±L,k, vL,k+1,0 − vL,k,0, vL,k,0 − vL,k−1,0, sign(v±L,k)Cα h
α
L) , else

(5.16)

where (RefL3) holds, because the minmod limiter selects the first argument due to the estimate

|v+
L,k| =

∣∣∣∣∫ x̄

xk

v′(x)dx
∣∣∣∣ ≤ hLCαhα−1

L = Cαh
α
L.

If the entropy stabilization term Cαh
α
L is not needed, for example for convex flux functions,

where convergence to the entropy solution can be shown without this term, we can in practice
relax the condition (5.15a) by setting Cα = ∞, as observed in the numerical experiments, see
Section 6. Then Step L6 of the prediction strategy can be omitted.
Then we define the adaptive limiter ΠL,D̃ by the following algorithm:

Algorithm 3 (Adaptive limiter) Let D̃ = D̃(w) be the prediction set determined by the data
w ∈ (Rp)NL according to Algorithm 2. The set D̃ characterizes an adaptive grid G̃ applying the
procedure described in Section 4. Then the limited values w := ΠL,D̃w are locally determined
for (l, k) ∈ G̃ by the following procedure:
Case 1. (Highest level: l = L)
If the cell VL,k has a neighboring cell that is not on the same level L, it stems from Step B7 in
the prediction strategy. In that case, we do nothing. Otherwise we apply the reference limiter.
Case 2. (Lower level: l < L)
No limiting is performed at all, i.e., wl,k,i = wl,k,i, i ∈ P.

Then by construction of the adaptive limiter and the prediction set we make the following
observations:

Lemma 2 (Point-wise error of limiter) Let D̃ = D̃(w) be the prediction set determined by the
data w ∈ (Rp)NL and w the corresponding function. Let ũ and u be the functions corresponding
to ũ := ΠL,D̃w and u := ΠLw, respectively. Then we can estimate the difference of point
evaluations at cell boundaries on the reference grid by

|ũ(x±L,k)− u(x±L,k)| ≤ ε ∀ k ∈ {0, . . . , NL}. (5.17)
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Proof: We confine ourselfs to the case x+
L,k, since for x

−
L,k we may proceed in complete analogy.

We now consider the cell VL,k and distinguish three cases:

(1) If (L, k) 6∈ G̃, then VL,k is contained in Vl′,k′ for some (l′, k′) ∈ G̃ with l′ < L and estimates
(L4)–(L6) hold on Vl′,k′ . If (L, k) ∈ G̃, then, either

(2) (L, k + 1) ∈ G̃ and (L, k − 1) ∈ G̃ and thus ũ(x+
L,k) = u(x+

L,k) holds by Case 1 of
Algorithm 3, or

(3) by (B7) the estimates (L4)–(L6) hold, where we set for notational convenience (l′, k′) =
(L, k).

It remains to consider a cell VL,k ⊂ Vl′,k′ , (l′, k′) ∈ G̃, where (L4)–(L6) hold on Vl′,k′ for cases
(1) and (3). By Case 2 of Algorithm 3 we note, that

ũ(x+
L,k)− ũL,k,0 = w(x+

L,k)− wL,k,0 (5.18)

and by (RefL2) we have

u(x+
L,k)− uL,k,0 = c+

L,k(w(x+
L,k)− wL,k,0). (5.19)

Subtracting (5.18) and (5.19) and using the fact that the limiters do not change the mean
values, i.e., uL,k,0 = ũL,k,0 = wL,k,0, we obtain

|ũ(x+
L,k)− u(x+

L,k)| = (1− c+
L,k)|w(x+

L,k)− wL,k,0|.

We will now verify (5.17) by concluding that either c+
L,k = 1 holds by using (RefL3), i.e., the

reference limiter does not change the data, or

|w(x+
L,k)− wL,k,0| ≤ ε, (5.20)

where we use (L4)–(L6).
For this purpose, we first note that for polynomials we have the following property: let be

q ∈ Πp any polynomial and (qL,k̄,i)k̄∈IL,i∈P ∈ (Rp)NL the corresponding coefficients determined
by qL,k̄,i = 〈q, ϕ̃L,k̄,i〉Ω. If q is monotone on VL,k̄−1 ∪ VL,k̄, then

sign(qL,k̄−1,0 − q(xL,k̄)) = sign(q(xL,k̄)− qL,k̄,0). (5.21)

This is true, due to the fact that the mean value qL,k̄,0 of q on a cell VL,k̄ is a point evaluation
qL,k̄,0 = q(x̄) for some x̄ ∈ VL,k̄.
By (L6) we see that (5.15a) holds on VL,k. Consider the grid point xL,k. If xL,k is not at the

interface of Vl′,k′ , then w is a polynomial on I := VL,k−1 ∪ VL,k. Then, w is either monoton on
I and (5.15b) holds by (5.21), or w is not monotone on I and, by (L5), |w′′| ≤ 1

4h2
L
ε. In the

latter case let x̄ be the local extremum in I. Expanding w(x) around x̄ and using w′(x̄) = 0
gives w(x) = w(x̄) + (x̄−x)2

2 w′′(ξ). Together with wL,k,0 = w(x̃) for some x̃ ∈ VL,k and using
the bound |x̄− x| ≤ 2hL we obtain (5.20) by

|w(x+
L,k)− wL,k,0| ≤ |w(x+

L,k)− w(x̄)|+ |w(x̄)− w(x̃)| ≤ 2
(2hL)2

2
1

4h2
L

ε = ε. (5.22)
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If xL,k coincides with an interface of Vl′,k′ , then we see by (L4) that (5.20) is fulfilled, or
(5.15b) holds. Analogously we conclude for xL,k+1 that (5.20) or (5.15c) holds. Therefore,
either (5.20) holds directly, or we can conclude c+

L,k = 1 from (RefL3). �
Since by the previous lemma, the difference of the adaptive and the reference scheme at the

cell interfaces is bounded by the threshold value, this holds true for the mean values when
performing one evolution step with the reference DG scheme.

Lemma 3 (Bound on evolution of means) Consider two functions u, ũ defined by the coeffi-
cients u, ũ ∈ (Rp)NL with identical mean values, i.e., ũL,k,0 = uL,k,0. If the point values at the
interfaces of the reference mesh are bounded by the threshold value, i.e., |u(x±L,k)− ũ(x±L,k)| . ε,
then

‖RELu−RELũ‖q . ε

holds for q ∈ [1,∞], provided that some CFL condition is satisfied.

Proof: For the time evolution of the mean values we conclude by the Lipschitz-continuity of
the numerical fluxes

‖REL u−REL ũ‖∞
= max

k∈IL
|uL,k,0 − λ(F (u(x−L,k+1), u(x+

L,k+1))− F (u(x−L,k), u(x+
L,k)))−

ũL,k,0 + λ(F (ũ(x−L,k+1), ũ(x+
L,k+1))− F (ũ(x−L,k), ũ(x+

L,k)))|
≤ 2λmax

k∈IL
|F (u(x−L,k), u(x+

L,k))− F (ũ(x−L,k), ũ(x+
L,k))| ≤ 2λ(L1ε+ L2ε),

where L1,2 are the Lipschitz-bounds of the numerical flux function F . For q ∈ [1,∞), the
assertion follows from the boundedness of the domain. �
Using the estimates in Lemma 2 and Lemma 3 we then conclude

Conclusion 1 (Condition (L))
Let w ∈ (Rp)NL, q ∈ [1,∞] and v := AD̃(w) w. Then Condition (L) holds, i.e.,

‖R(ELΠL,D̃(w)v − ELΠLv)‖q . ε.

Furthermore, from the construction of the limiter we note that the estimates for the evolution
step in Lemma 1 being enforced by the prediction strategy still hold after applying the adaptive
limiter.

Lemma 4 (Invariance of estimates after limiting) Let D̃(w) be the prediction set determined
by the data w ∈ (Rp)NL. Then the estimates (E1), (E2) and (E3) hold for the function vL
corresponding to the limited coefficients v := ΠL,D̃w.

Proof: Let (l′, k′) 6∈ G̃. Then there exists a coarse-scale cell Vl,k ⊃ Vl′,k′ such that (l, k) ∈ G̃
with l < l′. According to Case 2 of Algorithm 3 the adaptive limiter does not change the
coefficients of this cell. This holds true also for the neighbor cells, because of Step B7 of
Algorithm 2. Therefore, neither the point values at the cell interfaces nor the coefficients in
the interior are modified by the limiter. Hence the estimates (E1), (E2) and (E3) hold. �
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5.2.3 Reliability of evolution

We now are ready to verify the reliability condition of the update step, as is needed in Theorem
2. For this purpose, we investigate the evolution process (4.7) of the detail coefficients.

Theorem 3 (Growth of non-significant details) We assume that

1. the flux f : R→ R is sufficiently smooth;

2. the source function s : R→ R is sufficiently smooth;

3. the numerical flux F : R2 → R is consistent with the flux f and locally Lipschitz-
continuous with local Lipschitz constant LF ;

4. the temporal discretization τ is chosen such that a CFL condition holds, i.e., LF τ/hL ≤
CFL holds for sufficiently small CFL number.

Let w ∈ (Rp)NL and D̃(w) the prediction set according to Algorithm 2. Then, according to
Lemma 4, the estimates (E1)–(E3) hold for w := ΠL,D̃(w)AD̃(w)w. Consider the evolved data
v := ELw. Then the detail coefficients dl,k,i of v not contained in the prediction set D̃(w) are
not significant, i.e.,

|dl,k,i| ≤ Cεl ∀ (l, k, i) 6∈ D̃(w), (5.23)

where C > 0 is a constant depending on the local Lipschitz constant LF = LF (w) of the
numerical flux function.

Proof: Let (l, k, i) 6∈ D̃(w). Furthermore, w̄ ∈ SpL and w ∈ SpL denote the functions corre-
sponding to w and w, respectively. Analogously, dwl,k,i and d

w
l,k,i denote the detail coefficients

of w and w. Then we note that w̄ = w ∈ Spl on Vl,k and dwl,k,i = dwl,k,i = 0, because of (P0) and
the definition of the adaptive limiter. Hence, w is differentiable on Vl+1,2k+r, r = 0, 1, and we
may apply integration by parts on each subdomain, i.e.,∫
Vl+1,2k+r

f(w(x))ψ̃′l,k,i(x) dx = −
∫
Vl+1,2k+r

f(w(x))xψ̃l,k,i(x) dx+ f(w(y))ψ̃l,k,i(y)
∣∣∣x−l+1,2k+r+1

x+
l+1,2k+r

.

Since Fnl,k = Fnl+1,2k and Fnl,k+1 = Fnl+1,2k+2, see (4.2), as well as xl,k = xl+1,2k and xl,k+1 =
xl+1,2k+2 we obtain by rearranging the corresponding terms in (4.7)

|dl,k,i| ≤ |dwl,k,i|+ τ(|I|+ |II|+ |III|+ |IV |)

with

I :=
2∑
r=1

(
f(w(x−l+1,2k+r))− F

n
l+1,2k+r

)
ψ̃l,k,i(x−l+1,2k+r), (5.24)

II :=
1∑
r=0

(
Fnl+1,2k+r − f(w(x+

l+1,2k+r))
)
ψ̃l,k,i(x+

l+1,2k+r), (5.25)

III :=
∫
Vl,k

f(w(x))x ψ̃l,k,i(x) dx, (5.26)

IV :=
∫
Vl,k

s(w(x)) ψ̃l,k,i(x) dx. (5.27)
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We already noted that dwl,k,i = 0, the other terms can be estimated with the help of (E1)–
(E3). First of all we consider the terms I and II. Since the numerical flux is assumed to
be consistent with the flux f , i.e., F (u, u) = f(u) for all u ∈ R, we first obtain by the local
Lipschitz-continuity of the numerical flux

|f(w(x±
l+1,2k+r±))− Fnl+1,2k+r± | ≤ LF |w(x−

l+1,2k+r±)− w(x+
l+1,2k+r±)|

for r+ = 0, 1 and r− = 1, 2. Note that the Lipschitz constant depends on the data, i.e.,
LF = LF (w).
Since the dual functions ψ̃l,k,i are piecewise polynomials and L1-normalized (3.15) we may

bound them by
|ψ̃l,k,i(x)| . 2l, x ∈ R. (5.28)

Moreover, w is continuous inside the cell Vl,k. Therefore, only the differences at the cell inter-
faces, i.e., x = xl,k and x = xl,k+1, give a non-trivial contribution. Hence we can estimate the
sum I + II by

|I|+ |II| . 2l
(
|w(x+

l,k)− w(x−l,k)|+ |w(x+
l,k+1)− w(x−l,k+1)|

)
.

Together with (E1) we finally obtain

|I|+ |II| . 2lε. (5.29)

In order to estimate the third term III we will use the vanishing moments of the wavelets.
First of all, we write the derivative of the flux in a Taylor expansion

d

dx
f(w(x)) =

p−1∑
r=0

(x− x̂)r

r!
dr+1

dxr+1
f(w(x̂)) +Rp−1(x),

where the reminder is determined by

Rp−1(x) =
1
p!

(x− x̂)p
dp+1

dxp+1
f(w(ξ)), ξ ∈ [x, x̂].

Then we estimate

|III| =

∣∣∣∣∣
∫
Vl,k

(f(w(x)))xψ̃l,k,i(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
Vl,k

Rp−1(x)ψ̃l,k,i(x) dx

∣∣∣∣∣ (5.30)

≤ ‖Rp−1‖L∞(Vl,k)‖ψ̃l,k,i‖L1(Vl,k) .
(hl/2)p

p!

∥∥∥∥ dp+1

dxp+1
f(w)

∥∥∥∥
L∞(Vl,k)

. 2lε,

where we choose x̂ = x̂l,k Note that the dual multiwavelets ψ̃l,k,i have at least p vanishing
moments, i.e.,Mp,i ≥ p in (3.11), and are L1-normalized according to (3.15). The last inequality
is enforced by (E2).
Finally we have to estimate the fourth term. This is done as before for the third term, using

the smoothness of the source function s, the vanishing moments and estimate (E3).

|IV | =

∣∣∣∣∣
∫
Vl,k

s(w(x))ψ̃l,k,i(x) dx

∣∣∣∣∣ . (hl/2)p

p!

∥∥∥∥ dpdxp s(w(·))
∥∥∥∥
L∞(Vl,k)

. 2lε (5.31)

Since a CFL condition is assumed to hold with respect to level L, i.e., τ ∼ 2−L, the assertion
follows by (5.29), (5.30) and (5.31). �
Using the above theorem, we now can verify:
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Conclusion 2 (Condition (E))
Let w ∈ (Rp)NL, D̃ = D̃(w) be the prediction set and u = ΠL,D̃(w)AD̃(w)w. If the flux and
source quadrature are performed exactly, then Condition (E) holds, i.e.,

‖R(EL,D̃(w)u− ELu)‖q . ε.

Proof: We note that by Lemma 4 the estimates (E1)–(E3) hold for u. In order to show (E),
we have to investigate the difference of v := EL,D̃(w) u and v := EL u. For this purpose we
apply the multiscale transformation (3.28) and (3.29) to v and v, respectively. The resulting
multiscale coefficients are denoted by v0,k,i, dl,k,i and v0,k,i, dl,k,i, respectively. Since the evolu-
tion operators EL,D̃(w) and EL act on the same data and the integrations are performed exactly,
the evolution equations (4.6) and (4.7) give the same update for the coarse-scale coefficients
and the significant detail coefficients, i.e., v0,k,i = v0,k,i and dl,k,i = dl,k,i, (l, k, i) ∈ D̃(w).
There is only a difference for the details not in the prediction set. According to the adaptive
MR-DG scheme no evolution is performed for these coefficients, i.e., dl,k,i = 0, (l, k, i) 6∈ D̃(w),
whereas these are updated for the reference DG scheme. By Theorem 3 applied to u we have
|dl,k,i| ≤ C εl. To estimate the difference v − v we thus may proceed as in the proof of the
approximation error, see Proposition 1. �

5.2.4 Uniform boundedness of adaptive MR-DG scheme

We now can use the local perturbation estimate of the previous section to show the uniform
boundedness of the adaptive scheme. This is one of the assumptions in Theorem 1. We first
choose a constant bound and then choose h and ε small enough such that the adaptive solution
is bounded by that constant. In doing so we can replace the local Lipschitz constants with a
uniform constant, depending only on the global constant bound of the solution.

Theorem 4 (Uniform boundedness of adaptive MR-DG scheme) Let M > 0 be arbitrary but
fixed and C∞ := eCsT (‖u0‖L∞ + M). The constant Cs depends only on the global Lipschitz
bound of the source function s. The ratio λ = τ/h is assumed to be constant and chosen small
enough such that the CFL condition

λLF ≤ CFLmax

holds. Here LF = LF (C∞) denotes the Lipschitz constant of the numerical flux function for all
data w with ‖Rw‖∞ ≤ C∞. Furthermore let the following assumptions hold:

(B1) The error of the initial data approximation is bounded by
‖R(v0 − u0)‖∞ ≤ C1 ε,
where u0 denotes the coefficients on discretization level L corresponding to the initial
function u0.

(B2) The approximation error is uniformly bounded, i.e.,
‖R(Aε w −w)‖∞ ≤ C2 ε for all w ∈ (Rp)NL.

(B3) The evolution error is uniformly bounded, i.e.,
‖R(EL,D̃(w) ΠL,D̃(w)AD̃(w) w − EL ΠLAD̃(w) w)‖∞ ≤ C3 ε

holds for all w ∈ (Rp)NL with ‖Rw‖∞ ≤ C∞.
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(B4) The reference DG scheme in the mean is uniformly bounded, i.e.,
‖REL ΠL w‖∞ ≤ (1 + Csτ)‖Rw‖∞ + C4 h

α
L

holds for all w ∈ (Rp)NL with ‖Rw‖∞ ≤ C∞.

If hL ≤ min{1, h1} and ε ≤ min{1,M/(3C1), C̃hL} with

h1 =


(
λM

3TC4

) 1
α−1 if Cs = 0(

λMCs
3C4

) 1
α−1 if Cs 6= 0

and C̃ =

{
λM

3T (C2+C3) if Cs = 0
λCsM

3(C2+C3) if Cs 6= 0

for α > 1, then we have for all n ≤ T/τ

‖Rvn‖∞ ≤ C∞. (5.32)

Remark 2 (Remarks on the Assumptions)

• The constants in (B3) and (B4) depend on the local Lipschitz constant LF of the numerical
flux function, acting on limited data. If we consider arbitrary data w ∈ (Rp)NL, then we
can estimate the limited data Πw by use of (2.21) and Lemma 2, i.e.,

‖Πw‖∞ ≤ ‖Rw‖∞ + Cαh
α + ε

for Π = ΠL and Π = ΠD̃,L. Since we only consider data bounded in the mean by C∞,
we have an uniform Lipschitz constant LF = LF (C∞ + Cα + 1) since hL ≤ 1 and ε ≤ 1.
Hence we can use the uniform constants C3 = C3(C∞) and C4 = C4(C∞). Then we have
to check the assumption ‖Rw‖∞ ≤ C∞ in the course of the proof to make use of (B3)
and (B4).

• We note that ε is bounded by hL, up to a constant. That imposes no additional constraint
due to the choice of ε in Corollary 1.

Proof: We show (5.32) by induction. First of all, we estimate for n = 0

‖Rv0‖∞ ≤ ‖R(v0 − u0)‖∞ + ‖Ru0‖∞ ≤ C1ε+ ‖u0‖L∞ ≤
M

3
+ ‖u0‖L∞ ≤ C∞, (5.33)

where we use the bound on ε. Now we assume that ‖Rvj‖∞ ≤ C∞ for j = 0, . . . , n− 1.
Let be wn−1 := AD̃nvn−1 and D̃n := D̃(vn−1). Then we estimate the mean values of the

adaptive MR-DG scheme by

‖Rvn‖∞ ≤ an−1 + bn−1 + cn−1

with

an−1 := ‖R(Aε EL,D̃n ΠL,D̃n wn−1 − EL,D̃n ΠL,D̃n wn−1)‖∞,

bn−1 := ‖R(EL,D̃n ΠL,D̃n wn−1 − EL ΠL wn−1)‖∞, cn−1 := ‖REL ΠL wn−1‖∞.

The terms of the right-hand side can be estimated by the Assumptions (B2), (B3) and (B4).
Note that by (5.4) we have AD̃nvn−1 = vn−1 and therefore

‖RAD̃n vn−1‖∞ = ‖Rvn−1‖∞.
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Therefore we may estimate the mean values of the adaptive MR-DG scheme by

‖Rvn‖∞ ≤ ‖Rvn−1‖∞ (1 + Cs τ) + C4 h
α
L + (C2 + C3) ε

and then infer by repeating this estimate

‖Rvn‖∞ ≤ ‖Rv0‖∞ (1 + Cs τ)n + (C4 h
α
L + ε (C2 + C3))

n−1∑
i=0

(1 + Cs τ)i. (5.34)

We now use (5.33). By the bounds on hL and ε we then further estimate (5.34), where we
distinguish two cases. If Cs = 0, then we obtain

‖Rvn‖∞ ≤ ‖u0‖L∞ +
M

3
+
T

λ

(
(C2 + C3)

ε

hL
+ C4h

α−1
L

)
≤ ‖u0‖L∞ +M/3 +M/3 +M/3 = C∞.

If Cs 6= 0, we bound the geometric sum by eCsT /(Csτ) with τ = λhL ≤ T/n and then estimate

‖Rvn‖∞ ≤ eCsT
(
‖u0‖L∞ +M/3 + +((C2 + C3)ε+ C4h

α
L)/(Csτ)

)
≤ eCsT (‖u0‖L∞ +M/3 +M/3 +M/3) = C∞.

�

6 Numerical results

In order to verify the analytical results we consider the inviscid Burgers’ equation with flux
f(u) = 0.5u2. Numerical computations are performed for two configurations characterized by
the source term and the initial conditions

C1 (homogeneous problem):
s(u) = 0 with u0(x) = 1 in [0, 0.5] and u0(x) = 0 in [0.5, 1],

C2 (inhomogeneous problem):
s(u) = u(u− 0.5)(u− 1) with u0(x) = sin(2πx) in [0, 1].

For both configurations the computational domain is Ω = [0, 1], where we impose periodic
boundary conditions. Thus, for configuration C1 the entropy solution exhibits a shock wave
emanating at x = 0.5 and moving with speed 0.5. Due to the periodic boundary conditions a
rarefaction wave develops at the left boundary with minimal and maximal characteristic speed
cmin = 0 and cmax = 1, respectively. In Figure 5 we present the entropy solution at T = 0.5.
For configuration C2, a shock is developing at some time t > 0 that is moving at negative
speed. Note that at the boundaries the characteristic speeds are zero, i.e., the solution does
not change there. Since there is no explicit representation of the entropy solution available, an
approximation of the entropy solution is shown in Figure 6 at time T = 0.24.

The computational domain is discretized by N0 = 5 cells on the coarsest level, i.e., h0 = 0.2.
Hence the resolution for higher refinement levels is Nl = 2lN0 and hl = 2−l h0. For both
configurations we choose L = 9 refinement levels. For the time discretization, we use the SSP-
RK(3,3) scheme from [40]. We have to respect a CFL condition of CFL = 0.1 to ensure both
linear L2 and nonlinear TV D stability, therefore we choose τ0 = 0.02 (C1) and τ0 = 0.005
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Figure 5: Entropy solution in case of C1 at
T = 0.5.
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Figure 6: Approximate entropy solution in
case of C2 at T = 0.24.

(C2). Since we perform global time stepping, the CFL condition has to hold for the smallest
cells corresponding to the highest refinement level L, i.e., τ = 2−L τ0 = 4 × 10−5 (C1), and
τ = 1 × 10−5 (C2). The final integration time is T = 0.5 (C1) and T = 0.24 (C2). We
choose cubic polynomials for the discretization space Sph, i.e. p = 4, where the multiscale
analysis is performed by Alpert’s multiwavelets, see Appendix A.1. For the prediction we
apply Algorithm 2.
The reference DG scheme (2.7) is determined by the Engquist-Osher flux

FEO(u, v) =
∫ v

0
min(f ′(s), 0)ds+

∫ u

0
max(f ′(s), 0)ds+ f(0)

and the integrals in the quadrature terms (2.10) are computed by a 5-point Gaussian quadrature
rule of order 9. Limiting is performed using the Shu limiter (2.17), where we do not incorporate
the entropy bound (2.21), because we consider a convex flux, see [36].
Note that the analysis of the adaptive MR-DG scheme in Section 5 has only been performed

for a forward Euler step. Since each stage of the TVD-RK method (2.23) can be written as a
linear combination of forward Euler steps (2.25), we may apply Algorithm 1 to each of these
steps. However, the CFL condition ensures that an information cannot move more than one
cell in one time step. In order to investigate the need of these intermediate grid adaptations, we
perform all computations twice, where (i) the refinement step and the coarsening step are only
performed once before and after the TVD-RK scheme, respectively, and omit the prediction
step B7, and (ii) intermediate grid adaptations, including B7, are performed before each stage
of the Runge-Kutta scheme; this requires to synchronize the intermediate adaptive grids. In
the figures the results are distinguished by “with RKpred” and “without”.
To conclude on the efficiency and reliability of the adaptive MR-DG scheme, we investi-

gate the computational effort (memory and CPU time) and the accuracy (discretization and
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Figure 7: Variation of # D̃/#D for different threshold values ε for configuration C1 (left) and
C2 (right).

perturbation error) for varying threshold values ε.

Grid refinement The results of the adaptive DG scheme without intermediate Runge-Kutta
prediction are presented in Figures 12 and 13 for varying threshold values ε = 10−1, . . . , 10−6

(C1) and ε = 10−1/2, . . . , 10−3 (C2). For each computation we plot the adaptive solution (top),
the adaptive grid after hard thresholding (middle) characterized by the set D corresponding to
the significant details and the predicted grid corresponding to the prediction set D̃ (bottom),
that was used to calculate that solution. There is hardly any difference visible between the
solution of the adaptive DG scheme and the reference DG scheme performed on the uniform
mesh corresponding to the highest refinement level L = 9. However, there are differences in
the locally refined grids. These are represented by the position of the local cells in the grid
hierarchy. To each cell pair Vl+1,2k, Vl+1,2k+1 four grey scales are shown for the absolute value
of the multiscale coefficients |dl,k,i|, i = 0, . . . , 3, where white corresponds to 0 and black to
the maximal value on level l. The magnitude of the scales is given as labels on the right axis.
Typically the absolute value of these coefficients in smooth regions decreases with increasing
order i, due to the i+p vanishing moments, see (A.9). We note that the largest values correspond
to the discontinuity. Therefore the grid is locally refined near to its position at x = 0.75 (C1)
and x ≈ 0.41 (C2). With smaller threshold values, the kinks at x = 0 and x = 0.5 in case
of (C1) are also detected by the multiscale analysis and refinement is locally triggered near
to these points as well. Away from these isolated points, the discretization is coarse because
of the local smoothness of the solution. We note that the adaptive grid is inflated due to the
prediction.
In Figure 7 the ratio # D̃/#D of the prediction set D̃ and the set D of significant details

is plotted versus the threshold value. The ratio indicates a reasonable efficient prediction
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Figure 8: Error of adaptive solution with L = 9 and varying threshold value ε for configuration
C1 (left) and C2 (right).

strategy. Additionally, the absolute numbers # D̃ and #D are negligibly small in comparison
to the uniform reference mesh. In particular, we note that the intermediate grid adaptations
trigger additional grid refinement, that will result in a higher computational load but with no
effect on the overall accuracy as is discussed below.

Optimal choice of threshold value The ideal strategy presented in Section 5 suggests that
the optimal threshold value εopt should be chosen such that the discretization error η̂L = û− v̂L
of the reference scheme and the perturbation error êL = v̂L − v̂L,ε are balanced. For L = 9 we
obtain ‖η̂L‖L1([0,1]) = 1.9 × 10−4 (C1) and ‖η̂L‖L1([0,1]) = 7.1 × 10−4 (C2), respectively. Note
that for an inhomogeneous problem, the constant in the error estimates is typically much larger
than for a homogeneous problem. This is caused by a small perturbation of order τ in each
time step that is accumulating to ecT , see for instance the estimates in Appendix A.3. Note
that for (C2) the entropy solution is not explicitly available. Therefore we approximate the
entropy solution by a computation with the reference DG scheme on a uniformly refined grid
corresponding to L = 13 refinement levels. In order to determine εopt we compare in Figure 8 the
perturbation error and the discretization error on the uniform reference mesh. For this purpose,
we project the data of the adaptive grid to the reference mesh performing a local change of
basis according to (3.7), where we put the non-significant detail coefficients to zero and apply
the inverse multiscale transformation (3.30). Obviously, the perturbation error is decreasing
with smaller threshold values. In particular, it tends to zero for ε → 0+, i.e., the adaptive
solution approaches the reference solution obtained on the reference grid with L refinement
levels. Of course, we do not gain in accuracy when choosing a very small threshold value,
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because the discretization error is fixed by the number of refinement levels. Note that there is
almost no difference visible, when performing the computation with intermediate Runge-Kutta
prediction.
As we can depict from Figure 8 an optimal choice would be εopt ∼ 10−3 (C1) and εopt ∼

10−1.75 (C2), respectively. Obviously, the error of the adaptive scheme is decreasing with
decreasing threshold value ε as long as ε > εopt whereas it stalls for ε < εopt, i.e., for ε > εopt
the perturbation error due to thresholding dominates whereas for ε < εopt the discretization
error dominates.

Efficiency versus accuracy To conclude on the efficiency of the adaptive scheme, we consider
the computational costs. First we discuss the size of the adaptive grids that determine the
memory requirements, see Figures 9 and 10. We observe that with decreasing threshold value
the number of cells is increasing and, thus, resulting in higher CPU times. We note that the
intermediate Runge-Kutta prediction triggers additional grid refinement that results in higher
computational times that are almost twice as high. Since the ultimate goal is to save compu-
tational costs and to preserve the accuracy of the reference solution, we plot the perturbation
error for varying threshold values versus the CPU time in Figure 11. However, we want to
point out that in practice the optimal threshold value εopt can only be roughly estimated, i.e.,
we either loose accuracy if ε � εopt, see Figure 8, or the computational cost is significantly
higher if ε� εopt, see Figures 9 and 10.
The choice ε ∼ h1+β

L suggested in Corollary 1 is much too pessimistic: according to [11] the
discretization error is of order hβL where β = min{1, α}/2 and α corresponds to the entropy
bound (2.21) in the Shu limiter. For instance, for our configuration we compute h1+β

L ∼
7.7× 10−6, where we put α ≥ 1 and Cα =∞ and hL = 0.2× 2−9. However, the discretization
error is approximately η̂L ∼ 1.9 × 10−4 (C1) and η̂L ∼ 7.1 × 10−4 (C2), respectively, that fits
much better to εopt. Since the threshold error accumulates when performing all time steps,
we have to compensate the accumulation process by the choice of the threshold value, i.e.,
we are loosing one order of magnitude. Since Corollary 1 relies on a-priori error estimates of
the discretization error, it is a worst case estimate. Therefore we suggest to use εopt ∼ hβL in
practice.
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Figure 9: Number of cells and CPU time w.r.t. reference solution (L = 9): Adaptive computa-
tions with L = 9 and varying threshold value ε in case of configuration C1.
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Figure 10: Number of cells and CPU time w.r.t. reference solution (L = 9): Adaptive compu-
tations with L = 9 and varying threshold value ε in case of configuration C2.
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Figure 12: Results of adaptive DG scheme for configuration C1 without intermediate Runge-
Kutta prediction at time T = 0.5 using different threshold values ε. For each value
the adaptive solution (top), the adaptive grid after hard thresholding (middle) and
the predicted grid corresponding to the prediction set (bottom) are shown in each
frame.
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Figure 13: Results of adaptive DG scheme for configuration C2 without intermediate Runge-
Kutta prediction at time T = 0.24 using different threshold values ε. For each value
the adaptive solution (top), the adaptive grid after hard thresholding (middle) and
the predicted grid corresponding to the prediction set (bottom) are shown in each
frame.
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A Appendix

A.1 Example: Alpert’s orthogonal multiwavelet basis

An important example that fits into the general framework of Section 3 is Alpert’s orthogonal
multiwavelet basis, cf. [2]. The main ideas are briefly summarized. In order to construct an
appropriate MRA on L2([a, b]) we define the scaling functions

Φi(x) =
{ √

(2i+ 1)/2Pi(x), x ∈ [−1, 1],
0, otherwise,

(A.1)

by means of the Legendre polynomials Pi ∈ Πi, i ∈ P, on the interval [−1, 1]. These form an
orthonormal basis for the space Sp0([−1, 1]). In Table 1, the Legendre polynomials are explictly
given up to degree 5 and plotted in Figure 14.

p0(x) = 1
p1(x) = x

p2(x) = 1
2(3x2 − 1)

p3(x) = 1
2(5x3 − 3x)

p4(x) = 1
8(35x4 − 30x2 + 3)

p5(x) = 1
8(63x5 − 70x3 + 15x)

Table 1: Legendre polynomials on [−1, 1].
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Figure 14: Graphs of Legendre Polynomials for i = 0, . . . , 5

Alpert et al. [2] constructed a system of orthonormal multiwavelets {fp,i : [−1, 1] → R}i∈P ,
that satisfy the following properties:

1. The restriction of fi to the interval (0, 1) is a polynomial of degree p− 1.

2. The function fi is extended to the interval (−1, 0) as an even or odd function according
to the parity of i+ p.
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3. The functions f0, ..., fp−1 are orthogonal, i.e., 〈fi, fj〉[−1,1] = δij , i, j = 0, ..., p− 1.

4. The function fi has i+ p vanishing moments, i.e., 〈fi, P 〉[−1,1] = 0, P ∈ Πi+p−1

Note that these functions are discontinuous at x = 0. Up to degree 5 they are explicitly given
in Table 2 and plotted in Figure 15.

p = 1

f0(x) =
√

1
2

p = 2

f0(x) =
√

3
2(−1 + 2x)

f1(x) =
√

1
2(−2 + 3x)

p = 3

f0(x) = 1
3

√
1
2(1− 24x+ 30x2)

f1(x) = 1
2

√
3
2(3− 16x+ 15x2)

f2(x) = 1
3

√
5
2(4− 15x+ 12x2)

p = 4

f0(x) =
√

15
34(1 + 4x− 30x2 + 28x3)

f1(x) =
√

1
42(−4 + 105x− 300x2 + 210x3)

f2(x) = 1
2

√
35
34(−5 + 48x− 105x2 + 64x3)

f3(x) = 1
2

√
5
42(−16 + 105x− 192x2 + 105x3)

p = 5

f0(x) =
√

1
186(1 + 30x+ 210x2 − 840x3 + 630x4)

f1(x) = 1
2

√
1
38(−5− 144x+ 1155x2 − 2240x3 + 1260x4)

f2(x) =
√

35
14694(22− 735x+ 3504x2 − 5460x3 + 2700x4)

f3(x) = 1
8

√
21
38(35− 512x+ 1890x2 − 2560x3 + 1155x4)

f4(x) = 1
2

√
7

158(32− 315x+ 960x2 − 1155x3 + 480x4)

Table 2: Alpert’s multiwavelet construction: Expressions for the orthonormal, vanishing-
moment functions f0, ..., fp−1, for various p and x ∈ (0, 1). The function fi is ex-
tended to the interval (−1, 0) as an odd or even function, according to the formula
fi(x) = (−1)i+pfi(−x) for x ∈ (−1, 0) and is zero outside the interval (−1, 1).

Then the system of functions defined by

Ψi(x) =
{
fp,i(x), x ∈ [−1, 1],
0, otherwise, (A.2)

form an orthonormal basis for the complement space W p
0 ([−1, 1]). Note that in the case of

p = 1 this coincides with the well-known Haar basis [22]. Finally, by the affine transformation
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Figure 15: Multiwavelet system of order p: Left (p = 1): Haar wavelet; Middle (p = 2): “—” -
ψ0, “- - -” - ψ1; Right (p = 3): “—” - ψ0, “- - -” - ψ1, “· · · ” - ψ2.

x→ 2 (x− x̂l,k)/hl with the cell center x̂l,k := (xl,k + xl,k+1)/2 we obtain a MRA on L2([a, b])
where the basis functions are determined by

ϕ̄l,k,i(x) :=
√

2
hl

Φi

(
2
x− x̂l,k
hl

)
, ψ̄l,k,i(x) :=

√
2
hl

Ψi

(
2
x− x̂l,k
hl

)
. (A.3)

Then we conclude by the orthogonality relation of the Legendre polynomials and Alpert’s
multiwavelets, respectively, the following properties of the MRA on L2([a, b]):

1. the basis functions are locally supported, i.e.,

supp ϕ̄l,k,i = supp ψ̄l,k,i = Vl,k, (A.4)

2. the basis function are normalized with respect to L2([a, b]), i.e.,

‖ϕ̄l,k,i‖L2([a,b]) = ‖ψ̄l,k,i‖L2([a,b]) = 1, (A.5)

3. the basis functions satisfy the following orthogonality relations, i.e.,

〈ϕ̄l,k,i, ϕ̄l,k′,i′〉[a,b] = δi,i′ δk,k′ ({ϕ̄l,k,i}k,i orthon. basis of Spl ), (A.6)
〈ϕ̄l,k,i, ψ̄l,k′,i′〉[a,b] = 0 (W p

l ⊥ S
p
l ), (A.7)

〈ψ̄l,k,i, ψ̄l′,k′,i′〉[a,b] = δi,i′ δk,k′ δl,l′ (W p
l ⊥W

p
l′ ), (A.8)

4. the multiwavelet functions have Mp,i := i+ p vanishing moments, i.e.,

〈P, ψ̄l,k,i〉[a,b] = 0, ∀P ∈ ΠMp,i−1. (A.9)

With regard to (3.14) and (3.15) the L2-normalized basis functions have to be appropriately
scaled. For this purpose we normalize the bases with respect to Lq([a, b]) and Lq̃([a, b]) by the
scaling factors C lq := h

1/2−1/q
l and C lq̃ := h

1/2−1/q̃
l = 1/C lq, respectively, i.e.,

ϕl,k,i := C lq ϕ̄l,k,i, ψl,k,i := C lq ψ̄l,k,i, (A.10)

ϕ̃l,k,i := C lq̃ϕ̄l,k,i, ψ̃l,k,i := C lq̃ψ̄l,k,i, (A.11)

where we choose q =∞ and q̃ = 1. Obviously, these functions inherit the above properties from
their L2-counterparts, where the functions are uniformly bounded by ‖Φi‖Lq([a,b]), ‖Ψi‖Lq([a,b])
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and ‖Φi‖Lq̃([a,b]), ‖Ψi‖Lq̃([a,b]), respectively, instead of 1. Note, in particular, that condition
(3.16) holds.
The vanishing moments (A.9) and the normalization (A.11) imply that the details decay at

a rate of at least 2−lM when the underlying function is locally smooth, i.e.,

|〈u, ψ̃l,k,i〉[a,b]| ≤ inf
P∈ΠM−1

|〈f − P, ψ̃l,k,i〉[a,b]| . 2−lM‖f‖HM (Vl,k). (A.12)

Here, the number of vanishing moments is at least M = Mp,i ≥ p.
Furthermore, the orthogonality relations (A.6), (A.7) and (A.8) together with the scaling

(A.10) and (A.11) ensure the existence of the two-scale decomposition (3.23) and (3.24) and
its inverse (3.25). The corresponding mask coefficients are determined as

m̃0,s
i,j = 〈ϕ̃l,k,i, ϕl+1,2k+s,j〉[a,b]) = h̄sij/

√
2, (A.13)

m̃1,s
i,j = 〈ψ̃l,k,i, ϕl+1,2k+s,j〉[a,b]) = ḡsij/

√
2, (A.14)

g̃0,s
i,j = 〈ϕl+1,2k+s,i, ϕ̃l,k,j〉[a,b]) = h̄sj,i/

√
2, (A.15)

g̃1,s
i,j = 〈ϕl+1,2k+s,i, ψ̃l,k,j〉[a,b]) = ḡsj,i/

√
2 (A.16)

for s = {0, 1}. Note that by construction the inner products simplify to

h̄sij = 〈ϕ̄l,k,i, ϕ̄l+1,2k+s,j〉 =
√

2〈ϕi(·), ϕj(2 ·+2s− 1)〉, (A.17)

ḡsij = 〈ψ̄l,k,i, ϕ̄l+1,2k+s,j〉 =
√

2〈ψi(·), ψj(2 ·+2s− 1)〉, (A.18)

where we use the supports of the scaling functions and multiwavelets determined by (A.4)
and their shifts and translates (A.3). Since for any orthogonal polynomial sequence {Pi}i≥0

with Pi ∈ Πi, any polynomial of degree i can be expanded in terms of P0, ..., Pi, the matrices
{h̄sij}i,j=0,1, s = 0, 1, are lower triangular.
In particular, for the Legendre scaling functions and Alpert’s multiwavelets we obtain

h̄1
ij = (−1)i+j h̄0

ij , ḡ1
ij = (−1)i+j+pḡ0

ij (A.19)

using their symmetry properties.

A.2 Two-scale relations of evolution equations for single-scale and multiscale
coefficients

Here we will discuss in detail how to derive the two-scale evolution equations (4.1) and (4.7)
for the single-scale coefficients and the multiscale coefficients, respectively. First of all, we
recursively derive the evolution equations for the single-scale coefficients. For this purpose we
assume that on level l + 1 the evolution equations for any r ∈ Il+1 can be written as

vn+1
l+1,r,i = vnl+1,r,i − τ

(
Bn
l+1,r,i −Gnl+1,r,i − Snl+1,r,i

)
, (A.20)

where the numerical flux, the numerical flux balance, the flux quadrature and the source quadra-
ture are determined by (4.2), (4.3), (4.4) and (4.5) with l + 1 instead of l. For l = L− 1 these
equations obviously coincide with the reference scheme (2.7) and (2.8), (2.9), (2.10). In order to
determine the recursive formulae for the numerical flux Fnl,k, the numerical flux balance Bn

l,k,i,
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the flux quadrature Gnl,k,i and the source quadrature Snl,k,i, we apply the two-scale transforma-
tion (3.28) to the evolution equation (A.20) and define the single-scale coefficients on level l as

vµl,k,i :=
∑
j∈P

∑
s∈{0,1}

m̃0,s
ij v

µ
l+1,2k+s,j , µ = n, n+ 1, (A.21)

where k ∈ Il. Then we obtain

vn+1
l,k,i =

∑
j∈P

∑
s∈{0,1}

m̃0,s
ij v

n+1
l+1,2k+s,j = Tv − τ (TB − TG − TS) (A.22)

with

Tv :=
∑
j∈P

∑
s∈{0,1}

m̃0,s
ij v

n
l+1,2k+s,j , TB :=

∑
j∈P

∑
s∈{0,1}

m̃0,s
ij B

n
l+1,2k+s,j ,

TG :=
∑
j∈P

∑
s∈{0,1}

m̃0,s
ij G

n
l+1,2k+s,j , TS :=

∑
j∈P

∑
s∈{0,1}

m̃0,s
ij S

n
l+1,2k+1,j .

From the two-scale relation (A.21) we directly conclude

Tv = vnl,k,i. (A.23)

Since (4.3) holds by assumption for l + 1, the second term can be split into two parts, i.e.,
TB = TB1 + TB2 with

TB1 :=
∑
j∈P

(
m̃0,1
ij F

n
l+1,2k+2ϕ̃l+1,2k+1,j(x−l+1,2k+2)− m̃0,0

ij F
n
l+1,2kϕ̃l+1,2k,j(x+

l+1,2k)
)
,

TB2 := Fnl+1,2k+1

∑
j∈P

(
m̃0,0
ij ϕ̃l+1,2k,j(x−l+1,2k+1)− m̃0,1

ij ϕ̃l+1,2k+1,j(x+
l+1,2k+1)

)
.

The nestedness (3.1) of the grid hierarchy implies that the following grid points coincide: x+
l,k =

x+
l+1,2k, x

±
l,k+ 1

2

= x±l+1,2k+1 and x−l,k+1 = x−l+1,2k+2. From the two-scale relation (3.23) we then
conclude

ϕ̃l,k,i(x+
l,k) =

∑
j∈P

∑
s∈{0,1}

m̃0,s
ij ϕ̃l+1,2k+s,j(x+

l+1,2k), (A.24)

ϕ̃l,k,i(x±l,k+ 1
2

) =
∑
j∈P

∑
s∈{0,1}

m̃0,s
ij ϕ̃l+1,2k+s,j(x±l+1,2k+1), (A.25)

ϕ̃l,k,i(x−l,k+1) =
∑
j∈P

∑
s∈{0,1}

m̃0,s
ij ϕ̃l+1,2k+s,j(x−l+1,2k+2). (A.26)

Furthermore, we obtain by the supports (3.10) of the basis functions

ϕ̃l+1,2k,j(x±l+1,2k+2) = 0, ϕ̃l+1,2k+1,j(x−l+1,2k+1) = 0, (A.27)

ϕ̃l+1,2k+1,j(x±l+1,2k) = 0, ϕ̃l+1,2k,j(x+
l+1,2k+1) = 0. (A.28)

Inflating the term TB1 by the zeros in (A.27) and using the identities (A.24) and (A.26) we end
up with

TB1 = Fnl+1,2k+2

∑
j∈P

m̃0,1
ij ϕ̃l+1,2k+1,j(x−l+1,2k+2)− Fnl+1,2k

∑
j∈P

m̃0,0
ij ϕ̃l+1,2k,j(x+

l+1,2k)

= Fnl+1,2k+2 ϕ̃l,k,i(x
−
l,k+1)− Fnl+1,2k ϕ̃l,k,i(x

+
l,k). (A.29)
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Similarly we inflate the term TB2 by the zeros in (A.28) and employ the identity (A.25). Then
the term

TB2 = Fnl+1,2k+1

(
ϕ̃l,k,i(x−l+1,2k+1)− ϕ̃l,k,i(x+

l+1,2k+1)
)

= 0 (A.30)

vanishes, because ϕ̃l,k,i is continuous inside its support Vl,k and xl+1,2k+1 = xl,k+ 1
2
∈ Vl,k.

For the term TG we proceed in a similar manner. By assumption that (2.10) holds for level
l + 1, we may rewrite this term as

TG =
∑
j∈P

∑
r∈{0,1}

m̃0,r
ij

∫
Vl+1,2k+r

f(vL(tn, x)) · ϕ̃′l+1,2k+r,j(x) dx. (A.31)

Since the two-scale relation (3.23) also holds for the derivative of the scaling function in Vl,k
and the supports of the scaling functions are determined by (3.10), then we conclude from the
nesting (3.1)

TG =
∑

r∈{0,1}

∫
Vl+1,2k+r

f(vL(tn, x)) ·
p−1∑
j=0

∑
s∈{0,1}

m̃0,s
ij ϕ̃

′
l+1,2k+s,j(x) dx (A.32)

=
∑

r∈{0,1}

∫
Vl+1,2k+r

f(vL(tn, x)) · ϕ̃′l,k,i(x) dx =
∫
Vl,k

f(vL(tn, x)) · ϕ̃′l,k,i(x) dx.

Analogously, it can be shown that

TS =
∫
Vl,k

s(vL(tn, x)) · ϕ̃l,k,i(x) dx.

Thus we have derived the evolution equations of the single-scale coefficients on the coarse scale
l from those on the fine scale l + 1.
Finally, the two-scale evolution equations (4.7) for the multiscale coefficients are determined

by definition. Motivated by the two-scale transformation (3.29) we first define the multiscale
coefficients as

dµl,k,i :=
∑
j∈P

∑
s∈{0,1}

m̃1,s
ij v

µ
l+1,2k+s,j , µ = n, n+ 1. (A.33)

Then incorporating the evolution equation (A.20) we directly end up with (4.7). In order to
derive the right-hand sides in (4.8), (4.9) and (4.10) we have to proceed in a similar way as
in the above case of the evolution equations for the single-scale coefficients. In principle we
have to replace the mask coefficients m̃0,s

ij by m̃1,s
ij and the single-scale functions ϕl,k,i by the

multiwavelet ψl,k,i.
First of all, we again apply the two-scale transformation (3.29) to the evolution equation

(A.20) and obtain

dn+1
l,k,i =

∑
j∈P

∑
s∈{0,1}

m̃1,s
ij v

n+1
l+1,2k+s,j = T v − τ

(
TB − TG − TS

)
(A.34)

with

T v :=
∑
j∈P

∑
s∈{0,1}

m̃1,s
ij v

n
l+1,2k+s,j , TB :=

∑
j∈P

∑
s∈{0,1}

m̃1,s
ij B

n
l+1,2k+s,j ,

TG :=
∑
j∈P

∑
s∈{0,1}

m̃1,s
ij G

n
l+1,2k+s,j , TS :=

∑
j∈P

∑
s∈{0,1}

m̃1,s
ij S

n
l+1,2k+1,j .
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From the two-scale relation (A.33) we directly conclude

T v = dnl,k,i. (A.35)

Since (4.3) holds by assumption for l + 1, the second term can be split into two parts, i.e.,
TB = TB1 + TB2 with

TB1 :=
∑
j∈P

(
m̃1,1
ij F

n
l+1,2k+2ϕ̃l+1,2k+1,j(x−l+1,2k+2)− m̃1,0

ij F
n
l+1,2kϕ̃l+1,2k,j(x+

l+1,2k)
)
,

TB2 := Fnl+1,2k+1

∑
j∈P

(
m̃1,0
ij ϕ̃l+1,2k,j(x−l+1,2k+1)− m̃1,1

ij ϕ̃l+1,2k+1,j(x+
l+1,2k+1)

)
.

Due to the nestedness (3.1) of the grid hierarchy we infer by the two-scale relation (3.24)

ψ̃l,k,i(x+
l,k) =

∑
j∈P

∑
s∈{0,1}

m̃1,s
ij ϕ̃l+1,2k+s,j(x+

l+1,2k), (A.36)

ψ̃l,k,i(x±l,k+ 1
2

) =
∑
j∈P

∑
s∈{0,1}

m̃1,s
ij ϕ̃l+1,2k+s,j(x±l+1,2k+1), (A.37)

ψ̃l,k,i(x−l,k+1) =
∑
j∈P

∑
s∈{0,1}

m̃1,s
ij ϕ̃l+1,2k+s,j(x−l+1,2k+2). (A.38)

Inflating the term TB1 by the zeros in (A.27) and using the identities (A.36) and (A.38) we
end up with

TB1 = Fnl+1,2k+2

∑
j∈P

m̃1,1
ij ϕ̃l+1,2k+1,j(x−l+1,2k+2)− Fnl+1,2k

∑
j∈P

m̃1,0
ij ϕ̃l+1,2k,j(x+

l+1,2k)

= Fnl+1,2k+2 ψ̃l,k,i(x
−
l,k+1)− Fnl+1,2k ψ̃l,k,i(x

+
l,k). (A.39)

Similarly we inflate the term TB2 by the zeros in (A.28) and employ the identity (A.37).
However, opposite to (A.30), the term TB2 does not vanish

TB2 = Fnl+1,2k+1

(
ψ̃l,k,i(x−l+1,2k+1)− ψ̃l,k,i(x+

l+1,2k+1)
)

= 0, (A.40)

because ψ̃l,k,i is discontinuous at the center xl+1,2k+1 = xl,k+ 1
2
of its support Vl,k.

For the term TG we proceed in a similar manner. By assumption that (2.10) holds for level
l + 1, we may rewrite this term

TG =
∑
j∈P

∑
r∈{0,1}

m̃1,r
ij

∫
Vl+1,2k+r

f(vL(tn, x)) · ψ̃′l+1,2k+r,j(x) dx. (A.41)

Since the two-scale relation (3.24) also holds for the derivative of the multiwavelet in Vl,k and
the supports of the multiwavelets are determined by (3.10), then we conclude from the nesting
(3.1)

TG =
∑

r∈{0,1}

∫
Vl+1,2k+r

f(vL(tn, x)) ·
p−1∑
j=0

∑
s∈{0,1}

m̃1,s
ij ϕ̃

′
l+1,2k+s,j(x) dx (A.42)

=
∑

r∈{0,1}

∫
Vl+1,2k+r

f(vL(tn, x)) · ψ̃′l,k,i(x) dx.
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Analogously, it can be shown that

TS =
∫
Vl,k

s(vL(tn, x)) · ψ̃l,k,i(x) dx.

Thus we have derived the evolution equations of the details on the coarse scale l from the
evolution equations of the single-scale coefficients on the fine scale l + 1.

A.3 Some properties of the DG scheme in the mean

The analytical investigation of the adaptive MR-DG scheme in Section 5 uses the l1-stability
and the l∞-boundedness of the underlying reference DG scheme in the mean. For completeness
of this manuscript and for convenience of the reader we give here the full proofs. Here again
we confine ourselves to the forward Euler time discretization.
In order to verify these properties, the DG scheme in the mean (2.7) with numerical flux

(2.19) is interpreted as a perturbation of a monotone finite volume scheme. For this purpose,
we first rewrite the numerical flux (2.19) as a perturbation of a monotone flux evaluated with
respect to the mean values, i.e.,

Fk = F (vk−1,0, vk,0) + ∆Fk with

∆Fk := F (vk−1,0 + ṽ
−
k−1, vk,0 − ṽ

+
k )− F (vk−1,0, vk,0).

Hence the evolution equation for the mean values reads

vn+1
k,0 = Hn

k − λ (∆Fnk+1 −∆Fnk ) + τ snk,0, (A.43)

where the evolution operator

Hn
k := vnk,0 − λ(F (vnk,0, v

n
k+1,0)− F (vnk−1,0, v

n
k,0)), λ := τ/h, (A.44)

is only defined by the mean values, i.e., Hn
k = H(vnk−1,0, v

n
k,0, v

n
k+1,0). Here we use that ϕk,0 =

h−1 χ
Vk

holds according to (3.16). Note that for k = 0 and k = N −1 we access to data outside
the set Ih. For this purpose we extend the vectors by v−1,i = v0,i and vN,i = vN−1,i, i ∈ P.
This is justified, because we assume that for the time interval [0, T ], the solution of the initial
value problem (2.1) vanishes outside the interval [a, b].
The numerical flux F is assumed to be monotone. This typically holds, if a CFL condition

is satisfied, i.e.,
λLF < CFLmax < 1, (A.45)

where the Lipschitz constant

LF := max
|u|,|v|,|w|≤C

|F (u,w)− F (v, w)|
|u− v|

+ max
|u|,|v|,|w|≤C

|F (w, u)− F (w, v)|
|u− v|

(A.46)

depends on the initial data, i.e., C = ‖u0‖L∞(R). Hence, the discrete evolution operator H
defined by (A.44) corresponds to a monotone finite volume scheme for sufficiently small time
step size τ . It is well-known that a monotone FV scheme satisfies a min-max condition and is
l1-stable, cf. [39], i.e.,

min(vnk−1,0, v
n
k,0, v

n
k+1,0) ≤ Hn

k ≤ max(vnk−1,0, v
n
k,0, v

n
k+1,0) (A.47)∑

k

|Hn
k | ≤

∑
k

|vnk,0| (A.48)
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Furthermore, if the limiter satisfies the condition (2.21), then we may estimate the flux
perturbations by the Lipschitz continuity of the numerical flux F

|∆Fk| ≤ L−1,k |ṽ
−
k−1|+ L+

2,k |ṽ
+
k | ≤ LF Cα hα, (A.49)

where the local Lipschitz constants are determined by

L−1,k :=
F (vk−1,0 + ṽ

−
k−1, vk,0 − ṽ

+
k )− F (vk−1,0, vk,0 − ṽ

+
k )

|ṽ−k−1|
,

L+
2,k :=

F (vk−1,0, vk,0 − ṽ
+
k )− F (vk−1,0, vk,0)

|ṽ+
k |

.

Here the Lipschitz constant LF depends on the bound

‖Rv‖∞ + Cα h
α. (A.50)

In the following we show that the DG scheme in the mean inherits the above properties of
the underlying monotone FV scheme, where we basically have to assume that the time step
is sufficiently small and the higher order coefficients are bounded by an appropriate limiting
process. For this purpose we first verify that one time step is l∞-stable.

Lemma 5 (Local l∞-stability of reference DG scheme in the mean) Let Ω = [a, b] be bounded.
Furthermore we assume that

1. the numerical flux F : R2 → R is consistent with the flux f , locally Lipschitz continuous
and monotone under the CFL condition CFLmax,

2. the source function s : R→ R satisfies a global Lipschitz condition with Lipschitz constant
Ls and s(0) = 0; in particular, Ls = 0 if s ≡ 0.

3. the limiter ΠL does not modify the zero order coefficients (mean values) and (2.21) holds
at the cell interfaces and in case of an inhomogeneous problem (s 6≡ 0) also inside the
cell, i.e.,

|
∑
i∈P∗

(ΠLv)k,iϕk,i(x)| ≤ Cαhα−1, x ∈ Vk. (A.51)

For any v ∈ (Rp)NL let LF = LF (‖Rv‖∞ + Cαh
α) be the Lipschitz constant in (A.46) and let

λ = τ/h be small enough such that the CFL condition (A.45) holds, thus, the numerical flux F
is monotone. Then the forward Euler step of the reference DG scheme is l∞-stable, i.e.,

‖REL ΠL v‖∞ ≤ (1 + Lsτ)‖Rv‖∞ + λ (2LF + Ls)Cα hα. (A.52)

Proof: Let be v ∈ (Rp)NL . Then the higher order coefficients are limited such that (2.20)
holds, i.e., w := ΠLv, before applying the evolution operator EL. According to (A.43) the
updated data may be estimated by

‖REL w‖∞ ≤ ‖H(w0)‖∞ + λ ‖∆(w)‖∞ + τ ‖S(w)‖∞, (A.53)

where the vectors H, ∆, S ∈ RNL are determined by the components Hk, |∆Fk| + |∆Fk+1|
and sk,0 that are computed by the data w0 := Rw and w, respectively.
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Since the numerical flux F is monotone, we infer by the monotonicity of the corresponding
FV scheme

‖H(w0)‖∞ ≤ ‖w0‖∞ = ‖Rv‖∞. (A.54)

Here we use that the mean values are not modified by the limiter, i.e.,

w0 = Rw = RΠLv = Rv. (A.55)

Since we perform limiting before the time evolution, condition (2.21) holds and we may estimate
the flux perturbations by (A.49) and obtain

λ ‖∆(w)‖∞ ≤ 2λLF Cα hα. (A.56)

Furthermore, we may estimate the source quadrature by

|Sk,0| ≤
∫
Vk

|s(w(x))− s(0)| · |ϕ̃k,0(x)| dx ≤ Ls ‖w‖L∞(Vk),

where the function w is defined according to (2.3) with single-scale coefficients w. Here we use
that the source function s is assumed to be globally Lipschitz continuous and s(0) = 0, and
ϕ̃k,0 = h−1χ

Vk
is determined by (3.16). Since condition (A.51) holds inside the cell, we infer

|w(x)| ≤ |wk,0 ϕk,0(x) +
∑
i∈P∗

wk,i ϕk,i(x)| ≤ |wk,0|+ Cα h
α−1 ≤ ‖w0‖∞ + Cαh

α−1,

where we use ϕk,0 = hϕ̃k,0. Then we obtain with (A.55) for the source quadrature

‖S(w)‖∞ ≤ Ls(‖Rv‖∞ + Cα h
α−1). (A.57)

Finally, we conclude the assertion (A.52) from (A.53), where we use the estimates (A.54),
(A.56), (A.57), i.e.,

‖REL ΠL v‖∞ ≤ ‖Rv‖∞ + 2λLFCαhα + τ Ls ‖Rv‖∞ + λLsCα h
α.

�From the local l∞-stability we may now infer the uniform stability result.

Proposition 2 (l∞-stability of reference DG scheme in the mean) Let the assumptions of
Lemma 5 hold true and

‖RELΠLw‖∞ ≤ (1 + Lsτ)‖Rw‖∞ + Cph
α for all w ∈ (Rp)NL (A.58)

with Cp = Cp(‖Rw‖∞+Cαh
α) and α > 1. Put C∞ := eLsT (‖u0‖L∞ +M), where M > 0 is an

arbitrary but fixed constant. Let C̄p and L̄F be upper bounds for Cp(w) and LF (w) such that
C̄p ≥ Cp(w) and L̄F ≥ LF (w) hold for all ‖Rw‖∞ ≤ C∞. If λ = τ/h is chosen constant and
sufficiently small, such that a CFL condition holds with L̄F , implying the monotonicity of F ,
and

h ≤


(
λMLs
C̄p

) 1
α−1 if Ls 6= 0(

λM
TC̄p

) 1
α−1 if Ls = 0

then the forward Euler step of the reference DG scheme is uniformly l∞-stable, i.e., for all time
levels n with nτ ≤ T we have

‖RvnL‖∞ ≤ C∞ for n τ ≤ T, (A.59)

where in particular the constant C∞ is independent of the discretization parameters h, τ and
n.
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Proof: We will show the proposition by induction. First we consider n = 0. Then by
the definition (3.16) of ϕ̃k,0 and the choice of C∞ we may estimate the discrete norm by the
function norm, i.e.,

‖Rv0
L‖∞ ≤ ‖u0‖L∞ ≤ C∞,

where we use 1 ≤ eLsT and M > 0.
Now we assume that ‖RvjL‖∞ ≤ C∞ holds for j < n. Then by assumption (A.58) holds with

C̄p for all vjL, j < n. Therefore we may apply (A.58) repeatedly and obtain

‖RvnL‖∞ = ‖REL ΠL vn−1
L ‖∞ ≤ (1 + Ls τ)n‖Rv0

L‖∞ + C̄p h
α
n−1∑
i=0

(1 + Ls τ)i.

Now we use nτ ≤ T and the bound on h. If Ls = 0, this implies

‖RvnL‖∞ ≤ ‖Rv0
L‖∞ + nC̄ph

α ≤ ‖Rv0
L‖∞ + TC̄ph

α−1/λ ≤ ‖Rv0
L‖∞ +M = C∞.

Otherwise, if Ls 6= 0, we estimate the geometric sum by (1 + Lsτ)n/(Lsτ) ≤ eCsT /(Csτ) and
obtain

‖RvnL‖ ≤ eLsT
(
‖Rv0

L‖∞ + C̄ph
α/(Lsτ)

)
≤ eLsT

(
‖Rv0

L‖∞ +M) = C∞.

�
The result on the boundedness of the DG scheme in the mean is now used to verify l1-stability.

Lemma 6 (Local l1-stability of reference DG scheme in the mean) Let the assumptions of
Lemma 5 hold true. For v,v ∈ (Rp)NL let LF ≥ max(LF (v), LF (v)). Let λ be sufficiently
small such that the CFL condition (A.45) holds with LF , then the forward Euler step of the
reference DG scheme in the mean is l1-stable, i.e.,

‖R(EL ΠL v − EL ΠL v)‖1 ≤ (1 + Lsτ)‖R(v − v)‖1 + 2 (b− a)λ (2LF + Ls)Cα hα. (A.60)

Proof: Let be v,v ∈ (Rp)NL . Then the higher order coefficients are limited such that (2.20)
holds, i.e., w := ΠL v, w := ΠL v, before applying the evolution operator EL. According to
(A.43) the difference of the updated data may be estimated by

‖R(EL w − EL w)‖1 ≤
‖H(w0)−H(w0)‖1 + λ (‖∆(w)‖1 + ‖∆(w)‖1) + τ ‖S(w)− S(w)‖1, (A.61)

where the vectors H, ∆, S ∈ RNL are determined by the components Hk, |∆Fk| + |∆Fk+1|
and sk,0 that are computed by the data w0 := Rw, w and w0 := Rw, w, respectively. Since
the numerical flux F is monotone due to the CFL condition, we infer by the l1-contractivity of
the corresponding FV scheme

‖H(w0)−H(w0)‖1 ≤ ‖w0 −w0‖1 = ‖R(v − v)‖1. (A.62)

Here we use that the mean values are not modified by the limiter, i.e.,

w0 = Rw = RΠLv = Rv, w0 = Rw = RΠLv = Rv. (A.63)

Since we perform limiting before the time evolution, condition (2.21) holds and we may
estimate the flux perturbations by (A.49) and obtain by the choice of LF

λ (‖∆(w)‖1 + ‖∆(w)‖1) ≤ 2 (b− a)λ 2LF Cα hα. (A.64)
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We may estimate the source quadrature by

|Sk,0 − Sk,0| ≤
∫
Vk

|s(w(x))− s(w(x))| · |ϕ̃k,0(x)| dx ≤ Ls‖w − w‖L∞(Vk),

where the functions w and w are defined according to (2.3) with single-scale coefficients w and
w, respectively. Since condition (A.51) is assumed to hold, we infer from (A.45)

‖w − w‖L∞(Vk) ≤ |wk,0 − wk,0|+ ‖
∑
i∈P∗

(wk,i − wk,i)ϕk,i‖L∞(Vk) ≤ |wk,0 − wk,0|+ 2Cα hα−1,

where we use ϕk,0 = χ
Vk
. Then we obtain with (A.63) for the source quadrature

‖S(w)− S(w)‖1 ≤ Ls (‖R (v − v)‖1 + 2(b− a)Cα hα−1). (A.65)

Finally, we conclude the assertion (A.60) from (A.61), where we use the estimates (A.62),
(A.64), (A.65), i.e.,

‖R(EL w−EL w)‖1 ≤ ‖R (v−v)‖1+2(b−a)λ2LFCαhα+τ Ls ‖R (v−v)‖1+λLs 2(b−a)Cα hα.

�
In order to control the perturbation error of the adaptive MR-DG scheme and the reference

DG scheme in the mean we employ Lemma 6 in Theorem 1. For this purpose we need that the
constants on the right-hand side of (A.60) do not depend on the discretization. In Proposition 2
this is proven to hold for the reference DG scheme provided that the discretization is chosen
sufficiently small. For the adaptive MR-DG scheme this follows by Theorem 4.
Finally we conclude uniform l1-stability using Lemma 6.

Proposition 3 (l1-stability of reference DG scheme in the mean) Define by vnL := EL ΠL vn−1
L

and vnL := EL ΠL vn−1
L two approximations of the DG scheme with initial data u0 ∈ L1(R) and

u0 ∈ L1(R), respectively. For both sequences let the assumptions of Proposition 2 hold true,
i.e., both sequences are bounded in the l∞-norm and there exists a uniform Lipschitz bound LF .
Let C1 = eLsT and C2 = 2(b − a)(2LF + Ls)Cα/Ls if Ls 6= 0 and C2 = 4T (b − a)LFCα if
Ls = 0. Then the forward Euler step of the reference DG scheme in the mean is uniformly
l1-stable, i.e.,

‖R (vnL − vnL)‖1 ≤ C1(1 + C2) max(‖u0 − u0‖L1 , hα−1) for n τ ≤ T, (A.66)

where in particular the constants C1, C2 are independent of the discretization parameters h, τ
and n.

Proof: Without loss of generality, the CFL condition is chosen such that the numerical
flux is monotone and the discrete evolution operator H defined by (A.44) corresponds to a
monotone finite volume scheme. Then we may apply (A.60) repeatedly and obtain

‖R (vnL − vnL)‖1 ≤ (1 + Ls τ)n‖R (v0
L − v0

L)‖1 + 2 (b− a)λ (2LF + Ls)Cα hα
n−1∑
i=0

(1 + Ls τ)i.

By definition (3.16) of ϕ̃k,0 we furthermore may estimate the discrete norm by the function
norm, i.e.,

‖R (v0
L − v0

L)‖1 ≤ ‖u0 − u0‖L1 .
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Similar to the proof of Proposition 2 we now distinguish the two cases Ls = 0 and Ls 6= 0. For
both cases we deduce

‖R (vnL − ṽnL)‖1 ≤ C1‖R (v0
L − ṽ0

L)‖1 + C1C2h
α−1,

where we use nτ ≤ T and the bound on h according to Proposition 2. This verifies (A.66). �
It is worthwhile mentioning, that the above stability result implies the TVB property of the

DG scheme in the mean. For this purpose we have to choose vnL as a shift of vnL by one index.
Hence the assumption (2.21) of uniformly bounded higher order coefficients does not only imply
that the weak limit satisfies an entropy condition, but ensures convergence at all. Hence (2.21)
is a strong assumption.

A.4 Projection of mean values from coarse to fine scales

In order to perform Step L4 in Algorithm 2 we have to compute mean values on level L from
data on coarser levels. This can be done in an efficient way, where we have to pre-compute
some mask coefficients. For this purpose, we consider the function v ∈ SpL characterized by the
coefficients on an adaptive grid G. Consider a cell Vl,k with (l, k) ∈ G. For any cell VL,k′ ⊂ Vl,k,
we want to calculate the mean values vL,k′,0. The single scale-representation gives

vL,k′,0 =
∫
VL,k′

v(x) · ϕ̃L,k′,0(x)dx =
∑
i∈P

vl,k,i

∫
VL,k′

ϕl,k,i(x) · ϕ̃L,k′,0(x)dx.

Note that there are no detail coefficients due to the assumptions. Since ϕl,k,i is defined by shifts
and translates of the mother-scaling function, the value of

cd,s,i :=
∫
VL,k′

ϕl,k,i(x) · ϕ̃L,k′,0(x)dx

only depends on the difference in levels d = L− l and the relative position s = 2dk′ − k.
For instance, for the basis constructed in Appendix A.1, one can easily compute

cd,s,i =



1 i = 0√
3
(
21−ds+ 2−d − 1

)
i = 1√

5
(
6 s24−d + 6 4−ds+ 2 4−d − 6 s 2−d − 3 2−d + 1

)
i = 2√

7
(
20 s38−d + 30 8−ds2 + 20 8−ds+ 5 8−d − 30 s24−d − 30 4−ds
−10 4−d + 12 s 2−d + 6 2−d − 1

)
i = 3

. . . i > 3

With these coefficients we obtain the mean value by

vL,k′,0 =
∑
i∈P

cL−l,2L−lk′−k,ivl,k,i.
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