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Summary. We investigate the interaction of shock waves in a heavy gas with em-
bedded light gas bubbles next to a rigid wall. This may give insight regarding cav-
itation processes in water. Due to the highly dynamical, unsteady processes under
consideration we use an adaptive F'V scheme for the computations to resolve accu-
rately all physically relevant effects. The results are validated by comparison with
tube experiments.

1 Introduction

The formation and collapse of vapor bubbles in a liquid is called cavitation.
Lord Rayleigh discovered that pressure waves emitted during the process of
cavitation [Ray17] may damage solids, e.g., marine screw propellers. Since
then, the mechanism of cavitation damaging has been subject of experimen-
tal [Lau76, LH85] and analytical research. However, it is still unclear whether
the shock and rarefaction waves or the liquid jet onto the solid is the main
reason for the erosion of the material. The loading on an elastic-plastic solid
exposed to shock and rarefaction waves in water was investigated by Specht
in [ASBO0O]. Hanke and Ballmann showed one-dimensional results for a bubble
collapse in water in [HB9S].

Cavitation is induced by a pressure drop in the liquid below vapor pres-
sure. Such a pressure decrease may occur due to local acceleration of the
liquid flow caused by geometrical constraints, e.g., if the liquid flows through
a narrow orifice or around an obstacle. In case the pressure drops below vapor
pressure, the liquid bursts and creates a free surface filled with gas and vapor
— the bubble. Due to changes in the flow field, the pressure in the liquid may
increase afterwards causing the bubble to collapse. The collapse is accompa-
nied by strong shock and rarefaction waves running into the bubble and the
surrounding liquid. The shock wave focuses in the center of the bubble. This
leads to extreme physical states in the interior. In addition, the shrinking of
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the bubble leads to a compression of the vapor. Both effects evoke an increase
of pressure which bulges the bubble. Hereby, a dynamic oscillation process
is initiated which finally leads to the collapse of the bubble. If the collapse
takes place next to a solid, the pressure distribution becomes asymmetric and
a liquid jet develops [PL98] which is either directed towards or away from the
solid boundary. The direction of the jet depends on the elasticity of the solid
and on a ratio determined by the initial distance between the boundary and
the center of the bubble divided by the maximum extension of the bubble.
This has been shown experimentally by Brujan et al. in [BNT01], [BNT01a].

In order to investigate experimentally the dynamics of a bubble collapse,
the bubble is produced by a laser pulse. Thereby, the fluid is heated in the
focus of the laser and forms a small, hot gas bubble at very high temperature.
This experimental setup provides an exact positioning of the bubble. The pro-
cesses taking place in the interior of the collapsing and oscillating bubble and
the prediction of onset and extent of the cavitation damaging are still sub-
ject of theoretical and experimental research. However, small time and space
scales as well as the complicated dynamics make an experimental approach
difficult. Therefore numerical investigations are needed to reveal information
about the wave dynamics in the fluid as well as the damaging of the solid.
Of particular interest are pressure contours and velocity vectors in the liquid
phase as requested in [BNT01a].

The primary objective of the present work is to provide an accurate pre-
diction of all occurring wave phenomena. This concerns wave interactions
among each other, with phase boundaries or neighboring solids. Besides, the
occurrence of instabilities as, e.g., the Richtmyer-Meshkov instability. Since
all present methods for simulating two-phase flows suffer from pressure os-
cillations at the phase boundary, we use a very dense and heavy gas instead
of water . The occurring wave phenomena are expected to be qualitatively
comparable with those in water.

For two-phase flow problems with different equations of state the phase
boundary can be tracked or treated in a Lagrangian manner as a sharp, interior
boundary using two meshes [Dick96]. The latter suffers from the drawback
that the mesh has to be updated in every step which is expensive and time
consuming and may result in a poor mesh quality for large displacements of
the interface. Instead, we track the phase boundary using a level set method.
Consequently, the phase boundary is represented as a mathematically sharp
boundary as we will explain in Section 2. We do not implicate surface tension
and mixing of the two fluids.

For the sake of completeness, it is to be mentioned that for a two phase
flow of one fluid a homogenized approach is possible, as will be presented
by Vof} in [Vos02] and [Vos01]. There, one equation of state is used for the
liquid as well as the gaseous phase and the so-called mixture region. Here,
even states consisting of gas and vapor fractions can be modeled.

The small time scales of the unsteady problem require the numerical
scheme to be highly efficient regarding computational time and memory re-
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quirements. This is realized by a local grid refinement strategy. Furthermore,
all physically relevant phenomena have to be reliably detected and adequately
resolved. Moreover, the scheme has to be robust and must not exhibit numer-
ical oscillations, e.g., pressure oscillations at the phase boundary. The details
of the numerical scheme are presented in Section 3.

In Section 4 numerical results for a bubble collapse near a rigid wall are
presented and the arising dynamic wave pattern is discussed.

2 Level Set

For modeling two-phase flows, there are mainly two different approaches to
treat the two media, a fitting of the phase boundary with two separate grids
connected by interface conditions, [Dick96], or one grid with a suitable algo-
rithm to track the phase boundary. Since in the first case the grid has to be
redesigned in every time step which is very time consuming, we use only one
grid and the level set method to distinguish the two fluids.

The level set method, proposed by Osher and Sethian in [OS88], is a tool
to track propagating interfaces without an explicit description like a function
of the interface under consideration. Instead a scalar field given in the domain
is used to represent the motion of the interface.

Consider the case of two domains (21, {25 sep-
arated by a contact surface I'. Now, a scalar field
¢ = ¢(x,t) is introduced which is ¢(x,t) < 0 for @
x € 7 and ¢(x,t) > 0 for x € (2, see Fig. 1. The 0
interface I" is evolved in time by the fluid velocity
v. Therefore, we may describe the time evolution of
the scalar field ¢ by ” Fig. 1.

at“"W*O' (1)
There are two different methods to exploit the evolution of the scalar field
for tracking a moving interface. The most common approach suggested by
Osher and Sethian in [Set96] is to define the scalar field as a smooth, signed
distance function to the front under consideration, whereby the material in-
terface corresponds to ¢ = 0. Sussman et al. used this approach in computing
incompressible two phase flows in [SSO94, SAT99, SF99]. The smoothness of
¢ has to be sustained by a reinitialization after each time step. This way, it is
guaranteed that the level set itself will not steepen and develop shocks. A dis-
advantage of this method is the loss of conservativity. Nguyen et al. suggested
methods to recover the conservativity, see [NGF02].

Here, we follow an idea of Mulder et al. [MO92] where the level set func-
tion is not a smooth but a discontinuous scalar field. Initially, we assign
d(x,t) = —1 for x € 1 and ¢(x,t) = 41 for x € £25. This notation for ¢ is
sometimes called “color”-function. The sign (color) of ¢ decides which fluid
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occupies which domain. Thereby, the choice of the equation of state is con-
trolled. It has to be noticed that we track the jump in ¢ and not the zero level
set.

Multiplying equation (1) with the density p and employing the continuity
equation of fluid dynamics yields a conservative form of the transport equation
for ¢, i.e.,

do¢

TE V- (o9v) =0, @

Written in this form equation (2) can be added to the system of conservation
equations (1) as an additional equation. The main advantage of this approach
is the preservation of conservativity.

3 Governing Equations and Method of Solution

The fluid flow is modeled by the time-dependent 2D Euler equations for com-
pressible fluids. Appending the evolution equation (2) this leads to the system
of conservation equations

2/Udv+j£ F-ndS=0 with (3)
ot Jy C%
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Here, U is the array of the mean conserved quantities: density of mass, mo-
mentum, specific total energy and level set. p is the pressure and v the fluid
velocity. The quantity V' denotes a time-independent control volume with the
boundary 0V and the outer normal n. The flux F contains only the convective
terms. Since the two fluids under consideration are gaseous both, there is no
need to deal with the surface tension at their contact surface.

The system of equations is closed by the perfect gas equations of state for
both fluids ¢ = 1,2, i.e. the thermal equations, p; = R; 0T, and the caloric
equations, e; = ¢; T'. Herein, e; is the internal energy and T the temperature.
cy; and R; are the heat capacities at constant volume and the special gas-
constants, respectively. Thereby, fluid 1,2 is present in {27, {25, respectively.
The material properties, c¢,; and R;, are listed in Table 1. The evaluation of
the equations of state is governed by the scalar field ¢, i.e.,

o 9<O0
= . 4
={n 1 00) W
The conservation equations (3) are discretized by a finite volume method.

The convective fluxes are determined by solving quasi—one dimensional Rie-
mann problems at the cell interfaces. For this purpose we employ a two-phase
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Roe Riemann solver designed for the coupled system of the 2D Euler equa-
tions and the evolution equation (2) of the level set ¢. For the construction
of this solver we proceed similarly to [LV89] for real gases. In order to avoid
non-physical expansion shocks we use Harten’s entropy fix. The spatial ac-
curacy is improved by applying a quasi one-dimensional second order ENO
reconstruction. Due to the strong dynamic behavior of the considered flow
problems the time integration is performed explicitly.

In order to properly resolve all physical relevant phenomena we need a very
fine discretization of the computational domain. Due to the heterogeneity
of the flow field, this high resolution is not needed throughout the entire
computational domain but only locally near discontinuities. For this purpose
we employ a dynamic local grid adaptation strategy to resolve the physically
relevant phenomena at the expense of possibly few degrees of freedom and
correspondingly reduced storage demands. The main distinction from previous
work in this regard lies in the fact that we employ here recent multi-resolution
techniques, see [Mul02].

The starting point is to transform the arrays of cell averages associated
with any given finite volume discretization into a different format that reveals
insight into the local behavior of the solution. The cell averages on a given
highest level of resolution are represented as cell averages on some coarse level
where the fine-scale information is encoded in arrays of detail coefficients of
ascending resolution. This requires a hierarchy of meshes. The multiscale
representation is used to create locally refined meshes. For details we refer
to [Miil02].

Following Mulder [MO92] we chose ¢ as a color function in our computa-
tions. Mulder observed in [MO92] that using this formulation of ¢ the pressure
shows spurious oscillations at the phase boundary. To reduce these oscillations
we use averaged pressure and energy equations near the interface, i.e.,

P1 : ¢ < —€
p= (1 - ae(¢))p1 + ae(¢) b2 |¢| < € ) (5)
D2 TP > €
Cyv1 P < —€
e=Tc, =T ¢ (1—ac(@)cvi +ac(d)cva = o] < € 5. (6)
Cv2 D9 > €

Here, the function a.(¢) is chosen as a linear interpolation between 0 and 1 in
the interval [—e, €], i.e., ae(¢p) = (¢/e + 1) /2 for |¢| < €. For our computations
we chose € = 0.5. Results of a comparison between the approximate Riemann
solver using this averaging method and an exact Riemann solver are given in
Figs. 2(b) and 2(a). Since ¢ is initialized by +1 for fluid 1 and by —1 for fluid
2, € has to be chosen less than 1 to make sure that the modification of the
pressure law is only applied in the vicinity of the interface. Note that the initial
jump of ¢ is smeared by the FV scheme. The width of this numerical transition
layer depends on the underlying grid resolution. It becomes smaller with finer
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grids. In particular, when the material boundary is a phase boundary and
different equations of state have to be applied on both sides, a grid adaption
strategy is strongly recommended to provide a high resolution of the interface.

From this point of view, equation (5) describes not really a physically
relevant phase transition, it serves more as a numerical stabilizer of the phase
boundary.

4 Numerical Results

The current work focuses on the ability of the scheme to accurately resolve the
dynamics and wave pattern occurring in the presented test configurations for
two-fluid flow. At first, we validate our scheme using experiments performed
by Haas and Sturtevant, [HS87]. Herein, a shock runs across a bubble filled
with helium in the one case and with R22 gas in the other. R22 is the heavy
refrigerant chlorodifluromethane (CHCIF3). In Table 1 the physical proper-
ties of the gases under consideration are given. The surrounding fluid is air in
both cases. We compare our numerical results with the schlieren photographs
taken by Haas and Sturtevant. The third configuration is a helium bubble
surrounded by R22 and placed next to a rigid wall, with initial conditions
corresponding to an explosion problem. The main focus lies on the interac-
tion of the emitted waves with the wall. Since we expect the occurring wave
phenomena have something in common with the formation and collapse of a
cavitation bubble, this configuration indicates possible causes for the dam-
aging mechanisms accompanying cavitation in the related experiments. The

Table 1. Molecular weight umol, special gas-constant R, ratio of specific heats v
and speed of sound ¢ (at 293.15 K, 101, 35 kPa) for air, helium and R22.

fluid  wmol [10°kg/mol] R [J/kg/K] ¥ ¢ [m/s]

air 28.964 287.0 1.4 343.3
helium 4.003 2077.0 1.66  1007.4
R22 864.687 96.138 1.178  184.0

characteristic physical quantity in dealing with wave interactions with bound-
aries is the acoustic impedance pc. Herein, c is the speed of sound. The ratio of
the acoustic impedances of two fluids governs what happens to a shock wave
traveling through fluid 1 and impinging on the phase boundary between fluid
1 and 2. According to the acoustic wave theory, the impinging shock wave
is split up in a transmitted part traveling through Fluid 2 and a reflected
part. The larger the jump of the acoustic impedance the more energy is re-
flected. In case, (oc)1 >> (oc)2 most of the energy is reflected with a phase
change of 180°. If (oc); << (pc)2 most of the energy is reflected, too, but
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without change of phase angle. The results for shock impacts on the helium
and the R22 bubble presented in Section 4.2 show the influence of the acoustic
impedance on the wave pattern. This will be discussed later in this chapter.

4.1 Validation

To validate the solver the solution of a 1D Riemann problem is compared to
the exact solution, see Figure 2(a), evaluated with an exact Riemann solver by
Colella and Glaz [CG85] which is capable to deal with two phases. Apart from
some slight pressure wiggles at the phase boundary, our approximate solver
gives satisfying results. For time ¢ = 0 the membrane at x = 0cm bursts;

Table 2. Initial conditions for two phase Riemann problem with helium and R22.

helium bubble R22 surrounding

o[kg/m?] 20.0 10.0
p[N/m?] 1.217 x 107 281684.3
T K] 293.0 293.00
ockg/s/m?] 20101.85 1821.78
Vg, Uy [m/s] 0.0,0.0 0.0,0.0

p [10° N/m?]
100¢

50F

o

0 2 4 x[m]

Fig. 2. Exact and approximative solution for the two-phase Riemann problem he-
lium (left) and R22 (right); density (a) and pressure (b).

on the left hand side in the high pressure region is helium, on the right hand
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side R22. A shock runs into the low pressure region. Behind the shock the
density jumps from 10kg/m3 to 67.2107 kg/m3. The shock is followed by a
very fast contact discontinuity. Over the contact discontinuity the density
drops to 10.5365kg/m? which is nearly its right initial value. In the high
pressure region runs a rarefaction wave.

4.2 Shock Bubble Interaction

Haas and Sturtevant performed experiments with shocks passing gas inhomo-
geneities of helium or R22 in an air surrounding to clarify the mechanisms of
turbulence and mixing caused by shock waves, see [HS87]. They carried out
two-dimensional and three dimensional experiments. In the two-dimensional
experiments, we compare with a cylindrical volume is enclosed by a 0.5 ym
thick nitrocellulose membrane which bursts under the impact of the shock
wave. With shadowgraph photography wavefronts and the topology of the
bubble were made visible.

The geometrical setup shown in Fig. 3 is the same for both problems. The
initial mesh has 125 x 10 cells and 5 levels of refinement are used. Due to
the mirror symmetry of the problem, only the upper half was computed. A
shock coming from left impinges on a gas bubble. Initially, the bubble and
the surrounding pre-shocked air are at rest and in thermal and mechanical
equilibrium. Corresponding to the geometrical situation presented in Figure 3,
the initial conditions for the problems discussed here are given in Tables 3
and 4.

post— pre-shocked r=0.025m at 0.4895 m

shocked air shock position at 0.02225 m
air —==Vshock

w Syy0°0

helium

Fig. 3. Computational domain for 4.2.

Helium Bubble in Air

In the first computation the setup is the helium filled gas bubble surrounded
by air. The initial conditions are given in Table 3 and the geometry in Fig. 3.
Figure 4 shows the time evolution of the density gradient in the domain given
in Figure 3. In Figures 5(a) and 5(b) the pressure p is plotted in z-direction
over the z-y-plane and the phase boundary is marked as a black line. In the -
y-plane the pressure gradients are shown (shock fronts visible as black lines).
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Table 3. Initial conditions for shock interaction with helium bubble.

post-shocked air  pre-shocked helium  pre-shocked air

0 1.376 0.138 1.0
p 1.575 1.0 1.0
oc 1.742 0.479 1.183
Ve, Uy 0.396,0.0 0.0,0.0 0.0,0.0

These figures show the same instant as Figures 4(b) and 4(d). Figure 6 shows
a comparison between the experimental and our computational results. Two
clippings of the adapted mesh are shown in Figures 7(a) and 7(b).

In Figure 4(a) the incoming shock (marked as i) has already crossed the
most left part of the bubble boundary. It is partly transmitted as a refracted
shock (rr) and partly reflected as a rarefaction wave (rw). This behavior is
governed by the ratio of the acoustic impedances, see values given in Table 3.
Inside the bubble the transmitted shock runs ahead since the speed of sound
in helium is higher than in air at the same temperature. The shock-front is
curved due to the spherical shape of the undisturbed phase boundary. The
fore-running shock in helium arches as a thin, black line from z = 0.039m to
x = 0.0315m at the phase boundary where the shock just hits the boundary.
Outside the bubble the incident shock is visible as a straight, black, vertical
line. The density jump at the phase boundary is a thin, opaque line marked
as (pb). Behind of the shock, the reflected rarefaction wave appears as a dark
area. Since in the very beginning of the shock bubble interaction the shock
front is parallel to the phase boundary, all the waves travel in z-direction.
Later on, the shock impinges on the phase boundary under an increasing
angle, see Fig. 4(b). Due to the laws of geometrical optic the rarefaction wave
is reflected under the same angle as the shock impinges on the helium surface.
Since the shock inside is faster than outside, a shock wave (marked s as “
side” shock) emanates where the refracted shock meets the phase boundary.
A complicated four shock configuration develops which Henderson explained
in [HCP91] and called twin regular reflection refraction. In Figure 4(c) the
refracted shock is just passing the most right boundary of the bubble at x =
0.073 m, whereas the incident shock is at x = 0.043 m. The acoustic impedance
in the post-shocked helium is only 0.542kg/m?/s but in the pre-shocked air
1.183kg/m?/s. Therefore, the air acts in the sense of a rigid boundary which
makes that the reflected part of the shock wave hitting this boundary is a
shock. This reflected shock (rl) focuses on the z-axis at 0.059 m which is visible
as a small, light dot in the density gradients of Fig. 4(d) (marked by an
arrow). The focus is more distinct in the corresponding pressure gradients,
see Fig. 5(b). Here, the pressure is plotted in z-direction over the z-y-plane.
Below, in the same figure which itself shows the pressure gradient isolines
shown in gray-scale. As a result of the higher shock speed the helium near the
x-axis is stronger accelerated than the air above it. Thereby, an anti-clockwise
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rotation of the bubble content is induced and at the symmetry axis the bubble
constricts and develops a small throat. The helium volume remains rotating,
splits up at the z-axis and travels circulating upstream, see Figs. 4(h)—4(j).

We compared our results to photographs taken by Haas and Sturtevant,
see [HS87], and found a good agreement see Figs. 6. In particular, the nu-
merical results exhibit all waves visible in the schlieren photographs. How-
ever, since the numerical results do neither include the complete experimental
setup, e.g., the support for cylindrical membrane in Fig. 6(c), nor pertur-
bations due to the rupture of the membrane, the comparison can only be
qualitatively. Nevertheless, as indicated by the same labels as in Fig. 4 all the
waves from the experiment are resolved in the computation. In particular, the
topology of the bubble is excellently reproduced. Notice that the ring which
was necessary to fix the bubble in the experiment must not be confused with
a wave surface.

To show qualitatively the grid refinement, a part of the adapted mesh is
presented in Fig. 7(a). The shock at © = 0.27m as well as the bubble contour
are well resolved. The re-coarsening of the grid inside the bubble is visible in
Fig. 7(b).

R22 Bubble in Air

Table 4. Initial conditions for shock interaction with R22 bubble.

post-shocked air  pre-shocked R22  pre-shocked air

~y 1.4 1.178 1.4
0 1.376 2.985 1.0

» 1.575 1.0 1.0
oc 1.742 1.875 1.183
V2, Uy 0.396,0.0 0.0,0.0 0.0,0.0

For the case of an R22 bubble in air, physical data is given in Table 4.
The density gradients corresponding to the experimental schlieren images are
shown in Fig. 8. Figure 11 shows the absolute value of the velocity and integral-
curves of the instantaneous velocity field. In Figure 9(a) the density is plotted
in z-direction over the z-y-plane. In the xz-y-plane the density gradients isolines
are plotted in gray-scale; Figure 9(b) shows a similar plot for the pressure in
z-direction, but here the phase boundary is marked with a black line, and in
the x-y-plane the pressure gradient isolines are presented.

Since the acoustic impedance of R22 is only slightly higher than the acous-
tic impedance for the post-shocked air, see Table 4, the incident shock (i) is
mainly transmitted and only a small portion is reflected as a shock (rl), see
Fig. 9(a). There, the transmitted and thereby refracted shock (rr) is visible
as a concave curved black line extending from x = 0.037m to z = 0.048 m.
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Compared to the incident shock (i) the refracted shock (rr) is slower, because
the sound speed in R22 is lower than in air. This is also the reason for the
higher acceleration of the air above the bubble compared to that of the gas
R22. This fact leads to a clock-wise rotation of the material in the R22 bub-
ble later on. The outward running shock diffracts since it is decelerated at
the phase boundary, see Fig. 8(c). Between the incident shock (i) and the
inside running shock (rr) develops a compression wave (cw). By the compres-
sion wave the flow direction is turned by 90° towards the symmetry axis as
indicated in Fig. 11. The front of the refracted shock bends more and more
until it focuses on the z-axis at the phase boundary, see box on left side in
Fig. 8(e). The arising pressure peak is depicted in Fig. 9(b). The shock is
reflected after focusing and runs outward, see wave (rf) in Fig. 8(f). Again
the shock (rf) is traveling slower in the R22 than in the helium. When the
incident shock has passed the bubble it crosses its symmetric counterpart, see
Fig. 8(f) at x = 0.06 m. Thereby, a reflected shock (s) running upstream is
induced. These two shocks (s and rf) pass across the bubble in upstream direc-
tion and cause reflected and refracted waves inside the R22 bubble visible in
the density gradients of Figs. 8(g)—8(i). Since they do not produce new phys-
ical effects they are not discussed further. The bubble migrates downstream
and thereby it prolongates and rolls up its top (t). In Figure 8(j) the phase
boundary represented by the zero level ¢ = 0 is indicated by a solid, black
line. Obviously, there are growing instabilities on the top of the structure. It is
assumed that these are Rayleigh-Taylor instabilities due to the shock passing
across a curved phase boundary.

The comparison with the experiment is given in Fig. 10. Again, the
ring from the experimental setup is visible. The wave (w) at the bottom of
Fig. 10(c) is a reflection from the shock tube wall. A good agreement between
the phase boundaries (pb), the incident and refracted shocks (i and rr) is vis-
ible in in Figs. 10(a) and 10(c). Note that even the compression wave (cw)
is resolved. In Figures 10(b) and 10(d) the phase boundary (pb) as well as
the shock (rf) — reflected from the focus of the refracted shock — match per-
fectly their experimental counterparts. At the left border the reflected shock
(s) from the crossing of the incident shocks at the symmetry axis is visible.

4.3 Explosion Problem Helium in R22 Next to a Rigid Wall

This computation is motivated by the idea of a laser induced vapor bubble in
a liquid next to a rigid surface. The resulting bubble expands very fast and
causes a pressure wave in the liquid which interacts with the wall and after
reflection again with the bubble. In the case discussed in the sequel, we study
the sudden expansion of a hot, high pressure helium bubble with cylindrical
shape surrounded by the heavy gas R22 at low temperature. The midpoint
of the bubble of diameter 0.01m is placed at x = 0.14m,y = 0.08m at the
right of the computational domain which has the size 0.16 m x 0.32m. Since
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the problem is mirror-symmetric with respect to the z-axis we computed only
the upper half.

Both fluids are treated as perfect gases. The chemical data is given in Table
1. The zero level set lies on the phase boundary between helium and R22; it
is indicated as a white, dashed line in the Figs. 12-17. The initial conditions
correspond to a the two-phase Riemann problem in Section 4.1.

The computational results for the two-dimensional explosion problem are
presented in Figures 12-21. The series of Figs. 12-17 show pressure (a), density
(b) and the corresponding grid (c) at different times. The phase-boundary
which is evaluated from the level set function as its zero level is indicated as
a white dashed line in every picture. In the very beginning a circular shock
wave runs undisturbed outward, see Figs. 12(a) and 12(b). It is closely followed
by the contact discontinuity (white dashed line). Inwardly, a rarefaction wave
runs concentrically into the center of the bubble. There, it is reflected as a now
outwards running rarefaction wave which follows the shock and the contact
discontinuity, see Figs. 13(a) and 13(b). In Figures 12(c) and 13(c) it is clearly
visible that the mesh is refined close to the waves and is re-coarsened in the
center after the reflection of the rarefaction wave. The first wave hitting the
rigid wall is the shock. It is then reflected as a shock wave and its pressure
level increases due to the superposition, see pressure and density legend in
Fig. 13. The reflected shock passes over the contact discontinuity which is
decelerates thereby. Due to the high pressure region behind the shock, the
contact discontinuity does not reach the wall, but is repelled from it, see
Fig. 21(a) at 20 us. The outward running waves set the material inside the
bubble in an outward directed motion, see Fig. 18, and a shock develops at
time ¢ = 29 us, see Fig. 14(a) and Fig. 21(a) at = 0.13m and = = 0.15m,
respectively. However, the reflected rarefaction wave decelerates as well as the
inward running rarefaction wave induces an outward directed velocity field
which decelerates this shock so that the shock becomes nearly stationary.
The shock that was reflected at the solid wall overtakes the shock and due
to their interaction a small contact discontinuity appears, see Fig. 21(b) at
x = 0.147m and ¢t = 35 pus. In theses pictures, the wave dynamics on the
x-axis in a range from & = 0.08 — 0.16 m are plotted as pressure (Fig. 21(a))
and density (Fig. 21(b)) isolines in an a-t plane.

Later on, the shock reflected from the wall also interacts with the rest of
the shock in the interior of the helium bubble. They cross each other mainly
undisturbed and a contact discontinuity emerges from the interaction, see x =
0.137m in Fig. 21(a) (the phase boundary is marked as a black, dotted line).
Since the initial shock front is spherical, it hits the wall under a continuously
increasing angle. At first, the shock impinges onto the wall under an angle of 0°
and is reflected regularly. With increasing angle, however, a regular reflection
becomes impossible as explained by, e.g., Ben-Dor in [BD91] and a Mach stem
develops, see Fig. 17 on the z-axis at y = 0.072m. The slip line (sl) coming
from the Mach stem (ms) is visible in Fig. 19. In the case of a cavitation
bubble in water the Mach stem of the reflected shock produces surface waves
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in the wall which could be one reason for cavitation damaging. The pressure
distribution at the rigid wall in Fig. 20 displays the loading jump evoked by
the Mach stem — visible at y = 0.0517 m — on the solid.

5 Conclusion and Future Work

We presented results for highly dynamical two-fluid flow problems with wave
interactions at material boundaries. The comparison with experiments in Sec-
tion 4.2 verifies that our solver is adequate for computing two-fluid flow prob-
lems for different perfect gases. The advanced grid refinement strategy au-
tomatically detects all appearing waves and provides a perfect resolution of
those waves. For the test case of an exploding gas bubble next to a rigid wall,
the complicated wave interactions are well resolved and give hope for further
computations with gas and liquid.
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7 Figures

0.08 0.12 0.16 0.2

Fig. 4. Shock bubble (helium) interaction, (a)-(e): density gradients
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0.04 0.08 0.12

Fig. 4. Shock bubble (helium) interaction, (f)-(j): density gradients
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(b)

Fig. 5. z-y-plane: pressure gradients, z-axis: Pressure over z-y-plane with phase
boundary marked as a black, solid line
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b)
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rin . pb pb
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0 = a)

Fig. 6. Comparison between numerics (a,b) and experiment (c,d) for helium bubble
in air. Experimental pictures scanned from [HS87]. The ring is part of the experi-
mental setup. For the indices at the waves, see Fig. 4.
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(b) Grid resolution in the bubble region.

Fig. 7. Parts of adapted mesh corresponding to Fig. 4(i)
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0 0.04 0.08 0.12 0.16 0.2

Fig. 8. Shock bubble (R22) interaction, (a)-(e): density gradients
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0.04

Fig. 8. Shock bubble (R22) interaction, (f)-(j): density gradients
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(a) z-y-plane: density gradients, z-
axis: density over xz-y-plane

(b) z-y-plane: pressure gradients, z-axis: pressure
over x-y-plane

Fig. 9.
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Fig. 10. Comparison between numerics (a,b) and experiment (c,d) for R22 bubble in
air. Experimental pictures scanned from [HS87]. The ring is part of the experimental
setup. For the indices at the waves, see Fig. 8.
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Fig. 11. Absolute value of velocity with integral-curves for v, and v, (arrows) and
phase boundary (¢ = 0-level) as a black dashed line.
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Fig. 12. ¢t = 7.0us, ¢ = 0 white dashed line
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Fig. 13. ¢ = 18.53us, ¢ = 0 white dashed line
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Fig. 15. t = 40.00us, ¢ = 0 white dashed line

0.05 PLO NI §.05 plkg/m’]
31.07 66.53

0.04 22.05 40.50
15.65 24.65

0.03 11.11 15.01
7.89 9.13

0.02 5.60 5.56
3.97 3.38

001 2.82 2.06

_,_0 _ B I/ / " | (AN a

0.1 0.12 0.14 0.16 x[m] . 0.12 0.14 0.16 x[m]
(a) pressure (b) density

Fig. 16. ¢t = 59.99us, ¢ = 0 white dashed line
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Fig. 18. Integral-curves Fig. 19. Isolines of Mach number;
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Fig. 20. Pressure distribution at wall
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Fig. 21. Wave dynamic at z-axis for all computed time steps.



