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Abstract

In recent years the concept of fully adaptive multiscale finite volume schemes
for conservation laws has been developed and analytically investigated. Here
the grid adaptation is performed by means of a multiscale analysis based on
biorthogonal wavelets. So far, all cells are evolved in time using the same time
step size. In the present work this concept is extended incorporating locally
varying time stepping. A general strategy is presented for explicit as well as
implicit time discretization. It can be applied to a scalar equation and systems
of equations for arbitrary space dimensions. For reasons of simplicity, the strat-
egy is developed in detail for one-dimensional problems. The efficiency and the
accuracy of the proposed concept is numerically investigated for 1D scalar con-
servation laws. First 2D Euler computations verify that it can also be applied
to multidimensional systems.
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1 Introduction

The solution of hyperbolic conservation laws typically exhibits locally steep gra-
dients and large regions where it is smooth. To account for the highly nonuni-
form spatial behavior, we need numerical schemes that adequately resolve the
different scales, i.e., use a high resolution only near sharp transition regions and
singularities but a moderate resolution in regions with smooth, slowly varying
behavior of the solution.

For this purpose, numerical schemes have been discussed or are under cur-
rent investigation that aim at adapting the spatial grid to the local behavior of
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the flow field. A standard strategy is to base local mesh refinements on local
indicators which are typically related to gradients in the flow field, see [9, 11],
or local residuals, see [32, 41, 42]. Although these concepts turn out to be very
efficient in practice they offer no reliable error control. For this purpose, a pos-
teriori error estimates have been derived which aim at equilibrating local errors,
see [34].

In the early 90’s Harten [29] proposed to use multiresolution techniques in
the context of hyperbolic conservation laws. He employed these techniques to
transform the arrays of cell averages associated with any given finite volume
discretization into a different format that reveals insight into the local behavior
of the solution. The cell averages on a given highest level of resolution (reference
mesh) are represented as cell averages on some coarse level where the fine scale
information is encoded in arrays of detail coefficients of ascending resolution.
By means of the multiresolution analysis the flux evaluation is controlled, i.e.,
cheap finite differences are employed in regions where the solution is smooth.
By this strategy the computation is accelerated and the solution remains within
the same accuracy as the reference scheme, i.e., the scheme on the finest com-
putational mesh that uses the expensive flux evaluation throughout the entire
domain. However, since one works still on a uniform mesh the computational
complexity stays proportional to the number of cells on the finest grid. So far,
Harten’s concept has been successfully implemented for two-dimensional Carte-
sian meshes [12, 13, 18, 19, 38], curvilinear meshes [23] and unstructured meshes
[1, 14, 20).

Parallel to Harten’s original idea a modified approach has been developed
by Miiller et al. [28, 21, 36] that is aiming at reducing the computational costs
with regard to both computational time and memory requirements but still
maintaining the accuracy of the reference scheme. In contrast to this, the de-
tail coefficients will be used here to create locally refined meshes on which the
discretization is performed. Of course, the crux in this context is to arrange
this procedure in such a way that at no stage of the computation there is ever
made use of the fully refined uniform mesh. A central mathematical problem
is then to show that the solution on the adapted mesh is of the same accuracy
as the solution on the reference mesh. By now the fully adaptive multiscale
concept has been applied by several groups with great success to different real
world applications, e.g., 2D /3D—-steady state computations of compressible fluid
flow around air wings modeled by the Euler and Navier—Stokes equations, re-
spectively, as well as fluid-structure interactions on block—structured curvilinear
grid patches [15, 16], non-stationary wave interactions in two-phase fluids on 2D
Cartesian grids for Euler equations [36, 3, 2, 24], backward—facing step on 2D
triangulations [22] and simulation of a flame ball modeled by reaction—diffusion
equations on 3D Cartesian grids [40].

A short-coming of this approach is the lack of temporal adaptivity, i.e., all
cell averages are evolved in time by the same time step size 7. For reasons of
stability we are therefore obliged to choose 7 such that the CFL condition for
the cells on the finest mesh is satisfied. However, for cells corresponding to
a coarser discretization we may use a larger time step to meet the local CFL
condition. Therefore it is natural to use locally varying time stepping.

First results on local time stepping have been published by Osher and Sanders
[37] for one-dimensional scalar conservation laws. Here the space discretization
is fixed but non-uniform. Each element is evolved in time either by an entire



time step or a fixed number of smaller time steps. They thoroughly analyzed a
first order spatial discretization with a local forward Euler time stepping scheme.
This work has been extended in [25] where a maximum principle was proven
for a local forward Euler method when limited slopes are included. Moreover,
they showed that the main ideas may be extended to second order in time by
TVD Runge-Kutta methods. Recently, similar ideas where considered in [43]
for hyperbolic conservation laws where the solution increment is projected at
each local time step.

About the same time, Berger and Oliger [11] proposed the by now classical
Adaptive Mesh Refinement (AMR) technique. Here refined grids are laid over
regions of the coarse mesh. In particular, the grids need not to be nested but
can have a different orientation than the coarse grid. This allows for a local
alignment of the grid with anisotropic effects such as shocks. Each refinement
level is propagated with its own time step. Information is passed between the
grids using injection and interpolation techniques. This approach has been
investigated in a series of papers and applied to multidimensional hyperbolic
systems of conservation laws, see [7, 8, 9, 6, 10].

In the present work we are now concerned how to modify the adaptive mul-
tiscale scheme such that we may evolve cell averages on level | by its own level-
dependent time step size 7;. After one time step the new data then correspond
to different times. This procedure is adequate for steady state problems. Due to
this non-uniformity of the temporal propagation front this is no longer admissi-
ble for instationary problems because this would result in wrong shock positions.
In this case we have to synchronize the coarse and fine grid solution to obtain an
overall conservative scheme. This subject was intensively investigated by Berger
et al. in several papers, see [11, 7, 8]. In the context of adaptive multiscale finite
volume scheme this has to be adjusted to the requirement that the resulting
scheme provides a spatial accuracy that is comparable to the spatial accuracy
of the reference mesh. This point of view is similar to the method presented
in [44] for second-order partial differential equations which exhibit a smooth
solution.

Opposite to previous work, we will successively propagate the data in time
starting on the finest refinement level instead of the coarsest. The synchroniza-
tion then takes place after having performed one time step on the coarsest level
which is referred to as the macro time step. If we use a high number of refine-
ment levels, a shock may have a large range of influence within one macro time
step. To resolve the shock adequately we either have to refine a-priorily a large
region on the finest level or we have to perform grid refinement on sublevels
to track the shock position within one macro time step. The latter strategy
is preferable because the overhead for the grid adaptation on the intermediate
time levels is by far compensated by the reduced number of flux evaluations on
the finest grid.

Since the underlying fully adaptive multiscale concept can be applied to
multidimensional scalar and systems of conservation laws based on an explicit
or implicit reference finite volume scheme, the strategy of incorporating locally
varying time stepping can be applied to all of these problems as well. This
makes our strategy a general concept.

The outline of the paper is as follows. In Section 2 we start with a summary
of the standard fully adaptive multiscale concept recalling its core ingredients,
namely, the multiscale analysis and the local grid adaptation. In Section 3 we



then outline the concept for incorporating locally varying time stepping. Here
we first consider an explicit time integration. The main ingredients are (i) a
conservation-preserving flux evaluation near interface points, (ii) the computa-
tion of appropriate prediction values on coarser levels, (iii) the synchronization
of the time evolution and (iv) the local grid refinement on the intermediate
time levels to track appropriately the movement of discontinuities. These ideas
are then extended to an implicit time integration. Numerical results verify the
efficiency and the accuracy of our method, see Section 4. Note that all concepts
are presented for one-dimensional problems only to simplify the presentation.
However, the concepts also work for multidimensional problems as is verified by
the 2D Euler computations. We conclude with some remarks on open questions
and future work.

2 Fully Adaptive Multiscale Schemes

We briefly summarize the fully adaptive multiscale finite volume scheme for con-
servation laws. To simplify the presentation of the basic ideas we only consider
the 1D case. The multidimensional case is considered in detail in [36]. For this
purpose we consider a scalar conservation law

ut(taa“) + (f(u(t,.%‘))),,; =0, t>0,z€eR (1)
which is governed by the initial data
u(0,2) =up(z), zxz€R (2)

Note that in case of a bounded computational domain we additionally have
to supply boundary conditions as well. Since these will cause no conceptual
limitation in the design of the multiscale scheme we confine to initial value
problems. A conservative finite volume discretization of this problem can be
written in the form

WP L OABIT = of — (1— ) ABP, A:= % (3)
Here space and time are uniformly discretized by h and 7, respectively. Note
that the time discretization is explicit for § = 0 and implicit for 0 < 6 < 1.

Conservation means that the flux balance B} has the form
By := F(vg_py1s- > Vkrp) = FOF_py -3 Vs p1) = Frar — Fy 4)

where the function F'(us,...,usp) is the numerical flux function.

To improve the efficiency of the finite volume scheme without loss of accuracy
we employ multiresolution techniques. For this purpose, we first recall the basic
ideas of the underlying multiscale concept. This is employed to construct a
locally refined grid on which finally the time evolution is performed. In Section
3 we will see that some steps of the grid adaptation procedure have to be adapted
to the needs of locally varying time stepping.

2.1 Multiscale Analysis

A finite volume discretization is typically working on a sequence of cell averages.
In order to analyze the local regularity behavior of the data we employ the



concept of biorthogonal wavelets [17]. This approach may be seen as a natural
generalization of Harten’s discrete framework [30, 4, 5]. For reasons of simplicity
only uniform refinements in one space dimension are considered here. Note that
the framework presented here is not restricted to this simple configuration but
can also be applied to unstructured grids and irregular grid refinements. Details
can be found in [36].

Grid hierarchy. Let be G; := {Vix}trern, | € No, I = Z, a sequence of
different grids corresponding to different resolution levels. These meshes are
composed of the intervals Vi = [21k, %1 k+1] determined by the grid points
Xy = 27"k, k € Z. We note that with increasing refinement level [ the interval
length h; = 27! becomes smaller. Obviously, the resulting grid hierarchy is
nested, i.e., G; C Gi41, because of the subdivision condition

Vie = Vig1,26 U Vig1,2841, VIENy, k€ Z. (5)

Box function and cell averages. Relative to the partitions G; we intro-
duce the so—called box function

)

- 1 . 2t T € Vg
fuul) = g, @ = { 0 2 e ©)

defined as the L'—scaled characteristic function with respect to Vik- By |V| we
denote the volume of a cell V. Then the averages of a scalar, integrable function
u € LY(€) can be interpreted as an inner product, i.e.,

g = (u, Qre)o  with  (u,v)q ::/uvdm. (7)
Q

Obviously the nestedness of the grids as well as the linearity of integration imply
the two-—scale relations

5 10 - N 10 .
Pre = E My Py and - Gpg = E : My Ui L,r (8)
remy, reEMy ro

where the refinement set is defined by M? := {2k, 2k+1} C I;41 and the mask

coefficients turn out to be mi’f}c = Vig1,01/|Vik] = 0.5.

Wavelets and details. In order to detect singularities of the solution we
consider the difference of the cell averages corresponding to different resolu-
tion levels. For this purpose we introduce the wavelet functions &l,k as linear
combinations of the box functions, i.e.,

k=Y, M e (9)

TEMII),CC11+1

The construction of the wavelets is subject to certain constraints, namely,
the wavelet functions ¥, := (¢ x)reys, build a completion of the basis system
®, := (@i,r)ker,, they are locally supported, provide vanishing moments and
there exists a biorthogonal system. For details we refer to the concept of stable
completions, see [17]. Then we can perform a change of basis between ®; U ¥,
and ®;44, ie.,

- 1,0 ~ U
Pl+1,k = Grk Plir + E 9rk Y1 (10)
T€GY, Chi T€G}, Ch



By means of the wavelet functions we introduce the detail coefficients

dik = (u, P11 )0- (11)
These coefficients inherit the two-scale relation
11 ~
dl,k = Z mr’jc Up41,r (12)
7"6/\/111,,c

from its functional counterpart (9).

Multiscale Transformation. The ultimate goal is to transform the array
of cell averages ur, := (UL i )ker, corresponding to a finest uniform discretization
level into a sequence of coarse grid data wg := (do,x)kecr, and details d; :=
(dik)ken, I = 0,...,L — 1, representing the successive update from a coarse
resolution to a high resolution. According to (8) and (9) we obtain two—scale
relations for the coefficients inherited from the two—scale relations of the box
functions and the wavelet functions

. 10 - _ Ll -
g = E m,y Uiyie,  dige = E m, Ui, (13)
rEMik rEMll’k
and
N 1,0 - 1,1
Uik = Y Grntur+ Y, gy dir (14)
TEGY,, TEG],

Applying the relations (13) iteratively the array 4y, is successively decomposed.
We refer to this transformation as multiscale transformation. It is reversed by
the inverse multiscale transformation (14).

Cancellation Property. It can be shown that the details become small
with increasing refinement level when the underlying function is smooth

ldik| < C 27 M [u™)]| oo (v, - (15)

Obviously, the details decay with a rate at least of 27! provided the function

u is differentiable and the wavelets have M vanishing moments. This motivates
to neglect all sufficiently small details in order to compress the original data.

Example. Finally we give an example for the above multiscale setting in
case of a dyadic grid refinement of the real axis, i.e., 2 = R and I[; = Z for
1 =0,...,L. This simplifies the computation of the wavelets because the mask
coeflicients are independent of the level and the position. Otherwise we have to
modify the wavelet construction near boundaries and ensure that the support
is fully contained in the flow field. Following the wavelet construction with
M = 2s+ 1 vanishing moments presented in [35], Section 2.5.2 and 3.8, we
obtain for the mask coefficients

1,0 _ 6k5,j —(—1)ilk_]‘+s s kE {j—S,...,j+S}
Ir2i+i = 0 , elsewhere
171 _ (_1)1 ? k :j
Ik2j+i = 0 , elsewhere
w0 _ (05, k=]
2j+ik 0 , elsewhere
ml,l _ 0.5 (lj7k+s+(—1)i(5k,j) , le {j—s,...,j+s}
25+ik 0 , elsewhere



lo I L | I3 ls
0
-1/8 0 |1/8
3/128 | -11/64 | 0 | 11/64 | -3/128

N =IOl ®»

Table 1: Coefficients

for k,j € I; and i € {0,1}. The coefficients l;, i = 0,...,s, are summarized
in Table 1. Hence the corresponding index sets of non-vanishing entries are
determined by

M = {2k, 2k + 1}, M}, ={2(k—s),...,2(k +s) + 1},
glo,k = {Lk/QJ 85 Lk/QJ +S}7 gll,k = {Lk/QJ}a

2.2 Local Grid Adaptation

By means of the details we now determine a locally refined grid. Since the grid
adaptation tool is supposed to dynamically adapt the mesh to an underlying
flow field, we start with data corresponding to a certain time step n. At this time
step the locally refined grid is characterized by the index set G . C {(,k); k €
I, 1=0,...,L}, ie., Q = U(l,k)egg,s Vi,k- It is required that the set gg’g has
the structure of a graded tree, i.e., neighboring cells differ at most by one level
of refinement. The grid is provided with cell averages {47} x)egr .- Then the
grid adaptation procedure consists of six steps. Note that it can be realized
with an optimal complexity, i.e., the number of floating point operations is
proportional to the number of cells in the adaptive grid. In particular, we never
access to the finest mesh.

Local multiscale transformation. In a first step we perform a multiscale
analysis of the data at hand. For this purpose we proceed level by level from
fine to coarse according to (13). Note that the two-scale transformation is
performed locally only for the indices corresponding to the adaptive grid instead
of the full levels. In particular, applying the local two-scale transformation can
be interpreted as a successive coarsening of the grid where fine-grid cells are
agglomerated to a coarse-grid cell and the difference information is stored by
the detail coeflicients.

Thresholding. The idea is simply to discard all coeflicients d7';, that fall
in absolute value below a certain threshold. For this purpose, we introduce the
index set

D} = {(Lk); |d%| > e, k€L, 1€{0,...,L —1}}

corresponding to what will be referred to as significant details. Here ¢; = 2!=L¢
is a level-dependent threshold value which is smaller on coarser levels. The
choice of the threshold parameter ¢ is discussed in [35].

Prediction of significant details. To perform the evolution step, we have
to determine the adaptive grid on the new time level. Since the corresponding
averages, respectively details are not yet available, we have to predict all details
on the new time level n + 1 that may become significant due to the evolution
by means of the details on the old time level n. In order to guarantee the



adaptive scheme to be reliable in the sense that no significant future feature of
the solution is missed, the prediction set DZ”ZI has to satisfy

D} U D"“ C Dz“zl, (16)

where, of course ’D"Jr is not known at the old time level. In [29] Harten sug-
gests a heuristic approach that could not be rigorously verified to satisfy (16).
However, in [21] a slight modification of Harten’s prediction strategy has been
shown to lead to a reliable prediction strategy in the sense of (16).

Grading. In order to perform the grid adaptation procedure level by level
we need that the index set of significant details corresponds to a graded tree,
L.e., the levels of neighboring cells differ at most by one. Since the sets D} _ and
DIT;I, respectively, are in general not graded, we have to apply in addition a
grading procedure. This will slightly inflate the index set of significant details
but has so far been observed not to spoil the complexity reduction of floating
point operations in any significant way.

Grid adaptation. Then we exploit the inflated set ﬁgfgl to determine
an associated index set Q”H which characterizes the adaptive grid at the new

time level. The index set g"+1 is initialized by all indices of the coarsest dis-
cretization. Then, traversing through the levels from coarse to fine we proceed
as follows: if (I, k) € Dt then the cell Vi is locally refined, i.e., the index

(1,k) is removed from g”“ and the indices of the subcells on the finer level

are added to g”“ Flnally we obtain the locally adapted grid which naturally
corresponds to the leaves of the graded tree of significant details.

Local inverse multiscale transformation By the previous step the grid
has locally changed due to local refinement and coarsening. In order to de-
termine the cell averages {ﬂﬁk}(l Kyegptt, We employ a local inverse multiscale
transformation according to (14) interrelating the local cell averages {atcYameer .
and the significant details {d]; } ; kyeDptt- Again we proceed level by level from
coarse to fine where we locally replace a cell average on the coarse scale by the

cell averages of its subcells. This is done whenever there is a significant detail
associated to this coarse cell in Dzzl.

2.3 Application to Reference Finite Volume Scheme

Finally we have to present the time evolution on the locally refined grid. Note
that the ultimate goal is to obtain an efficient algorithm that is as accurate as
the reference scheme (3) performed on the uniform finest grid. Here the crucial
point is the flux computation on the adaptive grid. The basic idea is to apply
the multiscale transformation to the reference scheme.
r

ot +0AL BiR =0f , —(1—0) AL BR,, Ap:= no kel (17)
Here v7 |, denote the numerical approximations at time ¢,,. The flux balances
B 1, are defined according to (4).

"Then we introduce the cell averages v}, on the coarser scales{ =0,...,L—1
1 n n
Z mr | Vi, = 5 (V1,26 + V%1 2041) (18)
7"6/\/!1),c



for an arbitrary time level ¢, according to (8).
Applying the multiscale transformation (13) we obtain discrete evolution
equations for these cell averages

G ONBI = o — (L= O N By, A= hil (19)

Here the local flux balances Bj"; are recursively defined by

> Vil 10 )
BIW;k = |V | mr,k Bln—i-l,r = Bln—i-l,r = ‘Flr,bk—i-l - ‘Fl?k (20)
reMP HLr reMy,

where we employ (4) and (8). Due to the nestedness of the grids (5) the nu-
merical fluxes on level [ coincide with the numerical fluxes on the higher scales,
ie.,

n __ n — — n — n n
= Flaon = = FL ooy, = FUF g1 _py- VL pr-typ1)- (21)

Note that this only holds in the one-dimensional case. For multidimensional
problems, hanging nodes occur in the locally refined grid and the fluxes on
different resolution levels do not coincide. Then the local fluxes are defined by
the sum of all fluxes on the higher level whose cell interfaces build a composition
of the local cell interface. Since the numerical divergence on the coarser levels
is recursively defined by (20) we further conclude

2L-t_1

n n _ n n — n mn
Bl,k - Z BL,2L—lk+i — YL2L-(k+1) T FL,2L—lk = Fl,k—i-l - Fl,k’ (22)
i=0

i.e., the local numerical divergence is determined by the fluxes on the finest
scale. Then the fully adaptive scheme in 1D reads

o ON BT =0t — (1= 0) M By, (LK) €GPt (23)

where the flux balances BJ; are determined by (22) and (21).

3 Local Time Stepping

So far no local time stepping is incorporated in the fully adaptive multiscale
scheme as summarized in Section 2.3. As we conclude from (19) all cell averages
are evolved in time by the same time step size 7. Therefore 7 has to be chosen
such that the CFL condition for the cells on the finest mesh holds. Note that
for cells on the coarser scales we may use 7; = 217, 1=0,...,L—1, to satisfy
locally the CFL condition. In the sequel we explain how to modify the adaptive
multiscale scheme such that we may evolve cell averages on level [ by its own
time step size 7;. For this purpose, we first consider the explicit scheme before
extending the ideas to the implicit scheme.

3.1 Explicit Local Time Stepping

The main issues arising in local time stepping concern (i) the conservative flux
computation at interface points, i.e., grid points where the neighboring cells



are located on different refinement levels, (ii) the computation of a prediction
value for the flux computation at intermediate time levels near interface points,
(iii) the synchronization of time evolution for cells on different levels that are
propagated with level-dependent time stepping and (iv) the prediction of an
appropriate adaptive grid when performing intermediate time steps on higher
levels.

3.1.1 Conservation-Preserving Flux Computation

Propagating each cell with its own time step size leads to a non-synchronization
of the flow field. For instationary problems we therefore have to synchronize the
coarse and fine grid solution at certain time levels. According to the definition
of 7; the data can be synchronized naturally at the times corresponding to
the coarsest discretization 19. In the context of multiscale schemes the flux
synchronization problem is directly related to the conservation property of the
finite volume scheme, i.e., at each interface point only one flux is computed for
both of the adjacent cells. For this purpose, we investigate the correlation of
the flux balances at interface points in some detail.

For reasons of simplicity we consider now only two refinement levels to out-
line the basic ideas, i.e., a fine grid (level  + 1) and a coarse grid (level [). This
situation is sketched in Figure 1. Then the extension to the multilevel case can
be performed recursively, see Section 3.1.3. Let us assume that we know the
data on level [ +1 at time ¢,. We now perform two time steps according to (19)
where we apply our reference scheme on level | + 1 for the cells r € Mlo,k with
time step size 7 = 141 = 27, i.e.,

“ln++11,£2 = Vi g1 B, (24)
AN A DY : v (25)

with
PV S S i R (26)

iy 05Nk

Here the flux balances Bf, , and Blrflljz are computed according to (22) by

1/2 . .
means of the data UZ"H,T and ”an:{ corresponding to time ¢, and t,,1/2 =

tn + Ti4+1, respectively. These correspond to the numerical fluxes indicated by

o in Figure 1. We now replace vl”:ll,fz on the right hand side of (25) by (24).
Hence (25) can be rewritten as

n+l _ ,.n N n+1/2 n
Vig1,r = Vig1,r — i1 (Bz+1,T + Bl—i—l,r)' (27)

Again we apply to (27) the multiscale transformation (13) and obtain the
discrete evolution equations for cell averages on the coarser level

vl'?,jl =y — By EZk (28)
where the local flux balance sz is recursively defined by

—n 1, +1/2 _=n —n
By, = Z mr,?c (BZH,Z +Bl1,) = Fp e — Fiy (29)

10
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Figure 1: Two-scale grid in space and time

with the numerical fluxes

—=n 1, _nt1/2
Firp:= 5(}7}11,2/19 + i ok)- (30)
Here we use (8) and (22). These fluxes correspond to e in Figure 1.

In principle, the multiscale scheme tells us how to determine the flux balances
and numerical fluxes on coarser levels. As we conclude from (29) and (30) they
are determined by the average of their counterparts on the finer level. This

tnt1 tny1
Fiihe T4
= 2T141 fﬁk @ tnt1/2
Fl'j—l,2k Ti+1
tn tn
k-2 k-1 2k 2k+1 2k+2 2k+3

Figure 2: Locally refined grid in space and time

suggests to proceed from fine to coarse when propagating the cell averages on
different scales. At interface points we then have to compute the flux balances
and numerical fluxes by the information already determined on the higher level.
This situation is sketched locally in Figure 2.

3.1.2 Prediction Value

When computing the numerical flux Flitlz/ kz according to (21) we access to cell

averages at the intermediate time #,,,, /5. In the literature different approaches
have been investigated to provide some prediction value for these cells at the
intermediate time level.

A naive strategy would be to use the available information on a previous time
level, i.e., for the coarse cells (level [) we use the data of the old time step ¢, as a
prediction whereas for the finer cells (level [+1) we can already use the new value
at the intermediate time ¢, ; /o, see Figure 3. This approach has been considered
as a motivating example by Sanders and Osher in [37]. Recently, Warnecke and
Tang [43] verify that this naive approach is inconsistent at interfaces separating
two global domains corresponding to two different resolutions. For this purpose,

11



they apply a first order upwind scheme to a linear advection equation. We also
used this approach. But numerical simulations verified that the mixing of time
scales caused small perturbations at interface points. These are detected by
the multiscale analysis and result in an increase of significant details, i.e., the
adaptive grid is locally inflated, and, hence, the efficiency of the computation is
degraded.

An alternative startegy has been introduced by Berger and Oliger [11]. They
are using interpolation techniques, i.e., first the cells on the coarser level are
evolved in time. Then a prediction value is determined at the intermediate
time level evaluating an interpolation formulae computed by the values of the
old and new time. This results in two numerical fluxes at interface points. To
ensure the conservation property of the scheme, a so-called synchronization step
is necessary to compensate for the flux difference, see also Section 3.1.7.

tnt1 tnta

AN AN AP AT

“*“\\//\\//\/\/\/\/mfﬂ

tn tn
k-2 k-1 2k 2k+1 2k+2 2k+3

Figure 3: Flux computation on a locally refined grid in space and time with a
naive prediction value

tnt1 tot1
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tn 2
k-2 k—1 2k 2k+1  2k+2 2k+3

Figure 4: Flux computation on a locally refined grid in space and time with an
accurate prediction value

Since we proceed levelwise from fine to coarse we use a predictor-corrector
approach similar to Osher and Sanders [37]. However, we prefer a different rep-
resentation more suited to an efficient implementation of the resulting algorithm
whereas the predictor-coorector representation is preferable for analytical inves-
tigations. In Section 3.1.6 we will address this in more detail. In the following
we outline the basic ideas by means of the situation sketched in Figure 2. First
of all, we introduce the index sets C; C ggjgl, j=1,1+1, of the cells on level j
that can be evolved in time by one time step with step size 7;, i.e., these cells are
not involved in the flux computation on level j + 1 at the intermediate time level
corresponding to 7;41. In principle, these sets are determined by the stencil of
the flux computation (21) and the local inverse multiscale transformation (14)
to provide locally the data on the highest level. Here these sets are determined
by

C={k—i);i>[2k—p-1)/2] =5}, Cpn ={(+ 1,k —i); i > 2k},
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where s depends on the number of vanishing moments, see the example in Sec-
tion 2.1. Note that on the highest level (I41) no cells are excluded. Furthermore
we introduce set of all cells on level j and the complement sets C; of cells on
level j not contained in C;

jj = {(J, kl) , (], k,) € gf?‘;l}, Z] = fJ\C]
For the particular situation considered here they turn out to be
CG={lk—-14); [2k—p—-1)/2] —s <i< -1}, Ci41 =0.

Then the time evolution consists of two intermediate steps. In the first step
we evolve all cells in C;11 by a full step with 711 and to compute the prediction
values for all cells on level [ contained in C; we perform a half step also using
Ti41, i.€.,

n+1/2 Ti+1 v
ok =t — T ges = File), (', k'") € Cly1 UC). (31)
In a second step we then perform a full step on level j = 1,1+ 1 for all cells in
the sets C; with 7; and a half step for the prediction values on level | contained
in Cy, i.e.,

1 Tir ’_ r_
ol = o T - BT, @K € G v
(32)
+1/2 Ti+1 +1/2 +1/2 rd
'U;f;:;l = /U;Tkl / - hl (‘F’l?k’-i—/l - F}’Clk/ / ), (l,kl) € Cl-

Here the numerical fluxes are determined by (21) where we use either the data
at time t,, or t,41/2, respectively.

If we plug in (31) into (32) then we may rewrite the time evolution in one
(macro) time step corresponding to 7; as

T

hy

n+1

= 1} - n
O = = 7 (Fu g — Fup), (' k") € ggzl- (33)

For the flux computation Flrf’k,, see also (30), we distinguish three cases:
(i) at the fine level (I' =1+ 1)

—=n 1, _nt1/2
Fiop = 5 B+ Fle), (34)
(ii) at the coarse level (I’ =1) away from interface points

Flw=FY, (35)

(iii) at the coarse level (I' =1) coinciding with an interface point

—=n | p— n =N
Fl,k’ = 5(1‘_‘111,2/19' + Fl+1,2k’) = Fl+1,2k" (36)

Finally we note that (31) can be considered a prediction step and (32) a correc-
tion step.
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3.1.3 Synchronization of Time Evolution

In the previous sections, we derived a conservation-preserving and accurate
strategy for the flux evaluation at interface points. Note that due to the grading
of our adaptive grid, see Section 2.2, the refinement level of the adjacent cells
differs by at most one. Therefore it has been sufficient to outline the local time
stepping strategy for a two-level grid only. We now have to explain how to
incorporate this concept into the time evolution of the adaptive grid. The basic
idea is to evolve each cell on level [ with the level-dependent time discretization
7 =27, 1=0,...,L. Obviously, all cell averages correspond to the same
integration time after having performed 2! time steps with 7, i.e., the cells
are synchronized. This is schematically sketched in Figure 5. Therefore one

to +47 =t + 211 = tn + T2

tn + 371

tn + 21 =th + 711

th +7

tn

Figure 5: Synchronization on multilevel grid

macro time step with 7o = 2L 7, consists of 2% intermediate time steps t,,,;o-z,
i=1,...,2%, with step size 7z. At time t,1io-z the smallest synchronization
level is determined by

l; :==min{l; 0 <1< L, i mod 257! =0},

i.e., in this step we have to evolve all cells sitting on the levels I =1;,...,L to
ensure the synchronization of the time evolution.

According to the multiscale analysis the time evolution is performed first for
the cells on the highest level and then successively for the coarser levels. By this
procedure we ensure that the fluxes at the intermediate time level have already
been computed when determining the fluxes (36) at the interface points on the
coarser level.

The details of the synchronized time evolution is summarized in the following
Algorithms. First of all, we have to initialize the index sets C;, [ =0,...,L and
the index set of the numerical fluxes F.

Algorithm 3.1 (Initialization on levels I =0,...,L)
For each macro time step we first have to initialize

a) the index sets C;, | = 0,..., L, of cells on level ! that can be evolved in
time by one time step with step size 7y, i.e.,
¢ o= {(Lk); @K ed},
¢ = {(l,k) egrtt; Al+1,r) eGitt s ke ET}, I<L

with the range of dependence ¥, determined by the stencil of the flux
computation (21) and the local inverse multiscale transformation (14) as

ri=A{lr=p)/2] =5, ., [(r +P)/2] + s};
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these cells are not involved in the flux computation on level [ + 1 at the
intermediate time level corresponding to 7y41;

b) the complement sets, i.e.,

Co:=1I\C, I:={(k); (1,k)eGrt'};

c) the index set F of all numerical fluxes to be computed for the current
adaptive grid, i.e.,

F = {(l,k), (l,k') S gz:’;l or (lak+ 1) € gg:ﬁ;l} :

After having initialized these sets we may perform the time evolution for each
of the intermediate time steps i = 1,...,2~.

Algorithm 3.2 (Synchronized time evolution for time step ¢, ;2-z)
For each intermediate time step we have to perform the following steps:

1.) Flux computation:

a)

For the levels I =1;_1,...,L we determine the numerical fluxes with
respect to the data of the previous intermediate time step correspond-

ing to tn+(z’—1) 2—L, i.e.7
i) no interface point ((I + 1,2k) € F)

nt+(i—1)27% _ nt(i—1)2~% nt(i—1) 27F
F = F( L2L—1g—p 7"'7UL,2L—lk+p—1)7

ii) interface point ((I + 1,2k) € F)

nt+(i-1)27% _ nt(i-1)27%
Fix =Foe "

this procedure has to be performed from fine to coarse;

For level I = ;1 — 1 we have to update the numerical fluxes at the
interface points to maintain the conservation property, i.e.,

nt(i-1)27F _ nt(i-1)27F,
li—1—1,k T lie1,2k ’
For the levels [ = 0,...,l;_1 — 1 the numerical fluxes are unchanged

except for the interface points on level I;_1, see step 1b), since the cell
averages on these levels have not changed in the previous intermediate

time step, i.e.,
nt(i—1)27F _ nd(i—2)27 %,
Ey =L ;

2.) Time Evolution:

a)

For the levels [ = [;, ..., L we perform a full time step with 7; for the
cells (I, k) € Cy, i.e.,

n+i2~ L
Uik

l _ Un+(i—1)2_L T (Fn+(i—1)2_L _ _Fln;—(i—l)2_1‘) .

= Uik By \" Lkt ;
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b) For the levels I = [; — 1,...,L we perform a half time step with
Ti41 = 11/2 for the cells (I, k) € Cy, i.e.,

n+i2~L _ nt(i-1)27F  Ti41 n+(i—1)2~F nt(i—1)27F\ |
Uk = Uk - iy Fl,k+1 _Fl,k )

c¢) For the levels I =0,...,l; — 1 the cell averages are unchanged ezcept
for the cells on level I;_; contained in Cj,_1, see step 2b), i.e.,

nt+i2~F _  n4(i—1)27F
Urk =V .

3.1.4 Prediction of Details

So far we only considered the correct flux treatment at interfaces of two different
discretizations. This affects the correct transport of information and the stabil-
ity of the approximation. In addition to this, we have to be concerned with the
quality of the approximation. According to the fully adaptive multiscale con-
cept presented in Section 2.3 we are still aiming at the accuracy provided by the
reference scheme (17) on the finest uniform discretization. In particular, after
one macro time step using the local time stepping procedure with 79 = 277, we
would like to have as good an approximation as having performed 2F time steps
with the reference scheme using the step size 77,. Therefore we have to make
sure that the solution is adequately resolved at the old time ¢, and the new
time step t,41 = t, + 2X7 = t, + 10. For the original fully adaptive scheme
this is ensured by the prediction step of the grid adaption, see Section 2.2. The
prediction of the details ensures that a significant information can only move
by at most one cell on the finest level. However, employing the same strategy
for the local time stepping strategy this information could move up to one cell
on the coarsest mesh. This would result in a completely underresolution of dis-
continuities on the new time level. To account for this we have to modify the
prediction step of the details (16) such that the prediction set ﬁﬁ;l satisfies the
modified reliability condition

2L
Upptiz™ c oyt (37)
=0

where the sets DE?TL correspond to the significant details of the solution at
times ¢, j9-2 =tn +i7r,4=0,...,2L.

One option could be to resolve the whole range of influence characterized
by the maximal and minimal characteristic speeds, respectively. This can be
realized by refining 2! cells (to the left and the right) in a neighborhood of a
significant detail on level [ instead of only one cell. Hence we take into account
that an information can move by one coarse cell instead of one fine cell only.
Unfortunately, this results in a tremendous overhead of work on the higher
levels as can be concluded from Figure 6. There we sketch the influence of the
modified prediction strategy in comparison to the old one after having performed
the grading step. Here we consider one significant detail denoted by x on level
I = 3. Then we mark by e the cells corresponding to the old strategy. The
additional cells o characterize the inflation due to the modification. We note
that the graded tree is much more inflated, in particular, on the higher levels.
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Figure 6: Influence of different prediction strategies

Obviously, this strategy ensures that all effects are properly resolved on the new
time level after having performed the macro time step. However, the efficiency
degrades significantly.

To optimize the efficiency we suggest an alternative approach. The idea
is to perform additional grid adaptation steps according to Section 2.2 after
each synchronization. In particular, after having propagated the data on levels
I =1;,...,L which correspond to 2! time steps with 7;, we apply the grid adap-
tation on this part of the grid only instead of the whole adaptive grid. By this
procedure it is possible to track, for instance, the shock position on the inter-
mediate time levels instead of a-priori refining the whole range of influence. In
other words we make sure that a significant information on level [ can only prop-
agate by at most one cell on this level when performing the evolution step with
7;. 'To realize this we only have to perform minor changes in the grid adaptation
algorithms where we replace the coarsest level 0 by the current synchronization
level [;, i.e., level [; is considered to be the coarsest level. The data and the
cells on the coarser levels 0,...,I; — 1 are not affected. Moreover, we replace
the index sets Gr . and Dr, . by Gj; 1. and Dy, 1 ., respectively, to indicate that
these sets only correspond to the levels [;,..., L. Note that in practice we do
not need additional data structures but can work on the same data structures
as before. The modified grid adaptation strategy is summarized in the following
algorithm.

Algorithm 3.3 (Partial grid adaptation on levels ;,..., L at time ¢, ;9-z)

1.) Local multiscale transformation performing the loop over [ from L down
to l; + 1;

2.) Thresholding performing the loop over [ from I; to L — 1;

n+i2~ L

3.) Prediction of significant details performing the loop over all (I, k) € D;\;'
4.) Grading performing the loop over | from L down to I; + 1;

5.) Grid adaptation performing the loop over I from I; to L — 1 where the grid

. —-L
QZE(;H) > for the new time step is initialized by the cells of the old grid
QZ;“_L corresponding to the coarser levels 0,...,[; — 1;

6.) Local inverse multiscale transformation performing the loop over [ from [;
to L —1;
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When performing this partial grid adaptation on the levels [;,..., L we have
to make sure that a cell on level /; that is adjacent to a cell of level [; — 1 is
not refined. Otherwise there will be a level-2-transition in the adaptive grid
that does not fit the assumptions of the algorithms realizing the multiscale
transformation, see Section 2.1. This can be avoided by increasing the grading
parameter by 1, see Section 2.2.

3.1.5 Algorithm

Finally we have to combine the time evolution at the intermediate time steps
t,+;2-r and the partial grid adaptation at the synchronizationlevels =1;,..., L.
For this purpose, we have to combine appropriately the Algorithms 3.2 and 3.3.
The complete macro time step is summarized in the following algorithm:

Algorithm 3.4 (Explicit local time stepping)
1.) Initialization:

a) Grid adaptation:
Perform grid adaptation according to Algorithm 3.3 on the levels
~ —L
0,..., L providing the grid QZ:‘;Q
ages v}, at time ¢p;
b) Index sets:

Determine the index sets C;, C;, I = 0, ..., L and the index set of the
numerical fluxes F according to Algorithm 3.1;

and the corresponding cell aver-

For each intermediate time step i = 1,...,20 we then perform the following
steps:

2.) Synchronization:
The time evolution at time ¢, ;5-c is performed according to Algorithm
3.2;

3.) Partial grid adaptation:
After having synchronized the data on levels | = [;,...,L we adapt the
grid on these levels to the new data according to Algorithm 3.3;
due to the grid adaptation the redistribution of cells makes it necessary
to reinitialze the sets C;, C;, I = 1; — 1,..., L and the index set F on the
levels I =1;,..., L according to Algorithm 3.1.

3.1.6 Remarks on the strategy of Osher and Sanders

Assume that the locally adapted grid G7't! is static for all intermediate time

steps of the time evolution described in Aléorithm 3.2. Then we may rewrite the
algorithm using the predictor-corrector representation by Osher and Sanders
[37]. For this purpose we introduce the notation M := 2L, ¢; := 27L j =
L....M—=1,n;:=>7 0= 2=L and \; := To/hi. In addition, we introduce
the set

Cl={(l,k) € GFtN\C,—1;0< 1< -1}, i=1,..., M.

18



Then for each i = 1,..., M — 1 the predictor is defined by

v , (Lk)ec

n+n; __

v =
L,k n+ni—1 by i—1 n+n;_1 n+n;j_1 i
Uik -\ Zj:o Oj+1 (Fl,k.H - Fl,k , (Lk)gcC

and the corrector is

M-1
n+l _ ,n 1 ) n+n;—1 n+nj_1\ _ n T (—=n —=mn
Vg =V~ N E Oj+1 (Fl,k+1 -F =V — h_l Frip1—Fry)-
Jj=0

For an example, see the two-level scheme in Section 3.1.2.

3.1.7 Remarks on AMR

In [11] the classical Adaptive Mesh Refinement (AMR) strategy has been orig-
inally introduced. In this context, local time stepping and flux synchronization
has been investigated by Berger, see [7, 8]. In the following we would like to
point out the main differences of the concept proposed in this work.

In the AMR setting the propagation of the cells is performed levelwise where
first the cells on the coarse level are evolved and then the one on the finer levels.
This results in two numerical fluxes at the interface, see Figure 2, namely FZ,C for

the cell Vi p—1 and F{{; o, FIT?Z/,CQ for the cell V41,1, respectively. To ensure
the conservation property of the scheme, a so-called synchronization step is
necessary to compensate for the difference

—n 1, . +1/2
Fi— §(Fl+1,2k + 311,2/1@)

in the coarse cell V;;_1. In the present setting this synchronization step is
superfluous because we proceed levelwise from fine to coarse and compute F?’k
by the already computed information on the higher level, see (30).
Furthermore, we perform a half step to determine a prediction in the coarse
cell V; 1 for the computation of the flux F}’ﬁ}z/ k2 , see Figure 4. This is different
in the AMR setting. There a prediction value ful",j_l{z is computed by means of

some interpolation between the data v, , and v}’}",.
’ )

In order to reduce the number of interfaces where a flux synchronization
is needed the AMR setting typically works on grid patches composed of cells
corresponding to one level. Hence, the fluxes have to be synchronized only at the
boundaries of the patches. This also simplifies the implementation. However,
the size of the patches has to be chosen such that, for instance, a shock is not
leaving this patch when performing the macro time step. Otherwise the shock
could be underresolved on a coarser grid patch. To realize this either the patches
have to be large or the macro time step has to be sufficiently small. Therefore the
number of refinement levels is typically moderate in practice. Since we perform
grid adaptation as well on the intermediate time steps we are able to track the
shock successively without a-priorly refining the whole domain of influence of
the shock. Therefore we also can handle a large number of refinement levels
that corresponds to a large macro time step without inflating the adaptive grid
too much.
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Finally, we note that the grid patches on which AMR is typically working
need not to be nested but can have a different orientation than the coarse grid.
This allows for a local alignment of the grid with anisotropic effects such as
shocks. In contrast to this, the multiscale setting is based on a nested grid
hierarchy.

3.2 Implicit Local Time Stepping

So far we considered only explicit local time stepping schemes. Note that for
implicit schemes time restrictions also occur due to nonlinear stability (TVD
properties), convergence of the Newton scheme (initial guess) and relaxation
schemes for solving linear problems, relaxation processes due to non-equilibrium
effects, anisotropies in the grid, etc. Therefore a local time stepping may also be
helpful for implicit schemes in case of instationary problems. In analogy to the
explicit case we first confine to two refinement levels, i.e., a fine grid (level [ +1)
and a coarse grid (level I). Let us assume that we know the data on level [ + 1
at time step t,,. We now perform two time steps where we apply our implicit
reference scheme on level [ + 1 with time step size 7 = 741 = 271 7; according
to (19), i.e.,

1/2 ~ 1/2 n _ "
’Uln-i-i_l,y{ + 6 A1 Bln++1,q/~ = Ui, — (1—-6) N1 Bl (38)
vl’fllﬂ +6 X4 Blyfll,r = vlnjll,fz —(1-0) X an++11,7{2 (39)

where A4 1 is defined by (26).

Here the flux balances are computed according to (22) by means of the data

n+1/2 1 . .
U1 Uz+1,£ and vl’fm corresponding to the times t,, t,11/2 = t, + 741 and

tp+1 = tn + 2741, respectively. We now replace ful":llf on the right hand side

of (39) by (38). Then we obtain
n 3 n 1/2 Y 1/2
ot 0 N (B, + BI?) = vf, — (1=0) N (BIA” + Ba,)- (40)

Note that (40) is only a nonlinear problem for the data vl'fll’r provided that the
data on the intermediate time level ¢, /o are known. Applying the multiscale
transformation (13) to (40) again yields the discrete evolution equations for cell
averages on the coarser level
n 5 pntl N D N Tl N

v+ 0N B, =vf — (1—0) XN By, A= W N1 (41)
In analogy to (29) the local flux balances and numerical fluxes are recursively
defined by

—n+i +(i41)/2 +i/2 —n-+1i —n-+1i

By, = Z (Bln+1(,j« 2y BlT.LHz,é )=Fipi1—Fig s (42)
TIEM?,k

nti +(i+1)/2 +i/2

Fip = §(Flil,(;k )/ +Flilfék) (43)

with ¢ = 0,1. Again the multiscale scheme determines the computation of the

flux balances and the numerical fluxes on coarser levels proceeding from fine to
coarse. In particular, we note that the computation of szﬂ is in agreement
with (30). As for the explicit case, see Section 3.1.1, we have to provide some
prediction value 772;1/ % to compute the numerical flux FlTi’éz at interface points
in (43).
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3.2.1 Prediction Value

For the implicit case we have to reconsider the strategies to determine appro-
priate prediction values for computing the numerical flux Fl’r{y 192 near interface
points. According to (38) a nonlinear problem has to be solved to determine
vl":llf Proceeding this way we can not gain in computational efficiency us-
ing locally varying time stepping. To overcome this bottleneck we use some
heuristics. In principle, we proceed as in the explicit case, see Section 3.1.2.
However, the full steps in (31) and (32), respectively, are replaced by solving a
nonlinear problem for each level separately. For the prediction value we then
use the information of the previous time step instead of performing a half step.
For the situation sketched in Figure 2 we hence proceed as follows: In the first
step we evolve all cells on level [ + 1 by a full step with 7741, i.e., we solve the

nonlinear problem
o 0N B =0 — (1= ) X By, (1K) € T
where at interface points we use the prediction

Uﬁ:;}/z == Uln/'7kl, (ll, kl) € al.
In a second step we determine the data on the new time level ¢,,41. For this
purpose, we solve two nonlinear problems for the cells on level [ and [ + 1,
separately for each level, i.e.,

I O B = o — (=0 XN B, (1K) € Ty
(44)
v HON B = oy — (=) N B, (UK € 6.

Again the solution process is from fine to coarse. In our computations the
nonlinear problems are solved approximately by applying the Newton scheme.
As initial guess we use the data of the previous (intermediate) time step. Note
that we never solve a nonlinear problem for both levels at a time. A coupling
of the systems in (44) only exists via the flux computation at interface points
according to (43) and (21). Furthermore, if we choose # = 0 then the resulting
explicit scheme does not coincide with the explicit local time stepping scheme
in Section 3.1.2. In this case the prediction corresponds to the naive strategy
discussed above.

3.2.2 Synchronization of Time Evolution

The synchronization of the time evolution in the multilevel case is similar to
the explicit case as described in Section 3.1.3. In principle, we may apply the
Algorithms 3.1 and 3.2 where we remove any operation on the sets C; and
perform all operations on C; for the sets Z;. First of all, we have to initialize the
index sets Z;, { = 0,. .., L and the index set of the numerical fluxes F according
to Algorithm 3.1. Then we may perform the time evolution for each of the
intermediate time steps i = 1,...,2".

Algorithm 3.5 (Synchronized time evolution for time step ¢, ;2-z)

For each intermediate time step we have to perform the following steps for the
levels [ = 1;,. .., L proceeding from fine to coarse:

21



1.) Flux computation:

a) For the levels I; < | < L we determine the numerical fluxes with
respect to the data of the previous intermediate time step corre-
sponding to .,y (;—1)2-¢, i.e.,

i) no interface point ((I + 1,2k) & F)

nt+(i-1)27L _ nt(i-1)27L nt(i-1)27L
Fy = F(vL,QL—’k—p 7"'7UL,2L—lk+p—1)’

ii) interface point ((I + 1,2k) € F)

n+(i-1)2~F _ nt(i-1)27%
Fix = Friiok ;
b) For the levels 0 < | < I; the numerical fluxes are unchanged, since
the cell averages on these levels have not changed in the previous
intermediate time step, i.e.,

nt+(i—1)27F _ nt(i—2)27 %,
F’l,k - F1l,k )

2.) Time Evolution:

a) For the levels I; <1 < L we perform a full time step with 7; for the
cells (I, k) € I; solving the nonlinear problem

L R _ o
PRI DVE : LAl B ) VY : AR

b) For the levels 0 <[ < [; the cell averages are unchanged, i.e.,

n+i2~L _  nt+(i-1)27F
Urk =g .

3.2.3 Algorithm

As in the explicit case we combine the time evolution at the intermediate time
steps t,,,;2-2 and the partial grid adaptation at the synchronization levels [ =
liy..., L. For the prediction of the significant details we use the same stratgey
as for the explicit case, see Section 3.1.4. Therefore the algorithm for one macro
time step using implicit local time stepping is similar to Algorithm 3.4. Only
minor changes are necessary, namely, (i) in step 1b and 3 we initialize the sets Z;
instead of the sets C; and (ii) in step 2 we replace Algorithm 3.2 for the explicit
time stepping algorithm by Algorithm 3.5.

4 Numerical Results

We perform several numerical investigations to verify the benefits of the pro-
posed concept. For this purpose, we first perform several parameter studies for
the inviscid Burger equation in 1D where we investigate the efficiency in terms
of CPU time and the accuracy by comparisons with the exact solution. Here we
consider an instationary problem and a quasi-steady state problem, respectively,
applying an explicit and implicit time discretization as well. To demonstrate
that the concept also works for more realistic configurations we present some
numerical results for the two-dimensional Euler equations using an explicit time
discretization. Note that all computations have been performed on a PC with
an Intel Pentium IV processor and 2.8 GHz.
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4.1 Parameter Studies in 1D

To verify the efficiency and the accuracy of the proposed local time stepping
strategy we perform several numerical simulations for the inviscid Burger equa-
tion, i.e., f(u) = 0.5u? in (1). For the reference scheme (3) we consider a
first and second order finite volume scheme, respectively. The numerical flux is
chosen to be the Engquist-Osher flux, see [26],

s, o) = 5 () + Som) - [ IF @) @)

vL

For the first order scheme the states vy, and vg are determined by the cell data at
the interface. To improve spatial and temporal accuracy we employ a piecewise
linear ENO reconstruction according to [31]. For a non-equidistant grid this
reads

_ w_q , 1st order
L= w1 +m(Awy, Aw_1) (h-1/2—7 f'(w—1)) , 2nd order
(46)
. W , 1st order
VR = wo + M (Awy, Awg) (ho/2 —7 f'(wo)) , 2nd order

with the divided differences A w; and the function m defined by

wp—wiq _ _fa , ol <Y

dw= et men={5 0 QS

Here the stencil is determined by the values w; and the corresponding discretiza-
tion lengths h;, ¢ = —2,...,1. Note that the term corresponding to the time
discretization 7 guarantees second order in time for the explicit scheme. For
an implicit scheme the time derivative is discretized applying the second order
Crank-Nicholson scheme. Therefore this term is suppressed. For the computa-
tion of the local numerical fluxes we employ an unstructured flux computation,
i.e., we do not access to the data of the finest level but to the p next neighbors to
the left and the right of a cell Vj;, corresponding to the adaptive grid. In prac-
tice, this in general does not affect the accuracy but preserves the computational
complexity, see [21].

For the implicit time discretization scheme we choose § = 0.5 in (3), i.e.,
second order time discretization. In each time step the nonlinear system is solved
iteratively by the Newton scheme which is initialized by the data of the previous
(intermediate) time step. In each Newton step we solve a linear problem. The
matrix is determined by computing the Jacobian of the Engquist-Osher flux
(45). Note that in case of the second order scheme we do not take into account
the derivative of the ENO reconstruction. Therefore each row of the Jacobian
has at most three non-vanishing entries. Enumerating the unknowns from left
to right results in a tridiagonal matrix. This system can be efficiently solved by
an exact solver. For multidimensional problems this is no longer feasible. In this
case we have to choose some iterative solver and an appropriate preconditioner
to avoid time restrictions due to the linear problem. The Newton iteration
terminates when the error has dropped below a certain tolerance value. For the
local time stepping strategy we choose a level-dependent tolerance determined
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by the threshold value, i.e., tol = ¢, to solve the nonlinear problem on level /.
Otherwise we put tol = e, because the nonlinear problem is to be solved for all
refinement levels simultaneously. The number of Newton steps is limited by 15
that is never reached in our computations.

To investigate the performance of the proposed concept we consider an un-
steady problem and a quasi-steady state problem, respectively.

4.1.1 Wave Interaction

The first test configuration is determined by the piecewise constant initial data

3 , <01
—2 ., 01<z<05
u(z,0) = 5 , 05<z<09 - (47)
-5 , 2>09

The exact solution to this problem is composed of a right-running shock wave
(left) and a stationary shock wave (right) separated by a rarefaction wave. These
waves start to interact. In the end there is only one moving shock.

We apply the explicit (implicit) adaptive multiscale scheme with and with-
out locally varying time stepping to this problem. The computations are dis-
tinguished by EXPLICIT (IMPLICIT) and EXPLICIT-LTS (IMPLICIT-LTS).
The computational domain is = [0,1] and the integration time is T' = 0.5
(sec). The coarsest discretization is hg = 0.05. The time discretization is fixed
determined by the CFL number. For EXPLICIT we choose CFL; = 0.5 =
2-L CFLg on the finest discretization level and CFLg = 0.5 = 2L CFL,, for
EXPLICIT-LTS on the coarsest level. This implies that for EXPLICIT we have
to perform 27 time steps with 7 = 7;. This corresponds to one macro time
step with EXPLICIT-LTS using 7 = 79 = 2L 7. For the grid adaptation we
choose wavelets with three vanishing moments. The threshold value is fixed by
e = 0.001.

In Figure 8 the solution is shown exemplarily for some characteristic times
recorded in Table 2. The right figures show the exact solution and an ap-
proximate solution with EXPLICIT-LTS using L = 10 refinement levels. The
corresponding adaptive grids are presented in the figures on the left. Here we
plot the cell center with respect to the refinement level [.

To = 0.00 | initial data
T1 = 0.04 | before interaction
T = 0.08 | after interaction of rarefaction wave with right shock wave

T3 = 0.20 | after interaction of rarefaction wave with left shock wave
Ty = 0.48 | single shock

Table 2: Characteristic times (sec) for test configuration 1

In Table 3 we summarize the CPU times for different computations with first
and second order EXPLICIT and EXPLICIT-LTS where we vary the number
of refinement levels L. We note that EXPLICIT-LTS becomes much faster with
increasing number of refinement levels in comparison to EXPLICIT. Speed-up
rates up to a factor of about 8 have been obtained. Similar results are obtained
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for the implicit discretization, see Table 4. Because of the instationary behavior
of the solution the CFL number is bounded by at most 1 for an explicit as well
as an implicit time discretization. Therefore all computations with an explicit
scheme are faster than using the implicit analog.

First order scheme Second order scheme
L || EXPLICIT | EXPLICIT-LTS || EXPLICIT | EXPLICIT-LTS
5 3.58 0.94 4.01 1.14
6 8.47 1.87 9.28 2.21
7 20.24 3.61 22.00 4.40
8 47.09 7.67 51.87 8.78
9 111.35 14.95 119.67 17.68
10 251.49 31.50 272.78 36.11
Table 3: CPU time (sec) for explicit discretization
First order scheme Second order scheme
L || IMPLICIT | IMPLICIT-LTS || IMPLICIT | IMPLICIT-LTS
5 25.94 4.63 27.53 5.76
6 67.83 8.98 73.20 10.12
7 107.09 17.23 107.25 19.44
8 258.19 35.81 279.77 40.45
9 756.11 87.76 753.91 89.68
10 1853.15 202.65 2160.50 193.97

Table 4: CPU time (sec) for implicit discretization

Besides the efficiency we are interested in the accuracy of the local time
stepping scheme. Therefore we investigate the error between the exact solution,
1, and the numerical approximations, v. Since the ultimate goal is to maintain
the accuracy of the reference scheme we compute the error on the uniform finest
refinement level. For this purpose, we map the numerical solution correspond-
ing to the adaptive grid to the reference grid where we apply the full inverse
multiscale transformation and use a value of zero for all non-significant details.
The error is measured in the weighted l;-norm, i.e.,

[0 —@"||:= D hr|of x — G -
kel

In Table 5 (explicit) and Table 6 (implicit) the error is exemplarily recorded
for the computation with L = 10 refinement levels. The results correspond to
the four times T1, T, T3 and Ty given in Table 2. We note that the error of
the computations with local time stepping are in general smaller, except for
IMPLICIT-LTS at time Ty where the solution exhibits only two constant states
separated by a shock. Since we perform less time steps for coarser cells we
locally reduce the number of grid adaptation steps. In particular, the number
of threshold steps is reduced in these cells. Therefore the accumulative threshold
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First order scheme Second order scheme
Time | EXPLICIT | EXPLICIT-LTS || EXPLICIT | EXPLICIT-LTS
T; || 1.30 x 102 470 x 1073 || 1.25 x 1072 3.00 x 103
T, || 242 x 1072 6.43 x 1073 || 2.32 x 102 4.07x 1073
Ts || 2.85 x 10~2 6.64 x 1073 || 2.71 x 102 5.38 x 10~3
T, || 2.30 x 10—° 1.9x107° | 3.30 x 107° 2.30 x 10~°

Table 5: Error in weighted /;-norm for explicit discretization, L = 10

First order scheme Second order scheme
Time || IMPLICIT | IMPLICIT-LTS || IMPLICIT | IMPLICIT-LTS
Ty || 1.39 x 102 1.01 x 1072 || 1.27 x 1072 8.64 x 1073
T, || 2.80 x 102 1.62 x 1072 || 2.22 x 1072 1.49 x 102
Ts || 3.14 x 1072 1.83 x 1072 || 2.53 x 1072 1.79 x 1072
T, || 4.00 x 10~° 1.22x 1072 || 3.90 x 10~° 1.19 x 10~2

Table 6: Error in weighted /;-norm for implicit discretization, L = 10

error over all time steps is smaller. Moreover, the schemes with locally varying
time stepping exhibit also less numerical diffusion.

Altogether we conclude for the local time stepping scheme that we can sig-
nificantly improve the efficiency of the adaptive multiscale scheme and we even
gain in accuracy.

4.1.2 Slowly Moving Shock Wave

A second test configuration is determined by the initial data

1, <05
u(@,0) _{ 099 , z>05 (48)

The exact solution is a slowly mowing shock wave propagating at shock speed
s = (w + ur)/2 = 0.005. This configuration is well-suited to underline the
benefits of an implicit discretization.

The computational domain is Q = [0, 1] and the integration time is 7" = 10
(sec). The coarsest discretization is hg = 0.05. For the explicit scheme the
time discretization is determined by the CFL number. For EXPLICIT we
choose C'FL;, = 0.64 on the finest discretization level and CFLq = 0.64 for
EXPLICIT-LTS on the coarsest level. Since the maximum characteristic speed
maxzeq{|f (uo(z))|} = 1 is much larger than the shock speed we may use a
higher CFL number for the implicit discretization. Here we use CFLy = 4
(IMPLICIT) and CF Ly = 4 (IMPLICIT-LTS), respectively. For the grid adap-
tation we again choose wavelets with three vanishing moments. The threshold
value is fixed by € = 0.001.

In Figure 7 the solution is shown at time 7" = 10. The right figure shows
the approximate solution with the second order IMPLICIT-LTS using L = 10
refinement levels. The figures on the left show the corresponding adaptive grid.
Here we again plot the cell center with respect to the refinement level [.
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Figure 7: Test Configuration 2: Adaptive grid (left), approximate solution
(right) at time T' = 10

From Table 7 and 8 we conclude for the explicit and implicit scheme a similar
performance of the speed-up rates as for test case 1 in Section 4.1.1. However,
the implicit computation is faster due to the higher CFL number. This indicates
that the implicit strategy might be useful for steady state problems arising, for
instance, in fluid flow around airplane wings. Here the question remains open
how to control automatically the CFL number.

First order scheme Second order scheme
L || EXPLICIT | EXPLICIT-LTS | EXPLICIT | EXPLICIT-LTS
5 6.75 1.29 9.68 1.63
6 15.43 2.61 22.19 2.68
7 35.75 5.41 51.34 6.55
8 79.90 10.82 113.34 13.15
9 175.93 21.60 253.44 25.28
10 388.62 43.48 467.75 52.60
Table 7: CPU time (sec) for explicit scheme
First order scheme Second order scheme
L || IMPLICIT | IMPLICIT-LTS | IMPLICIT | IMPLICIT-LTS
5 3.01 0.84 3.60 0.89
6 7.32 1.53 8.51 1.69
7 16.57 3.20 19.85 3.44
8 40.40 6.38 46.27 6.78
9 92.72 12.74 105.92 13.60
10 211.01 26.18 239.85 26.30

Table 8: CPU time (sec) for implicit scheme

27




4.2 Application to 2D Euler Equations

Now we consider the time-dependent 2D Euler equations for compressible fluids
which can be written in conservative form (1) with

0 QU1 V2
2
ov1 ovi +p QU1 V2
u = u) = u) =
0U2 ’ fl( ) U1V ’ f2( ) Q’U% + P
oE v1(eE + p) v2(0E + p)

Here u denotes the array of the mean conserved quantities, namely, density,
momentum, and specific total energy, and f, the convective fluxes in the ith co-
ordinate direction. As reference FVS we apply the first order Roe scheme (ROE)
and a second order essentially non—oscillatory (ENO) scheme with ezplicit time
discretization. The ENO scheme is characterized by a one—dimensional second
order accurate reconstruction technique via primitive functions similar to (46),
see [31]. Here the primitive variables are reconstructed by means of piecewise
linear polynomials. At the cell interfaces one—dimensional Riemann problems in
normal direction are solved applying Roe’s approximate Riemann solver, [39].
In previous work, this scheme has already been used for the investigation of the
original multiscale concept with global time stepping, see [36].

As a test case we consider the two-dimensional inviscid implosion problem
which has been investigated also in [27, 36]. The initial configuration is deter-
mined by two states ug and ur as well as the radius r = 0.15 [m] of a circle.
Inside the disk we impose low pressure and outside high pressure, see Table 9
for the initial conditions. With propagating time three waves develop, namely,
(i) a rarefaction wave, (ii) a contact surface and (iii) a shock wave. The shock
wave and the contact surface are moving towards the center of the circle. The
rarefaction wave is moving into the opposite direction. Here we are interested
in the instance when the shock wave focuses in the center.

Units | State I | State E
o | kg/m?® | 1.251 2.502

m/s 0 0
Pa 101280 | 202560

Table 9: Initial conditions for two-dimensional implosion problem

The computational domain is = [0,1]2. Time integration is performed
for T = 3.6125 x 10™* [s]. The coarsest grid is discretized by 8 x 8 cells. The
threshold value of the adaptation is ¢ = 1073. The time discretization on the
finest discretization level is fixed by 77, = 6.4 x 107° x 2L [g].

Exemplarily, we present the results of the ENO scheme with L = 8 refine-
ment levels. In Figures 9 and 10 the density and pressure distribution as well
as the underlying adaptive grid are depicted. We note that the locally adapted
grid is slightly more inflated in case of global time stepping.

To investigate the efficiency of the local time stepping scheme we perform
several computations with different number of refinement levels. In Table 10 we
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list the ratio of CPU times for these computations. Here we denote by Cnprs
and CLrs the CPU times using global and local time stepping, respectively.
Obviously, the speed-up rates are slightly improving with increasing number of
refinement levels. For the highest number of refinement levels (L = 10) we gain
in CPU time using locally varying time steps by a factor of about 2.8 (ROE)
and 2.0 (ENO). Obviously, the efficiency is higher for the first order scheme
at reduced accuracy. Due to higher numerical dissipation of the Roe scheme
discontinuities are more smeared. Therefore they are no longer resolved locally
by the highest level when L is increasing.

First order scheme || Second order scheme
L CNLTS FnrTs CNLTS FnrTs
Crrs Frrs Crrs Frrs
5 1.6 1.4 1.5 1.3
6 1.9 1.5 1.6 1.3
7 2.3 1.6 1.7 1.3
8 2.5 1.7 2.1 1.5
9 2.5 1.8 2.0 1.5
10 2.8 2.0 2.0 1.7

Table 10: Speed-up rates and ratios of numerical flux computations for two-
dimensional implosion problem

The speed-up rates are not as high as in the scalar case, see Section 4.1.
This is due to the fact that for the Euler computations the bulk of cells is
sitting on the higher levels. Therefore the number of flux computations is not
as significantly reduced as for the scalar computations. To see this we list in
Table 10 the ratio of the maximal number of numerical fluxes to be computed
in one macro time step 7o = 2% 71 for the local time stepping scheme (Frrs)
and the global time stepping scheme (Fnr7s), respectively.

Obviously, we need to compute less numerical fluxes in case of locally varying
time steps. The number is reduced by at most 50% (ROE) and 40% (ENO),
respectively.

In general, the number of flux computations for global and local time step-
ping is approximately related by

L

I—I
Frrs = Fynrrs E 27 "o
=0

where we neglect the fluxes at the boundary. Here a; = N;/N is the ratio of cells
on level I and the number of all cells in the adaptive grid, i.e., N = ZlL:O N;. In
particular, for Cartesian grid hierarchies this relation is independent of the spa-
tial dimension. Obviously, the approximate speed-up factor (31—, 2/~ F az) "
approaches 1 if the bulk of cells is sitting on the higher scales whereas it be-
comes large (at most: 2%) if the cells on lower scales are dominating. This is in
agreement with Jameson’s observation that adaptive mesh refinement methods
can be effective provided that “roughly no more than 1/3 of the domain should
be at the finest grid spacing”, see [33].
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5 Conclusion and Outlook

We have developed a general concept to incorporate local time stepping into
fully adaptive multiscale finite volume schemes. In particular, we are able to
track the position of discontinuities on the intermediate time levels where we
apply the grid adaptation strategy on a subrange of all available refinement lev-
els. Numerical investigations for one-dimensional scalar conservation laws verify
the efficiency and the accuracy of the proposed concept. First 2D Euler com-
putations using an explicit time discretization show the benefits of the concept
also for multidimensional systems.

The analytical justification is still open. In analogy to previous work in
the context of AMR [11, 7, 8] and the predictor-corrector approach [37, 25,
43] stability and consistency have to be investigated. In addition, we have
to verify the reliability of the strategy for predicting significant details. This
issue is important to bound uniformly the perturbation error introduced by the
thresholding. For the global time stepping scheme this was done in [21, 36].
In particular, we have to analyze the connection between the details and the
time derivatives of the solution. This might also be helpful in the design of an
automatic time step control for steady state problems.

In the future we will incorporate the presented local time stepping strategy
into the flow solver QUADFLOW [16] that is being developed for large scale
computations of compressible fluid flow and fluid-structure interaction. In par-
ticular, this will enable us to investigate the above strategy for multidimensional
systems using an implicit time discretization.
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Figure 8: Adaptive grid (left), exact and approximate solution (right) at time
T = 0.00, 0.04, 0.08, 0.20, 0.48
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Figure 9: Two-dimensional implosion problem: Instantaneous density and pres-
sure distribution at ¢ = 3.6125 x 10~* seconds: Left Figure: density omin =
1.8, 0mae = 4.0, Ap = 0.055, Right Figure: pressure pnin = 158200, pmas =
525600, Ap = 9185.
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Figure 10: Two-dimensional implosion problem: Instantaneous locally adapted

grid at t = 3.6125 x 10~* seconds. Left Figure: Global time stepping. Right
Figure: Local time stepping
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