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Abstract. In this paper we continue our work on adaptive timestep control for weakly in-
stationary problems [29, 30]. The core of the method is a space-time splitting of adjoint error
representations for target functionals due to Süli [32] and Hartmann [18]. The main new ingredients
are (i) the extension from scalar, 1D, conservation laws to the 2D Euler equations of gas dynamics,
(ii) the derivation of boundary conditions for a new formulation of the adjoint problem and (iii) the
coupling of the adaptive time-stepping with spatial adaptation. For the spatial adaptation, we use
a multiscale-based strategy developed by Müller [24], and we combine this with an implicit time
discretization. The combined space-time adaptive method provides an efficient choice of timesteps
for implicit computations of weakly instationary flows. The timestep will be very large in regions of
stationary flow, and becomes small when a perturbation enters the flow field. The efficiency of the
solver is investigated by means of an unsteady inviscid 2D flow over a bump.
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1. Introduction. Today, there is broad consensus that the numerical solution
of compressible flow equations requires a highly resolved mesh to simulate accurately
the different scales of the flow field and its boundaries. Adaptive grid methods can
significantly improve the efficiency by concentrating cells only where they are most
required, thus reducing storage requirements as well as the computational time. There
has been a tremendous amount of research designing, analyzing and implementing
codes which are adaptive in space, see e.g. [6, 24, 22, 25] and references therein.

Here our interest is in timestep adaptation. For stationary problems, local time-
steps which are linked to the spatial gridsize are commonplace, and they are heavily
built upon the fact that time-accuracy, or time synchronization is not needed. On
the other hand, for fully instationary flows, explicit algorithms whose timestep is
governed by the CFL restriction of at most unity are the method of choice. In [30],
we began to explore one of the remaining gaps, namely weakly instationary flows on
which we will focus in the following. Many real world applications, like transonic
flight, are perturbations of stationary flows. While time accuracy is still needed
to study phenomena like aero-elastic interactions, large timesteps may be possible
when the perturbations have passed. For explicit calculations of instationary solutions
to hyperbolic conservation laws, the timestep is dictated by the CFL condition due
to Courant, Friedrichs and Lewy [9], which requires that the numerical speed of
propagation should be at least as large as the physical one. For implicit schemes, the
CFL condition does not provide a restriction, since the numerical speed of propagation
is infinite. Depending on the equations and the scheme, restrictions may come in via
the stiffness of the resulting nonlinear problem. These restrictions are usually not as
strict as in the explicit case, where the CFL number should be below unity. For implicit
calculations, CFL numbers of much larger than 1 may well be possible. Therefore, it
is a serious question how large the timestep, i.e. the CFL number, should be chosen.
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A possible strategy has been investigated by Ferm and Lötstedt [14] based on
timestep control strategies for ODEs. Here a Runge-Kutta-Fehlberg method is applied
to the semi-discretized flow equations by which the local spatial and temporal errors
are estimated. These errors determine the local stepsize in time and space. Later on,
this idea was also embedded in fully adaptive multiresolution finite volume schemes,
see [12, 11]. Alternatively Kröner and Ohlberger [22, 25] based their space-time
adaptivity upon Kuznetsov-type a-posteriori L1 error-estimates for scalar conservation
laws.

In this paper we will use a space-time-split adjoint error representation to control
the timestep adaptation. For this purpose, let us briefly summarize the space-time
splitting of the adjoint error representation, see [13, 2, 3, 32, 18] for details. The
error representation expresses the error in a target functional as a scalar product
of the finite element residual with the dual solution. This error representation is
decomposed into separate spatial and temporal components. The spatial part will
decrease under refinement of the spatial grid, and the temporal part under refinement
of the timestep. Technically, this decomposition is achieved by inserting an additional
projection. Usually, in the error representation, one subtracts from the dual solution
its projection onto space-time polynomials. Now, we also insert the projection of the
dual solution onto polynomials in time having values which are H1 functions with
respect to space.

This splitting can be used to develop a strategy for a local choice of timestep.
In contrast to the results reported in [32, 18] for scalar conservation laws we now
investigate weakly instationary solution to the 2D Euler equations. The timestep will
be very large in regions of stationary flow, and becomes small when a perturbation
enters the flow field.

Besides applying well-established adjoint techniques to a new test problem, we
further develop a new technique (first proposed by the authors in [30]) which simplifies
and accelerates the computation of the dual problem. Due to Galerkin orthogonality,
the dual solution ϕ does not enter the error representation as such. Instead, the
relevant term is the difference between the dual solution and its projection to the finite
element space, ϕ−ϕh. In [30] we showed that it is therefore sufficient to compute the
spatial gradient of the dual solution, w = ∇ϕ. This gradient satisfies a conservation
law instead of a transport equation, and it can therefore be computed with the same
conservative algorithm as the forward problem [30]. The great advantage is that the
conservative backward algorithm can handle possible discontinuities in the coefficients
robustly.

A key step is to formulate boundary conditions for the gradient w = ∇ϕ in-
stead of v. Generally the boundary conditions for the dual problem come from the
weighting functions of the target functional, e.g. lift or drag. To formulate boundary
conditions for w which are compatible with the target functional, one has to lift the
well-established techniques of characteristic decompositions from the dual solution to
its gradient. We will present details on that in Section 5.

Starting with a very coarse, but adaptive spatial mesh and CFL below unity, we
establish timesteps which are well adapted to the physical problem at hand. The
scheme detects stationary time regions, where it switches to very high CFL numbers,
but reduces the timesteps appropriately as soon as a perturbation enters the flow
field.

We combine our time-adaptation with the spatial adaptive multiresolution tech-
nique [24]. In the early 90’s Harten [17] proposed to use multiresolution techniques
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in the context of finite volume schemes applied to hyperbolic conservation laws. He
employed these techniques to transform the arrays of cell averages associated with any
given finite volume discretization into a different format that reveals insight into the
local behavior of the solution. The cell averages on a given highest level of resolution
(reference mesh) are represented as cell averages on some coarse level, where the fine
scale information is encoded in arrays of detail coefficients of ascending resolution.

In Harten’s original approach, the multiresolution analysis [17] is used to control
a hybrid flux computation by which computational time for the flux computation can
be saved, whereas the overall computational complexity is not reduced but still stays
proportional to the number of cells on the uniformly fine reference mesh. Opposite to
this strategy, threshold techniques are applied to the multiresolution decomposition
in [16, 24, 8] where detail coefficients below a threshold value are discarded. By
means of the remaining significant details a locally refined mesh is determined whose
complexity is significantly reduced in comparison to the underlying reference mesh.
We will use this approach for the local adaptation in space. These techniques have
been applied successfully to the Euler equations [4].

In the present work, we are interested to combine the multiscale-based grid adap-
tation with adjoint techniques to solve efficiently instationary problems. The advan-
tage of this space adaptive method is that it also provides an efficient break condition
for the Newton iteration in the implicit time integration, see Section 6.4.

The paper is organized as follows. We start with a brief description of the fluid
equations and their discretization by implicit finite volume schemes, see Section 2.
The adjoint error control is presented in Section 3, followed by the space-time split-
ting and the error estimates in Section 4. Section 5 is about the boundary conditions
of the forward problem, the dual problem and the conservative dual problem. In
Section 6 we will present some details on the numerical realization: The adaptive
method in time and grid generation. To improve the efficiency of the scheme we
employ multiresolution techniques. In Section 6.2 we give a short review of the mul-
tiscale analysis, upon which the adaptation in space is based. In Section 7 we present
the instationary test case, a 2D Euler transonic flow around a circular arc bump in a
channel. In Sections 8 and 9 results of the fully implicit and a mixed explicit-implicit
time adaptive strategy are presented to illustrate the efficiency of the scheme. In
Section 10 we summarize our results.

2. Governing equations and finite volume scheme. For the numerical sim-
ulation of instationary inviscid compressible fluids we solve the time-dependent Euler
equations in Rd × R0

+. These lead to a system of conservation equations

Ut +∇ · f(U) = 0 in ΩT , (2.1)

P−(U+) (fν(U+)− g) = 0 on ΓT . (2.2)

Here Ω ⊂ Rd is the spatial domain with boundary Γ := ∂Ω ⊂ Rd and ΩT = Ω ×
[0, T ) ⊂ Rd × R0

+ is the space-time domain with boundary ΓT := ∂ΩT ⊂ Rd × R0
+.

U = (%, % v, %E)T is the vector of conservative variables (density of mass, momentum,
specific total energy) and f = (% v, % vvT + pI, v (%E + p))T = (f1, . . . , fd)T the array
of the corresponding convective fluxes fi, i = 1, . . . , d, in the ith coordinate direction.
p is the pressure and v the fluid velocity. The system of equations is closed by the
perfect gas equation of state p = ρ (E − 0.5 v2)(γ − 1) with γ = 1.4 (air).

We denote by f(U) := (f(U), U) the space-time flux, by ν the space-time outward
normal to ΩT , and by fν(U) := f(U) ·ν the space-time normal flux. U+ is the interior
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trace of U at the boundary ΓT (or any other interface used later on). Given the
boundary value U+ and the corresponding Jacobian matrix fν ′(U+), let P−(U+) be
the (d + 2) × (d + 2)-matrix which realizes the projection onto the eigenvectors of
fν ′(U+) corresponding to negative eigenvalues (see Section 5). Then the matrix-
vector product P−(U+) fν(U+) is the incoming component of the normal flux at the
boundary, and it is prescribed in (2.2). See Section 5 for details.

Since it is well-known that solutions U will develop singularities in finite time,
we pass to the weak formulation of (2.1), (2.2). It is not fully understood to which
space the weak solution should belong, but loosely based upon the recent work [10]
we assume that the solution space is

U := BV (ΩT ).

This implies that U, f(U) ∈ L1
loc(ΩT ) and that d-dimensional traces exist. As the

space of test functions we choose

V := {ϕ ∈W 1,∞(ΩT ) | suppϕ ⊂⊂ ΩT },

which is consistent with the regularity theory in [34]. Note that the test functions
may take non-zero boundary values. We call U ∈ U a weak solution of (2.1), (2.2) if
for all ϕ ∈ V∫

ΩT

(Uϕt + f(U)∇ϕ) dV (x, t)−
∫

ΓT

P+(U+) fν(U+)ϕdS(x, t)

=
∫

ΓT

P−(U+) gϕ dS(x, t). (2.3)

We approximate (2.3) by a first or second order finite volume scheme with implicit
Euler time discretization. The computational spatial grid Ωh is a set of open cells Vi
such that ⋃

i

Vi = Ω.

The intersection of the closures of two different cells is either empty or a union of
common faces and vertices. Furthermore let N (i) be the set of cells that have a
common face with the cell i, ∂Vi the boundary of the cell Vi and for j ∈ N (i) let
Γij := ∂Vi ∩ ∂Vj be the interface between the cells i and j and nij the outer spatial
normal to Γij corresponding to cell i. Since we will work on curvilinear grids, we
require that the geometric consistency condition∑

j∈N(i)

|Γij |nij = 0 (2.4)

holds for all cells.
Let us define a partition of our time interval I := (0, T ) into subintervals Im =

[tm−1, tm], 1 ≤ m ≤ N , where

0 = t0 < t1 < . . . < tm < . . . < tN = T.

The timestep size is denoted by ∆tm := tm − tm−1. Later on this partition will be
defined automatically by the adaptive algorithm. We also denote the space-time cells
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and faces by V mi := Vi × Im and Γmij := Γij × Im, respectively. Given this space-time
grid the implicit finite volume discretization of (2.3) can be written as

Umi +
∆tm
|Vi|

∑
j∈N (i)

|Γij |Fmij = Um−1
i for m ≥ 1. (2.5)

It computes the approximate cell averages Umi of the conserved variables on the new
time level. For interior faces Γij , the canonical choice for the numerical flux is a
Riemann solver,

Fmij := Friem(Umij , U
m
ji , nij) (2.6)

consistent with the normal flux fn(U) = f(U) · nij . In the numerical experiments in
Sections 8 and 9 we choose Roe’s solver [28]. If Γij ⊂ ∂ΩT =: ΓT , then we follow the
definition (2.3) of a weak solution and define the numerical flux at the boundary by

Fmij := P+(Umij ) fνij (Umij ) + P−(Umij ) gmij , (2.7)

where gmij is the average of g over Γmij .
For simplicity of presentation we neglect in our notation that due to higher or-

der reconstruction the numerical flux usually depends on an enlarged stencil of cell
averages.

3. Adjoint error control - adaptation in time. In order to adapt the timestep
sizes we use a method which involves adjoint error techniques. We have applied this
approach successfully to Burgers’ equation in [30]. Now we present an extension of
this approach to systems of conservation laws.

Since a finite volume discretization in space and a backward Euler step in time
are a special case of a Discontinuous Galerkin discretization, techniques based on a
variational formulation can be transferred to finite volume methods.

The key tool for the time adaptive method is a space-time splitting of adjoint error
representations for target functionals due to Süli [32] and Hartmann [18]. It provides
an efficient choice of timesteps for implicit computations of weakly instationary flows.
The timestep will be very large in time regions of stationary flow, and become small
when a perturbation enters the flow field.

3.1. Variational Formulation. In this section we rewrite the finite volume
method as a Galerkin method, which makes it easier to apply the adjoint error control
techniques.

Let us first introduce the space-time numerical fluxes. Let V mi = Vi × Im ∈ ΩT,h
be a space-time cell, and let γ ⊂ ∂V mi be one of its faces, with outward unit normal
ν. There are two cases: if ν points into the spatial direction, then γ = Γij × Im and
ν = (n, 0). If it points into the positive time direction, then γ = Vi × {tm}, and
ν = (0, 1). Now we define the space-time flux by

Fmν (Uh) =


Fmij from (2.6) if ν = nij and γ ∈ E intT,h

Fmij from (2.7) if ν = nij and γ ∈ EextT,h

(1− θ)Um−1
i + θUmi if ν = (0, 1) and m ≥ 1
U0
i if ν = (0, 1) and m = 0

(3.1)

where E intT,h are the interior faces and EextT,h the boundary faces. In the third case,
θ ∈ [0, 1], so the numerical flux in time direction is a convex combination of the cell
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averages at the beginning and the end of the timestep. Different values of θ will yield
different time discretizations, e.g. explicit Euler for θ = 0, implicit Euler for θ = 1.

Let Vh := W 1,∞(ΩT,h) be the space of piecewise Lipschitz-continuous functions.
Now we introduce the semi-linear form N by

N : U × Vh → R

N(U,ϕ) :=
∑
i,m

(Fmν (U), ϕ)∂Vm
i

−
∑
i,m

(
(U,ϕh,t)Vm

i
+ (f(U),∇ϕ)Vm

i
.
)

(3.2)

Here and below the sum is over the set {(i,m) |V mi ∈ ΩT,h}, i.e. all gridcells.
Now we rewrite the finite volume method (2.5) as a first order Discontinuous Galerkin
method (DG0):

Find Uh ∈ V0
h such that N(Uh, ϕh) = 0 ∀ϕh ∈ V0

h, (3.3)

where V0
h is the space of piecewise constant functions over ΩT,h.

Remark 1. For the DG0 method, Uh, ϕ ∈ V0
h are piecewise constant, so the

last two terms in (3.3), containing derivatives of ϕ, disappear. Moreover, due to the
geometric condition (2.4) ∑

{j |Γm
ij⊂∂Vm

i }

f(Umi ) · νmij = 0

holds for all cells V mi . Therefore, the DG0 solution may be characterized by: Find
Uh ∈ V0

h such that∑
i,m

(Fmν (U)− fν(U+), ϕh)∂Vm
i

= 0 ∀ϕh ∈ V0
h. (3.4)

This form is convenient to localize our error representation later on.

3.2. Adjoint error representation for target functionals. In this section
we define the class of target functionals J(U) treated in this paper, state the corre-
sponding adjoint problem and prove the error representation which we will use later
for adaptive timestep control.

Before we derive the main theorems, we would like to give a preview of an im-
portant difference between error representations for linear and nonlinear hyperbolic
conservation laws. For linear conservation laws (and many other linear PDE’s), it is
possible to express the error in a user specified functional,

εJ := J(U)− J(Uh), (3.5)

as a computable quantity η, so

εJ = η (3.6)

(see e.g. [2, 3, 32, 1, 19, 20, 33] and the references therein). In general, η will be
an inner product of the numerical residual with the solution of an adjoint problem.
Below we will see that such a representation does not hold for nonlinear hyperbolic
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conservation laws. The nonlinearity will give rise to an additional error ε−Γ on the
inflow boundary, an error ε+

Γ on the outflow boundary, and a linearization error εΩ in
the interior domain. Altogether, the error representation in Theorem 3.2 will be

εJ + ε−Γ + ε+
Γ + εΩ = η. (3.7)

Our adaptation is based on equidistributing this η.
Typical examples for the functional J are the lift or the drag of a body immersed

into a fluid. To simplify matters we consider functionals of the following form:

J(U) = (U,ψ)ΩT
− (P+(U+)fν(U+), ψΓ)ΓT

, (3.8)

where ψ and ψΓ are weighting functions in the interior of the space-time domain ΩT
and at the boundary ΓT . We will give an example in Section 5.4.

As a first step towards deriving the identity (3.7), we generalize the well-known
error representation (see e.g. Tadmor [34, (2.16)]) from initial value problems (Ω =
Rd) to the initial boundary value problem (2.1)–(2.2). For this, let Ā = Ā(U,Uh) be
the averaged Jacobian

Ā :=

1∫
0

d

dτ
f(Uh + τ(U − Uh))dτ. (3.9)

Note that Ā is in general discontinuous, and it is conservative in the sense that

f(U)− f(Uh) = Ā (U − Uh). (3.10)

Let P̄± be the corresponding projection matrices. Then
Theorem 3.1. Suppose ϕ ∈ V solves the adjoint problem

∂tϕ+ ĀT∇ϕ = ψ in ΩT , (3.11)

P̄T+ (ϕ− ψΓ) = 0 on ΓT . (3.12)

Let εJ be defined by (3.6) and let

ε−Γ := −((P−(U+)− P−(U+
h ))g, ϕ)ΓT

ε+
Γ := −(P+(U+)fν(U+)− P+(U+

h )fν(U+
h ), ϕ− ψΓ)ΓT

.

Then

εJ + ε−Γ + ε+
Γ = η, (3.13)

where for all ϕh ∈ V0
h

η := N(Uh, ϕ) = N(Uh, ϕ− ϕh). (3.14)

Here U+ and U+
h are the traces of U and Uh at the boundary ΓT = ∂ΩT . In

particular, Uh ≡ Umi for a boundary face Γmij .
Remark 2. For the initial line Ω×{t = 0} ⊂ ΓT , the projections become trivial,

P−(U) = P−(Uh) = I, P+(U) = P+(Uh) = 0,



8 CH. STEINER, S. MÜLLER AND S. NOELLE

so

ε−Γ = ε+
Γ = 0.

Similarly the boundary errors vanish at time t = T and for supersonic spatial bound-
aries. For subsonic spatial parts of the boundary, the boundary errors cannot be
computed a-posteriori. Together with the error in the functional they will be estimated
by the approximate error representations (3.13) and (3.22). For the adjoint problem
(3.11) and (3.12) the role of time is reversed and hence P̄T+ plays the role of P− in
(2.2). Here ψΓ comes from the weighting function in the functional (3.8). We will
present details on the boundary conditions for the dual problem in Section 5. Note
that the right-hand side in (3.13) depends on the solution U not only due to the
boundary term P−(U+)g, but mainly because ϕ is the solution of (3.11).

We would like to give a short proof of Theorem 3.1, since there are some subtleties
due to the boundary conditions (2.2) and (3.12).

Proof of Theorem 3.1. By definitions (3.6) and (3.8) of εJ and J , resp.,

εJ = J(U)− J(Uh)

= (U − Uh, ψ)ΩT
− (P+(U+)fν(U+)− P+(U+

h )fν(U+
h ), ψΓ)ΓT

. (3.15)

Using (3.11), (3.10), the definitions (2.3) of a weak solution and (3.2) of the variational
form, we obtain

(U − Uh, ψ)ΩT

= (U − Uh, ϕt + ĀT∇ϕ)ΩT

= (U − Uh, ϕt)ΩT
+ (Ā(U − Uh),∇ϕ)ΩT

= ((U,ϕt)ΩT
+ (f(U),∇ϕ)ΩT

)− ((Uh, ϕt)ΩT
+ (f(Uh),∇ϕ)ΩT

)

= (P−(U+)g + P+(U+)fν(U+), ϕ)ΓT

+N(Uh, ϕ)−
∑
i,m

(Fmν (Uh), ϕ)∂Vm
i

(3.16)

Since ϕ is continuous, the fluxes across interior faces cancel each other. Using the
definition (2.7) of the boundary fluxes, we obtain∑

i,m

(Fmν (Uh), ϕ)∂Vm
i

=
∑
i,m

(Fmν (Uh), ϕ)∂Vm
i ∩ΓT

=
∑

{(i,j,m) |Γm
ij⊂ΓT }

(
P−(Umi )gmij + P+(Umi )fν(Umi ), ϕ

)
Γm

ij

=
(
P−(U+

h )g + P+(U+
h )fν(U+

h ), ϕ
)

ΓT
(3.17)

where j in the second line is chosen such that Γmij ⊂ ΓT . Combining (3.15)–(3.17)
yields

εJ = N(Uh, ϕ)−
(
P−(U+

h )g + P+(U+
h )fν(U+

h ), ϕ
)

ΓT

+
(
P−(U+)g + P+(U+)fν(U+), ϕ

)
ΓT

−
(
P+(U+)fν(U+)− P+(U+

h )fν(U+
h ), ψΓ

)
ΓT

= N(Uh, ϕ)− ε−Γ − ε
+
Γ

= N(Uh, ϕ− ϕh)− ε−Γ − ε
+
Γ . (3.18)
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In the last step we have used the definition of the DG0 scheme (3.3). This completes
the proof. �

Remark 3. (i) In [34] Tadmor proves the well-posedness of the Cauchy problem
for the adjoint equation (3.12) – (3.11) for scalar, convex, one-dimensional conser-
vation laws. The key observation is that, if the forward solution U has jump discon-
tinuities, then due to the entropy condition the jump of the transport coefficient ĀT

has a distinct sign. This makes it possible to follow the characteristics of the adjoint
problem backwards in time.
(ii) Equivalently one can define the adjoint solution via a variational formulation, see
e.g. [1, 19, 20, 33].

Besides the unknown boundary error terms ε±Γ a fundamental difficulty remains
if one tries to design an adaptive algorithm based on Theorem 3.1: Since the exact
solution U is not known, we cannot compute Ā. Therefore we cannot approximate
the solution ϕ of the adjoint problem (3.12)–(3.11) as well as the error indicator η.

The following theorem, in which we replace Ā and P̄± by

Ã := A(Uh) and P̃± := P±(Ã), (3.19)

overcomes this difficulty.
Theorem 3.2. Suppose ϕ ∈ V solves the approximate adjoint problem

∂tϕ+ ÃT∇ϕ = ψ in ΩT , (3.20)

P̃T+ (ϕ− ψΓ) = 0 on ΓT , (3.21)

Let εJ , ε−Γ , ε+
Γ and η be as in Theorem 3.1, and let

εΩ = (f(U)− f(Uh)− Ã(U − Uh),∇ϕ)ΩT
.

Then

εJ + ε−Γ + ε+
Γ + εΩ = η. (3.22)

Proof. The proof is almost the same as the one of Theorem 3.1, except that we
have to replace Ā in the third line of (3.16),

(Ā(U − Uh),∇ϕ)ΩT
,

by Ã. This yields the additional term

((Ā− Ã)(U − Uh),∇ϕ)ΩT
= (f(U)− f(Uh)− Ã(U − Uh),∇ϕ)ΩT

= εΩ.

This completes the proof. �

Note that

εΩ = O(‖U − Uh‖2L1(ΩT )).

4. Space-time splitting and the error estimate. The error representation
(3.13) is not yet suitable for time adaptivity, since it combines space and time com-
ponents of the residual and of the difference ϕ − ϕh of the dual solution and the
test function. The main result of this section is an error estimate whose components
depend either on the spatial grid size h or the timestep k, but never on both. The key
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ingredient is a space-time splitting of (3.22) based on L2-projections. Similar space-
time projections were introduced previously in [18, 32]. In [30] we adapted them to
the finite element spaces and space-time Discontinuous Galerkin methods of arbitrary
order.

Let V mj = Vj × Im and Ps,r(V mj ) = Ps(Vj)× Pr(Im) be the space of polynomials
of degree s on Vj and r on Im. Furthermore let P̂ rIm

(V mi ) = {w ∈ L2(V mi )|w(x, ·) ∈
Pr(Im),∀x ∈ Vj}, and P̂ sVj

(V mi ) = {w ∈ L2(V mi )|w(·, t) ∈ Ps(Vj),∀t ∈ Im}. For r ≥ 0
define the L2-projection Πr

Im
: L2(V mi ) → P̂ rIm

(V mi ) onto piecewise polynomials in
time via

(U(x, ·)−Πr
Im
U(x, ·), ϕ(x, ·))Im

= 0 ∀ϕ ∈ P̂ rIm
(V mi ),∀x ∈ Vj , (4.1)

and for s ≥ 0 define the L2-projection Πs
Vj

: L2(V mi ) → P̂ sVj
(V mi ) onto piecewise

polynomials in space via

(U(·, t)−Πs
Vj
U(·, t), ϕ(·, t))Vj = 0 ∀ϕ ∈ P̂ sVj

(V mi ),∀t ∈ Im. (4.2)

Similarly let the L2-projection onto space-time polynomials Πs,r
Vm

i
:= L2(V mi ) →

Ps,r(V mi ) be defined via

(U −Πs,r
Vm

i
U,ϕ)Vm

i
= 0 ∀ϕ ∈ Ps,r(V mi ). (4.3)

Note that Πs,r
Vm

i
= Πs

Vj
Πr
Im

= Πr
Im

Πs
Vj

. First we choose ϕh in the error representation
(3.22) to be ϕh = Πs,r

h,kϕ, i.e., ϕh |Vm
i

= Πs
Vj

Πr
Im
ϕ = Πr

Im
Πs
Vj
ϕ. This leads to the

identity

ϕ−Πs,r
h,kϕ = ϕ−Πr

Im
ϕ+ Πr

Im
ϕ−Πs,r

h,kϕ = (id−Πr
Im

)ϕ+ (id−Πs
Vj

)Πr
Im
ϕ. (4.4)

Now we restrict ourselves to finite volume methods. These are based on space-time
cell averages, and therefore the corresponding order in the DG context would be
r = s = 0, even for higher order FV schemes. Using (4.4), we obtain the following
splitting of the error representation (3.22) in Theorem 3.2:

η = N(Uh, ϕ) = N(Uh, ϕ−Π0,0
h,kϕ)

= N(Uh, (id−Π0
Im

)ϕ+ (id−Π0
Vj

)Π0
Im
ϕ)

= N(Uh, (id−Π0
Im

)ϕ) +N(Uh, (id−Π0
Vj

)Π0
Im
ϕ)

=
∑
i,m

(Fmν (Uh)− fν(U+
h ), (id−Π0

Im
)ϕ)∂Vm

i

+
∑
i,m

(Fmν (Uh)− fν(U+
h ), (id−Π0

Vj
)Π0

Im
ϕ)∂Vm

i

=: ηk + ηh (4.5)

where ηk is the time-component and ηh the space-component of the error representa-
tion η. To summarize, we have shown the following corollary of Theorem 3.2:

Corollary 4.1. Under the assumptions of Theorem 3.2, the following error
representation holds:

εJ + ε−Γ + ε+
Γ + εΩ = ηk + ηh. (4.6)

In [29, 30] we showed by numerical experiments that ηk depends only an k and that
ηh depends only on h, and that they both decrease with first order. We will use the
asymptotic behavior of the error term ηk to derive an adaptation strategy in time.
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5. Boundary conditions, the conservative dual problem and functionals
at the boundary. In this section we present details of the boundary conditions for
the forward (2.1)–(2.2) and the dual problem (3.20)–(3.21). Then we will recall the
conservative approach to the dual problem, which we introduced in [30] and derive
boundary conditions for the gradient of the dual problem.

5.1. Boundary conditions for the forward and the dual problem. First
we introduce some notation and state boundary conditions for the forward problem.
For simplicity of notation, we restrict ourselves to the spatial domain Ω with boundary
Γ, normal n(x), and normal flux fn = f ·n. As in (3.19) let Ã = f ′n(Uh) be the Jacobian
of fn evaluated at the approximate solution Uh, and let P̃± be the projection matrices
which map vectors onto the eigenspaces of Ã corresponding to positive and negative
eigenvalues, respectively. They are defined in detail in (5.1) below.

In order to explain the boundary conditions in (2.2), (2.7), (3.12), and (3.21), we
recall the theory of boundary value problems for hyperbolic systems, see e.g. [15, 21].
Boundary values have to be prescribed along characteristics entering the domain.
Therefore the solution, or the fluxes, have to be decomposed into in- and outgoing
components.

Let L = L(Ã) and R = R(Ã) denote the (d + 2) × (d + 2) matrices of the left
and right eigenvectors of Ã, and Λ = Λ(Ã) = diag(λ1(Ã), . . . , λd+2(Ã)) the diagonal
matrix of the eigenvalues of Ã, so

Ã = RΛL.

As usual, the positive and negative parts of Ã are

Ã± = RΛ±L.

We now introduce the notations

P̃± := RD±L, (5.1)

where D± is the diagonal matrix D± := diag(χ±(λi)) with

χ±(λ) = max(0, sign(±λ)).

Then we observe the identities

P̃+P̃− = P̃−P̃+ = 0, P̃ 2
± = P̃±, P̃±Ã = RD±LRΛL = Ã±.

Note that P̃± and Ã commute:

ÃP̃± = RΛLRD±L = RΛD±L = RD±ΛL = RD±LRΛL = P̃±Ã.

This specifies the boundary fluxes (2.7) for the forward finite volume solver and
(3.21) for the linearized adjoint problem. The boundary conditions (2.2) and (3.12)
are derived analogously.

5.2. The conservative dual problem. The adjoint equation (3.20) is a system
of linear transport equations with discontinuous coefficients. Therefore, numerical
approximations may easily become unstable. Another inconvenience is that in order
to obtain a meaningful error representation in (3.22), the approximate adjoint solution
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ϕ should not be contained in V0
h. Therefore, ϕ is often computed in the more costly

space V1
h.

In [30] we have proposed a simple alternative which helps to avoid both difficulties.
Instead of computing the dual solution ϕ we will compute its gradient

w := ∇ϕ,

which is the solution of the conservative dual problem

wt +∇(ÃTw) = ∇ψ in ΩT . (5.2)

This system is in conservation form, and therefore it can be solved by any finite
volume or Discontinuous Galerkin scheme. Moreover, (5.2) may be solved in V0

h, since
a piecewise constant solution w already contains crucial information on the gradient
of ϕ.

The scalar problem treated in [30] was set up in such a way that the characteristic
boundary conditions for the dual problem became trivial. In the following, we develop
the boundary conditions in the more general case needed in the present paper.

Denoting the flux in (5.2) by H := ÃTw, the boundary condition (3.21) becomes

P̃T+ (H −HΓ) = 0 on ΓT , (5.3)

i.e. we prescribe the incoming component P̃T+H. Here HΓ is a given real-valued vector
function, which depends on ψΓ. However, this characteristic boundary condition needs
to be interpreted carefully. Using (5.1) and (5.2) and denoting the interior trace at
the flux by Hint, we may introduce the boundary flux by

H := P̃T− Hint + P̃T+ HΓ on ΓT .

Note that all the projections P̃± used below depend on the point (x, t) ∈ ΓT via the
outside normal vector ν(x, t). The value P̃T−Hint may be assigned from the trace wint
at the interior of the computational domain,

P̃T− Hint = P̃T− (ÃTw)int.

The boundary values P̃T+ HΓ are computed using the PDE

ϕt = −H + ψ (5.4)

with boundary values (3.21),

P̃T+ HΓ = P̃T+ (−ϕt + ψ)|Γ
= −(P̃T+ ψΓ)t + P̃T+ ψ

≈ − 1
∆tm

(
P̃T,m+ ψmΓ − P̃

T,m−1
+ ψm−1

Γ

)
+ P̃T,m−1

+ ψ. (5.5)

This completes the definition of the numerical boundary conditions for the conserva-
tive dual problem.
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5.3. The time component of the error representation. Let us have another
look at the time component of the error representation (4.5),

ηk =
∑
i,m

(Fmν (Uh)− fν(U+
h ), (id−Π0

Im
)ϕ)∂Vm

i
.

To compute the leading order part of ηk we assume that ϕ ∈ V1
h. In this case,

(id−Π0
Im

)ϕ(x, t) =
(
t− tm + tm−1

2

)
ϕt.

Note that ϕt is piecewise constant. Using (5.4) we obtain

ηk =
∑
i,m

(
Fmν (Uh)− fν(U+

h ),
(
· − tm + tm−1

2

)
(ψ − ÃTw)

)
∂Vm

i

.

Since Uh is piecewise constant, the integrals over the time-like faces ∂Vi × Im drop
out, and only those over the space-like faces Vi × {tm} remain, so

ηk =
∑
i,m

(
(Fmν (Uh)− fν(U+

h ),
∆tm

2
(ψ − ÃTw))Vi

− (Fm−1
ν (Uh)− fν(U+

h ),
∆tm

2
(ψ − ÃTw))Vi

)
=
∑
i,m

(Fmν (Uh)−Fm−1
ν (Uh),

∆tm
2

(ψ − ÃTw))Vi .

From the definition (3.1) of the flux in time direction this simplifies further, namely

ηk =
∆tm

2

∑
i,m

(
(1− θ)(Um−1

i − Um−2
i ) + θ(Umi − Um−1

i ), ψ − ÃTw
)
Vi

(5.6)

(we set U−1
i = U0

i in the first summand). Thus our temporal error indicator is
simply a weighted sum of time-differences of the approximate solution Uh, and the
weights can be computed from the data ψ and the solution w of the conservative dual
problem (5.2).

In our adaptive strategy, we will use the localized indicators

η̄mk :=
1
2

∑
i

∣∣∣((1− θ)(Um−1
i − Um−2

i ) + θ(Umi − Um−1
i ), ψ − ÃTw)Vi

∣∣∣ . (5.7)

In the next section we present an example for the boundary conditions for the dual
problem.

5.4. Example: Functionals at the boundary. In the numerical examples in
Section 8 we will consider the 2D Euler equations. Let Γs be the solid wall, where we
impose the reflecting boundary condition v ·n = 0. Thus the flux in normal direction
n is given by

fn = p(0, n, 0)T .
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The eigenvalues of Ã are λ1 = v ·n−c = −c, λ2 = λ3 = v ·n = 0 and λ4 = v ·n+c = c,
and we can compute

P̃+ = R diag(0, 0, 0, 1)L,

P̃− = R diag(1, 0, 0, 0)L.

and

P̃+ fn(U) =
p

2

(
1
c
, n,

c

γ − 1

)
.

As our functional we choose the space-time integral of the pressure at the solid wall,

J(U) =
∫ T

0

∫
Γs

p dS(x) dt.

If we choose

ψΓ = 2(0, n, 0)T ,

then J(U) may be rewritten in terms of characteristic projections,

J(U) =
∫ T

0

(P̃+ fn(U), ψΓ)Γs
dt.

In the numerical experiments in Sections 6–9, we will multiply ψΓ with an additional
weighting function (see (7.2)).

6. Numerical realization. Before we set up our test problem (Section 7) and
present numerical experiments (Sections 8 – 9), we have to specify some details on
the adaptive concept, the grid generation and the numerical flux evaluation on locally
refined grids with hanging nodes.

6.1. Adaptive Method in time. Now we combine the multiscale based ap-
proach introduced in Section 6.2 and the time adaptive method derived from the
space-time splitting of the error representation to get a space-time adaptive algo-
rithm:

• solve the primal problem (2.3) on a coarse adaptive spatial grid using uniform
CFL numbers (CFL = 0.8),

• compute the dual problem (3.11) and (3.21) and the space-time-error repre-
sentation (4.5). In particular, compute the localized error indicators η̄mk using
(5.7).

• compute the new adaptive timestep sizes depending on the temporal part of
the error representation and the CFL number on the new grid, aiming at an
equidistribution of the error,

• solve the primal problem using the new timestep sizes on a finer spatial grid.
The advantage is, that the first computations of the primal problems and the

dual problem are done on a coarse spatial grid, and therefore have low cost. These
computations provide an initial guess of the timesteps for the computation on the
finer spatial grid. We will restrict the timestep size from below to CFL = 0.8, since
smaller timestep sizes only add numerical diffusion to the scheme and increase the
computational cost. Note that all physical effects already have to be roughly resolved
on the coarse grid in order to determine a reliable guess for the timesteps on the fine
grid.

We will deal with some aspects in detail in the numerical examples in Section 8
and 9.
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6.2. Multiscale analysis - adaptation in space. A finite volume discretiza-
tion is typically working on cell averages. In order to analyze the local regularity
behavior of the data we employ the concept of biorthogonal wavelets [5, 7]. This ap-
proach may be considered as a natural generalization of Harten’s discrete framework
[17]. The core ingredients are a hierarchy of nested grids, biorthogonal wavelets and
the multiscale decomposition. In the following we will only summarize the basic ideas.
For technical details we refer the reader to the book [24] and [4], respectively.

Step 1: Multiscale analysis. The fundamental idea is to present the cell averages
ûL representing the discretized flow field at fixed time level tm on a given uniform
highest level of resolution l = L (reference mesh) associated with a given finite volume
discretization (reference scheme) as cell averages û0 on some coarsest level l = 0. Here
the fine scale information is encoded in arrays of detail coefficients dl, l = 0, . . . , L−1
of ascending resolution, see Figure 6.2.

The multiscale decomposition is performed on a hierarchy of nested grids Gl with
increasing resolution l = 0, . . . , L determined by dyadic grid refinement of the logical
space, see Figure 6.1.

Fig. 6.1. Sequence of nested grids Fig. 6.2. Multiscale transformation

Step 2: Thresholding. It can be shown that the detail coefficients become small
with increasing refinement level when the underlying function is locally smooth. This
motivates us to discard all detail coefficients dl,k whose absolute values fall below a
level-dependent threshold value εl = 2l−Lε in order to compress the original data.
Let DL,ε be the set of significant details. The ideal strategy would be to determine
the threshold value ε such that the discretization error of the reference scheme, i.e.,
the difference between exact solution and reference scheme, and the perturbation er-
ror, i.e., the difference between the reference scheme and the adaptive scheme, are
balanced, see [8].

Step 3: Prediction and grading. Since the flow field evolves in time, grid adap-
tation is performed after each evolution step to provide the adaptive grid at the new
time level. In order to guarantee the adaptive scheme to be reliable in the sense that
no significant future feature of the solution is missed, we have to predict all significant
details at the new time level n + 1 by means of the details at the old time level n.
Let D̃mL,ε ⊃ DmL,ε ∪ DmL,ε be the prediction set. The prediction strategy is detailed in
[8]. In view of the grid adaptation step this set is additionally inflated such that it
corresponds to a graded tree, i.e., the number of levels between two neighboring cells
differs at most by 1.

Step 4: Grid adaptation. By means of the set D̃mL,ε a locally refined grid is
determined. For this purpose, we recursively check (proceeding levelwise from coarse
to fine) whether there exists a significant detail on a cell. If there is one, then we
refine the respective cell. We finally obtain the locally refined grid with hanging
nodes represented by the index set GL,ε, see for example Figure 7.7.

6.3. Grid generation.. The computational domain in our test configuration is
bounded by curvilinear boundaries. For this domain we compute a parametric grid
mapping x : [0, 1]2 → Ω. Then a hierarchy of Cartesian grids for the parameter
domain is mapped to a grid hierarchy of curvilinear meshes in the computational
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domain. The grid mapping is realized efficiently by a sparse B-Spline representation,
cf. [4, 23]. Then the locally refined grids are determined by evaluation of this mapping.
In our computations the underlying discretization is always a hierarchy of curvilinear
grids.

6.4. Newton method for the nonlinear system.. The 2D Euler equations
are discretized with the finite volume method on an adaptive grid. The resulting
system of nonlinear equations is discretized by a Newton method in each timestep.
Two delicate aspects of the Newton method are the choice of the initial value and
the choice of the break condition. In our computations we choose the solution of
the old timestep as initial value for the Newton iterations. The resulting system
of linear equations is solved using GMRS with an ILU preconditioning. The break
condition for the Newton method is coupled with the threshold value of the multiscale
method: If the defect of the Newton method is below the threshold of the multiscale
representation, we will stop the iteration process.

Remark 4. There are also other strategies to terminate the Newton iterations.
If we assume, that in each iteration (both the nonlinear and the linear) the residuals
will drop, we could choose as break condition how many times the residual has to
decrease. Additionally we can set an absolute value of the number of iterations, if
no other breaking condition holds. There are two main problems, which may occur.
The first one is, that in the case where the solution is stationary, no iteration will
decrease the error. The other problem is, that if the timestep sizes are large, and the
residual is very large in the beginning and will drop down fast, the Newton iteration
will stop, but will not lead to a good solution, with a small residuum. In the numerical
examples we observe that the coupling with the multiscale representation leads to very
efficient results. Alternative strategies to control the timestepping could be based on
the residual or the defect of the Newton-method, the boundary conditions, the CFL
number. For such a strategy it is obvious that we have many parameters which have
to be chosen and optimized, see [26].

6.5. Computation of the dual problem. The conservative dual problem (5.3)
is a system of d ·m conservation laws, where m is the number of equations of the
forward problem and d the number of space dimensions. Since for the backward
solver robustness is more important than accuracy we solve (5.2)–(5.3) with a finite
volume method using Lax-Friedrichs numerical flux and CFL < 1.

7. Setup of the numerical experiment. An instationary variant of a classical
stationary 2D Euler transonic flow, considered in [27], is investigated to illustrate the
efficiency of the adaptive method.

Steady state configuration. First we consider the classical setup in the sta-
tionary case. The computational domain is a channel of 3m length and 2m height
with an arc bump of l = 1m secant length and h = 0.024m height cut out, see Figure
7.1. At the inflow boundary, the Mach number is 0.85 and a homogeneous flow field
characterized by the free-stream quantities is imposed. At the outflow boundary, char-
acteristic boundary conditions are used. We apply slip boundary conditions across
the solid walls, i.e., the normal velocity is set to zero. In the numerical examples in
Section 8 the height of the channel is 2m and the length 6m.

The threshold value in the grid adaptation step ε = 1 × 10−3 and computations
are done on adaptive grids with finest level L = 2 and L = 5 respectively. In general,
a smaller threshold value results in more grid refinement whereas a larger value gives
locally coarser grids.
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Slip Wall

Slip Wall

Inflow Outflow

Fig. 7.1. Circular arc bump configuration of the computational domain Ω.

Fig. 7.2. Adaptive grid L = 5, to steady state solution in Figure 7.3 of the circular arc bump
configuration.

In the stationary case at Mach 0.85 there is a compression shock separating a
supersonic and a subsonic domain. the stagnation areas are highly resolved, see
Figures 7.3 and 7.7.

We will use this steady state solution as initial data for the instationary test case.

Instationary test case. Now we define our instationary test case prescribing
a time-dependent perturbation coming in at the inflow boundary. First we keep the
boundary conditions fixed, and prescribe the corresponding stationary solution as
initial data. Then we introduce, for a short time period [tb, te], a perturbation α of
the pressure at the left boundary, see (7.1). We will impose two perturbations of the
inflow boundary conditions, at time t1b = 0.004s until t1e = 0.005s and at t2b = 0.022s
until t2e = 0.023s. These perturbations increase and decrease in a short time period
of τ = 0.00005s. The first perturbation is about 20 percent of the pressure at the
inflow boundary and the second 2 percent. The perturbations imposed move through
the domain and leave it at the right boundary. Then the solution is stationary again.
The total time is t = 0.029s.
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Fig. 7.3. Steady state solution of the circular arc bump configuration: Isolines of the density,
L = 5.

The perturbations are given by:

wip(t) =


(
t−tib
τ

)2

for tib < t ≤ tib + τ

1 for tib + τ < t ≤ tie − τ(
t−tie
τ

)2

for tie − τ < t ≤ tie

,

pin(t) = p∞wp(t) = p∞


1 for t ≤ t1b

1 + α1w1
p(t) for t1b < t ≤ t1e

1 for t1e < t ≤ t2b
1 + α2w2

p(t) for t2b < t ≤ t2e
1 for t2e < t

(7.1)

with perturbation parameters listed in Table 7.1. The first computation is done

i αi tib[s] tie[s] τ i[s]
1 0.2 0.004 0.005 0.00005
2 0.02 0.022 0.023 0.00005

Table 7.1
Parameters of the perturbations wi

p, i = 1, 2 at the left boundary to equation (7.1).

on an adaptive grid with finest level L = 2. We also compute the dual solution and
the error representation on this level. Using the time-space-split error representation
(4.5) we derive a new timestep distribution aiming at an equidistribution of the error.
Finally this is modified by imposing a CFL restriction from below.

We aim to equidistribute the error and prescribe a tolerance Tol(5) = 2−3η̄refk ,
where η̄refk is the temporal error from the computation on level L = 2.

For this set-up we will show that the adaptive spatial refinement together with the
time-adaptive method will lead to an efficient computation. The multiscale method
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Fig. 7.4. Weighting function of the perturbation. pin(t) = p∞wp(t)
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Fig. 7.5. Schematic illustration of the instationary test case. Left: perturbation at the left
boundary. Right: instationary (white) and stationary (grey) time domains of the solution

provides a well-adapted spatial representation of the solution, and the dual solution
will detect time-domains where the solution is stationary. In these domains, the
equidistribution strategy will choose large timesteps. Target Functional. Now we
set up the target functional. The functional J(U) is chosen as a weighted average of
the normal force component exerted on the bump and at the boundaries before and
behind the bump:

J(U) =
7∑
i=1

∫ T

0

∫
κi

pψi(x, y)ds (7.2)

with

κi = {(x, y) ∈ Γ : x ∈ [xi − 0.25, xi + 0.25]}
ψi(x) = (x− (xi − 0.25))2(x+ (xi + 0.25))2/0.254, x ∈ κi.

Here Γ is only the bottom part of Γ. In all computations presented in this section
the functional (7.2) is chosen, which is the pressure averaged at several points at the
bump in front and behind the bump. The x-coordinates of these points at the bottom
are xi = -3, -2, -1, 0, 1, 2, 3. At each of these points xi a smooth function ψi is given
with support xi − 0.25, xi + 0.25. This functional measures the pressure locally.
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Fig. 7.6. Instationary solution of the circular arc bump configuration, uniform timestep CFL =
1, level L = 5, isolines of the density, perturbation entering on the left and leaving on the right side
of the computational domain, from top to bottom: t = 0.0057s, 0.00912s, 0.01254s, 0.01596s,
0.01938s.
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Fig. 7.7. Instationary solution of the circular arc bump configuration: adaptive grid L = 5 for
the computation Figure 7.6, perturbation entering on the left side and leaving on the right side of the
computational domain, from top to bottom: t = 0.0057s, 0.00912s, 0.01254s, 0.01596s, 0.01938s.

Remark 5. (i) Our experience is that the averaged pressure is only computed
accurately if the whole flow field is well resolved. Therefore our functional-based time
adaptation together with the multiscale spatial adaptation seems to yield a reliable
global accuracy both in space and time.

(ii) Note that the functional J(U) is never evaluated because U is not known
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at all. Instead we compute the localized indicator (5.7), which involves solving the
conservative linearized adjoint problem (5.2) – (5.3).

In Figure 7.6 we show a time-sequence of the instationary test case computed
with uniform CFL = 1 on an adaptive grid with finest level L = 5. In Figure 7.7 the
corresponding adaptive grids are presented. Note that the perturbation entering at
the left boundary and moving through the boundary is resolved very well.

8. Fully implicit computational results.

8.1. Numerical strategies. We will present and compare three strategies to
demonstrate the efficiency of our space-time adaptive method.

1. Adaptive timesteps via adjoint indicator.
The first strategy is the one we proposed in [30]: We first compute a forward
solution on a coarse grid (L = 2) and solve the adjoint problem on the
adaptive grid of the forward solution. Then we use the information of the
error representation based on the dual solution to determine a new sequence of
timesteps. This sequence is used in the computation of the forward solution
on a grid with finest level L = 5, where we additionally restrict the CFL
number from below.

2. Adaptive timesteps via ad hoc indicator.
In the second approach we compare our indicator with ad-hoc indicators,
which do not require the solution of an adjoint problem. To get these in-
dicators we first do a computation on a coarse grid (L = 2), and compute
residuals in time of the approximate solution.

3. Uniform timesteps.
In a third approach we will set-up uniform timestep distributions with the
same number of timesteps as in the adaptive case of strategy one. We compare
the results with our timestep distribution and a uniform in time computation
with CFL = 1 and CFL = 10.

We want to compare these strategies with respect to the following main aspects:
• What is the quality and what are the costs determining the adaptive timestep

sequence from computations on the coarse grid?
• Is the predicted adaptive timestep sequence well-adapted to the solution on

the fine grid?
• Do ad-hoc indicators without computing a dual solution lead to comparable

results?
• How is the solution affected if we use uniform timesteps larger than the pre-

dicted adaptive timestep sequence?
In order to quantify the results we have to compare with a reference solution.

Since the exact solution is not available we perform a computation with L = 5 re-
finement levels using implicit timestepping with CFL = 1. This is a very expensive
approximation for the instationary case. For all of the above issues we will discuss the
quality of the solution, the computational costs (time and memory) and the efficiency.

8.2. Adaptive timesteps via adjoint indicator. Now we use the error rep-
resentation on finest level L = 2 for a new time adaptive computation on finest level
L = 5.

The first computation is done on a mesh with finest level L = 2. We compute until
time T = 0.0285s, which takes 1000 timesteps with CFL = 1. We use the results of
the error representation of this computation to compute a new timestep distribution.
The forward problem takes 329s and the dual problem including the evaluation of
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Fig. 8.1. Time component of the error representation η̄m
k (top) and new timesteps with CFL

restriction from below CFL(tn) (bottom).

the error representation 619s on an Opteron 8220 processor at 2.86 GHz. The total
computational costs are 948s, and in memory we have to save 1000 solutions (each
timestep) of the forward problem which corresponds to 48 MB (total). This gives
us a new sequence of adaptive timesteps for the computation of level L = 5. The
error indicator and the new timesteps are presented in Figure 8.1. In time intervals
where the solution is stationary, i.e. at the beginning, and after the perturbations
have left the computational domain, the timesteps are large. In time intervals where
the solution is instationary we get well-adapted small timesteps.

Then we use the adaptive timestep sequence for a computation on level L = 5
and compare it with a uniform in time computation using CFL = 1. The uniform
computation needs 8000 timesteps and the computational time is 21070s. The time
adaptive solution is computed with 2379 timesteps and this computation takes 9142s.
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In Figure 8.3 we show a sequence of plots of the uniform, CFL = 1 computation
on an adaptive spatial grid with finest level L = 5. In Figure 8.4 we compare the
pressure distribution at the bottom boundary of the uniform solution and the time
adaptive solution at several times. The two solutions on level L = 5 match very well.

8.3. Adaptive timesteps via ad hoc indicator. Here we replace the adjoint
indicator by an ad hoc indicator, which estimates the variation of the solution from
one timestep to the following,

ind(m) =
∑
i

|Umi − Um−1
i |1|V mi | ≈ ‖Uh(·, tm)− Uh(·, tm−1)‖L1(Ω). (8.1)

Clearly this indicates whether the solution is stationary or not. Even though we do
not know any theoretically justified global decay rates of ind, and much less of the
error, as the timestep is refined, it is reasonable to assume that the local variation in
time decays linearly with the timestep. Similarly as for the adjoint error control, we
do a first computation on a coarse grid with finest level L = 2, where we compute the
indicator, see Figure 8.2. Then we redistribute the timesteps.

The indicator (8.1) compares as follows to adjoint error indicator (see Figure 8.2):
Both indicators detect stationary and instationary regions. The temporal distribution
is very similar, but the variation indicator ind leads to considerably more timesteps
than the error indicator from the dual approach (3640 vs. 2379). In particular, most
timesteps are smaller than in the case with adaptation via adjoint problems. Since
the timesteps are restricted from below, it leads to computations which are in general
more expensive but not more accurate. Results are not displayed. One advantage may
be that we do not need to compute a dual solution, which makes the computation of
the variation indicator less expensive. But this is only a small advantage, since we
compute the error indicators on a coarse mesh, which takes 619s on level L = 2 for
the adjoint approach. If we use the timesteps which we compute from ind(m) and do
a time adaptive computation on a grid with finest level L = 5 then we will not get
equally distributed indicators. This holds also true if we do not apply the timestep
restriction from below.

We have also implemented some variations of the discrete variation indicator,
which lead to similar results. Another approach was to choose the maximum jump
of the solution in one cell, both weighted and not weighted with the size of the cell.
This was an approximation to the L∞-norm. This indicator is not very useful, since
it turned out to be highly oscillating. Therefore we do not present results for this
indicator.

8.4. Uniform timesteps. In many instationary computations where no a-priori
information is known, one reasonable choice is to use uniform CFL numbers. There-
fore we will compare the computation with adaptive implicit timesteps with implicit
computations using uniform CFL numbers. In Section 8.2 we have already done a
computation with uniform CFL number, CFL = 1, on a grid with L = 2, to get
timestep sizes for an adaptive computation on a grid with L = 5. As a reference solu-
tion we also computed with uniform CFL number, CFL = 1, a solution of the problem
on a grid with L = 5. Now we compare these computations with computations using
higher uniform CFL numbers.

First we choose a uniform CFL number of approximately 3.2, which corresponds
to 2500 timesteps. This equals roughly the number of timesteps in the adaptive
method, and hence it should give a fair comparison. The uniform computation takes
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Fig. 8.2. Comparison of error indicators (top) and timestep sequences (bottom) derived from
error representation via dual problem (dashed line) and from variation indicator ind (bold line).

about 11509s, more than the 9142s of the adaptive computation (see Table 8.1). In
the uniform computation most of the timesteps are more expensive, since they need
more Newton steps, and more steps for solving the linear problems. This shows that
the understanding of the dynamics of the solution pays directly in the nonlinear and
linear solvers. Moreover, it can be seen from Figure 8.4 that the quality of the solution
is considerably worse than for the adaptive computation.

Another computation with CFL number 10 takes only 3290s. However, as can
be seen from Figure 8.4 the solution is badly approximated: In the beginning of the
computation the solutions of the different methods match very well, which means
that the inflow at the boundary is well-resolved. As time goes on, the solutions
differ more and more. After the perturbation has passed the bump, the perturbations
differ strongly. Only the time-adaptive method approximates the reference solution
(CFL = 1) closely.

8.5. Newton iterations and linear iterations. In Figure 8.5 we show the
number of Newton iterations in each timestep for the computations in Section 8.2, 8.3
and 8.4. The number of Newton iterations depend on the CFL number and is larger,
where the solution is instationary and smaller, where the solution is stationary. The
time-adaptive computation gives the smallest total number of Newton iterations, see
Table 8.1, since most timesteps are solved with one Newton iteration.
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Fig. 8.3. Reference solution for 2D Euler equations: adaptive spatial grid (finest level L = 5),
uniform time steps (CFL = 1). Pressure p at bottom boundary at times t=0.005002, 0.007125,
0.009990, 0.011975, from top to bottom.

Figure 8.6 shows the total number of linear iterations in each timestep for the
same computations, i.e. the sum of the linear iterations in each timestep for all
Newton iterations. The number of linear iterations also depends on the CFL number,
for larger CFL number, we observe more linear iterations.

Table 8.1 gives an overview of the CPU time and the number of Newton iterations
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Fig. 8.4. Zoom tracing the perturbations in Figure 8.3 at times t=0.005002, 0.007125,
0.009990, 0.011975, from top to bottom. Comparison of uniform timesteps with CFL = 1, 3.2, 10
and time-adaptive strategy.

and linear iterations for the computations. The costs for the computation of the
indicators, both the dual and the ad-hoc indicator, on level L = 2 are very low
compared to the costs of computations on level L = 5. An adaptive computation
including the computation of the indicator, i.e. 329s+ 619s+ 9142s, is cheaper than
the computation using uniform CFL number, e.g. CFL = 1, that needs 21070s.
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Fig. 8.5. Number of Newton iterations for fully implicit time-adaptive computation and com-
putations with uniform CFL number, from top to bottom: adaptive CFL, CFL = 1, CFL ≈3.2,
CFL = 10.

Even the computation with CFL = 3.2 is more expensive than the time-adaptive
computation, but leads to worse results, see Figure 8.4.

Table 8.1 shows that the CPU time is roughly proportional to the number of
Newton iterations and not to the number of timesteps or linear solver steps. The
CPU time is about 2.5s per Newton iteration. This means that we have to minimize
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Fig. 8.6. Number of linear iterations for fully implicit time-adaptive computation and computa-
tions with uniform CFL number, from top to bottom: adaptive CFL, CFL = 1, CFL ≈3.2, CFL = 10.

the number of Newton iterations in total to accelerate the computation. This is done
very efficiently by the time-adaptive approach. For a large range of CFL numbers
from 1 to more than 100, it needs only one or two Newton iterations per timestep,
without sacrificing the accuracy.

In this example, the stationary time regions are not very large compared to the
overall computation. If the stationary regions were larger, the advantage of the time
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Fig. 9.1. 2D Euler equations, comparison of timestep sequence derived from error representa-
tion for implicit computation (dashed line) and for mixed explicit-implicit computation (bold line).

adaptive scheme would be even more significant.

CPU [s] timesteps Newton steps linear steps
adaptive timesteps 9142 2379 3303 16875
uniform CFL = 1 21070 8000 8282 32630
uniform CFL = 3.2 11509 2500 4904 26895
uniform CFL = 10 3290 800 1600 13500

Table 8.1
Performance for computations on L = 5 using different fully implicit timestepping strategies.

9. Explicit-implicit computational results. Now we modify the fully im-
plicit timestepping strategy and introduce a mixed implicit/explicit approach. The
reason is that implicit timesteps with CFL < 5 are not efficient, since we have to
solve a nonlinear system of equations at each timestep. Thus, for CFL < 5, the new
implicit/explicit strategy switches to the cheaper and less dissipative explicit method
with CFL = 0.5. The timestep sequence is shown in Figure 9.1. Of course, we could
choose variants of the thresholds CFL = 0.5 and 5.

As we can see in Table 9.1, the new strategy requires 5802 timesteps, where 95%
are explicit. The CPU time of 7730s easily beats the fully explicit solver (18702s),
and is also superior to the fully implicit adaptive scheme (9142s, see Table 8.1).
The computational results are presented in Figure 9.2. The results of the combined
explicit-implicit strategy are very close to the results of the fully explicit method, and
far superior to all fully implicit methods. Note that the explicit scheme serves as
reference solution, since it is well-known that it gives the most accurate solution for
an instationary problem.
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Fig. 9.2. 2D Euler equations, comparison of solutions in time on adaptive grid with finest level
L = 5, pressure p at the bottom boundary, zoom of the perturbation at time t=0.011975

CPU [s] timesteps timesteps
(total) (implicit)

explicit CFL = 0.5 18702 16000 -
adaptive expl.-impl. 7730 5802 259

Table 9.1
Performance for computations on L = 5 using fully explicit timesteps and the time-adaptive

explicit-implicit strategy.

10. Conclusion. In this work, explicit and implicit finite volume solvers on
adaptively refined quadtree meshes have been coupled with adjoint techniques to
control the timestep sizes for the solution of weakly instationary compressible inviscid
flow problems.

For the 2D Euler equations we have presented a test case for which the time-
adaptive method does reach its goals: it separates stationary regions and perturba-
tions cleanly and chooses just the right timestep for each of them. The adaptive
method leads to considerable savings in CPU time and memory while reproducing
the reference solution almost perfectly.

We have compared the adjoint error representation with several variation-based
indicators in [29]. Our prime choice is the adjoint approach, since it has the best
theoretical justification and needs only half the number of timesteps.

In Theorem 3.2 and Corollary 4.1 we state a complete error representation for
nonlinear initial-boundary-value problems with characteristic boundary conditions for
hyperbolic systems of conservation laws, which includes boundary and linearization
errors. Besides building upon well-established adjoint techniques, we also add a new
ingredient which simplifies the computation of the dual problem [30]. We show that
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it is sufficient to compute the spatial gradient of the dual solution, w = ∇ϕ, instead
of the dual solution ϕ itself. This gradient satisfies a conservation law instead of a
transport equation, and it can therefore be computed with the same algorithm as
the forward problem. For discontinuous transport coefficients, the new conservative
algorithm for w is more robust than transport schemes for ϕ, see [30]. Here we also
derive characteristic boundary conditions for the conservative dual problem, which
we use in the numerical examples in Sections 8 and 9.

In order to compute the adjoint error representation one needs to compute a
forward and a dual problem and to assemble the space-time scalar product (5.7).
Together, this costs about three times as much as the computation of a single forward
problem. In our application, the error representation is computed on a coarse mesh
(L = 2), and therefore it presents only a minor computational overhead compared
with the fine grid solution (L = 5). In other applications, the amount of additional
storage and CPU time may become significant. In such cases, checkpointing strategies
might help (see e.g. [31]).

We have implemented and tested both a fully implicit and a mixed explicit-
implicit timestepping strategy. The explicit-implicit approach switches to an explicit
timestep with CFL = 0.5 in case the adaptive strategy suggests an implicit timestep
with CFL < 5. Clearly, the mixed explicit-implicit strategy is the most accurate and
efficient, beating the adaptive fully implicit in accuracy and efficiency, the implicit
approach with fixed CFL numbers in accuracy, and the fully explicit approach in
efficiency.

Finally, we would like to stress that the computational cost in each timestep is
nearly constant, no matter if the CFL number is of order 1 or order 100. In all cases,
the solver needs only 1 or 2 Newton iterations per timestep to reach the (rather strict)
break condition, which is related to the multiscale analysis. This seems to be another
major benefit of the adaptive timestep control.
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