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Abstract. In this paper we continue our work on adaptive timestep control for weakly in-
stationary problems [29, 30]. The core of the method is a space-time splitting of adjoint error
representations for target functionals due to Süli [32] and Hartmann [18]. The main new ingredients
are (i) the extension from scalar, 1D, conservation laws to the 2D Euler equations of gas dynamics,
(ii) the derivation of boundary conditions for a new formulation of the adjoint problem and (iii) the
coupling of the adaptive time-stepping with spatial adaptation. For the spatial adaptation, we use
a multiscale-based strategy developed by Müller [24], and we combine this with an implicit time
discretization. The combined space-time adaptive method provides an efficient choice of timesteps
for implicit computations of weakly instationary flows. The timestep will be very large in regions of
stationary flow, and becomes small when a perturbation enters the flow field. The efficiency of the
solver is investigated by means of an unsteady inviscid 2D flow over a bump.
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1. Introduction. Today, there is broad consensus that the numerical solution
of compressible flow equations requires a highly resolved mesh to simulate accurately
the different scales of the flow field and its boundaries. Adaptive grid methods can
significantly improve the efficiency by concentrating cells only where they are most
required, thus reducing storage requirements as well as the computational time. There
has been a tremendous amount of research designing, analyzing and implementing
codes which are adaptive in space, see e.g. [6, 24, 22, 25] and references therein.

Here our interest is in timestep adaptation. For stationary problems, local time-
steps which are linked to the spatial gridsize are commonplace, and they are heavily
built upon the fact that time-accuracy, or time synchronization is not needed. On
the other hand, for fully instationary flows, explicit algorithms whose timestep is
governed by the CFL restriction of at most unity are the method of choice. In [30],
we began to explore one of the remaining gaps, namely weakly instationary flows on
which we will focus in the following. Many real world applications, like transonic
flight, are perturbations of stationary flows. While time accuracy is still needed
to study phenomena like aero-elastic interactions, large timesteps may be possible
when the perturbations have passed. For explicit calculations of instationary solutions
to hyperbolic conservation laws, the timestep is dictated by the CFL condition due
to Courant, Friedrichs and Lewy [9], which requires that the numerical speed of
propagation should be at least as large as the physical one. For implicit schemes, the
CFL condition does not provide a restriction, since the numerical speed of propagation
is infinite. Depending on the equations and the scheme, restrictions may come in via
the stiffness of the resulting nonlinear problem. These restrictions are usually not as
strict as in the explicit case, where the CFL number should be below unity. For implicit
calculations, CFL numbers of much larger than 1 may well be possible. Therefore, it
is a serious question how large the timestep, i.e. the CFL number, should be chosen.
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