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Abstract. The concept of fully adaptive multiscale finite volume schemes has been developed and
investigated during the past decade. By now it has been successfully employed in numerous applications
arising in engineering. In order to perform 3D computations for complex geometries in reasonable
CPU time, the underlying multiscale-based grid adaptation strategy has to be parallelised via MPI
for distributed memory architectures. In view of a proper scaling of the computational performance
with respect to CPU time and memory, the load of data has to be well-balanced and communication
between processors has to be minimised. This has been realised using space-filling curves.
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Introduction

The numerical simulation of (compressible) fluid flow requires highly efficient numerical algorithms which
allow for a high resolution of all physical waves occurring in the flow field and their dynamical behaviour. In
order to use the computational resources (CPU time and memory) in an efficient way, adaptive schemes are
well-suited for this purpose. By these schemes, the discretisation is locally adapted to the variation of the flow
field. The crucial point in the adaptation process is the design of a criterion by which to decide whether to
refine or to coarsen the grid locally.

In recent years, a new adaptive concept for finite volume schemes, frequently applied to the discretisation
of balance equations arising for instance in continuum mechanics, has been developed based on multiscale
techniques. First work in this regard has been published by Harten [23,24]. The basic idea is to transform the
arrays of cell averages associated with any given finite volume discretisation into a different format that reveals
insight into the local behaviour of the solution. The cell averages on a given highest level of resolution (reference
mesh) are represented as cell averages on some coarse level, where the fine scale information is encoded in arrays
of detail coefficients of ascending resolution.

In Harten’s original approach, the multiscale analysis is used to control a hybrid flux computation by which
CPU time for the evaluation of the numerical fluxes can be saved, whereas the overall complexity is not reduced
but still stays proportional to the number of cells on the uniformly fine reference mesh. Opposite to this strategy,
threshold techniques are applied to the multiresolution decomposition in [12,29], where detail coefficients below a
threshold value are discarded. By means of the remaining significant details, a locally refined mesh is determined
whose complexity is substantially reduced in comparison to the underlying reference mesh.

The fully adaptive concept has turned out to be highly efficient and reliable. So far, it has been employed
with great success in different applications, e.g., 2D/3D–steady and unsteady computations of compressible
fluids around airfoils modelled by the Euler and Navier–Stokes equations, respectively, on block–structured
curvilinear grid patches [9], backward–facing step on 2D triangulations [13] and simulation of a flame ball
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modelled by reaction–diffusion equations on 3D Cartesian grids [33,36]. These applications have been performed
for compressible single-phase fluids. More recently, this concept has been extended to two-phase fluid flow of
compressible gases, and applied to the investigation of non–stationary shock–bubble interactions on 2D Car-
tesian grids for the Euler equations [2, 3, 30]. By now, there are several groups working on this subject: Postel
et al. [14, 15], Schneider et al. [34, 35], Burger et al. [10, 11] and Domingues et al. [17].

The performance of the fully adaptive multiscale solver crucially depends on the data structures used for the
implementation of the algorithms. In particular, appropriate data structures have to be designed such that the
computational complexity in terms of memory and CPU time is proportional to the cardinality of the adaptive
grid. For this purpose, the C++-template class library igpm t lib [31] has been developed. It has been recently
extended with respect to unstructured grid hierarchies, see [40]. In view of an optimal memory management
and a fast data access the well-known concept of hash maps, cf. [16], is used. Since the multiscale-based grid
adaptation requires sweeping through the different refinement levels, it turned out that hash maps are more
suited for this purpose rather than tree structures. The latter need some overhead to access children, parents
and neighbours in the tree, cf. [36]. Typically the work needed to access an element in the tree is proportional
to logN , where N is the number of nodes in the tree, whereas it is constant for hash maps, cf. [16]. Using hash
maps, the multiscale library, cf. [29], has been realised and incorporated successfully into the multi-block finite
volume solver Quadflow [8,9].

Although multiscale-based grid adaptation leads to a significant reduction of the computational complexity
(CPU time and memory) in comparison to computations on uniform meshes, this is not sufficient to perform
3D computations for complex geometries efficiently. In addition, we need parallelisation techniques in order to
further reduce the computational time to an affordable order of magnitude. On a distributed memory archi-
tecture, the performance of a parallelised code crucially depends on the load-balancing and the interprocessor
communication. Since the underlying adaptive grids are unstructured due to hanging nodes, this task cannot
be considered trivial. For this purpose, graph partitioning methods are employed frequently using the Metis
software [26,27] together with PETSc [4–6]. Opposite to this approach, we use space-filling curves, cf. [41]. Here
the basic idea is to map level-dependent multiindices identifying the cells in a dyadic grid hierarchy of nested
grids to a onedimensional line. The interval is then split into different parts each containing approximately the
same number of entries. For this mapping procedure we employ the same cell identifiers as in case of the hash
maps.

In [38] the quality of partitioning computed with different types of space-filling curves is compared to those
generated with the graph partitioning package Metis. It turned out that Metis computes partitionings with
lower edge-cuts than space-filling curves do. However, space-filling curves save both, a lot of time and a lot of
memory. This is essential for our instationary applications, because we frequently need to rebalance the load.
Due to the dynamics of the flow field, the grid has to be often updated in order to track the waves in the flow
field appropriately.

The aim of the present work is to give an overview on the parallelisation of the multiscale-based grid adap-
tation via MPI [20, 21] using space-filling curves. For this purpose, we first summarise in Section 1 the basic
ingredients of the multiscale library: (i) the multiscale analysis of the discrete cell averages and grid adaptation,
(ii) algorithms and (iii) data structures. When we consider parallelisation, we have to care for load-balancing
and interprocessor communication. This issue is addressed in Section 2. An optimal balancing of the load can be
realised using space-filling curves. By means of the local multiscale transformation we discuss the data transfer
at processor boundaries. In Section 3, we explain the work to be done to embed the parallelised multiscale-
library into the flow solver Quadflow. Finally, in Section 4, we present some performance studies for the parallel
multiscale transformation and show first adaptive, parallel 3D computations of a Lamb-Oseen vortex using the
parallelised Quadflow solver.

1. Basic Ingredients

In this section we summarise the ingredients to successively decompose a sequence of cell averages given on
a uniform fine grid (reference grid) into a sequence of coarse-scale averages and details. The details describe
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the update between two discretisations on successive resolution levels corresponding to a nested grid hierarchy.
They reveal insight in the local regularity of the underlying function. In particular, they become negligible small
giving rise to data compression. From the remaining significant details, an adaptive grid, i.e., a locally refined
grid with hanging nodes, can be determined. In principle, the concept can be applied to any hierarchy of nested
grids, no matter whether these grids are structured or unstructured. However, here we will confine ourselves to
structured grids and uniform dyadic refinement,s where on each refinement level the grids can be determined by
evaluation of a grid mapping. This has been successfully realised in the multiscale library, see [29] for details,
and incorporated into the Quadflow solver [8, 9].

1.1. Multiscale Analysis and Grid Adaptation

Grid mapping. The starting point is a smooth function x : R := [0, 1]d → Ω, which maps the parameter
domain R onto the computational domain Ω. The Jacobian is assumed to be regular, i.e., det (∂ x(ξ)/∂ ξ) 6=
0, ξ ∈ R. In our applications we represent the grid function by B–splines, see [28]. This admits control of good
local grid properties, e.g., orthogonality and smoothness of the grid, and a consistent boundary representation
by a small number of control points depending on the configuration at hand.

Nested Grid Hierarchy. A nested grid hierarchy is defined from the grid mapping by means of a sequence
of nested uniform partitions of the parameter domain. To this end, we introduce the sets of multi–indices
Il :=

∏d
i=1{0, . . . , Nl,i − 1} ⊂ Nd

0, l = 0, . . . , L, with Nl,i = 2Nl−1,i initialised by some N0,i . Here l represents
the refinement level where the coarsest partition is indicated by 0 and the finest by L. The product denotes
the Cartesian product, i.e.,

∏d
i=1Ai := A1 × · · · × Ad. Then the nested sequence of parameter partitions

Rl := {Rl,k}k∈Il , l = 0, . . . , L, is determined by Rl,k :=
∏d
i=1 [ki hl,i, (ki+1)hl,i], with hl,i := 1/Nl,i = hl−1,i/2,

see Figure 1. Finally, a sequence of nested grids Gl := {Vl,k}k∈Il , l = 0, . . . , L, of the computational domain
Ω is obtained by Vl,k := x(Rl,k), see Figure 2 for an illustration. Each grid Gl builds a partition of Ω, i.e.,

Figure 1. Dyadic grid hierarchy
in parameter space.

Figure 2. Transformation from pa-
rameter to computational domain.

Ω =
⋃

k∈Il Vl,k, and the cells of two neighbouring levels are nested, i.e., Vl,k =
⋃

r∈M0
l,k
Vl+1,r, k ∈ Il. Because

of the dyadic refinement, the refinement set is determined by M0
l,k = {2k + i ; i ∈ E := {0, 1}d} ⊂ Il+1 of 2d

cells on level l + 1 resulting from the subdivision of the cell Vl,k.
Multiscale decomposition. By means of the grids Gl we introduce the sequences of averages ûl :=

{ûl,k}k∈Il corresponding to a scalar, integrable function u ∈ L1(Ω,R) as the inner product ul,k := 〈u, φl,k〉L2(Ω)

of u with the L1–normalised box function φl,k(x) := |Vl,k|−1χ
Vl,k

(x), x ∈ Ω, where |Vl,k| :=
∫
Vl,k

1 dx denotes

the cell volume and χ
Vl,k

the characteristic function on Vl,k. Then the nestedness of the grids as well as the

linearity of the integration operator imply the two–scale relation

ûl,k =
∑

r∈M0
l,k

ml,0
r,k ûl+1,r, ml,0

r,k :=
|Vl+1,r|
|Vl,k|

, (1)

i.e., the coarse–grid average can be represented by a linear combination of the corresponding fine–grid averages.
Consequently, the averages can be successively computed on coarser levels, starting on the finest level. Since
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information is lost by the averaging process, it is not possible to reverse (1). For this purpose, we have to
store the update between two successive refinement levels by additional coefficients, so-called details. From
the nestedness of the grid hierarchy we infer that the linear spaces Sl := span{φl,k ; k ∈ Il} are nested, i.e.,
Sl ⊂ Sl+1. Hence there exist complement spaces Wl such that Sl+1 = Sl⊕Wl. These are spanned by some basis,
i.e., Wl := span{ψl,k,e ; k ∈ Il, e ∈ E∗ := E\{0}}. For the construction of an appropriate wavelet basis we refer
to [29]. In analogy to the cell averages, the details can be introduced as inner products dl,k,e := 〈u, ψl,k,e〉L2(Ω)

of the function u with the wavelet ψl,k,e. Since the box functions and the wavelets are linearly independent,
there exists a two–scale relation for the details, i.e.,

dl,k,e =
∑

r∈Me
l,k
⊂Il+1

ml,e
r,k ûl+1,r. (2)

On the other hand, we deduce from the change of basis the existence of an inverse two–scale relation

ûl+1,k =
∑

r∈G0
l,k
⊂Il

gl,0r,k ûl,r +
∑

e∈E∗

∑
r∈Ge

l,k
⊂Il

gl,er,k dl,r,e. (3)

Note that the mask coefficients ml,e
r,k and gl,er,k in (1), (2) and (3) do not depend on the data but on geometric

information only.

Figure 3. Pyramid scheme of multiscale
transformation.

Figure 4. Locally refined grid.

Grid Adaptation. By means of the multiscale analysis a locally refined grid can be constructed. For this
purpose, we first perform the multiscale decomposition successively applying (1) and (2), as illustrated in Figure
3. Since the details may become small, if the underlying function u is locally smooth, the basic idea is to perform
data compression on the vector of details using hard thresholding, i.e., we discard all detail coefficients dl,k,e
whose absolute values fall below a level-dependent threshold value εl = 2(l−L)dε and keep only the significant
details corresponding to the index set DL,ε := {(l, k) ; |dl,k,e| > εl, k ∈ Il, e ∈ E∗, l ∈ {0, . . . , L− 1}}. In
order to account for the dynamics of a flow field due to the time evolution and to appropriately resolve all
physical effects on the new time level, this set is to be inflated such that the prediction set D̃L,ε ⊃ DL,ε contains
all significant details of the old and the new time level. In a last step, we construct the locally refined grid, see
Figure 4, and corresponding cell averages. For this purpose, we proceed levelwise from coarse to fine, see Figure
3, and we check for all cells of a level whether there exists a significant detail. If there is one, then we refine
the respective cell, i.e., we replace the average of this cell by the averages of its children by locally applying the
inverse multiscale transformation (3). The final grid is then determined by the index set G̃L,ε ⊂

⋃L
l=0{l} × Il

such that
⋃

(l,k)∈G̃L,ε Vl,k = Ω. In order to proceed levelwise, we have to inflate the prediction set such that
it corresponds to a graded tree. This also guarantees that there is at most one hanging node at a cell edge,
see [29].

1.2. Algorithms

In order to benefit from the reduced complexity corresponding to the cardinality of the set of significant details
and the locally refined grid, respectively, all transformations have to be performed locally. In particular, we are



PARALLELISATION OF MULTISCALE-BASED GRID ADAPTATION 5

not allowed to operate on the full arrays corresponding to the uniformly refined grids, i.e., the summation in the
transformations (1), (2) and (3) have to be restricted to those indices which correspond to non–vanishing entries
of the mask coefficients. Introducing the mask matrices M l,e = (ml,e

r,k)r∈Il+1,k∈Il and Gl,e = (gl,ek,r)r∈Il,k∈Il+1 ,
these two-scale relations may be rewritten in terms of matrix-vector products as yT = xT A. Note that the
mask matrices are sparse due to an appropriate choice of the wavelet basis. In order to perform the summation
in the matrix-vector product only for the non-vanishing entries of the matrices, the notion of the support of
matrix columns and rows is helpful, i.e.,

Ak := supp(A, k) := {r ; ar,k 6= 0} = support of kth column of A,

A∗k := supp(AT , k) := {r ; ak,r 6= 0} = support of kth row of A.

The support Ak of a column collects all non–vanishing matrix elements that might yield a non–trivial contri-
bution to the kth component of the matrix–vector product, i.e., yk. Therefore Ak can be interpreted as the
domain of dependence for yk, i.e., the components xr which contribute to yk. The support A∗k of a row collects
all non–vanishing matrix entries of the kth row that might yield a non–trivial contribution to the vector y of
the matrix–vector product. Therefore A∗k can be interpreted as the range of influence, i.e., the components yr
which are influenced by the component xk.

With this notation in mind, we now can give efficient algorithms for locally performing the decoding and
encoding processes as they have been realised in the multiscale library:

Algorithm 1. (Encoding) Proceed levelwise from l = L− 1 downto 0:
I. Computation of cell averages on level l:

1. For each active cell on level l + 1 determine its parent cell on level l:
U0
l :=

⋃
r∈Il+1,ε

M∗,0l,r where Il+1,ε := {k ∈ Il+1 : (l + 1,k) ∈ G̃L,ε}
2. Compute cell averages for parents on level l:
ûl,k =

∑
r∈M0

l,k
ml,0

r,k ûl+1,r, k ∈ U0
l

II. Computation of details on level l:
1. For each active cell on level l + 1 determine all cells on level l influencing their corresponding

details:
Ue
l :=

⋃
r∈Il+1,ε

M∗,el,r , e ∈ E∗
2. For each detail on level l determine the cell averages on level l + 1 that are needed to compute the

detail:
Pl+1 :=

⋃
e∈E∗

⋃
k∈Ue

l
Me

l,k\Il+1,ε
3. Compute a prediction value for the cell averages on level l + 1 not available in adaptive grid:
ûl+1,k =

∑
r∈G0

l,k
gl,0r,k ûl,r, k ∈ Pl+1

4. Compute the details on level l:
dl,k,e :=

∑
r∈Me

l,k
ml,e

r,kûl+1,r, k ∈ Ue
l , e ∈ E∗

Algorithm 2. (Decoding) Proceed levelwise from l = 0 to L− 1:
I. Computation of cell averages on level l + 1:

1. Determine all cells on level l + 1 that are influenced by a detail on level l:
I+
l+1 :=

⋃
e∈E∗

⋃
l∈Jl,ε G

∗,e
l,l where Jl,ε := {k ∈ Il : (l,k) ∈ D̃L,ε}

2. Compute cell averages for cells on level l + 1:
ûl+1,k =

∑
r∈G0

l,k

gl,0r,k ûl,r +
∑

e∈E∗

∑
r∈Ge

l,k

gl,er,k dl,e,r, k ∈ I+
l+1

II. Remove refined cells on level l:
1. For each cell on level l + 1 determine its parent cell on level l:
I−l :=

⋃
k∈I+l+1

M∗,0l,k
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2. Remove the parent cells on level l from the adaptive grid:
delete ûl,k, k ∈ I−l , i.e., Il,ε := I+

l /I
−
l (Note: I+

0 = I0)

1.3. Data Structures

In order to realise the reduced algorithmical complexity, we need appropriate data structures. These have to
be designed such that the computational complexity (storage and CPU time) is proportional to the cardinality
of the adaptive grid and the significant details, respectively. For this purpose, the C++-template class library
igpm t lib [31,40] has been developed. This library provides data structures that are tailored to the algorithmic
requirements, see Algorithms 1 and 2, from which the fundamental design criteria are deduced, namely, (i)
dynamic memory operations and (ii) fast data access with respect to inserting, deleting and finding elements.

Due to refinement and coarsening operations in the algorithm, memory operations are frequently performed
and therefore should be very fast. This can be realised more efficiently by allocating a sufficiently large memory
block and by managing the algorithm’s memory requirements with a specific data structure. In addition, since
the overall memory demand can only be estimated, the data structure should provide dynamic extension of the
memory.

In view of an optimal memory management and a fast data access we use the well-known concept of hash
maps, cf. [16], that is composed of two parts, namely, a vector of pointers, a so–called hash table, and a memory
heap, see Figure 5. The hash table is connected to a hash function f : U → T , which maps a key, here (l,k), to
a row in the hash table of length #T , i.e., a number between 0 and #T − 1. Here the set U can be identified
with all possible cells in the nested grid hierarchy (universe of keys), i.e., U = {(l,k) : k ∈ Il, l = 0, . . . , L},
and T corresponds to the keys of the dynamically changing adaptive grid, i.e., (l,k) ∈ G̃L,ε.

The set of all possible keys is much larger than the length of the hash table, i.e., # T � #U . Hence, the hash
function cannot be injective. This leads to collisions in the hash table, i.e., different keys might be mapped to
the same position by the hash function. As collision resolution we choose chaining: the corresponding values of
these keys are linked to the list that starts at position f(key). Each element in the hash table is a pointer to a
linked list whose elements are stored in the heap. Here each element of the list can be a complex data structure
itself. It contains the key and usually additional data, the so–called value. In general, the value consists of the
data corresponding to a cell.

The performance of the hash map crucially depends on the number of collisions. In order to optimise the
number of collisions, the length of the hash table #U and the number of collisions # {key ∈ U : f({key}) = c}
have to be well-balanced. Several strategies have been developed for the design of a hash function, see [16, 39].
For our purpose, choosing the modulo function and appropriate table lengths turned out to be sufficient, see [29].

Since the local multiscale transformations are performed level by level, see Algorithms 1 and 2, the hash
map has to maintain the level information. For this purpose, the standard hash map is extended by a vector
of length L. The idea is to have a linked list of all cells on level l: the lth component of the vector contains a
pointer that points to the first element of level l put into the memory heap. Additionally, the value has to be
internally extended by a pointer that points to the next element of level l. This is sketched in Figure 6. Then
we can access all elements of level l by traversing the resulting singly linked list.

2. Parallelisation

In the following we will present how we have parallelised the multiscale library by which we perform local
grid adaptation in one block using multiscale techniques. For this purpose, we first outline the strategy of
load-balancing using space-filling curves, see Section 2.1. In a second step, see Section 2.2, we explain how to
perform the multiscale transformation in parallel. Here the crucial point is the handling of the cells on the
partition boundary and interprocessor communication. Note that the multiscale-based grid adaptation consists
of additional steps such as thresholding, prediction, grading and decoding. The parallelisation of these steps is
in complete analogy and therefore not detailed here.
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Figure 5. Hashing (Courtesy of [41]). Figure 6. Linked hash map.

2.1. Load-Balancing via Space-Filling Curves

When it comes to parallelisation, we have to take into account the mesh partitioning or the load-balancing
problem. As the starting point is a hierarchy of nested grids, we do not need to partition a single uniform
refined mesh, but a locally refined grid where not all cells on all levels of refinement are active. A natural
representation of a multilevel partition of a mesh is a global enumeration of the active cells. We need a method
to do this at runtime, as the adaptive mesh is also created at runtime using the multiscale representation
techniques. Such an enumeration is provided by space-filling curves (SFC) by mapping a higher-dimensional
domain to a one-dimensional curve, i.e., the unit square or the unit cube is mapped to the unit interval. Using
space-filling curves, each of the cells of the adaptive grid has a corresponding unique number on the curve. So,
instead of having to split the geometrical domain to different processors, we only have to split the interval of
numbers on the curve into parts that contain approximately the same numbers of cells. Each of these parts is
mapped to a different processor, so that we obtain a well-balanced amount of data, but we also have to pay the
cost of interprocessor communications, while neighbours from the geometrical domain may belong to different
processors.

Space-Filling Curve. Space-filling curves have been created for purely mathematical purposes first, cf. [37].
Nowadays, these curves have several applications, one of them being the load-balancing for numerical simulations
on parallel computer architectures. They can be used for data partitioning and, due to self-similarity features,
multilevel partitions can also be constructed.

In the mathematical definition, a space-filling curve is a surjective, continuous mapping of the unit interval
[0, 1] to a compact d-dimensional domain Ω with positive measure. In our context, we restrict our attention to
Ω being the unit square or the unit cube. In fact, as our grids have finite resolution, the iterates — so-called
discrete space-filling curves — are applied, instead of the continuous space-filling curve. Construction of these
curves is extremely inexpensive, as the SFC index for any cell in the grid can be computed using only local
information, making it suitable for parallel computations.

Hilbert Space-Filling Curve. One of the oldest space-filling curves, the Hilbert curve, can be defined
geometrically, cf. [41]. The mapping is defined by the recursive subdivision of the interval I and the square Q.
In 3D, the Hilbert curve is based on a subdivision into eight octants. The construction begins with a generator
template, which defines the order in which the quadrants are visited. Then the template (identical, mirrored
or rotated) is applied to each quadrant and, by connecting the loose ends of the curve, the next iterate of the
space-filling curve is obtained. Actually, the mapping between the cells of the adaptive grid and the space-filling
curve is realised using the finest iterate of the curve, which is constructed by recursively applying the template
to the subquadrants (2D) and suboctants (3D) until the number of refinement levels is reached. Figures 7 and
8 show the first iterates of a 2D and 3D Hilbert SFC, respectively. A detailed discussion on the construction
on the Hilbert space-filling curve is not the subject of this paper, for this we refer the reader to [37, 41]. Here,
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we only summarise the procedure of the Hilbert curve construction and focus our attention on how the curve
can efficiently contribute to the parallelisation of the multiscale-based grid adaptation scheme.

Figure 7. First 4 iterates of 2D
Hilbert SFC.

Figure 8. 1st and 2nd iterate
of 3D Hilbert SFC (Courtesy of
Gilbert [19]).

Encoding the Hilbert SFC order. By the inverse of a discrete space-filling curve, multi-dimensional data
can be mapped to a one-dimensional interval. The basic idea is to map each cell of our adaptive grid to points
on the space-filling curve, so that we obtain a global enumeration of the grid cells. In the data structures, we
use the key composed by the cell’s refinement level and the cell’s multidimensional index on that level (l,k)
to identify each cell. As each cell of the adaptive grid is uniquely identified by this key, the aim is to use it
in order to determine for each cell a corresponding number on the space-filling curve. Also, due to locality
properties of the curves, each cell visited is directly connected to two face-neighbouring cells which remain
face neighbours in the one-dimensional space spanned by the curve. This way, the cell’s children are sorted
according to the SFC numbers and they will be nearest-neighbours on a contiguous segment of the SFC. As we
look at multilevel adaptive rectangular grids, we restrict ourselves to recursively defined, self-similar SFC with
rectangular recursive decomposition of the domain.

Encoding and decoding the Hilbert SFC order requires only local information, i.e., a cell’s 1D index can be
constructed using only that cell’s integer coordinates in the d-dimensional space and the maximum number of
refinement levels L that exists in the mesh. In a 2D space, consider a 2L × 2L square (0 ≤ X ≤ 2L−1, 0 ≤ Y ≤
2L−1) in a Cartesian coordinate system. Note that the variable L used for determining the Hilbert SFC order
might be larger than the one introduced in Section 1.1 for the number of refinement levels, since N0,i > 1 in
general and for the space-filling curve construction we should have a coarsest mesh with N0,i = 1. Any point
can be expressed by its integer coordinates, (X,Y ), where X, Y are two sequences of L-bit binary numbers, as
follows:

X = x1x2 . . . xr . . . xL, Y = y1y2 . . . yr . . . yL.

Each sequence of two interleaved bits {xl, yl}l=1,...,L determines on each level l one of the four quadrants
the cell belongs to, recursively. Thus by simply inspecting the cell’s integer coordinates and using a finite state
machine, the cell’s location on a curve can easily be computed, cf. [41]. In the 3D case we proceed similarly.

An important aspect that should be mentioned is that the construction of the space-filling curve on an
adaptive mesh ensures that a parent cell (l,k) has exactly the same number on the SFC as one of its children
(l + 1, 2k + e), e ∈ {0, 1}d, cf. [41]. This leads to the minimisation of the interprocessor communication in the
case of a parallel MST using the Hilbert space-filling curve as partitioning scheme, as in most of the cases the
parent cell should be computed on the same processor as its children.
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Load-Balancing. After computing the SFC indices for all the cells in the mesh, these indices are taken as
sort keys and the mesh may be ordered along the curve using standard sorting routines, such as introsort in
our case. Having all the cells sorted along the curve, the partition can be easily determined, just by choosing
the number of cells that each processor should get. So the mesh cells are distributed to the different processors
according to their index on the curve. Since the position of each cell on the curve can be computed very
inexpensively at any time in the computation, there is no need to store all the keys. Instead, it is sufficient to
store the separators between the elements of the partition of the interval, i.e., the first index on a processor, in
order to determine for any cell’s multidimensional index the corresponding processor number.

There are two possible choices to achieve the data partitioning and the load-balancing problem in the be-
ginning of the computation, namely, (i) master-based partitioning and (ii) symmetric multiprocessing. In case
of master-based partitioning, as its name says, the entire adaptive mesh is initialised on a master processor,
according to the input file. Once the grid is initialised, the same master processor is also responsible for the
entire partitioning procedure already described: the mapping of the cells to the SFC, the sorting of the keys,
the load-balancing and separators’ determination. After having performed these steps once, the cells can be
distributed to the corresponding processors. This approach is straight forward if the starting point is a running
serial algorithm, as no data transfer and no barrier points are needed before the distribution of the data to
processors actually begins. On the other hand, this implies that there is only one processor active during all
the initialisation and sorting of the SFC procedures, while the others are idle, waiting to receive the data from
the master for initialising their own data structures.

The second possibility is symmetric multiprocessing: this implies no master processor, i.e., all processors
should work in parallel, executing the same code and initialising only their corresponding part of the grid.
For this, a set of initial separators on the space-filling curve has to be assumed, without knowing in advance
anything about the structure of the adaptive grid. So the worst case has to be taken into account, when the grid
would be uniformly refined, which is equivalent to the fact that, for each number on the discrete space-filling
curve, there exists an active cell in the grid. In the case of a fully refined grid, the number of cells in the grid
(2L × 2L and 2L × 2L × 2L, in 2D and 3D, respectively) corresponds to the last number on the SFC and the
guess of the initial separators is straight forward. The main drawback of this second approach is that this initial
guess might and is very probable to be far from the optimal choice, so the possibility of not having a remarkable
performance improvement in the initialisation part is very high, also due to the interprocessor communication
costs that arise. A rebalancing of the initial data is then required in order to obtain a well-balanced distribution
of data among processors and a new set of separators is computed for the new partition.

Applying either of these two strategies leads to a well-balanced data distribution as shown in Figure 9.
Parallel rebalancing. A reordering of the cells along the curve is also needed whenever the load-balancing

is significantly spoiled due to the adaptivity of the grid. When this occurs, a new set of separators — that
determine a new well balanced partition — has to be computed. There is no need to gather all cells on a master
processor for the reordering, since all the cells on a processor p have smaller numbers on the SFC than the cells
on processor p+ 1 for all p = 0, . . . , nproc − 2. The parallel rebalancing is described in Algorithm 3.

Algorithm 3. (Parallel Rebalancing)

1. Sort local cells along the SFC according to the old list of separators sepold[i] for i = 0, . . . , nproc − 1.
2. Compute the total workload from all processors:

total workload =
∑nproc−1
p=0 #cells(p)

3. Compute the positions of the new separators on the SFC:
a) new positions[0] = 0
b) For i = 1, . . . , nproc − 1 do

new positions[i] = new positions[i− 1] + i · (total workload/nproc)
4. For pos = 1, . . . , nproc − 1 do

If new positions[pos] belongs to the local processor, then determine the new separator
sepnew[new positions[pos]] at position new positions[pos].

5. Distribute new separators to all processors.
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Figure 9. Well-balanced distribution of a locally refined grid to 5 processors.

6. Redistribute data according to the new separators.

2.2. Parallel Grid Adaptation and Data Transfer

Once load-balancing is achieved, each processor should perform the grid adaptation, see Section 1.1, on the
local data. Special attention must be paid to the cells located at the processor’s boundary, i.e., the cells that
have at least one neighbour belonging to another processor. As these are the only ones that make the difference
between serial and parallel algorithms and as they are similarly handled in all the steps of the grid adaptation,
in the sequel we will go into details only in the parallelisation of the encoding step, by mainly discussing the
special treatment applied to the boundary cells. As described in Section 1.2, the encoding step consists of
computing the cell averages on level l starting from data on level l + 1 and the computation of the details on
level l. Since the approach for parallelising the coarsening is different to the one for the details computation,
they will be discussed separately.

Parallel coarsening. To compute the parent’s cell average ûl,k on the processor indicated by the parent’s
position on the SFC and the separators between the elements of the partition, all its children ûl+1,r, r ∈M0

l,k,
should already be available on the same processor. Due to the locality properties of the SFC and the compactness
of each element of the partition, i.e., the ratio of an element’s volume and its surface is large, ensured by its
construction, the children are nearest neighbours in the one-dimensional space, leading to the fact that only
some few cells at the partitions’ boundaries have to be transferred between processors before computing the
cell averages on level l, see Figure 10. When running through the active data on level l+ 1 for constructing the
set of parent cells that need to be computed, the processor the parent belongs to is also determined and so a
buffer is set up, containing the children cells that need to be transferred to a neighbour processor. The buffer
is transferred to the corresponding processor before the computation of the averages on level l actually begins.
Once the cell averages of all cells’ parents have been computed, the ghost cells transferred from other processors
can be deleted from the local hash map.

Algorithm 4. (Parallel Coarsening) Proceed levelwise from l = L− 1 downto 0: (cf. Algorithm 1, Step I)
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I. Computation of cell averages on level l:
1. For each active cell (l + 1, r), r ∈ Il+1,ε, determine

a) the parent cell on level l;
b) the processor p to which the parent belongs to.

If p is the current processor then U0
l = U0

l ∪M
∗,0
l,r ;

else transfer cell (l + 1, r) to processor p and there add it to the local hash map.
2. Compute cell averages for parents on level l:
ûl,k =

∑
r∈M0

l,k
ml,0

r,k ûl+1,r, k ∈ U0
l

3. Delete the cells received from other processors.

Parallel details computation. In the case of the details computation, more data from the neighbour
processors have to be transferred, see Figure 11. For the parallel coarsening, a single step data transfer is made,
since each processor can determine the cells on level l+ 1 that are necessary for the neighbours to compute the
averages on level l by themselves. In case of the details computation a two step transfer has to be performed. In
a first step, each processor has to send a request to the others for the cells that influence the details computation
of the local cells, so we obtain a first pair of MPI Isend and MPI Recv calls. A new pair of such calls is needed
to fulfil the requests, when actually all the data located at the geometrical boundary of the partitions has to be
transferred to the neighbouring processors.

Algorithm 5. (Parallel Details Computation) Proceed levelwise from l = L − 1 downto 0: (cf. Algorithm 1,
Step II)

I. Computation of details on level l:
0. On each processor initialise the index sets Ue

l,p = ∅, p = 0, . . . , nproc − 1
1. For each active cells on level (l + 1, r), r ∈ Il+1,ε do

a) determine all cells on level l influencing their corresponding details:
(l,k) ∈M∗,el,r , e ∈ E∗;

b) for each (l,k) ∈ M∗,el,r determine the processor p where the details of cell (l,k) should be
computed:
if p = ploc (current processor) then Ue

l,p := Ue
l,p ∪ {k};

else transfer index (l,k) to processor p and there add it to the index set Ue
l,p := Ue

l,p ∪ {k}
and transfer cell (l + 1, r) to processor p and there add it to the local hash map.

2. For each detail on level l determine the cell averages on level l + 1 that are needed to compute the
detail:
Pl+1 :=

⋃
e∈E∗

⋃
k∈Ue

l
Me

l,k\Il+1,ε
3. For all indices (l + 1, r) ∈ Pl+1 that belong to other processors p 6= ploc (current processor),
p = 0, . . . , nproc − 1 do

a) send requests to processor p to transfer the unavailable data;
b) receive needed data from processor p.

4. Accept requests from other processors and send back the data to the other processors requested from
the current processor.

5. Compute a prediction value for the cell averages on level l + 1 not available in the adaptive grid:
ûl+1,k =

∑
r∈G0

l,k
gl,0r,k ûl,r, k ∈ Pl+1

6. Compute the details on level l:
dl,k,e :=

∑
r∈Me

l,k
ml,e

r,kûl+1,r, k ∈ Ue
l , e ∈ E∗

7. Delete data received from other processors from the local hash map.
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Figure 10. Cells to be transferred for parallel coarsening.

3. Embedding of Parallel Multiscale Library into the Quadflow Solver

The finite volume solver Quadflow [8, 9] has been designed to handle (i) unstructured grids composed of
polygonal(2D)/polyhedral(3D) elements [7] and (ii) block-structured grids where in each block the grid is de-
termined by local evaluation of B-Spline mappings [28]. Therefore the solver can handle grids provided by an
external grid generator. However, grid adaptation is only available for block-structured grids, where in each
block the grid is locally refined using the concept of multiscale-based grid adaptation [29].

Note that the flow solver and the multiscale-based grid adaptation have totally different algorithmic require-
ments: on one hand, there is a finite volume scheme working on arbitrary, unstructured discretisations. On the
other hand, there is the multiscale algorithm assuming the existence of hierarchies of structured meshes. The
flow solver module is face-centred, since the central item is the computation of the fluxes at the cell faces, while
the adaptation module is cell-centred, analysing and manipulating cell averages. Moreover, the data structures
used in the two parts are also different: while for the adaptation part a special implementation of hash maps is
used, see Section 1.3, for the flow solver module the FORTRAN style data structures remained optimal. The
link between these two modules is done by a data conversion algorithm, which organises all the data commu-
nication — the transfer of the conservative variables, volumes, cell centres, the registration of the knots, the
construction of the faces and determination of their neighbouring cells and nodes — between the two modules
in a connectivity list.

In order to embed the parallelised version of the multiscale library into Quadflow, the transfer had to be
adjusted: besides the special treatment required by some cells located at the physical boundary or at the far
field boundary of the domain even in the serial case, cf. [28], in parallel special attention is needed also by the
cells at the partition’s boundary. Since the adaptive mesh is determined at runtime, as well as the partition,
and since the adaptive mesh and implicitly the shape of the elements of the partition could change at any time
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Figure 11. Cells to be transferred for parallel details computations.

step, there is no way of knowing in advance which cells are located on a processor’s boundary. This implies the
fact that the partition boundary on each processor should be reconstructed each time the connectivity list is
built, in order to transfer the cells on the boundary to the neighbour processors, see Figure 12. This way, the
partitions’ boundary faces and the flux at these faces can be properly computed on each processor.

4. Numerical Results

First of all, we investigate in Section 4.1 the performance of the parallelised multiscale library. For this
purpose, we focus on the multiscale transformation (MST), i.e., the encoding of the data. Note that a complete
cycle of grid adaptation also includes thresholding, prediction, grading and decoding. In Section 4.2 we then
present numerical simulations of the behaviour of a Lamb-Oseen vortex using the parallelised Quadflow solver.

4.1. Performance Study for Multiscale Transformation

The performance of the multiscale based grid adaptation has been investigated by means of a data set
corresponding to a locally refined grid that consists of 437236 cells. The underlying grid hierarchy is determined
by L = 10 refinement levels and a coarse grid discretisation of 8× 8 cells. For this configuration, we performed
the adaptation process using an increasing number of processors.

The experiments were performed on a Sun Fire X4600 system, with 2 AMD Opteron 885 nodes having 8
sockets per node (a total of 16 processors), 32 GB memory and a high speed low latency network (InfiniBand)
for parallel MPI and hybrid parallelised programs.

Table 1 shows the results of these experiments with respect to the different number of processors mentioned
in the first column. The second column contains the values for the initial workload, i.e. the number of cells on
each processor. Columns 3 and 4 show the times measured when running one MST step and the time spent
in the MPI Isend and MPI Recv routines, respectively. The number of cells sent by one processor during this
MST step is shown in the fifth column, while the sixth column contains the number of cells received by the
same processor.
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Figure 12. Parallel Transfer and Conversion.

No. of Initial MST time Transfer time No. of cells No. of cells
procs. workload [CPU s] [CPU s] sent received

1 437236 10.21580 0 0 0
2 218618 5.55433 0.066706 2020 2020
3 145746 3.45852 0.170083 5985 5975
4 109309 2.81636 0.125800 2048 2048
5 87448 2.13640 0.127011 10826 10706
6 72876 1.78998 0.126228 7240 7190
7 62464 1.55737 0.133888 9097 9078
8 54658 1.47147 0.103048 6899 6954
9 48588 1.33229 0.105228 7112 7068

10 43729 1.23401 0.135434 8856 8791

Tableau 1. Performance study for parallel multiscale transformation.

After the partitioning is done, each processor is getting a number of cells equal to the total number of cells
in the adaptive grid over the number of processors. Note that the processor with the highest rank also takes
the few cells that remain if the total number of entries cannot be divided by the number of processors. Better
performance and good scaling may be observed in column 3 as the number of processors increases (see also
Figure 13). When it comes to the transfer of cells between neighbour processors, the number of entries sent by
one processor is different than the one received on most processor configurations chosen due to the adaptive
grid: one processor might have more finer cells sitting on the partition boundary than its neighbours have on the
other side of the boundary, which gives the difference in the number of ghost cells needed to be transferred from
one processor to the other. The number of processors chosen also influences the shape of the elements of the
partition created at runtime. Thus, having a symmetric adaptive grid on a single processor and choosing to run
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a parallel computation on 2 or 4 processors might lead to a symmetric partitioning of the grid on all refinement
levels. This implies the minimisation of the interprocessor communication. The consequences of this symmetry
can be observed in Table 1, where the minimum number of cells to be transferred is achieved on 2 processors.
At small difference, the computation on 4 processors also gives few entries to be transferred in comparison with
the rest of the configurations tested. The fact that on 2 and 4 processors a symmetric partitioning is obtained is
also emphasised when inspecting the number of cells sent and received across the partition boundary: here the
number of cells sent to the neighbours is equal to the number of cells received. The opposite is observed on a
configuration of 5 processors, where the number of cells on the partition’s boundary reaches the maximum value
and implicitly increases the interprocessor communication. A partitioning to 5 processors is shown in Figure 9,
where the asymmetry of the partitions is obvious.
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Speedup. According to Amdahl’s law [1] for a given problem the maximal speedup of a computation on
p processors is bounded by smax ≤ p

1+f(p−1) , where f is the fraction of the runtime of the code that is not
parallelised.

We compared the scaling of our experiment with Amdahl’s law and therefore assumed that the maximum
speedup was measured. Using a nonlinear least squares fit, we were able to estimate the fraction of the code
that is not parallelised and obtained f = 0.0203± 0.0017, cf. Figure 17.
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Figure 17. Speedup rates (+) and comparison
with Amdahl’s law (solid line).

Having a fraction of 2% of the program not parallelised, according to Amdahl’s law, the maximum speedup
that could be reached for this fixed configuration would be 50. However, Amdahl’s law doesn’t take into account
that the fraction of the serial parts can be reduced by scaling the problem to the number of processors. So,
for a fixed configuration, infinite speedup cannot be achieved, but when the problem size grows, also speedup
could be expected on an increasing number of processors.

4.2. Application

The system of vortices in the wake of airplanes continues to exist for a long period of time. It is possible to
detect wake vortices as far as 100 wing spans behind the airplane, which are a hazard to following airplanes.
In the frame of the collaborative research centre SFB 401, the research aimed to induce instabilities into the
system of vortices to accelerate their collapse. The effects of different measures taken in order to to destabilise
the vortices have been examined in a water tunnel. A model of a wing was mounted in a water tunnel and the
velocity components in the area behind the wing were measured using particle image velocimetry. It was possible
to conduct measurements over a length of 4 wing spans. The experimental analysis of a system of vortices far
behind the wing poses great difficulties due to the size of the measuring system. Numerical simulations are
not subject to such severe constraints and therefore Quadflow is used to examine the behaviour of vortices far
behind the wing. To minimise the computational effort, the grid adaptation adjusts the refinement of the grid
with the goal to resolve all important flow phenomena, while using as few cells as possible.

In the present study instationary, quasi-incompressible, inviscid fluid flow described by the Euler equations
is considered. A first assessment is presented to validate the ability of Quadflow to simulate the behaviour of
the wake of an airplane. A velocity field based on the experimental measurements is prescribed as boundary
condition in the inflow plane. The circumferential part of the velocity distribution vΘ(r) is described by a
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Lamb-Oseen vortex according to

vΘ(r) =
Γ

2πr

(
1− e−

“
r
d0

”2)
. (4)

The axial velocity component in the inflow direction is set to the constant inflow velocity of the water tunnel.
The two parameters of the Lamb-Oseen vortex, circulation Γ and core radius d0 are chosen in such a way that
the model fits the measured velocity field of the wing tip vortex as close as possible. The radius r is the distance
from the centre of a boundary face in the inflow plane to the vortex core.

Instead of water, which is used as fluid in the experiment, the computation relies on air as fluid. The inflow
velocity in x-direction u∞ is computed to fulfil the condition that the Reynolds number in the computational
test case is the same as in the experiment. The experimental conditions are a flow velocity uw = 1.1 m

s and a
Reynolds number Rew = 1.9 · 105. From the condition Reair = Rew the inflow velocity in x-direction can be
determined as u∞ = 16.21 m

s . For purpose of consistency the circumferential velocity vθ has also been multiplied
by the factor u∞

uw
. The velocity of the initial solution is set to parallel, uniform flow u0 = u∞, v0 = w0 = 0.0.

The computation has been performed on 16 Intel Xeon E5450 processors running at 3 GHz clock speed.
The computational domain matches the experimental setup which extents l = 6 m in x-direction, b = 1.5 m
in y-direction and h = 1.1 m in z-direction. The boundaries parallel to the x-direction have been modelled as
symmetry walls. This domain is discretised by a coarse grid with 40 cells in flow-direction, 14 cells in y-direction
and 10 cells in z-direction, respectively. The number of refinement levels has been set to L = 6. With this
setting the vortex can be resolved on the finest level by about 80 cells in the y-z-plane.

Figure 18. Initial computational grid.

Since Quadflow solves the compressible Euler equations a preconditioning for low Mach numbers has to
be applied. The preconditioning is used in a dual-time framework wherein only the dual time-derivatives are
preconditioned and used for the purposes of numerical discretisation and iterative solution, cf. [32]. The spatial
discretisation of the convective fluxes is based on the AUSMDV(P) flux vector splitting method [18]. For time
integration the implicit midpoint rule is applied. In each timestep the unsteady residual of the Newton iterations
is reduced by four orders of magnitude. The physical timestep is set to ∆t = 5 · 10−5 s which corresponds to
a maximum CFL-number of about CFLmax = 28.0 in the domain. The grid is adapted after each timestep.
After every 100th timestep the load-balancing is repeated.

To guarantee a sufficiently fine grid to resolve the vortex properly at the start of the computation, the grid
on the inflow plane is refined to the maximum level, see Figure 18. Due to this procedure the first grid contains



18 BRIX, MOGOSAN, MÜLLER, AND SCHIEFFER

384000 cells. When the information at the inlet has travelled through the first cell layer, the forced adaptation
of the cells at the inlet is not necessary anymore. From there on the grid is only adapted due to the adaptation
criterion based on the multiscale analysis.

Figure 19. Slices of the computational grid after
5466 timesteps at six different positions and the
distribution of λ2 = −3.

After 5466 timesteps, which corresponds to a computed real time of t = 0.27 s, the grid contains 787000
cells. Figure 19 shows six cross sections of the mesh, which are equally spaced in x-direction with distances
∆x = 1.0 m. In addition, the isosurface of the λ2-criterion with the value λ2 = −3 is also presented. The λ2

criterion has been proposed by Jeong et al. [25] to detect vortices. A negative value of λ2 identifies a vortex,
whereas the smallest of these negative values marks the core of the vortex. As can be seen from Figure 19,
the vortex is transported through the computational domain. The locally adapted grid exhibits high levels of
refinement only in the vicinity of the vortex. A more detailed view of the grid for the cross sections at x = 0.0 m
and x = 2.0 m is presented in Figure 20.

It can be seen that only near the vortex core the grid is refined up to the maximum level. We conclude
that Quadflow is well suited to examine the instationary behaviour of a vortex. In particular the complexity
reduction due to the grid adaptation makes it possible to perform the computations in reasonable time.

5. Conclusion

We have presented the current state of development of the parallelised multiscale-based grid adaptation
library and its embedment into the Quadflow solver. First, the basic ingredients of the multiscale library have
been described and then the load-balancing issue for single-block Cartesian grids has been discussed by means
of the discrete Hilbert space-filling curve. The parallel algorithms for the grid adaptation and the interprocessor
communication implied have also been discussed. We concluded with presenting some performance studies that
showed a good scaling of the parallel multiscale-based grid adaptation and first 3D parallel results.

The present state of implementation still lacks some parallel features that are subject to future development.
In a first step, the extension of the partitioning strategy – until now applied only to Cartesian grids – to curvi-
linear grids is straight forward. Then, the parallelisation of adaptive multiblock grids has to be achieved. This
could be realised by different space-filling curves running through each block and an appropriate partitioning
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Figure 20. Slices of the computational grid at two different positions in x-direction, the grid
colour is consistent with the value of λ2. Slice of the computational grid at x = 0.0 m (left)
and x = 2.0 m (right).

strategy to determine whether a specific block should be distributed to different processors or not. Special care
has to be taken of cells sitting at the blocks’ boundaries on neighbouring processors, which need to be exchanged
between processors in order to properly compute the flux at the faces on the blocks’ boundaries.

We have to mention here that these were the first parallel results and further optimisation of the code is still
to be considered in the future. In this context, issues such as cache-awareness have to be taken into account.
This could require further modifications of the present data structures. For instance, Zenger et al. [22] use
space-filling curves to build up stacks that are processed linearly, which turned out to considerably reduce cache
misses.
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