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Summary

In this paper we present the main conceptual ingredients and the current state of
development of the new solver QUADFLOW for large scale simulations of com-
pressible fluid flow and fluid—structure interaction. In order to keep the size of
the discrete problems at every stage as small as possible for any given target ac-
curacy, we employ a multiresolution adaptation strategy that will be described in
the first part of the paper. In the second part we outline a new mesh generation
concept that is to support the adaptive concepts as well as possible. A key idea is
to understand meshes as parametric mappings determined by possibly few control
points as opposed to store each mesh cell separately. Finally, we present a finite vol-
ume discretization along with suitable data structures which again is to support the
adaptation concepts. We conclude with numerical examples of realistic applications
demonstrating different features of the solver.

1 Introduction

The numerical simulation of non—stationary fluid—structure interactions poses enor-
mous challenges to computing resources, data management strategies but also to
the underlying mathematical concepts that contribute to keeping the computational
complexity tractable. However, any increase in computing power is bound to be
surpassed by the demands put forth by scientist and engineers through more and
more realistic and consequently more complex models. Advancing the current fron-
tiers in numerical simulation calls for combined efforts beyond traditional borders
of scientific disciplines. Studying the interaction of aerodynamics and structural
mechanics in complex geometries is a typical example. The fact that several severe
obstructions such as time—dependency of the involved processes, varying complex
geometries and the coupling of physical regimes with different characteristic fea-
tures combined with the huge amount of data needed to model the process in an



adequate way, indicates the principal limitations of conventional approaches. In or-
der to resolve a typically singular behavior of the solution in complex geometries
meshes with several millions of cells are required. Improved hardware or purely
data oriented strategies such as parallel computing are not sufficient to overcome
the arising difficulties. As important and necessary these aspects may be they have
to be complemented in the long run by mathematical concepts that aim at minimiz-
ing in the first place the complexity and size of arising discrete problems.

This paper summarizes some recent attempts in this direction. It describes the
present stage of an integrated development of dynamic adaptation strategies, mesh
generation and discretization which is presented here for a still intermediate state
of two—dimensional gas flow. The central objective is to realize adaptively gener-
ated discretizations that are able to resolve the physically relevant phenomena at the
expense of possibly few degrees of freedom and correspondingly reduced storage
demands. This requires a careful coordination of the core ingredients namely the
discretization of the underlying system of partial differential equations, the genera-
tion and management of suitable meshes and the adaptation mechanisms, all three
parts being based on suitable data structures. The following remarks are to indicate
the main orientation. Accepting the Navier Stokes equations as the model of choice
we give preference to quadrilateral and hexahedral meshes that still facilitate best
boundary fitted anisotropic meshes. To retain sufficient geometric flexibility this is
combined with block structuring. Complex geometry as well as the anticipated fine
scale behavior of the solutions require extremely high resolution at least in parts of
the computational domain.

To avoid storage demands which, in the light of the envisaged applications are pro-
hibitive, we wish to employ local mesh refinement. A pivotal role is therefore played
by reliable and efficient refinement strategies that are presented in Section 3.1. The
main distinction from previous work in this regard lies in the fact that we employ
here recent multiresolution techniques. The starting point is a proposal by Harten
to transform the arrays of cell averages associated with any given finite volume dis-
cretization into a different format that reveals insight into the local behavior of the
solution. The cell averages on a given highest level of resolution are represented
as cell averages on some coarse level where the fine scale information is encoded
in arrays of detail coefficients of ascending resolution. This requires a hierarchy of
meshes. In contrast to Harten’s idea the multiscale representation is not only used
to avoid expensive flux evaluations in regions where the solution is smooth but to
create locally refined meshes. As long as one works on a uniform mesh (even when
in a major part inexpensive finite differences are employed) the computational com-
plexity stays proportional to the number of cells which in 3d calculations with the
above objectives is prohibitive. Thus a principal objective is to extract the inherent
complexity of the problem by placing as few degrees of freedom so as to still capture
the features of the searched for solution within a given tolerance. A central mathe-
matical problem is then to show that the essential information to be propagated in
time is still kept with sufficient accuracy when working on locally coarser meshes.



The adaptation strategy gives rise to locally refined meshes of quadtree respectively
octree type. The second important ingredient is the generation of such meshes along
with the information needed by the flow solver at any stage of a dynamical calcu-
lation. A key idea is to represent such meshes with as few parameters as possi-
ble while further successive refinements can be efficiently computed based on the
knowledge of these parameters. This seems to be of vital importance with regard
to (geometrically) non-stationary processes. Roughly speaking the mesh in each
block results from evaluating a parametric mapping from the computational domain
into the physical domain. Such mappings can be based on B-spline representations
in combination with well established concepts from CAGD (computer aided geo-
metric design). The quantities to be updated in time are the relatively few control
parameters in those parametric representations, while mesh points on any level of
resolution can be efficiently computed due to the locality of the B-spline represen-
tation. The fact that one needs indeed only relatively few control points in order to
generate meshes of good quality is partly due to the variation diminishing property
of B-splines. For this statement we refer to the discussion later in Section 4 of this
paper.

Finally, Section 5 is devoted to the outline of a discretization scheme that meets the
requirements of the adaptation concept and fits well with the mesh generation. To
avoid complicated mesh management within each block and to keep the discretiza-
tions of the individual blocks as independent as possible and, in particular, to avoid
global geometrical constraints, we insist on meshes with hanging nodes. Since the
discretization is based on the finite volume concept this appeared to us as the best
compromise. This requires the development of a finite volume scheme for fairly
general cell partitions that can cope, in particular, with hanging nodes and possible
unstructured parts in complicated regions of the flow domain. Section 5 offers a self
contained account of the discretization scheme including data structures, realiza-
tion of spatial second order, the treatment of convective and viscous fluxes, choice
of limiters, the treatment of boundary conditions and the validation of the basic
scheme by a proper selection of test cases.

We conclude with several applications to well-known numerical and fluid dynami-
cal test cases that highlight the features of the whole flow solver.



2 Governing Equations

In the present study, laminar viscous fluid flow is described by the time dependent
Navier—Stokes equations for a compressible gas. Neglecting body forces and vol-
ume supply of energy, the conservation laws for any control volume € with boun-
dary 0€2 and outward unit normal vector n on the surface element dS C 9% can be
written in integral form as:

a_u “(u d(u))ndS =
Qath—l-j(iQ(F()-l—F()) dS=0. (1)

To complete the posed problem initial values u (x, t9) = ug (x), x € 2 and boun-
dary conditions u (x, t)|5, = B (x,t), x € 0Q are to be prescribed.

u = (p, ov, per)” denotes the vector of the unknown conserved quantities. F¢
and F? represent the physically conservative flux and the diffusive flux function,
respectively. The physically conservative flux F¢ is

ov
Fe=| pvov+pZl 2
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where p denotes the density, p the static pressure, v the velocity vector, e;,; the total
energy and h;.; the total enthalpy. The symbol o means the dyadic product.

The diffusive flux F¢ contains the viscous stresses and heat conduction

0
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where the viscous stress tensor 7 for an isentropic Newtonian fluid is defined as
T =p (gmdv + (gmdv)T) — ;,u (divv)T. 4)
Heat conduction is modeled by Fourier’s law
q=—kgradT 5)
where the thermal conductivity is assumed as
k= oo (6)

with Prandtl number Pr = 0.72. The variation of the molecular viscosity y as a
function of temperature is determined by the Sutherland formula
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where S = 110° K denotes the Sutherland constant. The static pressure is related to
the specific internal energy according to the equation of state for a perfect gas

p=0(r—1) (e —1/2¥/), ®)

where ~ is the ratio of specific heats, which is taken as 1.4 for air.

3 Adaptation Based on Multiscale Analysis

3.1 Problem Formulation and Preliminaries

The numerical schemes under consideration are to be applied to gas flow. Although
the full Navier Stokes equations serve as the main model the behavior of the numer-
ical scheme is largely determined by corresponding hyperbolic conservation laws
describing the balance of quantities like mass, momentum and energy ignoring heat
conduction and viscous effects. We will therefore confine the discussion first to
this setting in order to bring out the basics of the concept. The same techniques
carry over to viscous fluxes and source terms, see [15]. Omitting the upper in-
dex c in the conservative flux and denoting by © C R? the computational domain
and by D C R™ the space of admissible states hosting the conserved quantities
u : [0,¢] x Q — D, the basic balance laws have the form

t
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where V' is an arbitrary but temporally fixed control volume (with sufficiently smooth

boundary such that the Green—Gauss theorem works). Under the assumption that u

Is smooth one derives from (9) the usual first order system of conservation laws of
the form

ou(t, ) d OF;(u(t,x))
TR > e, =0 (10)
which describes the temporal evolution of w. Throughout this work the fluxes are
assumed to be smooth in the state space, i.e., F'; € C?(D,R™) and the Jacobian
of the normal flux F'(u) n has m real eigenvalues \;(u,n) as well as a complete
system of m linearly independent right eigenvectors r;(u, ) and left eigenvectors
l1;(u,m), respectively, i = 1,...,m, forallu € D and n € R? with ||n|, = 1.
The system (10) is then called hyperbolic.

As mentioned in Section 2, the solution of the conservation laws is subject to ini-
tial conditions and also to appropriate boundary conditions (see Section 5.1.6 for
details). Since the choice of the latter conditions does not affect the discussion of
adaptive concepts we will suppress this issue (which by itself is certainly a delicate
one) and confine the discussion for the moment to pure initial value problems.



The system (10) is to be viewed as a model which has to be properly interpreted
in order to cover all physically relevant features such as shocks and contact discon-
tinuities. The common basis is provided by the notion of weak solutions of (10),
which solve the variational problem obtained when multiplying (10) by smooth test
functions and applying integration by parts. The quantities « are then no longer
subjected to derivatives so that certain discontinuities are admissible. By properly
varying the test functions one ultimately also recovers (9) which is therefore a nat-
ural starting point for discretizations.

Before explaining this one should note though that when passing to weak solutions
uniqueness is generally lost even when proper side constraints are imposed. One
has to resort to additional selection criteria usually referred to as entropy conditions
(motivated by the thermodynamical entropy) that restore uniqueness see [21, 20].
This is well understood for scalar conservation laws and summed up by Kruzhkov’s
entropy concept. The situation for systems of conservation laws is by far less clear
and several entropy concepts compete which are generally not equivalent, see for
instance [10].

The presence of discontinuities does not only cause problems concerning exis-
tence and uniqueness but also crucially effects the design of numerical schemes.
For instance, standard finite difference discretizations of (10) will produce oscil-
lations near discontinuities. These schemes have to be stabilized by artificial vis-
cosity which causes a significant loss in accuracy. In particular, discontinuities are
smeared. Moreover, stability in the sense that the entropy solution is recovered by
a numerical scheme severely limits its order of exactness. Again the design of such
schemes is not the issue of the following discussion. We will rather assume at this
point that we have a stable scheme at hand to explain then how to develop adaptive
refinements based on such a given discretization. Concrete realizations that fit our
particular application context best will be developed in Section 5. Therefore we
content ourselves with describing the following necessary ingredients.

Recalling (9), a natural choice for the discretization of conservation laws are finite
volume schemes. These schemes arise when observing that (9) describes the evolu-
tion of cell averages. In fact, integration over a time interval yields

u(t+71)=u(t) + m B(t) (11)

where the cell average () and the flux balance B(t) defined by

t+T1
u(t) := |V|/ u(t,z)dV, Bt / aVF( u)ndSdt (12)

refer to an arbitrary but fixed cell V' C Q with volume |V| := [,, 1dV. Obvi-
ously, the cell average changes in time due to the flux balance, i.e., the information
that is crossing the cell interface 0 V' in the time interval [¢t,¢ + 7], see Figure 1.
Approximating the flux balance B(t) then leads to a finite volume scheme.
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Figurel Transport of information across cell interfaces

3.2 The Objectives

In the past, finite volume schemes have been applied not only to academic problems
but also to real world problems arising, for instance, in engineering. In this context
robustness has been a major issue. However, in order to guarantee the reliability of
the computational results the discretization error has to be controlled as well. So far,
error estimates are available only for restricted classes of numerical schemes applied
to a single conservation law, see [5, 6]. The discretization error can then be shown
to be bounded by a constant times A%, a < 0.5, where h denotes the largest cell
diameter of the underlying mesh. Due to the lack of global smoothness, we cannot
expect a convergence rate better than a. = 1 even for schemes that are higher—order
accurate in regions where the solution is locally smooth. This is a severe drawback
whenever a prescribed error tolerance is to be met. In fact, accuracy considerations
may become increasingly important for nonstationary calculations or when the in-
teraction of fluid flow and structure is to be simulated. In such cases one encounters
relevant physical effects over a large range of length scales and different propagation
speeds in the coupled regimes. Moreover, the presence of discontinuities, boundary
layers, and other singular phenomena requires small mesh sizes at least in parts of
the computational domain. In order to resolve these effects adequately by discretiza-
tions based on quasi-uniform meshes would require a prohibitively large number of
cells. In particular, in 3D calculations the resulting necessary memory resources and
computation time would by far exceed the capacity of modern computing facilities,
e.g. parallel architectures or clusters. In order to make these numerical simulations
feasible new algorithmic concepts have to be developed that reduce the computa-
tional complexity, i.e., computation time and memory requirements, to a degree that
reflects the problem inherent degrees of freedom relative to a desired accuracy. This
calls for concepts that automatically adapt the local resolution of a discretization to
the local behavior of the solution. This means only in regions where small scale
physical effects are present the discretization has to exhibit high resolution while
elsewhere the mesh is to be kept as coarse as possible for still meeting given ac-
curacy requirements. This is exactly the objective of adaptive schemes that aim at
distributing the degrees of freedom as economically as possible based on current
information obtained during the calculation. There are two major issues to be ad-



dressed in this context. First, the decisions made during the calculations have to be
reliable, i.e., one has to be sure that no essential features are missed when keeping
the mesh size moderate in certain areas, in particular, with regard to non-stationary
processes. This task concerns mathematical analysis. Second, handling dynamic
mesh adaptation requires the development of much more sophisticated data struc-
tures.

In the literature, several adaptive strategies have been discussed or are under current
investigation. A standard strategy is to base local mesh refinements on local indi-
cators which are typically related to strong gradients in a current approximation.
However, no reliable error control is offered by this concept. For this purpose, a
posteriori estimates have been derived which aim at equilibrating local errors. So
far, this type of error estimators are only available for scalar problems, see [19].
Here we will pursue a different strategy which originated from earlier proposals by
Harten [18]. The key idea is to transform the arrays of cell averages produced by a
given finite volume scheme into a different multiscale format. In this format only
very few coefficients represent cell averages for a possibly coarse partition while
the other coefficients encode the difference information corresponding to the inter-
mediate length scales that is lost through the coarsening. Quite in the spirit of a
multiscale analysis the size of these detail coefficients will be used as a basis for
local mesh refinements. This gives rise to an adaptive mesh with respect to which
the evolution step is performed. Of course, the crux in this context is to arrange this
procedure in a way that at no stage of the computation there is ever made use of
fully refined uniform mesh.

In the remainder of this section, we explain the main ingredients of such a multiscale
analysis of an array of cell averages from which an adaptive mesh is derived. Then
we outline the construction of the adaptive finite volume scheme and comment on
the discretization error. Finally, some numerical results for model problems are
presented, that give a first idea of the quantitative performance of the adaptation
concept.

3.3 Multiscale Setting

Finite volume schemes are naturally related to cell averages of the solution. In order
to detect singularities of the solution, we transform the array of cell averages into a
new data format which allows for data compression.

3.3.1 Grid Hierarchy

The starting point for the multiscale setting is a hierarchy of nested grids G; :=
{Vjr}rer;» =0,...,L,suchthat each grid G; is a partition of the computational
domain, i.e., 0 = {J,c,, Vix- Here the coarsest discretization is indicated by 0 and
the finest discretization by L. Moreover, the grids are nested in the sense that the
cells on the coarse grid can be represented as the union of cells on the next finer



grid, i.e.,
T‘EM?J‘,

The index set Mg{k C I;41 corresponds to the cells on level j + 1 resulting from
the refinement of the cell V. A simple example is shown in Figure 2. We em-
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Figure2 Sequence of nested grids

phasize that the framework presented here can also be applied to unstructured grids
and irregular mesh refinements. To keep the presentation as simple as possible we
confine, however, the discussion to refinements of cells into a constant number of
children, i.e.,

# Mg’k = M, = const.

In the above example, Mg?’k can be identified with the circled nodes in the middle
part of Figure 2. With each cell in G; we associate the box function

" x,, (@), (149

Pkl =

where the characteristic function y_. corresponding to any set V' takes the value one
for ¢ € V and zero elsewhere. Then the cell average of a scalar, integrable function
u can be expressed as

bjp = (U, §j k)0, (15)

where the scalar product is defined by (u,v)q := [, uv dx. Note, that our frame-
work is not restricted to scalar functions but can directly be applied to the compo-
nents of vector-valued functions. Since the grids are nested, we infer the two—scale
relation

o _ Viti,rl
Pk = E mrk Pj+1,r mi,k = {/ — (16)
rem?, | J’kl
7,

I.e., the coarse grid box function can be represented as a linear combination of the
corresponding fine grid box functions. Consequently, the averages of two discretiza-
tion levels are related to each other by

~ _ j’O ~
Ujk = § o om g, (17)
reMg,



Now the goal is to transform these data into a different format of cell averages
corresponding to a sequence of resolution levels. This will be motivated by a simple
univariate example.

3.3.2 A Univariate Example

We now consider the unit interval Q& = [0, 1] where the grid hierarchy is deter-
mined by a uniform dyadic partition of [0, 1], i.e., V;x = 279[k,k+ 1], k € I; :=
{0, ...,27—1}. Hence, the refinement sets are just givenby MY , = {2k, 2k+1} C
Ii11, k € I;. Then the box function has the form

Bik =2 xp (& - k),

and the two-scale relation (16) reads here

. 1 . .
Pik =3 (Pj+1,26 + Pjt1,2k+1)- (18)

We explain now how to decompose the cell averages into averages of a coarser
partition and details. To this end, we introduce the box wavelet (which in this case
Is better known as Haar wavelet)

N 1 i
Vjk = 3 (Pjt+1,2k — Pj+1,26+1)- (19)

Then we can write any fine scale box function by means of the coarse box function
@& and the box wavelet t); .

Git12k = Pik + Vi, Git12k01 = Pjk — Wik (20)

These relations are motivated by the illustrations in Figure 3. In analogy to (17) we

Pi+1,2k ik

_

Cj+1,2k+1 Yk

Figure3 Box function and box wavelet
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deduce from (18) the two—scale relations for the cell averages

Uik = 5 (Gj+1,26 + Ujtr1,26+1)-
On the other hand, (20) implies
Ujt1,28 = Ujp + djk, Ujt1,26+1 = Uik — dj g, (21)
where the details are defined by

. 1 . A
djk == (U, Y1) [01] = 5 (Qj+1,2k — Ujt1,26+1)- (22)
These relations show how to express fine scale averages in terms of coarse scale

ones plus details and vice versa.

The above manipulations concern cell averages of some searched underlying func-
tion . One might view these cell averages just as piecewise constant approxima-
tions to this function. Such approximations are, however, confined as piecewise
constants to be at best of first order accurate. So this view would not carry very far.
Instead one should view the cell averages just as linear functionals of « from which
more accurate reconstructions of « could be derived. So there is a natural duality
between the space hosting the cell averages and its dual where w itself lives. In order
to make this distinction clear and to pave the way for later modifications, we have
to introduce another system of functions

ik =27 ik =X (2T k), ik =27 g,

in which one should think of « being represented. At this point it differs from the
earlier version only by normalizing factors but it will later be seen to be conceptually
important to distinguish these systems. In fact, the ¢, ; are the L—normalized
counterparts of the L;-normalized box function and box wavelet, respectively. We
will therefore refer to this system of functions as primal system (although we have
actually started with the dual one). In particular, the dual system {@; r}rer; U

{'L)Z’j’k}kejj is biorthogonal to the primal system {¢; x }zer, U {%jk }rer,, i.€.,

(ks Bidio1] = Wiks ¥i)o,1] = Okt 23)

(i Vido1) = Wik, Bitdo1) =0

Of course, these functions satisfy two-scale relations analogous to (19) and (20)
with slightly different normalizing factors.

It should already be noted now that one ultimately works only on the dual side
while the primal system plays a conceptual role which is, however, important for
the analysis and helpful for understanding later developments. To this end, note that
given u, the function
Uj = Z(Ua @j,k)[o,u Pi.k (24)
kel;

11



is a projection of » onto the span of the level j functions ¢; ; (which at this point
happen to be still piecewise constants as well), where the expansion coefficients are,
in view of (15), the cell averages of u with respect to a mesh of level j. It represents
an approximate solution of the conservation law on a fixed time level corresponding
to the discretization level j.

Note, that if » were (nearly) constant all coefficients in (24) would take (nearly)
the same value and hence would be all equally significant. This is certainly not a
very economical representation of a simple object such as a constant. We wish to
transform the coefficients, namely the cell averages (u, @;,x)[0,1) therefore into a
format where such (near) redundancy becomes readily apparent. In fact, invoking
the two-scale relation (19), (20) in combination with biorthogonality (23), u; can
be rewritten as

uj= Y (@i 1k Pi-tk+ Y, (i) Bi-tk- (25)

kel kel

Continuing in the same way with the first sum on the right hand side, eventually
leads to a representation of u; in terms of a coarse level cell averages complemented
by a sum over all levels I < 3 containing detail coefficients of the form d; 5 :=
(u, gEl,k)[O’l]. Clearly, raising the resolution level j would amount to adding further
detail coefficients which explains their update character.

Next note that, in view of (22), the details d; ; vanish whenever the function « is a
constant, i.e.,

<17@Zj,k>[0,1] =0. (26)

Moreover, writing « on the support of '&j’k as a constant plus a fluctuation (first
order Taylor expansion) we see that |d; x| is still small if that fluctuation is small. In
fact, one easily verifies that

dikl = K, ¥e)p,1] = inf [(u — ¢, Bi k)01l
i _ - 7 . . =39, -
S H(l:f ||U’ C”Loo(suppl/zj,k)||¢Jﬁk||L1(supp1/zj,k) S 2 ||U ||Loo(SUpp’l/1j,k)

Hence, the details may become small in smooth regions of « whereas they constitute
significant contributions in (25) where u varies more strongly.

This suggests to neglect all sufficiently small details in order to keep only essential
information on the function « thereby creating a compressed (approximate) repre-
sentation of u. To pursue this line, however, at least two essential issues arise.

(i) Foracompression to be really efficient one needs a more refined test than just
annihilating constants as in (26) which only exploits first order smoothness.
In fact, if one had instead of (26) (p, gﬁj,k)[o’” = 0 for all polynomials p up
to degree m — 1 (order m) the same argument (now using higher order Taylor
polynomials in place of the constant ¢ above) would show that, when w has
locally bounded mth order derivatives, the coefficients d; ;. would be of the

12



order 2~79™ thereby exhibiting a much stronger decay for higher smoothness.
(This can be achieved by means of higher order biorthogonal systems instead
of piecewise constants for the primal system. In case of the unit interval we
refer to [8, 13].) Note that this is the same as saying that the functions ¢; ; in
the projection (24) reproduces all polynomials of order m exactly, i.e., is of
higher order. But it is important to note that we actually never have to realize
this higher order primal system as long as we manage to come up with dual
wavelets having a higher order of vanishing moments. It will be explained
below how to realize such higher order vanishing moments in an even more
realistic setting of boundary fitted meshes.

(if) Evenif one realizes higher order vanishing moments, discarding small coeffi-
cients d;  resulting from the corresponding multiscale transformation raises
the question how this perturbation of the coefficients affects the underlying
function in the relevant norm. This is the issue of stability of the wavelet ex-
pansions, which ultimately does involve knowledge about the primal system.
Thus the primal system is not needed for the algorithmic realization but is
important for the analysis of the scheme.

3.3.3 Higher Order Biorthogonal Systems

We will address now the above issues (i) and (ii) for a more realistic setting of mesh
hierarchies. The first step is to transmit the above univariate case constructing box
wavelets for an arbitrary nested mesh hierarchy. The resulting wavelets will serve
as a starting point for the construction of modified box wavelets with improved
cancellation properties with the aid of a concept introduced in [3].

For the construction of the generalized box wavelets we now proceed analogously
to the univariate case. As a counterpart to (19) we introduce the box wavelet as a
linear combination of the fine scale box functions ¢;1,, r € M% ,, related to the
refinement of the cell V; ,

Yike = Y MGG, e€E = E\{0}, (27)
reMy .

with E := {0,..., M, — 1}. The index e plays the same role as the distinction
between even and odd indices earlier in (20). The (mask or filter) parameters mfj;
are determined in such a way that the resulting system of box functions and box
wavelets and their L.,—normalized counterparts defined by

@ik = Vikl Gk,  Vike = Vig| Vjne, (28)

are biorthogonal in the sense of (23) and the box wavelets have one vanishing mo-
ment, i.e.,

<17 d’j,k,e)ﬂ = 0.

13



Moreover, one can then find in analogy to (20) parameters gj W T € MY, such that

90.7-1‘1]9_2 Z Vﬁz j,7.€ (29)

ecll TEM(J)

holds, where it is convenient to define 4, 10 := @;x. As in the univariate case
(see (19), (20)), the two-scale relations (16), (27) and (29) allow one to realize a
local change of basis between the systems formed by coarse scale functions ¢; x
complemented by the oscillatory functions {gﬁj,k,e}eeE and the fine scale functions
{901'-1-1,7‘}1‘6/\/1‘]?7,“' The corresponding details can be found in [23].

Introducing as in the univariate case the details

Czj,k,e = <’UJ,’QZYJ"]€’€>Q, ec E*, (30)
one then infers from (27) the two—scale relation
Jjakae = Z mi‘zz aj+177'7 € E E*' (31)
reMy .

Note, that a similar relation holds for the cell averages, see equation (17).

Hence, in the same way as in the univariate case the resulting projection u; of an
integrable function « for the refinement level 5

Uj = Z (u, QZ)ng)Q QOj’k (32)

kEIJ‘

can be split in analogy to (25) into a coarse scale part and a complementary detail
part as

Uu; = Z( QOJ 1]9{290_7 1k+z Z 'ng 1k69¢j 1,k,e- (33)

kel;_, ecB* kel;_;

Again the primal system consists still of piecewise constants. So by the very same
arguments provided in the preceding section the decay of the detail coefficients ob-
tained from a successive repetition of the above splitting into ever coarser parts and
corresponding details would only be of order 277 on level j. As explained before,
in order to get a better compression by exploiting higher order smoothness we have
to raise the order of vanishing polynomial moments. The basic idea is to modify the
box wavelet 1, & . by some coarse grid box functions, leading to the ansatz

'ijke:—wjke‘l‘ lekQZ’Jh e € E", (34)
lEL';,k

with parameters l{ that are yet to be determined. Here the stencil £, C I;

denotes the cells V;; in the neighborhood of the cell V; ;. Then the parameters ll,k
are chosen such that

D, Vipe)r =0 (35)
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holds for all polynomials p of degree less than an arbitrary but fixed number M.
The details of the construction can be found in [14, 23].

Note, that the modified wavelets gﬂj,k,e still satisfy two-scale relations of the form
(27) and (29). This can be seen by inserting (16) and (27) into (34), providing

'ijke— Z mrkgo.i‘i'l?‘ (36)

rEMik

for some index set M¢ , C I;1+1. Moreover, one can explicitly determine filter coef-
ficients for reversing the two-scale relations (16) and (36) and express the fine scale
functions through coarse scale functions and the wavelets +; . . by substituting (34)

in (29), i.e.,
D1,k = Zgrk¢JT+Z Zgrk IR (37)

reg;, e€E* rEGS

for some index set G5, C I;. Hence, the two-scale relations (16), (36) and (37)
realize a change of basis between the systems {@; x }xer; U {¥j.k,e Yrer;,ecp+ and
{@jr1,ntrer; -

The above manipulations are based upon the basic fact that if one forms a matrix

~

M = (my 2E) (ks e)eExI; rel 4, the transpose of its inverse G provides the filter co-
efficients for the biorthogonal primal system (here denoted by § Tk e) Therefore the

above modifications of the wavelet filters 5 e € E* will change the G to a new
matrix G, where, however, now also the fllter coefficients of the original scaled box
function ¢; ; have been modified. It should be emphasized that it is not clear a
priori that such modifications will actually always produce a G such that now new
modified functions ¢; 5 exist that satisfy the modified two scale relation. This will
certainly depend on the choice of the coefficients l{ . In (34) and perhaps on the
geometry of the cells. Of course, it is hoped that a modified system exists which
will then actually have a corresponding higher accuracy providing better approxi-
mations to « on the primal side. That this is indeed the case can be shown under
more restrictive assumptions on the mesh. For a general discussion of this issue and
its relation to subdivision schemes see e.g. [11]. This is also closely related to the
second issue (i) in Section 3.3.2. As pointed out before the algorithmic realization
relies only on the higher vanishing moments of the dual system and has so far never
shown any indications that the primal system may fail to exist in any of the tests for
realistic geometries.

3.3.4 Multiscale Transformation

As pointed out before, the reason for dealing with multiscale bases of the above type
is merely to transform as in (28) an array of cell averages into a new data format that
is more suitable to compression. Moreover, the degree of this compression as well
as the analysis of the stability of the transformation in the sense of (ii) is still best
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analyzed through such bases. Now the transformation of data readily results from
the two—scale relations (16), (36) and (37). In the same fashion as the relations (21),
(22) have been derived in the univariate case, one substitutes the two-scale relations
for the basis functions in the definition of the cell averages 4 x := (u, $; )o and

the details d; 1 . := (u, ;1 .)q to obtain in view of (17),

n 7.0 ~ _ Je 5
Ujk = § o oml i, dige = E - mI G, (38)
reMj,, reMs

and

Ujt1,k = Z grkujr-l- Z Z grk jirie- (39)

Teg?Jc eEE* Teg;k

Denoting by 4; := (4j,x)rer; and d; := (dj x,e )rer;,ece+ the arrays of cell aver-
ages, respectively details on level 3, the array @, of cell averages on the finest level
L can be decomposed into a sequence of coarse scale averages o and details d;,
7 =0,...,L—1. Thisis done by applying the two-scale relations (38) successively
from fine to coarse levels, see Figure 4. This decomposition is called the multiscale

uL -+ UL 1 -+ .. -+ uO

AN \\\

Figure4 Pyramid scheme of multiscale transformation

transformation. It can be reversed by the inverse multiscale transformation based
on the relations (39) ascending from coarser to finer levels. Note, that the multiscale
transformation and its inverse require O(# I1.) operations provided that the modi-
fied box wavelets are locally finite, i.e., the number of functions of level j that do
not vanish in & € € is uniformly bounded. This is fulfilled whenever the stencils
LS . are uniformly finite.

Recall that the multiscale transformation has been set up so as to realize a change

of basis from a representation of the form (32) for (5 = L say) in single scale format

into a representation with respect to the multiscale basis {@o  }ker, UUf:_O1 {¥j e} kel cer
i.e.,

-1
up = Y g ene= Y fopor+ Y, O O diketire  (40)

kely, kelp j=0 kEIj ec b+
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Whether small perturbations of the coefficients d; x . cause only small perturbations
in u» with respect to the L.,-norm or of %y, in a discrete Lq-norm relies on the
stability of the multiscale basis which in turn depends on the existence of a regular
primal basis, recall (ii) in Section 3.3.2, an issue that goes beyond the scope of this

paper.

3.3.5 Local Grid Refinement

In the previous section we outlined the transformation of an array of cell averages
corresponding to a finest uniform discretization level into a new data format. The
new format is composed of cell averages on a coarsest discretization level and arrays
of details describing the difference information between the cell averages on two
successive discretization levels. At this point we assume that the underlying bases
are stable. We now take advantage of the new representation exploiting the fact that
details are guaranteed to decay at a certain rate depending on the local smoothness of
the underlying function. The idea is simply to discard all coefficients d; k. . in (40)
that fall in absolute value below a certain threshold. For this purpose, we introduce
the index set

DL,e = {(], k, 6) ; |dj,k,e| > E&j, €€ E*, ke Ij, ] c {0,...,L — 1}}

corresponding to what will be referred to as significant details. Here e; = 29~ L¢ is
a level-dependent threshold value which is smaller on coarser levels.

It is important to distinguish this index set form an associated index set Gy, . which
determines an adaptive grid and is generated from Dy, . as follows. First of all it
selects cells V; ;. from different levels in the grid hierarchy such that

o= |J Vi

(jak)egL,E

The index set Gr, . can be formed by traversing through the levels from coarse to
fine. Ifthere is a significant detail d; x,. € Dy, forsomee € E* thenthe cell V; ;. is
locally refined according to (13), i.e., the index (3, k) is removed from Gy, . and the
refinement set MO k is added to Gy, .. Note, that the index set Gy, . is initialized by
all indices of the coarsest discretization, i.e., (0,k) € Gy, k € Ip. Itis clear that
the adaptive grid reflects local refinements and therefore involves hanging nodes,
i.e., cell vertices of neighboring cells do not necessarily coincide, see Figure 5.

It is therefore important that the finite volume discretization employed in combina-
tion with the multiscale transforms copes well with hanging nodes.

We emphasize that this procedure only works provided that the index set of signifi-
cant details correspond to a graded tree, the levels of neighboring cells differ at most
by one. Since the set Dy, . is in general not graded, we have to apply in addition
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Figure5 Locally refined grid with hanging nodes

a grading procedure to Dy, .. This will slightly inflate the index set but has so far
been observed not to spoil the complexity reduction of floating point operations in
any significant way. In fact, from the nature of singularities occurring in flow com-
putations one expects the distribution of significant wavelet coefficients to exhibit at
least nearly tree structure. If a high level wavelet overlaps a discontinuity this will
be seen also by its coarser ancestors in the same region. For details on the grading
procedure we refer to [23].

The actual time evolution will refer again to cell averages corresponding to the adap-
tive grid. Therefore it is important to interrelate the local cell averages and the
significant details

’ﬁ’Laf‘: = {ajak}(jak)egL,s dL75 = {djtkte}(jakae)EDL,E

corresponding to the projection of uz, on the locally refined spaces determined by
the basis functions

Pre = {virturyegr s YLe =1{ik}iGmer YU{¥ikelGhe)ens o>

respectively. Since the bases ®;, . and ¥, . span the same space, the projection u,
can equivalently be written as

up = Y, Gikgik= D Gokport+ Y,  DikeWike  (41)

(jak)egL,s keIO (jakae)epL,E

The change of basis between the (locally) single-scale and the wavelet representa-
tion of uy, is realized by a local multiscale transformation analogously to (38) and
(39), respectively. This transformation is to be realized with an optimal complexity,
I.e., the number of operations should stay proportional to #D;y, .. The algorithms of
the local transformations are outlined in [23]. Here again, it turns out that feasibility
of the algorithms is related to the gradedness of Dy, .. In particular, it is verified
how the grading depends on the number of vanishing moments of the modified box
wavelets.

3.4 Adaptive Finite Volume Schemes

We now outline the concept of adaptive finite volume schemes based on the above
transformation concept. Of course, it will be crucial that at no stage of the algorithm
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the full uniform grid of level L is visited. Therefore, when evolving an approximate
solution on an adaptive grid at time n to time level n + 1 one has to guess a possibly
economic new mesh which of course may vary when dealing with non-stationary
processes. Here it turns out that the construction of the numerical fluxes on a locally
refined grid and the prediction of the significant details on the new time level are the
core ingredients which crucially influence the performance as well as the reliability
of the adaptive scheme.

First work on this subject has been reported by Harten [17, 18]. His primary ob-
jective, however, has been to accelerate a given finite volume scheme on a grid of
essentially uniform resolution by a hybrid flux computation. As a core ingredient he
also used a multiscale decomposition (although derived differently) similar to that in
Section 3.3. It can be utilized to distinguish smooth regions of the flow field from re-
gions with local strong variations in the solution. In particular, the hybrid flux evalu-
ation can be controlled by the decomposition, i.e., expensive upwind discretizations
are only applied near discontinuities of the solution. Elsewhere cheaper linear com-
binations of already computed numerical fluxes on coarser scales are used instead.
These correspond to finite difference approximations. In the meantime Harten’s
originally one—dimensional concept has been extended to multidimensional prob-
lems on Cartesian grids [2, 4], curvilinear patches [12] and triangulations [25, 1, 7].

The bottleneck of Harten’s strategy is the fact that the computational complexity,
I.e., the number of floating point operations as well as the memory requirements
can at best be reduced by a fixed factor independent of the size of the mesh. Thus
computational work and storage requirements still grow at least proportionally to
a globally finest uniform grid. For multidimensional applications this is a severe
obstruction which is even enhanced by additional requirements concerning varying
domains and coupling with structure calculations. Recently, a genuine adaptive
approach has been presented in [16] and has been investigated in [9]. Here the
computational complexity can be kept proportional to the problem—inherent degrees
of freedom. A selfcontained account of the adaptive concept for conservation laws
can be found in [23].

3.4.1 Construction

Essentially any standard explicit or implicit finite volume scheme for a system of
conservation laws (capable of handling hanging nodes) may serve as starting point
for the adaptive scheme. Suppose that for a given (highest) discretization level L it
can be written in the form

fugﬁj + 0 ALk ngj =v},—(1—-0) ALk B}, (42)

with the ratio Az := 7/|Vz k| and a parameter # € [0,1]. Here a fixed time
interval [0, T"] is decomposed by a temporal mesh 0 =ty < ... < txy = T. To keep
the exposition simple and since we focus here on spatial adaptation the temporal
partition is assumed to be uniform, i.e., t,+1 = t, + 7foralln =0,...,N — 1.
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This is no constraint imposed by the adaptive strategy. The numerical flux balance
is defined by
L,
%,k = Z |FI€,I| Fk,ln
{

approximating the exact flux balance (12) corresponding to the control volume
[tn, tnt1] X Vi k. Here I‘,’;Jl denotes the interface of the cell Vi, to the neigh-

bor cell Vz,; and F " the corresponding numerical flux, see Figure 6. Note, that
the numerical quxes depend on some cell averages of the finest discretization level
for reasons to be discussed later. Furthermore the numerical fluxes are assumed to

!
|

—t— Vi —t— Vi,

!
| \ e,

Figure6 Finite volume scheme

be conservative, i.e.,

Lyn _ L,
Fei'=—Fp ;" (43)
Then, for a given time level n, we introduce the cell averages v7, and details d7 .
on the coarser scales j = L — 1,...,0. In fact, relations

vl = Z mig v, keI, (44)

remy,
dlre = Z mrk " k€I e€E" (45)

reMs .

are derived from the two-scale relations for the box function and the modified box
wavelet. Applying the multiscale transformation (38) to (42), we obtain discrete
evolution equations for the cell averages and the details

VI 0N BT = vl — (1—0) Ak BJ ko (46)
where the flux balances B?, and their detalls D7, are determlned by

ik = >, Bia.= Y, Bi, (48)

TEM? k VL T'C‘/J k

e

n i m’f‘ an
kT z : j.e il
TEM;T,k m'r‘ k
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Here we employed the definition of the filter coefficients mf,(,’c and A; , :=7/|V; il

So far, we only derived evolution equations for the averages and details correspond-
ing to the full grids. The adaptive finite volume scheme is now determined by a
selection of evolution equations corresponding to the adaptive grid gg*;l, le.,

v 0N BI =0 — (1-0) Ak By, (G, k) € G7E (49)

It remains to outline (i) the efficient computation of the local flux balances B’ ;, and
(i) the construction of D,’-fi;:l by means of D ¢

3.4.2 Local Flux Evaluation

According to the definition of the flux balances (48) the computation of B/, re-
quires all flux balances B7 . corresponding to the cells Vz, . C Vj; of the finest
level. However, exploiting the conservation property of the fluxes (43) the right
hand side of (48) can be rewritten as

.7
with the local numerical fluxes
jn _ j+ln _
Fyy = Z Fyuo = Z Fk’ Iz (51)
+1 j
Fi' l,CFiJ Ff ,l’CF )

This is sketched in Figure 7 for a dyadic grid refinement. According to (48) we have

¢
¢

® ®
Figure7 Computation of flux balance

to compute all fluxes marked by e and o. However, the internal fluxes corresponding
to o cancel each other out due to the conservation property (43). Thus, an efficient
computation of flux balances should be based on (50) rather than (48). Furthermore,
we observe that the computation of the numerical fluxes ka ; requires the compu-
tation of cell averages on the finest discretization level which have to be provided
by means of the inverse two-scale transformation (39). In general, this inflates the
complexity by a logarithmic factor depending on the spatial dimension d. In order
to treat multidimensional problems a less expensive approximation is desirable. In
[23] two alternatives are discussed where the local numerical fluxes F3; are either
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computed by cell averages corresponding to the locally finest discretization level or
by the cell averages provided by the adaptive grid. Although these alternatives are
less expensive we have to be aware that an error is introduced. As investigations in
[9] show, this error might become significant in case of a first order finite volume
scheme. However, if the reference scheme is a higher—order accurate scheme em-
ploying a high—order reconstruction, then no significant loss in accuracy has been
observed.

3.4.3 Prediction

Before the evolution step (49) can be performed, we have to determine the adaptive
grid on the new time level. Since the corresponding averages, respectively details
are not yet available, we have to predict all details that may become significant due
to the evolution by means of the details on the old time level. In order to guarantee
the adaptive scheme to be reliable in the sense that no significant future feature of
the solution is missed, the prediction set 25?“ has to satisfy

Dt uD c DY, (52)

where, of course DZng is not known yet. In [18] Harten suggested a heuristic ap-
proach taking into account that (i) details in a local neighborhood of a significant
detail may also become significant within one time step due to the finite speed of
propagation and (ii) gradients may become steeper causing significant details on a
higher refinement level due to the developing of discontinuities. So far Harten’s
approach could not be rigorously verified to satisfy (52). However, a slight mod-
ification of Harten’s prediction strategy has recently been shown to lead to a reli-
able prediction strategy in the sense of (52), at least for a certain class of explicit
finite volume schemes applied to one—-dimensional scalar conservation laws on uni-
form dyadic grids as base hierarchies, see [9]. Here the explicit evolution equations
(8 = 0) for the details (47) are employed.

3.5 Error Analysis

The above adaptation strategy based on compressing the arrays of detail coefficients
is essentially a perturbation technique. Therefore the objective of the proposed adap-
tive scheme is to reduce for a given finite volume scheme computational complexity
while preserving up to a fixed constant factor the accuracy provided by the reference
scheme corresponding to the uniform finest discretization level. In order to make
this precise we introduce the averages %y of the exact solution, the averages v} de-
termined by the finite volume scheme and the averages o7 of the adaptive scheme.
We stress, that the sequence w7 is not generated by the adaptive scheme on the full
uniform highest level L. In order to facilitate the intended accuracy comparisons
these data are conceptually generated from the adaptive array (Uzk)(j’k)eggs by
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means of the inverse multiscale transformation (39) after assigning the value zero to
the non-significant details.

An ideal strategy would be to prescribe an error tolerance tol and determine dur-
ing the computation a possibly small number of refinement levels L such that the
accuracy requirement is met, i.e.,

la7, — || < tol

for possibly small L. Here the error is measured in the weighted {;—metric

lurll == IVikllurkl,

kely,

i.e., the Li—norm of a piecewise constant scalar function, which is usually applied
in the error analysis of finite volume schemes. In order to estimate the discretiza-
tion error we split the error into two parts corresponding to the discretization error
77 = u} — v7] of the reference finite volume scheme and the perturbation error
e} = v’} — v}, i.e, it would suffice to make sure that the sum of the unperturbed
discretization error and the perturbation stays below the tolerance

lar —oE I < lIT2ll + lle || < tol. (53)

Note, that e} describes indeed a perturbation of the reference scheme because the
adaptive scheme coincides with the reference scheme when the threshold value ¢ is
zero. At the current stage we are not able to extract a reliable value of L from the
computation yet. Therefore we now assume that there is an a priori error estimate
of the discretization error such that

Izl < 027k (54)

Here the cell diameters are assumed to be proportional to 2% and « denotes the
convergence order of the reference scheme. Then the number of necessary refine-
ment levels is of course determined by 277 ~ tol. In order to preserve the ac-
curacy of the reference scheme we now may admit a perturbation error which is
proportional to the discretization error.

So far, this ideal concept can only be rigorously founded for scalar conservation
laws because rigorous error estimates are only available for this class of problems,
see [5, 6]. In this case it remains to estimate the perturbation error. To this end, we
first note that in each time step a threshold error is introduced that accumulates in
time. Therefore the best we can hope for is an estimate of the form

lezll < Cne (55)

where the constant C' is independent of L, n, 7 and . Since the threshold error may
in addition be amplified in each evolution step, the existence of such a constant is
not obvious. However, if the multiscale transformation is stable, the explicit scheme
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Is [y—contractive and if the prediction is reliable then one can show that the constant
C is indeed independent of the number of refinement levels L, the threshold value &
and the number of time steps n, [9]. From (54) and (55) we then deduce that the per-
turbation error stays proportional to the discretization error provided the threshold
value is chosen as

g~ 2 (4 L (56)

3.6 Numerical Results

In the previous sections we have outlined a new concept for the construction of
adaptive finite volume schemes employing multiscale techniques. For scalar conser-
vation laws this could be verified to be reliable in the sense of (53). In [9] parameter
studies have been presented for scalar one—dimensional problems which confirm
the analytical results. In the sequel, we verify numerically that the adaptive concept
works also reliably for systems of conservation laws, i.e., (i) all kinds of singulari-
ties, e.g., discontinuities and kinks, corresponding to physically relevant effects are
detected by means of the multiscale decomposition and adequately resolved; (ii)
the computational complexity of the adaptive scheme with respect to computational
costs and memory requirements is proportional to the number of significant details
and (iii) the perturbation error is stable in the sense of (55). For this purpose, we
present several computations for the two—dimensional Euler equations for perfect
air, see also [23]. These have been carried out on PC’s with a 600 MHz processor
(Pentium 111 ). Further numerical results for real life problems treated in the col-
laborative research center SFB 401 will be presented and discussed later in Section
6. They have been produced by the solver QUADFLOW incorporating the above
adaptive concepts.

Below we consider a two—dimensional Riemann problem where the initial config-
uration is determined by four states corresponding to the four quadrants of the co-
ordinate system, see Figure 1. Away from the origin of the coordinate system, the
solution exhibits a one—dimensional wave pattern consisting of a rarefaction wave, a
contact surface and a shock wave. Close to the origin the different one—dimensional
waves interact forming a genuinely two—dimensional wave pattern. Note, that the
solution is non-stationary.

The reference finite volume scheme for the problem solved here is an essentially
non—oscillatory (ENO) scheme characterized by a one—dimensional second order
accurate reconstruction technique, and the numerical fluxes are determined by Roe’s
approximate Riemann solver. For more details on the scheme we refer to [22].

The computational domain Q = [—0.4,0.4]? is discretized by a uniform Cartesian
grid with spatial step size k7, = 0.04 x 2~ where we perform nz, = 150 x 242
time steps on the time interval [0, 0.15] with a temporal step size 77, = 0.001 x22-Z,
Note that the discretization is chosen such that the CFL condition holds on the finest
discretization level.
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Table1 2D Riemann problem: Initial configuration

State | | State Il
IT I o | 0.125 | 1.000

up | 1.000 | 0.000
u, | 1.000 | 0.000
p | 0100 | 1.000

The multiscale analysis is based on the modified box wavelets, see Section 3.3.3,
where the degree of vanishing moments is chosen as M = 3. For details on the
choice of the stencils ££ ,, in case of Cartesian grids see [23].

In particular, the thresholding procedure is slightly modified for vector-valued func-
tions. Here we take into account that the conservative quantities may vary by several
orders of magnitude. In principle, we could choose a specific threshold value for
each quantity. In practice, a different strategy turned out to be preferable. To this
end, we introduce for a vector valued detail d; x . its counterpart d ; . by
(dj,k,e)i , ’UJ;X) < tol
(dﬂf,k, )i = * ,
P wlﬁ+) , elsewhere

U;

where each component is scaled by the maximum

’UJ;X) = (jIIcI)leaé(L |('aj,k)i|; izl,...,m.
s ,€

Here tol is a machine depending tolerance to avoid division by 0. Alternatively,
we could have rewritten the equations (10) in dimensionless form. Then we call a
detail significant, if there is an e € E* such that |(d7, .):| > ¢; for at least one
componentz =1,...,m.

Finally, we have to specify the local flux evaluation. Here we do not apply the exact
computation according to (51) but the cheaper alternative based on the evaluation of
the numerical fluxes with respect to a locally structured grid because the reference
numerical flux is only defined on a structured grid.

For the test configuration under consideration we have carried out a parameter study
with respect to an increasing number of refinement levels L where the threshold
value is kept fixed by e = 0.001 for all computations. This is not quite in agreement
with the ideal strategy outlined in Section 3.5 but we are lacking reliable a-priori
estimates in the present cases and focus therefore on the stability of the scheme,
a point that will be taken up again later. In Figure 8 the density is presented for
t = 0.15 [s]. The corresponding adaptive grid is shown in Figure 9. These figures
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reflect the computational results for the highest number of refinement levels listed
in the Table 2. We observe that the higher resolution levels are only accessed near
discontinuities. This verifies that the adaptation criterion based on significant details
is able to detect the relevant physical effects in the flow field and to resolve them
adequately.

Table2 2D Riemann problem: Parameter study

L NL Ng CMS Mem SMS ||6L||*
% | [min] | [MB]
25600 | 58 | 4.53E+0 16 | 0.98 | 1.1E-3
102400 | 34 | 2.33E+1 39 | 162 | 1.2E-3
409600 | 19 | 1.12E+2 90 | 2.67 | 1.2E-3
1638400 | 10 | 4.99E+2 186 | 4.79
6553600 5 | 1.98E+3 337 | 9.67

~N O O &~ W

Furthermore we are interested in the computational complexity of our scheme with
regard to computation time and memory that is documented in Table 2. First of all,
we consider the number Ng := # G, ¢ /N1, representing the number of cells corre-
sponding to the largest adaptive grid determined during the computation relative to
the number Nz, = 400 x 4 of all cells corresponding to the full grid on level L. We
note that the relative number of cells reduces exponentially almost by a factor 2. In
fact, the total number of cells increases by a factor 2 for the adaptive grid instead of
4 for the uniform grid. This is also reflected by the memory size M em which corre-
sponds to the peak of memory that has been allocated in one time step. Comparing
the numbers Mem for the different computations corresponding to an increasing
number of refinement levels, we conclude that memory size is increasing accord-
ingly by a factor 2. Analogously, this is reflected in the computation times Cass
used by the adaptive scheme and C'ry g of the reference scheme on the full grid of
level L. The computation time C'yss increases with each additional refinement level
because the number of time steps is doubled according to the CFL condition for
the finest level. Since the number of cells in the adaptive grid increases in addition
by a factor 2, the computation time C'yss increases by a factor 4 instead of 8 for
the reference scheme. This results in an exponential behavior of the speedup rates
Sms := Cryvs/Cus, i.e., the computation time becomes significantly smaller for
the adaptive scheme in comparison to the computation of the reference scheme on
the full grid. These observations confirm that the number of floating point opera-
tions as well as the memory size of the resulting scheme stays proportional to the
number of cells in the adaptive grid.

The realization of such optimal computational complexity behavior depends heavily
on appropriate data structures. In our implementation we use hash tables. For details
on the design and the implementation of the data structures see [24, 23].
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Of course, the objective of the adaptive strategy is to reduce the computational com-
plexity while maintaining (up to a constant) the accuracy in comparison with the
reference scheme on a uniform grid. Since for systems of conservation laws bounds
on the global discretization error are not available we focus in the following just
on the stability of the perturbation error in the sense of (55). That is, instead of
balancing discretization and perturbation error we fix the threshold value ¢ and ex-
plore the dependence of the perturbation error on the level L, the number of time
steps n and the temporal step size 7. For this purpose, the perturbation error is also
listed in Table 2 as far as the computation for the reference scheme on the uniform
discretization level could be performed on the available computers. Here the per-
turbation error ey, is measured in the weighted /;—metric where each conservative
quantity is scaled by its global maximum in the computational domain, i.e.,

leclls :== max flerl|/[[oL,illoo

—1,...

where the vectors €r, = ((eL,k)i)kefL = ((ﬁL,k)i) - ('UL,k)i)kEIL and V=
((UL.k)i)ker, correspond to the perturbation error and the results of the adaptive
scheme for a single conservative quantity : = 1, ..., m. Recall that the thresholding
is also applied with respect to the scaled details. For instance, see Figure 10 where
the contours of the perturbation error are shown for the density. We observe that the
error is proportional to the threshold value €, in particular, it does not increase with
increasing number of refinement levels L.

We conclude the discussion on the parameter studies with a remark on the ideal”
computation as discussed in Section 3.5. Whenever the perturbation error is smaller
than the discretization error, we waste performance in the sense of computation
time and memory size, because the discretization error is still dominating. Con-
versely, we loose accuracy if the perturbation error is larger than the discretization
error. Therefore the ideal computation of the parameter study corresponds to the
refinement level where both the perturbation error and the discretization error are
balanced. Since in our parameter studies the threshold value ¢ is fixed, we cannot
directly conclude on the discretization error. If we assume that the discretization
error for a uniform grid of level L behaves like 2~ we see from Table 2 at which
level the recorded perturbation error is of comparable size. This gives an impres-
sion of the interrelation between the overall accuracy and the amount of compu-
tational work. However, the computations on the full uniform grid of level L can
only be realized for a small number of refinement levels L due to the huge amount
of memory needed. This constitutes a significant advantage of adaptive schemes
over non-adaptive ones on uniform meshes, i.e., under relevant accuracy require-
ments simulations become computationally tractable that would not be possible to
perform with the aid of quasi—uniform meshes.
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3.7 Summary of Requirements

We conclude the discussion of adaptation strategies with briefly summarizing the
main requirements on the finite volume discretizations and the corresponding mesh
generators that are put forward by the above concepts.

(i)

(i)

The multiscale setting as outlined in Section 3.3.1 is based on a grid hier-
archy of nested grids. Although we never access to the full grids of this hi-
erarchy the grid generator has to provide an efficient representation of this
hierarchy depending only on a small number of parameters in comparison to
the full grids. Moreover, this representation has to allow for a fast computa-
tion of higher order moments with regard to the construction of higher order
biorthogonal systems, see Section 3.3.3.

The efficiency of the flux computation crucially depends on the assumption
that the numerical fluxes of the underlying finite volume discretization are
conservative, see Section 3.4.2. In addition, the computation of the numeri-
cal flux balances can be further improved when computing the incorporated
numerical fluxes by means of the averages corresponding to the adaptive grid
instead of the averages on highest resolution level. This introduces an er-
ror that can be compensated when using a higher order reconstruction in the
finite volume scheme.
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Figure8 2D Riemann problem: Density contours (L =
7)

Figure9 2D Riemann problem: Adaptive grid (L = 7)

Figure 10 2D Riemann problem: Contours of pertur-
bation error in density (L = 5)
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4 High Quality Mesh Generation Using B-Splines

4.1 Objectives and Basic Concept

The algorithms and data structures of a grid generation code have to reflect the needs
of the numerical scheme applied to solve the problem at hand. The QUADFLOW
project aims at developing an adaptive code for flow problems in time varying ge-
ometries. Hence the grid generation task cannot be viewed as preprocessing, be-
cause the grid generation aspects are tightly connected to the solution process due
to transformations and refinements. Here, the design of the grid generation concept
used within QUADFLOW is motivated by the following objectives.

(i) With regard to the stability and accuracy of the flow calculations the usual
grid quality measures such as smoothness and orthogonality have to be met.
It is widely accepted that hexahedral based meshes are preferable for the dis-
cretization of viscous flows, because they facilitate best the generation of
boundary fitted anisotropic meshes. In particular this is important for the
resolution of boundary layers. Thus, block structured, boundary conforming
grids have been employed.

(if) The grid generator has to fulfill the requirements posed by the multiscale tech-
nique, which are summarized in Section 3.7. Due to the dynamic adaptation
it is not known a priori, where a fine scale discretization is needed in the flow
field. Therefore it seems useful to separate the geometric aspect of grid gen-
eration from the discretization aspect. This is achieved by representing the
logically Cartesian grids by their analytic counterparts, namely, by paramet-
ric mappings from the unit square or unit cube to the physical domain, see
Figure 12.

Common experience shows that the main disadvantage of structured grid generation
consists in the problem to generate suitable block decompositions around complex
geometries. This tends to be a time consuming and difficult task and usually requires
human expertise and interaction. Although it will be difficult or even impossible to
automate this work completely, software tools have to be provided, that are simple
and intuitive to use and reduce the necessity of user interaction as much as possible.
Otherwise this problem will inevitably become the most severe obstacle to realistic
applications. A typical example for a two-dimensional block structured grid as used
in the current work is given in Figure 11. The boundaries of the blocks have been
defined interactively.

In the grid generation community a lot of work has been devoted to exploiting the
excellent abilities of B-Splines and existing CAD programs, see for example [26].
Many user interfaces of grid generation programs provide B-Splines or NURBS as
tools for modeling boundary curves or surfaces. In the present approach we go
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Figure1l Block decomposition around high lift configuration

even one step further and aim at representing the blocks as independent curvilinear

coordinate systems using B-Spline tensor products.

In the following we describe and analyze the above concept in more detail and

present some tools that have been developed to realize this concept.

4.2 Representation of Grids as Parametric Mappings

The discussion in the previous section indicates that the grid generation has to meet

the following requirements.

(R1) Boundary conforming grids which are appropriate for finite volume calcula-

tions of flows based on the Euler and Navier-Stokes equations, have to be
generated.

(R2) A hierarchy of nested grids for the multiscale algorithm has to be provided.
(R3) The local adaptation of the grid during the solution process has to be efficient.

(R4) The transformation of the grids due to moving boundaries has to be cheap

with respect to computational time.

In the following, it will be shown that these requirements suggest to represent grids

as parametric mappings and to realize these mappings using B-Splines.
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Figure12 Parametric Mappings

Requirement (R2) states that each cell of a coarse grid must be the union of its
subcells. This is indeed a severe constraint, because it implies that the geometric
approximation of the physical domain is determined completely by the shape of the
coarse grid. This conflicts with the demand, that the shape of the body must be
represented precisely. Indeed, one cannot define the coarse cells simply as quadri-
laterals in 2D respectively hexahedra in 3D connecting its corner points with straight
lines, because this would result in a poor approximation of the boundary curve or
surface. Another method would be to calculate the fine grid cells first and to define
the coarse grid cells as unions of its subcells. But this would lead to complicated
non-smooth shapes of the coarse grid cells, what makes the proper computation of
fluxes across the cell interfaces more expensive, and requires the calculation of a
refined grid in a preprocessing step. This would in turn contradict the inherent phi-
losophy of adaptive codes, where calculations are initialized on the coarse grid and
the grid is refined only where necessary. However, representing grids as curvilinear
coordinates allows to define the cells as images of the corresponding cells in com-
putational space. Then grid refinement is easily performed by evaluating the grid
function. This method has the following three advantages:

(i) The approximation of the contour does not depend on the refinement level,
but only on the quality of the geometric model.

(i) The grid generation process becomes completely independent of the discretiza-
tion parameters, for example the number of grid points in the coordinate di-
rections, as the flow solver receives its data simply by evaluating the grid
function, see Figure 12.

(iii) From the same representation, grids suitable for both Euler and Navier-Stokes
flows can be computed, because the latter only requires the application of an
appropriate blending function to resolve the boundary layer.
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Note, that the grid cells now have curved edges. This complicates the computation
of some geometric quantities, for instance cell volumes, see Section 4.4.5.

Since in realistic problems the geometry will not be given in terms of elementary
analytic mappings, such as Cartesian or polar coordinates, one has to approximate
given free form geometries. B-Splines seem to be a very appropriate tool for this
task, because

(i) they posses excellent approximation properties,
(i) modeling with B-Splines is intuitive and fast,

(iii) evaluation of B-Splines is fast and numerically stable.

In particular, the first property is important, because it guarantees that one has to
compute and store only few parameters to represent a grid with sufficient accuracy.
This is of interest with respect to requirement (R4), because one has only to modify
these parameters, when the mesh has to be frequently updated in time.

Of course, it is also important that the well established grid generation methods
can be integrated into our concept. Indeed, due to the development of fast inter-
polation and approximation algorithms, the B-Spline representation can be used as
post-processing to existing grid generating tools. We feel though, that such a point
of view is too restrictive. In fact, the present approach makes use of the genuine
advantages of the parametric B-Spline representation within a large variety of algo-
rithms.

A possible alternative are NURBS (”Non-Uniform Rational B-Splines”), because
they are even more flexible and are capable of representing typical geometric objects
as for example circles and ellipses exactly. But the evaluation of the derivatives of
a rational function is rather expensive. This can become a time critical aspect in
algorithms that depend on geometrical parameters as for example the curvature of a
curve or surface. Therefore we restrict ourselves to integral B-Splines.

4.3 Block Decomposition

The crucial point in structured grid generation is the definition of the block struc-
ture. The shape of the blocks is often decisive for the quality of the grid and the
calculations performed on it. For the QUADFLOW grid generator the following
aspects are of special interest:

(B1) In the vicinity of body contours high quality boundary conforming grids are
required in order to resolve the boundary layers.

(B2) In the far-field as many blocks as possible should be Cartesian, because this
will enhance the performance of the multiscale algorithm significantly. In
fact, the mask coefficients in the multiscale transformation can then be derived
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by dilatation and translation of corresponding quantities for a single reference
volume.

(B3) There should be as few topological constraints on the decomposition as pos-
sible in order to support the automation of the block decomposition.

With regard to the last point, we permit geometrically non-conforming block parti-
tions, i.e. faces of adjacent blocks need not match, and do not impose any continuity
conditions across the block borders. Here of course, we exploit the ability of the
flow solver to handle hanging nodes.

For the description of the grid topology we have adopted the connectivity hierarchy
from blocks to faces to edges to vertices proposed in [45] to the case of parametric
mappings. In this concept the geometric description of all topological elements,
namely, the blocks, faces, edges and vertices is stored separately. Blocks are viewed
as parametric mappings of the unit cube, faces as mappings of the unit square and
edges as mappings of the unit interval. In addition we have to store the following
connectivity relations:

(i) for each block by which six faces it is bordered,
(i1) for each face by which four edges it is bordered, and

(i) for each edge by which two vertices it is spanned.

For two-dimensional grids we just omit the first kind of relations. Nonconforming
block interfaces are realized by allowing faces and edges to be divided into subfaces
respectively subedges. The information about the relations between faces and their
subfaces respectively edges and their subedges has also to be stored. From this four
types of connectivity relations all other topological information can be derived.

To fulfill requirements (B1), we have implemented methods that automatically gen-
erate smooth offset curves around the body — see below in Section 4.6. These offsets
are curvature dependent and can roughly be interpreted in the context of hyperbolic
grid generation. They are generated in a first step, before the rest of the block de-
composition is defined. This strategy is illustrated in Figure 13.
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Figure13 Grid in 12 blocks around reference configuration in a channel

So far only a traditional, user interactive concept of block decomposition has been
realized. By means of an existing CAD program [29, 30], which provides the tools
based on the B-Spline techniques introduced in Section 4.4, the curves representing
the body contour, the offset curves and the block interfaces are defined interactively.
These curves serve as input for the grid generation code, that applies the algebraic
and/or elliptic methods described in Section 4.5 to the individual blocks. The inte-
gration of block-decomposition and grid generation in a common user interface and
the automation of these tasks is work in progress.

4.4 B-Spline Basics

In this section we summarize the basic properties of B-Splines needed in this paper.
We start with B-Spline functions. Then we show how to build curves and planar
grids, surfaces and volume grids. After that we turn to the essential interpolation
and approximation algorithms. Details and proofs can be found in many textbooks
about numerical analysis and computer graphics, e.g. [31], [35], [40]. In CAD
(Computer Aided Design) usually curves and surfaces are treated. It is easy but
technical to extend these techniques to volume grids as needed in the 3D-case. For
this purpose we have developed fast algorithms for interpolation and approximation.
They make extensive use of the tensor-product structure of the B-Splines, leading to
an enormous reduction of computation time.

4.4.1 B-Spline Functions
Let T = (to,t1,---,tm) be a nondecreasing and non-stationary sequence of real

numbers,i.e. t; <tiy1,4=0,1,...,m—1.and¢; < tiyp,2=0,1,...,m—p. Tis
called “knot vector”. Then for¢ = 0, ..., m — p the B-Spline functions N; , r(t) =
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N; p(t) of order p are recursively defined as

1 ift; <t <t
Niﬁl(t) = X[ti,ti+1)(t) - {O oth:arwise Z ’ (57)
t—t; tivy — 1
Ni,p(t) = 71Ni,p—1(t) + LNZ’-HJ)—l (t) (58)
Litp—1 — t; Livp — tit1

They are piecewise polynomials of degree p — 1, have compact support [¢;, ¢;+p],
are nonnegative and together form a partition of unity.

In the case that 7" contains multiple knots equation (58) can yield the quotient 0/0;
we define this quotient to be zero. B-Spline functions of order p are CP—!~1-
continuous at a knot of multiplicity {.

A p-th order B-Spline curve is now defined by

z(t) = Z Pi Nip(t). (59)

The p; are called control points or de Boor points. They form in ascending order the
control polygon. Evaluation of the curve can be performed very efficiently applying
the de Boor algorithm which is a recursion formula derived from equation (58).

Geometric modeling with B-Splines is very intuitive, because the shape of the con-
trol polygon roughly represents the shape of the B-Spline curve. For planar curves
the point x(t), with ¢; < ¢ < ¢;41 always lies in the convex hull of the control points
Pi—p+15- - -»P; and its position is only influenced by these p control points. Accord-
ingly, moving the control point p, changes = (¢) only in the interval [¢;, ¢;+,]. Thisis
especially convenient for modeling curves at a graphics terminal, because changing
the position of one control point has only a local effect on the curve.

In addition B-Splines possess the following variation diminishing property: A pla-
nar B-Spline curve crosses any straight line at most as many times as its control
polygon does. From this it follows for example, that a convex control polygon will
necessarily define a convex spline curve.

It is often useful to insert additional control points to an existing B-Spline curve
without modifying the shape of the curve itself. This is easily accomplished by knot
insertion. Successive knot insertion causes the control polygon to converge towards
the curve.

In practice we concentrate on cubic B-Spline curves (order p = 4) and therefore
write in the following N;(¢) instead of IV; 4(¢). In addition, we use only knot vectors
that start and end with p equal knots. In this case the spline function is defined on
the interval [t,—1,¢m—p+1] =: [@,b]. This has the advantage that the first and the
last point of the curve coincide with the first and last polygon vertices. Furthermore,
the slope of the B-Spline curve at the first and last polygon vertices is equal to the
slope of the first and last polygon spans.
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Planar grids and surfaces are represented as B-Spline tensor products, taking a net

p; ; of control points, two knot vectors U, V' and building products of the univariate
B-Spline functions:

:E(u, U) = Z pi,j Ni,p,U(u) Nj,q,V(U)a (60)

see Figure 14. The subscripts U and V" are usually omitted. Bearing this simplifica-
tion in mind, one defines volume grids in a similar way:

x(u,v,w) = Z Dk Nip(u) Njq(v) Ng,r(w)- (61)
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Figure14 Control Points and Evaluation of Grid Function

The derivative x'(t) of a p-th order B-Spline curve is again a B-Spline curve but of

order p — 1. For surfaces and volumes partial differentiation reduces the order for
corresponding directions.

4.4.2 Interpolation of Curves

Often the geometric configuration is not given as a spline representation but only as
sequences of points. In this case the first task is to transform this point-description
into a spline representation via interpolation or approximation.

In the case of cubic B-Spline interpolation we search a curve

x(t) = Z p:Ni(t) (62)

that interpolates the given curve at its knots
x(tiys) ==, 1=0,1,...,n:=m—2p+2=m—6. (63)
Here we assume, that an appropriate data adapted knot vector with p-fold knots at

its ends and no multiple interior knots has been priorly determined. For suitable
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strategies see for example [35]. So there are n + 1 conditions for the n + 3 control
points p,. Thus we have to pose two more conditions. Usually one prescribes the
derivatives at the beginning and the end of the curve (z'(a) = wvo, '(b) = v,,)
("complete spline interpolation™) or if such data is not available demands vanishing
curvature at the beginning and the end of the curve (2" (a) = =" (b) = 0). ("natural
spline interpolation”). In any case it follows from the theorem of Schoenberg and
Whitney that the interpolation problem has a unique solution. Because of the local-
ity of the B-Spline basis the interpolation problem leads to a tridiagonal matrix, that
is totally positive due to a result of Karlin and therefore can be solved effectively by
Gauss elimination without pivoting.

The following theorems, formulated for scalar functions, give additional reasons for
the popularity of the complete spline interpolation [39].

Theorem: Let s be the complete interpolation spline of a function f € C*[a, b] with
respect to the knots ¢; with h := maz;|t;+1 — t;|. Then

5
[f — 8]0 < @hfl”f@)lloo (64)

Theorem: Let s be the complete or the natural interpolation spline of a function f
and lety € C?[a, b] be another interpolating function that fulfills the same boundary

conditions. Then )

b

/ s"(t)?dt < / y" (t)? dt. (65)
a a

The last result, often cited as best approximation property, is of certain interest

in the context of grid generation as smoothness is an important measure of grid

quality. Of course, its value should not be overestimated, because it does not make

any statement about the geometric shape of the interpolation curve.

4.4.3 Approximation of curves

Indeed, despite these results, it turns out that interpolation generally is not a suffi-
cient tool for generating suitable representations of boundaries

The top graphs of Figure 15 show curvature plots of two B-Spline representations of
the same air-foil, the SFB 401 cruise configuration. The first one was interpolated
from a set of 193 discrete points. Although there were no deviations of these points
from the original description of the configuration the interpolated spline shows os-
cillations in the curvature. This effect is typical and may be explained by the fact,
that it is not easy to find an appropriate knot vector, and with it a good parameteri-
zation of the spline corresponding to the distribution of the given data. This effect
can be reduced by approximating more points x; than control points p,. The sec-
ond representation was produced by approximation of an enlarged data set of 2000
points with 200 control points. To estimate the influence on the flow solution in the
bottom row the pressure distribution on the air-foil calculated by QUADFLOW is
plotted.

38



oF
-10
20

30k

cur
cur

-40 |
50
60

-70F

-80

TSI T TSI N R [ T NI
0.25 0.5 0.75 1

i
o

e TSI N R [ T NI
0 0.25 0.5 0.75

t t
ir ir
0.75f— 0.75f—
o.sf— o.sf—
0.25; 0.25;
$‘ o $ oF
-o.25f— -o.25f—
-o.sf— -o.sf—
-o.75f— -o.75f—
1F 1k
e 4 ) e 4 )
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
X X

Figure15 Influence of boundary-approximations

This example shows, that an adaptive code will — in contrast to a method on a fixed
grid — react sensibly to even small scale inaccuracies in the description of the geom-
etry. In order to avoid the necessity to work on large numbers of control-points and
large data-sets, we implemented fairing methods based on the algorithms given in
[37],[34] and [33]. Indeed using these methods, the above mentioned profile can be
precisely and smoothly approximated with less than 30 control points.

In the basic approximation algorithm we have to choose a knot vector for the spline
and to assign suitable parameter values 7; to the data points ; = x(r;). This gives
rise to the “least squares problem”

||AP — X ||2 — min (66)
where A = (N;(7;)), ;- Since we have more equations than control points we have
conditions in between the knots. This enlarges the bandwidth of the matrix A from
three to four and it is no longer quadratic. Usually the least squares problem is
solved via solving the normal equations, see for example [31]. In view of the exten-
sion to the multidimensional case and the worse condition of the normal equations
we prefer the solution via QR-decomposition.
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4.4.4 Tensor Product Interpolation and Approximation

In the context of grid generation typically the problem arises to find a B-Spline
tensor product of the form (60) that approximates a given net x, s of grid points
at predefined parameters (u.,vs), 7 = 0,...,N, s = 0,..., M. In the case of
interpolation, i.e. M = m — p and N = n — g we obtain the following matrix
equation:

> AiB,p; ; = APBT = X. (67)
i,7 r=0,1,...,.M
s=0,1,....N

Here we have assembled the control points p; ; to be computed in the matrix P
and the interpolation points in the matrix X. Note that the collocation matrices
A = (Ar;) = (Nr(w;)) and B = (B ;) = (Ns(v;)) have the same structure as
the corresponding 1D collocation matrices. Therefore equation (67) can be solved
easily by LR-decomposition of these matrices.

If M and IV are large it is often preferable not to interpolate but to approximate the
given points for sake of data reduction . In the following we assume M > m — p
and N > n—q. Althoughit is possible to set up and solve the standard least squares
problem

> (@ (ur,vs) — ®ps)> — min, (68)

.8
this task is computationally rather expensive, because it requires the solution of
fairly large linear systems. Since it is sometimes necessary to solve the approxi-
mation problem repeatedly, for example if one wants to approximate the given data
within a given accuracy but with minimal number of control points, we want to avoid
this computation. Instead we measure the approximation error in another norm in
order to exploit the tensor product structure of the problem. To do this, we note
that the least squares problem (68) can be formulated equivalently as the problem
to minimize the Frobenius norm of the matrix R := APBT — X, where A, B, P,
and X are the same matrices as in equation (67).

2

IR||lr= > R};| — min. (69)
i

The matrix R contains the approximation errors in every data point in their natural
order. But instead of the Frobenius norm we propose to minimize of the 2-norm, i.e.
the spectral norm of R.

This can be justified by the following elementary norm equivalence, that holds for
every matrix M € R™*"™ with m > n:

1M]]2 < [|M]|r < V/n||M]|l2. (70)
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This lemma states that the solution of the modified minimization problem delivers
reasonable approximations of the solution of the least squares problem, as the two
norms differ at most by a factor that equals the square root of the number of data
points in one coordinate direction.

The advantage of the spectral norm is that it is invariant under multiplication with
orthogonal matrices. So we can solve the problem analogously to the interpolation
case but using QR instead of L R-decomposition. In matrix notation this reads as

|IAPBT — X||>» = ||QaRaP(QsRB)" — X]||>

71
=||Ra PR} — Q% X Qp|l> — min. ()

Note that again A and B are 1D collocation matrices, which are generally banded
matrices with low bandwidth, for bicubic approximation, for example, the band-
width is < 4. So the computation of the ) R-decompositions needed is cheap. In
every case this results in computational costs proportional to the number of given
points.

In the case of 3D interpolation we are given a 3-dimensional array X = (x; ;) of
grid points and have to determine an interpolating B-Spline tensor product in form
(61). We can easily generalize the notation used above to

‘7 -7k
b s=0,1,...,N

t=0,1,...,L

> AriBs iCiiPiji ( ot ) =BAPCTY=X. (72

Again solving this system is reduced to the task to compute L R-decompositions of
the 1D-collocation matrices A, B, and C. Since P € (R3)LxXMXN the different
matrix products work on the first, second and third index of P, that is running on
the other ones. Analogously we treat the 3D approximation case, just by employing
the () R-decompositions instead of L R decompositions. In this case we cannot give
a motivation based on equivalence of matrix norms similar to the 2D case, but the
algorithm is fast and yields satisfactory results.

4.45 Computation of Volumes and Moments

For the multiscale analysis (here in 2D) the computation of the cell moments M, ,,, :=
fV x™y™ dV is required, e.g. for n = m = 0 one gets the volume of V. As we have
defined a grid-cell to be the image of a cell in computational space, the calculation
of this integral is expensive, because the cells have curved edges. To simplify the
evaluation of the integrals we use the Gaussian integral theorem in the following
way. Setting

f@) = (n%lw"“ym, 0) 73)
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we can reduce the cell integral to an integral over its boundary:

M::/ w"yde:/ divf(x)dz = f - mnds. (74)
Vv Vv ov

Here 7 denotes the outer unit normal on the boundary of V. Assuming V' to be
the image of the cell [u1,u2] X [v1,v2] and using the parameterization of the cell
boundaries implicitly given by the grid function, we obtain from the substitution
rule

ve

M = f(@(ur, 7))n(ur, )@y (u1, 7)||2 d7

'Ul

[ @z 7))z [0 (un, 7)o dr
s (75)
+ [ Fla(rv))n(mo)||zu(r,v)|2 dr

U1

2
+ [ F(e(r,v))n(r, v | (T, v2)||2 d.
U1
Noticing that the product of the outer unit normal and the norm of the derivative is
except of the sign just the normal to the tangent itself, the above equation simplifies
to (Wlth (’Ul,’vz)J‘ = (—’Uz, ’Ul))

M = f( (u1, 7))@y (u1,7) dr

'Ul

- f( (uz, 7))y (uz, 7) dr
o (76)

U2

— [ fla(r,m)zy(r,m)dr

U1
U2

+ J(z(r, Uz))mi(T, vg) drT.

U1

We now see that the integrands are products of piecewise univariate polynomials
and that the integrals therefore can be evaluated exactly. But due to the high degree
of these polynomials this calculation turns out to be rather expensive. Therfore it
should be performed only where it is really necessary, i.e. near the body contours.
In the far field the use of simpler grid models is preferable.

4.5 Generation of Boundary Conforming Grids
4.5.1 Basic Procedure

Consider a simply connected bounded domain €2 in two dimensional space. Suppose
that 2 is bounded by four edges and that these edges are given as B-Splines o (u),
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1 (u), Toy(v) and x1, (v). The task is to generate a grid function x(u, v), that
interpolates the given curves along its boundaries:

x(u,0) = xyo(u), xz(0,v) = oy (v), (77)
x(u,1) = ¢y (u), x(1,v) = 1, (v). (78)

As we want to represent the grid by a B-Spline tensor product we have to assure first,
that the opposite edges possess the same knot vector. This can easily be achieved
by knot insertion. Since we only use knot vectors with p-fold knots at their ends the
control polygons of the boundary B-Splines are always equal to the corresponding
border lines of the control net for any tensor product grid function conforming to
the above boundary conditions.

Most standard methods cannot manipulate the B-Spline control points directly, for
example the finite difference discretization of an elliptic grid generator uses point
representations of the grid. In this case we evaluate the B-Spline at its knots and
after successful grid generation interpolate the points again. Since the solution of
the interpolation is unique it is guaranteed that the original boundary curve is repro-
duced.

4.5.2 Algebraic Grid Generation

We employ several variants of transfinite interpolation, which is based on Gordon’s
method [38].

We only mention the standard linear blend. Denoting the four corner points of the
given domain with &g = x(0,0), €10, o1 and x11 it can be written in the form

x(u,v) = (1—u u) (2?:8;) + (o (¥)  Tur (w)) (1 ; v)

~ (-u w (iﬂoo 51301) (1 —U> '
1o 2T11 v

This method is especially easy to apply, because, as proven in [36], a linear blend
obtained from four cubic B-Spline boundary curves is indeed itself a bicubic tensor
product B-Spline and its control net can be obtained directly from the boundary
control polygons, just by interpreting all the control points p;;,2 = 0,...,N, j =
0,...,M as values p(i/N,j/M) of a virtual grid function p, and applying the
formula defining the linear blend to the inner control grid points.

(79)

The other basic method is to prescribe in addition the normal derivatives to the given
curves and to interpolate these data with a bicubic Coons-Patch.

4.5.3 Elliptic Grid Generation

It is common experience that in practical application the use of an elliptic grid gen-
erator is inevitable, because elliptic methods are superior to all alternatives with
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respect to robustness of the algorithm and smoothness of the generated grids. The
disadvantage of elliptic methods is that they require the very time consuming solu-
tion of a nonlinear PDE and are therefore not well suited for time varying geometries
or interactive use.

We implemented the grid generator by Spekreijse [43], [44], because his concept of
coupling elliptic with algebraic transformations is theoretically well founded and
easily integrated into our approach, that already provides a variety of algebraic
methods.

To speed up the solution of the PDE we begin with generating very coarse discrete
grids with the aid of the elliptic generator. Then this grid will be converted into a
B-Spline representation. If the quality of the grid achieved is satisfactory we stop
here, if not we evaluate the function at a higher number of points and use this grid
as initial guess for a new iteration with the elliptic solver. Since this starting grid
Is then usually much better than for example an initial guess based on transfinite
interpolation, the number of Newton or fix-point iterations used for the solution of
the nonlinear PDE can be reduced. But it turns out that usually it is sufficient to
compute and interpolate very coarse elliptic grids to achieve a sufficient quality for
flow calculations, as long as enough grid-points are chosen to prevent discrete grid
folding. For planar blocks we use typically 30 x 30 points. This makes interactive
elliptic grid generation possible, at least in many practical cases.

Without laying claim to a rigorous mathematical foundation of this method, one may
justify this concept by the remark, that basically elliptic grid generation is founded
on the minimization of the functional

/uim +v,, — min (80)
Q

and, as pointed out above, B-Splines fulfill a similar variation diminishing property,
at least in the functional 1D-case.

The following example is taken from [41]. Using the algorithms proposed by
Spekreijse we first generated an elliptic grid in this domain demanding orthogonality
and control of the first layer of cells along the curved borders.We have discretized
the domain with 100 x 100 grid-points (only every second line is plotted for the
sake of better visualization) and then compared it with the grid obtained when we
discretize the elliptic equation with 30 x 30 points, and evaluate the interpolating
spline again at 50 x 50 points. The smoothness of both grids is nearly the same,
only the high resolution elliptic grid produced a somewhat thinner cell layer at the
right boundary of the domain.

4.5.4 Reproduction of Grids
The approximation tools enable us to reproduce grids from external sources auto-

matically, for example pointwise given grids used for calculation with other solvers
than QUADFLOW. Within this project for example we are often asked to compare
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Figure16 Fine and coarse elliptic grid

the results of QUADFLOW with former results produced by the FLOWer code.
In order to avoid the work of generating block-decompositions ourselves, we have
automated the task of converting the pointwise given grids into B-Spline represen-
tations. Thereby only one constraint must be respected. In practical grid generation
often grids are given that contain non-differentiable corners in one boundary. The
simplest example is a ramp that is connected at a certain angle with a plain surface.

This is a technical problem, because cubic B-Splines without multiple interior knots
are C2-continuous. It is possible to model such corners with p — 1 coalescing con-
trol points [32]. But then the derivative in this point would vanish what may result
in grid folding near this point. Another method is to use knot vectors with multiple
knots, but in this case further manipulation of this spline is more difficult, because
evaluating the spline at its knots and reproducing it again by interpolation as pro-
posed at the top of this section is not possible if the knot vector contains multiple
interior knots. So the simplest method is to split the block in question into two and
to apply the methods described above in both blocks separately. Since it is not easy
to decide from the discrete set of points automatically, where such cusps occur, a
certain extent of user interaction remains.

455 Extensions

It is clear that the detour described above, namely first to evaluate the spline at
certain points and then to interpolate these points again, can only serve as provi-
sional strategy. It has been chosen in order to make use of already existing tools.
Future developments will aim at directly manipulating the B-Spline control points
which opens particularly promising perspectives with regard to temporally moving
meshes.

The extension of this concept to 3D is straight forward. Here we assume that the
simply connected domain €2 is bounded by six faces, given as B-Spline surfaces.
The volume grid is represented as 3-dimensional tensor product. So the whole ge-
ometry is processed within a unified framework.
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4.6 Offset-Curves

In this section we describe how we compute the offset curves required for the bound-
ary fitted blocks, see also [27].

Let a regular planar curve C be explicitly/parametrically given by

z(u) = (;EZD : Juo, u1] — R2 (81)
The curvature of the curve C' is given by (for simplicity we omit the arguments)
k=g ¥ _ 1T Y1 (82)

(@2 +3%)2 (2 +5%)>

Now we can define curvature dependent offset curves. Consider the curve as a
front = (u, t) propagating along its normal direction with curvature dependent speed
F(k).

x(u,0) = x(u), (83)

%m(u,t) = F(x(u))n(u). (84)
This idea was introduced to grid generation by Sethian [42]. To compute the evo-
lution of the curve, Sethian embeds the interface as the zero level set of a higher
dimensional function and solves a partial differential equation to follow its propaga-
tion. The advantage of the level set approach is primarily that topological changes
such as breaking and merging of several fronts are well defined and performed
without additional effort. But since Sethian’s method leads to complex and time
consuming algorithms, and topological changes cannot occur in the present context,
we use instead the parametric B-Spline representations for the offset surfaces. So
we achieve a stable, easy to implement and fast algorithm that is more suited to the
needs of grid generation.

We assume, that a B-Spline representation &, (u) of the propagating front at time
level ¢; is given. We want to calculate a B-Spline representation &, , at the next
time-level t;11 = t; + At. Therefore we just choose an appropriate, i.e. curvature
dependent set of parameter values u; — they may differ in every time-step — and
compute sampling points for the next offset curve by

R, (ug) = 24, (uy) + At F((uj))n(u;). (85)

Remember that the relevant geometric quantities, curvature and normals, can be
exactly computed from the B-Spline representation. These sampling points are ap-
proximated afterwards by a new B-Spline using the approximation tools and fairing
methods from Section 4.4.3, in order to guarantee that all level sets become opti-
mally smooth.
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We have tested the same functions F' as used in [42], namely

(i) F(k) =1—¢k
(i) F(k) =e™c"

(III) F(Iﬁ]) = max{l — ER, Eh'r‘eshold}-

Here Fipreshota > 0 1S chosen to prevent the front from moving inwards. In [42] e
and Fipreshota are computed only once. With our method their computation is very
cheap so we decided to adapt them in every step to use an optimal step size At.

Two examples are given in Figure 17. The left plot shows several offset curves
around the SFB 401 reference profile, but not the final grid. The lines in cross
direction only symbolize curvature dependent sampling points. To achieve good
grid quality after the computation of the offset curves one can add smooth iso-lines
orthogonal to the surfaces. For this purpose a hyperbolic method based on the so-
lution of ordinary differential equations has been developed in [28]. The right plot
demonstrates the robustness of the method with the aid of an academic but more
difficult example. It is clear, that because of the concave parts of the boundary the
usual techniques from CAD to generate parallel curves would fail here. Addition-
ally the flexibility of splines with regard to boundary conditions was used to enforce
G C'2-periodicity across the cut, yielding a smooth closed curve.

Figure17 Offset-Curves around cruise configuration (left) and artifical example (right)

The last example given by Figure 18 demonstrates that the B-Spline method is ro-
bust enough to handle even non-differentiable corner points. The initial configura-
tion consists of two circles connected by a straigth line. This example might seem
to be somewhat artificial, but really is of practical relevance, because similar situ-
ations occur in practice, when one wants to generate offset curves around multiple
connected domains. In a first step a smooth curve approximating the intitial con-
figuration is defined applying the knot insertion algorithm near the corner points.
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Approximatively 100 control points are needed to represent this curve. After that
the above algorithm is applied. Here it is particulary important, that one can choose
an adopted, optimally large stepsize independently in every time step, because in
the beginning only very small timesteps can be performed.

Figure 18 Offset-Curves around double circle

The extension of this method to 3D is straight forward. From a parametrically given
surface
(u,v) : [uo, u1] X [vo, v1] — R® (86)

one can first compute the relevant geometric quantities, then the sampling points
for the next offset curve, and after that approximate these by a smooth B-Spline
surface. In this case we have more freedom, as one can choose between several
notions of curvature, for example mean curvature, Gaussian curvature or principal
curvatures. Of course, the primary selection criterion for a suitable curvature notion
is to prevent grid folding. First results with this method are promising and will be
subject of further investigations.
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5 Discretization of the Navier-Stokes Equations

5.1 Finite Volume Method

The occurance of hanging nodes due to local mesh adaptation poses particular dif-
ficulties concerning the discretization of the governing equations. In the following
section we present a finite volume method, the special merits of which are its flexi-
bility to operate on meshes of any arbitrary topology. This approach offers a unified
way to incorporate hanging nodes. Its main ingredients will be discussed in detail,
including data structures, realization of spatial second order accuracy, treatment of
convective and viscous fluxes, choice of limiters, treatment of boundary conditions
and implicit time integration. The section will be concluded by the validation of the
basic scheme applying it to a proper selection of test cases for inviscid and viscous
flows.

In the present study, we will concentrate on the discretization of the governing equa-
tions in two space dimensions. Its extension to three space dimensions is subject to
current work.

5.1.1 Data Structure

The discretization of the governing equations (1) is based on a cell centered finite
volume scheme. The grid is treated as a fully unstructured mesh, composed of
simply connected elements with otherwise arbitrary topology. In particular, the flow
solver is not restricted to operate on locally refined quadrilateral cells, but may be
combined with any grid topology, e.g. mixed element type grids. This flexibility is
crucial for supporting the adaptive concept.

Different element types are processed in a unified manner, rather than being dis-
tinguished. This property is often related to as grid transparency. Hanging nodes,
which occur due to local adaptation, do not require any special treatment. The use
of transition elements at refined interfaces is not necessary.

The data structure of the flow solver is primarily based on the faces of the grid. A
face based data structure has the advantage that there are no limitations on the num-
ber of faces, which can be connected to a cell, see Figure (19) for illustration. The
evaluation of fluxes and their contribution to cells can be efficiently implemented by
sweeps over the faces.

The mesh is composed of the basic grid objects: cells, faces and nodes, see Figure
(20). Grid objects are related to each other via connectivity lists. Two type of
pointers are required: A link between faces and cells, that share the face in question,
and a connection between faces and nodes, that belong to the face:

49



Pointer type Data structure
e Facetocell face2_cell (iface,iQ
e Facetonode face2.node(iface,iN)

where i C € [1,2] denotes the left and right neighbour of the face and i N € [1,2]
represents the adjoining nodes, respectively. See also Figure (21) for illustration.

Figure19 Collection of fluxes for polygonally bounded control volume in 2D

O
[ Symbol Legend
O Node
? — Face
[=]1 Cen
| |
o O O

Figure 20 Basic grid objects of unstructured mesh

end - node end - node

Ieft.cell /‘\. (D

right cell C

L (o]
start - node start - node

a) Connectivity between faces and cells b) Connectivity between faces and nodes

Figure21 Logical relation between different grid objects
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5.1.2 Discretization of Conservative Fluxes

The conservative fluxes are determined by solving quasi-one-dimensional Riemann
problems at cell interfaces. The rotational invariance of the Euler equations

F¢ (u)n = RT (n) F° (1) (87)

is utilized to express the projection of the conservative flux into normal direction,
where 1 = R (n) u and R represents the rotational matrix

1 0 0 0
0 ng mny 0
R(n) = 88
m=|y o 0 (88)
0 0 0 1

Within the present paper, the conservative flux function is based on the HLLC
scheme proposed by Batten and Leschziner [46]. The method is capable of exactly
preserving isolated shocks, contact, and shear waves, which are desired attributes
to predict viscous flows accurately. Further, the entropy condition is inherently en-
forced by the scheme, i.e. neither an entropy correction nor a shock fix is required.

To define the HLLC scheme, we first introduce the following quantities:

Sp,=min [A (w), A (uRoe)] , S = maz [Am (uRoe) , Am (up)] , (89)

Sar = OrUn,r (SR - Un,'r') — O1Vn,i (SL - Un,l) +pi— pr
M

= , 90
or (Sr — Vn,r) — 01 (SL — V1) (%0)

= (S, —Sm)™", (91)

p" =01 (vng — SL) (Vng — Sm) +pr- (92)

The subscripts I and r denote the left and right state of the Riemann problem.
A1 (uf*¢) and A, (u®*°¢) represent the smallest and largest eigenvalues of the Roe
matrix [47] and v,,, v, are the velocity components normal and tangential to a cell
interface, respectively.

Introducing the intermediate vector of state u;':

( 07)* 01 (St — vn,1)

. OUn); (SL - 'Un,l) (Q'Un)l +p" —m

'l.ll = (Qvt);k = Ql (SL _ Un,l) (Qvt)l 3 (93)
(Qetot);k (St —vny) (Qetot)l — PiUn, + D" Su

the numerical flux function is expressed as follows:
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Fy if Sy, >0

¥) if S, <0< Su
(u?) if Sar <0< Sg
F, if Sp <0

F
Furie = P (94)

with
QfSM
(Qvn); Sym +p*
(Qvt);k Sum
((Qetot);k +P*) Swm
F; and F,. represent the conservative flux F¢(u), evaluated at the corresponding

state. The relevant expressions for F (u}) are obtained by interchanging the sub-
scripts/ +» rand L + R.

(95)

5.1.3 Higher Order Method in Space

In order to obtain second-order accuracy in space, for each control volume €2; a
linear reconstruction of the primitive flow variables w € {p,u, v, p} is determined:

w(X)g, = wi + i (x —x;)" - Vs, (96)

where w; represents its mean value at the centroid x; of €2; and ¢; denotes a limi-
ter function. The approximate gradient Vw; is calculated by a multi-dimensional,
second order truncated Taylor series expansion around the centroid of €2;

w; = w; + (Xj — Xi)T -Vw;, 7 €N;. (97)

N; is the set of neighbouring cells of €2;, which support the reconstruction of w.
The fixed stencil N; consists of cells, that share a face with €2; (face neighbours).

In practice, equation (97) represents an overdetermined system of equations for the
gradient of w;. It is solved in a least squares sense, using normal equations. To
improve the condition of the problem, the difference vector (x; — x;) is locally
rescaled independently in z and y direction

x;j—x; = (x5 — ) [Ta, Y —yi = (Y —Yi) /i

Z; and ¢; denote the width of the cell in the respective coordinate direction, which is
measured as the maximum distance between the cell centroid and the corresponding
midpoint of the faces, that form the control volume in question.

Numerical experiments have demonstrated, that solving the least squares problem
by means of a numerically more robust Householder transformation does not yield
higher accuracy for the considered applications, but is significantly more expensive.
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Alternatively to the least squares method, the gradient Vw; may be computed by
using the Green-Gauss theorem

Vw; = I‘l wndol'; (98)

i Jar;
where T'; denotes an auxiliary control volume, which is defined by the centroids of
the neighbouring cells of €2;, which support the reconstruction.

In the current study, the Green-Gauss technique is only used in case of the so-called
Ringleb flow, discussed in Section 5.2.1. Everywhere else in the paper, reconstruc-
tion is based on the least squares method.

5.1.4 Monotonicity Enforcement

At local extrema and discontinuities, the recovery polynomial may generate new ex-
trema and therefore yield oscillations in the numerical solution. In order to circum-
vent this problem, limiter functions with TVD (total variation diminishing) property
are used. The slope limiter by Venkatakrishnan [48] is employed. which is defined
as follows:

+2 + o=
Wig + 2wi,gwi,g +eé

wi +wh w; + 2w, +¢e g 720
Qoiag = iag iag 7:7g i’g (99)
1 , 1wy, =0;
with
wi’g = Wy wi,
maz . i =
N w; — Wy, if wi,g >0
W, = .
> min i T
wi™ —wi, i wy <0
maxr  __
w] = mazj=1,. N, {wi,w;},
w) = minj=1,.n; {wi,w;}.

w, denotes the unlimited reconstructed value of w at the Gauss quadrature point g.
The coefficient ¢ is typically set to e = 10~* in our applications. Since condition
(99) has to be fulfilled in every quadrature point of the faces, the final limiter as-
sociated with the control volume €; is taken as the corresponding minimum value

;i = min (piq).

5.1.5 Discretization of Viscous Fluxes

At cell interfaces, the gradients of the velocity and temperature are determined by
utilizing the divergence theorem. As proposed by Coirer [49], a secondary volume is
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introduced, the edges of which are formed by connecting the two vertices of an edge
with the centroids of the cells, that share the interface in question, see Figure 22(a).
It is commonly referred to as “diamond path”. At refined interfaces, the standard
diamond path due to Coirer leads to a non-symmetric control volume, which may
result in a loss of accuracy. Therefore, in case of locally adapted meshes we use
a modified diamond path proposed by Delanaye [50], which maintains a regular
symmetric shaped control volume even in the presence of hanging nodes. To apply
the divergence theorem, an interpolation is required to evaluate the flow quantities
at the vertices. The interpolation is supported by the set of cells IV, that share
the vertex v; in question, see Figure 22(b). A linearity-preserving procedure based
on the pseudo-Laplacian formula according to Holmes and Connell [51] is used to
determine the averaged quantity w at the vertex v;:

Nuj
> &w;
=1

N 7

i:j &
i=1

where w; represents the corresponding flow quantity at the cell centroids : € N,,.
The dimensionless weights &; are given by

(100)

W, =
Uy

& =14+ Ae(xi — o) + Ay (Wi — Yo;) (101)
with
_ LeyRy — Iy Re
o= TR (102)
1
)\y Ia;a;-[yy _ Iﬂ%y ( 03)
where the moments I, Iy, Iy, R, and R, are defined as:

Nuj

R, = ) (wi—my,), (104)
=1
Nuj

Ry = > (4i—9u), (105)
=1
Nuj

I.. = Z(wz - :L"Uj)z ; (106)
=1
Nuj

Iyy = Z(yz - y’Uj)2 ’ (107)
=1
Nuj

I, = Z(wZ — T, ) (Yi — Yo,) - (108)
=1
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At the midpoint of each face, the velocity and temperature are averaged from the
corresponding quantities at the vertices.

A~ |
N
m ‘- n

(a) Diamond path due to Coirer (b) Averaging procedure at grid nodes

1/—!\\
\vl

Symbol legend: m cell center, o node, O face midpoint

Figure22 Calculation of gradients at cell interfaces, using divergence theorem

5.1.6 Boundary Conditions
Euler Walls

At solid walls at rest, the contact condition v-n = 0 is imposed via the modification
of the conservative fluxes through the boundary face. The contact condition yields
the normal flux formula

Fe x|, =0pn0", (109)

where the static pressure p is extrapolated from the interior domain, using the multi-
dimensional reconstruction.

Navier-Stokes Walls

The treatment of Navier—Stokes walls is based on an approach proposed by An-
derson and Bonhaus [52], which has also successfully been used e.g. by Geuzaine
[53] in the context of turbulent flows. At wall boundary cells, the coordinate loca-
tion that is associated with the vector of unknowns, is shifted from the cell centroid
to the midpoint of the corresponding wall edge. The governing equations directly
express the temporal evolution of the flow quantities on the wall itself. This ap-
proach offers several advantages: First, at every time step the boundary conditions
are strongly enforced for the wall boundary cells, rather than just being considered
through the modification of the fluxes. Second, the boundary conditions are imple-
mented in such a way that no assumption on the pressure distribution is required.
The latter is often utilized in other approaches, which are based on modification of
the fluxes or some mirror principle.
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No-slip condition: The no-slip condition v .= 0 on a wall at rest is imposed by
modification of the momentum equations

dov
q Ot

dv =0 (110)

wall
with initial conditions gv (t = 0, xya) = 0.

Isothermal wall: In the present study, only isothermal walls are considered. In
order to impose a constant wall temperature T',;, the energy equation is modified
in such a way that during the temporal evolution of the flow quantities, a constant
wall temperature is automatically maintained. This approach does not require any
assumption on the pressure distribution, e.g. dp/0n = 0, which is actually a pre-
dicate of a component of the gradient of pressure appearing explicitly in the local
balance of moment and therefore not truly appropriate as a boundary condition in a
boundary value problem.

The temperature at the wall is related to the internal energy of the fluid via

1 1 oeior

Twall = —€wall = — 3
Cy Cy 0 lwall

(111)

because here the specific internal energy e is locally equivalent to the total energy
etot, due to the no-slip condition. By means of eq. (111), the temporal evolution of
the energy is expressed in terms of the temporal evolution of the density:

0oetot do
dav = 'uTwa .
/Q at V= colwa

wall Q ot
where the temporal evolution of the density is determined by the continuity equa-
tion.

v, (112)

wall

Far-Field Boundaries

At artificial boundaries of the computational domain which replace the true far—
field boundaries, the type of boundary condition of each individual face may either
be explicitly prescribed, or fully automatically detected, depending on the local flow
solution. The latter approach is particularly useful for C-type grids.

Two different approaches are used here to treat subsonic inflow and outflow con-
ditions. The first one is based on standard characteristic boundary conditions [54].
Outgoing Riemann invariants are determined by quantities being extrapolated from
the interior domain, while incoming Riemann invariants are set by free stream con-
ditions.

The second approach, which is especially suited for stationary planar flow, is based
on a point vortex correction according to Thomas and Salas [55]. In this case, the
flow quantities at farfield are specified by a solution according to full potential flow
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theory. The corrected velocity components are prescribed by

U = |Voo|cosa + Vrsind, (113)
= |Voo| stna — Vrcosh . (114)

The vortex induced velocity magnitude Vr is given by

r 1— M2
= - 115
r 27r 1 — M2 sin? (6 — a) (115)

where the circulation I' of the vortex is determined by I' = 1/2¢y¢ [Voo| CL. Crey
denotes the chord length and C'y, is the lift coefficient. » and € are the radius and
the polar angle, measured from the airfoil quarter—chord to the individual boundary
face at the far—field, respectively. The remaining flow quantities are determined
under the assumption of isentropic flow and constant total enthalpy.

5.1.7 Time Integration

For steady fluid flow time plays the role of an iteration parameter to achieve asymp-
totically stationary flow in the computation. The solution is advanced in time by an
implicit Euler method. Local time steps are applied. For the flux balance of the cell
Q; we define the so-called residual vector

R; := F¢(u)ndS. 116
$Fw (116)

Introducing the definition

0
g

the conservation laws (1) are expressed in semi-discrete form as

R+l (u™1) = R (u™t) + u” ! —u") (117)
Rntt (u"+1) —-0. (118)

Equation (118) is solved by a Newton scheme. For stationary flows we take one
Newton iteration per physical time step. In this case the Newton scheme is:

J (0*) Au™ = —R (u") (119)
with .
J = Aﬂtl-l- g—f} , Au":=u"t' —u". (120)

The linear system of equations (119) is solved by an iterative Krylov subspace
method. In this study, we employ the GMRES algorithm [56], preconditioned by
an incomplete LU-factorization. Typically, a Krylov subspace method requires only
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the inner product of a Jacobian matrix 7 and a vector v, and not 7 explicitely [57].
This product can also be approximated by a difference quotient of the form
R(u+ev)—R(u)

J (v~ - ., with ¢€R. (121)

The difference parameter ¢ is chosen as

1.0 + ||ull,
[&|],

with € = 1078 in our application. The advantage of using a matrix free version
of a Krylov subspace method is, that the matrix vector product may consistently
be discretized according to the evaluation of the residual vector, that represents the
right hand side of equation (119). Nevertheless, a Jacobian is still required for the
application of the ILU (n) pre-conditioner. The pre-conditioning matrix is based
on a first order accurate scheme in space. The Jacobian is derived numerically [58],
using one sided difference operators of the form:
OF; (u) F; (u+ ENGJ') —F;(u)

—— = lim
auj E—0 E

e=¢ (122)

. with £€R, (123)

where F; is the i-th component of the numerical flux vector and e; is the j-th unit
vector, associated with the dependent variable u;.

Presently, viscous terms are not included within the Jacobian. For the computation
of inviscid flows presented in this paper, we employ the standard GMRES algo-
rithm using a Jacobian derived by numerical means. For viscous flows, we utilize a
matrix—free GMRES, which consistently accounts for the viscous terms within the
matrix vector product. In this case, only the pre-conditioner suffers from neglecting
the viscous terms.

The infrastructure related to the Newton-Krylov method in this paper is based on
the PETSc [59] library of Argonne National Laboratory. For further details of the
numerical method we refer to [60], [61].

5.2 Validation of the Basic Scheme

In the following, various test cases are considered using regular, non-adaptive struc-
tured grids in order to validate the basic finite volume scheme. Particular emphasis
IS put on to the spatial accuracy of the method. For inviscid flows, the Ringleb flow
Is investigated, for which an analytic solution is available. For viscous flows, the
laminar flow over an isothermal flat plate is considered, for which the similarity
solution due to Blasius serves as a reference. Further, the transonic flow about an
airfoil according to the SFB 401 cruise configuration is used to verify the method in
the presence of shocks. In this case, results obtained with the FLOWer code are used
for comparison. Finally, convergence acceleration to steady state using implicit time
integration is investigated.
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5.2.1 Ringleb flow

The so-called Ringleb flow [62] has been used as a test case to assess the spatial
accuracy of the basic scheme for inviscid flows. It is an exact solution of the Euler
equations obtained by hodograph transformation. The flow depends on the inverse
of the stream function & and the velocity magnitude ¢. In our application we choose
the values £ = 0.4 and k& = 0.8 to define the rigid walls, and ¢ = 0.3 to define
the inlet- and outlet boundaries. The flow is fully subsonic within the domain. The
inlet Mach number is 0.3027 and the maximum Mach number reaches a value of
0.8567 at the center of the bottom wall. The error Ej; and the spatial order of the
scheme EOC (Experimental Order of Convergence) are estimated in the L, norm of

the Mach number:
E,,.
log ( 2 )
Ehj+1

h.
tog ()
I (hj+1

where f5; represents the ratio of the numerical solution and the exact solution on

a grid with the characteristic length scale h; = 1/4/N;; N; is the number of grid
cells. The accuracy analysis is carried out on four different grids with a resolution
of 16x4, 32x8, 64x16 and 128x32 cells, respectively. In addition, the grids are dis-
torted randomly in order to assess the sensitivity of the solution with regard to mesh
quality, see Figure 23. Figure 24 illustrates the Mach number distribution along the
bottom wall for three different regular grids. The linear Green-Gauss reconstruc-
tion method according to eqg. (98) has been employed. For the highest resolution,
the maximum error between the numerical solution and the exact solution is about
0.02%. Figure 25 shows the error Ej in the Mach number, depending on the char-
acteristic length scale h; of the mesh. A constant and a linear reconstruction, based
on the Green-Gauss method, have been considered. For the linear reconstruction,
the sensitivity of the error with regard to grid distortion is weak. The order of ac-
curacy can be estimated between 2.5-2.9 for the linear reconstruction, see Table 1.
The constant reconstruction scheme is numerically less then first order accurate for
the considered grids.
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Figure23 Ringleb flow: Grids (32x8 cells); left figure: regular grid; right figure: randomly
distorted grid
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Figure 24 Ringleb flow: Mach number distribution at bottom wall (partial view); linear
Green-Gauss reconstruction on regular grids; — exact solution, 0128x32 cells, #32x8 cells,
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Figure 25 Ringleb flow: Error in the Mach number as function of the characteristic length
scale h; of the mesh. Linear Green-Gauss reconstruction: e regular grid, ¢ distorted grid ; A
constant reconstruction (regular grid)

Table 3 Ringleb flow: experimental order of convergence (EQOC) for linear reconstruction
and constant reconstruction on regular and distorted grids

EOC
grid linear rec. | linear rec. | constant rec.
regular distorted regular
32x8 2.79 2.70 0.543
64x16 2.83 2.93 0.909
128x32 2.84 2.53 0.862

60



5.2.2 Laminar Boundary Layer

The next test case considers the laminar flow over an isothermal flat plate. In order
to reduce compressibility effects, a free stream Mach number of M., = 0.2 is
chosen. The Reynolds number is Re,, = 104, based on unit length. The wall is
considered as isothermal, with T4 = Too = 273.0K. A linear dependence of the
molecular viscosity on the temperature is assumed. The Prandtl number is Pr = 1.
For purpose of validation, the similarity solution according to Blasius [63] for an
incompressible laminar fluid flow serves as a reference.

A structured, non-adaptive grid with 176 x 56 cells (9856 cells all together) is con-
sidered, see Figure 26. The plate extends on the x-axis between z = 0.0 and
x = 2.0, with 96 cells located on the plate itself. Upstream of the leading edge,
the lower boundary of the domain is modeled as an inviscid impermeable wall. The
first grid spacing normal to the wall is 103, which equals y* ~ 1 at Re = 10%.
The grid is clustered about the leading edge, measuring a first grid spacing of 10—3
in streamwise direction. Far-field boundary conditions are applied as follows: At
inflow, the temperature and velocity vector are prescribed, while the static pressure
is extrapolated from the interior domain. At outflow, the static pressure is prescribed
and the density as well as the velocity vector are extrapolated from the interior do-
main. The upper boundary of the domain is treated as an outflow.

Figure 27(a) and Figure 27(b) present a comparison between the computed u-velocity
and v-velocity profiles with the theoretical solution at Re, = 9169, respectively.

Both velocity components are predicted accurately, compared with the theoretical

solution. At the outer part of the boundary layer (n > 4) the v-velocity is slightly

overpredicted by the numerical scheme.

Figure 28 illustrates the evolution of the skin friction coefficient along the plate
(please note: the graph has been truncated for Re < 1000). The computed skin
friction agrees well with the Blasius solution.

0.5

Figure 26 Structured, non-adapted grid for laminar flow over a flat plate. Plate extension:
z € [0, 2]. Grid resolution: 176x56 cells, 96 cells located on the plate.
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Figure 27 Boundary layer profiles at Re, = 9169 for the laminar flow over an isothermal
flat plate (Moo = 0.2, Reoo = 103, Ty = To)

0.02 -
0.018 -

0.016 ; o Blasius solution
QUADFLOW

0.014
Cr -
0.012
0.01
0.008 |

0.006 -

1 ‘
20000

10000
Re

Figure28 Distribution of the skin friction coefficient for the laminar flow over an isothermal
flat plate as function of Reynolds number (Mo = 0.2, Reoo = 103, Ty = To)
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5.2.3 SFB 401 Cruise Configuration

The third test case deals with the inviscid flow about an airfoil according to the tran-
sonic SFB 401 cruise configuration at M., = 0.85, a = 0°. A regular multiblock
structured grid consisting of 256x32 cells is employed, with 192 cells located on
the airfoil itself. The far-field boundary is placed about 20 chord lengths away from
the airfoil. Far-field conditions are determined by using the point vortex correction
according to eq. (113) and eq. (114). In Section 6.2, we will revisit this test case,
using the fully adaptive algorithm.
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Figure 29 presents the computational grid and the isobars for the present flow con-
ditions. The flow exhibits a strong shock at the trailing edge of the upper surface.
On the lower surface of the airfoil, two shocks can be identified. The shock located
near the leading edge is very smeared, due to insufficient grid resolution, see Figure
29(b).

Figure 30 shows the pressure distribution on the airfoil surface. For the purpose
of validation, numerical computations conducted with the FLOWer code [64] serve
as a reference. In the latter case, the spatial discretization is based on central dif-
ferences, stabilized by artificial dissipation of Jameson type. Vortex correction in-
cluded. Both computational results are in good agreement. As expected, the up-
wind scheme (QUADFLOW) provides sharper shock resolution than the spatial dis-
cretization based on central differences (FLOWer). The aerodynamic lift coeffi-
cientis C'r, = 0.463527 determined by the FLOWer code, and C';, = 0.497806 by
QUADFLOW, which differ by about 7.4%.
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Figure 29 SFB 401 cruise configuration, Mo, = 0.85, « = 0°. Left Figure: contours of
cp distribution, ¢p,min = —1.35, ¢p,maz = 1.2, Acp = 0.075. Right Figure: Non-adapted
multiblock structured grid, 256x32 cells. a) Total view of airfoil. b) Partial view of leading
edge.
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Figure 30 Distribution of the pressure coefficient for the SFB 401 cruise configuration,
Moo = 0.85, a = 0°. Grid resolution: 256x32 cells.

5.2.4 Performance of Implicit Time Integration

In order to demonstrate the feasibility of the implicit time integration to acceler-
ate convergence to steady state, we consider the fully subsonic inviscid flow about
the SFB 401 cruise configuration at M, = 0.5, & = 0°. The analysis of the im-
plicit scheme concentrates only on inviscid flow, since viscous terms have not been
accounted for within the preconditioner yet. Its extension for viscous flows is sub-
ject to current research. The flow conditions have been chosen in order exclude
secondary effects associated with discontinuities, which may reduce the rate of con-
vergence. In particular, limiter clipping in vicinity of discontinuities, reflection of
entropy waves at far-field boundaries in the presence of shocks, and C'F'L restric-
tions due to the non-global convergence property of the Newton scheme may have
a significant impact on the rate convergence. In complex applications, these effects
are difficult to separate in detail. Therefore, a fully subsonic flow is investigated to
solely concentrate on the implicit time integration itself and to exclude the above
mentioned effects as far as possible.

Computations have been carried out on a structured, non-adaptive mesh consisting
of 256x32 cells like in the previous test case. Cell ordering is arranged in a quasi-
lexicographic manner, such that a small bandwidth is achieved. For the solution of
the linear system, the residual is converged three orders of magnitude. The Krylov
subspace has a dimension of 30 search directions. No restart was required for the
considered test cases.
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Figure 31 illustrates the convergence history of the non-linear residual for three dif-
ferent CF'L numbers, namely CFL = 10, 10% and 102. The residual is monitored
in the L; norm of the density. LU (2) serves as preconditioner. The convergence
is greatly accelerated with increased C'F'L number. Remark: The scheme remained
stable even for CF L = 108, but did not exhibit further acceleration.

Next, four different levels of fill-in for the ILU (n) preconditioner are considered,
namely n € [0,1,2,4]. CFL = 1000 is chosen, since it has demonstrated the best
rate of convergence, according to Figure 31. Figure 32 illustrates that in this case
ILU(2) is the best choice, in terms of computation time.
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Figure 31 Convergence histories for SFB Figure 32 Convergence histories for dif-

401 cruise configuration, Mo, = 0.5, « =  ferent levels of ILU(n), CFL = 1000.
0°. ILU(2) preconditioner SFB 401 cruise configuration, Mo, = 0.5,
a=0°

6 Numerical Resultsof the Adaptive Scheme

After validation of the basic scheme, we now employ the fully adaptive algorithm.
First, the subsonic flow about a NACAO0012 airfoil at M, = 0.63, a = 2° is In-
vestigated. We can demonstrate, that the adaptive algorithm is capable of providing
highly accurate flow solutions. Next, we revisit the transonic flow about an airfoil
according to the SFB401 cruise configuration, that has been studied in Section 5.2.3
using regular structured grids. Further, the transonic flow over a NACAOQ012 air-
foil at Mo, = 0.95, @ = 0° is considered in order to demonstrate the advantage
of adaptation to highly resolve complex shock configurations. Finally, the laminar
flow over a flat plate is investigated, employing the fully adaptive scheme.
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6.1 Subsonic NACAO0012 airfoil

The first test case considers the subsonic flow about a NACAQ0012 airfoil at M, =
0.63, a = 2.0°. For this configuration, the aerodynamic lift coefficient may be
predicted as C, por = 0.333, by utilizing a full potential method.

Accurate prediction of the aerodynamic coefficients greatly depends on grid resolu-
tion and far—field conditions. Both aspects are investigated here. The computational
C-type grid extends about 20 chords away from the airfoil. At the farfield, two
types of boundary conditions have been applied: The first one utilizes character-
istic based boundary conditions. Riemann invariants that enter the computational
domain are determined by free—stream conditions, i.e. without application of vortex
correction. In the second case, far—field boundary conditions are specified by using
the point-vortex correction.

To assess the influence of grid resolution, two different threshold valuese = 5-10~2
and ¢ = 3 - 10~2 are employed for adaptation. The sensitivity of the adaptation
primarily influences the grid resolution in the vicinity of the airfoil. In particular,
adequate resolution of the stagnation area of the leading edge is of significant im-
portance for the overall prediction of the aerodynamic coefficients.

Computations are initialized on a coarse mesh, consisting of 400 cells, with 10 cells
on each side of the airfoil surface itself. A maximum number of L,,,. = 9 grid
levels are permitted. 15 cycles of adaptation have been performed. The actual grid
level that has locally been reached during the computationis L = 7 fore = 5-1072
and L = 9 for e = 3-1073. The highest refinement levels are located within the
stagnation area at the leading edge. The residual decreased five orders of magnitude,
measured in the L;-norm of the density-residual. No limiter has been applied.

Figure 33 and Figure 34 show the isolines of the Mach number and the Mach distri-
bution on the airfoil, respectively. Vortex correction has been applied, e = 3 - 1073,
Table 4 summarizes the results for the considered parameter. The aerodynamic lift
coefficient, its derivation from the potential flow solution and the maximum Mach
number on the airfoil surface are presented. The variation of the threshold parameter
has a large influence on the number of grid cells, which almost increases by a fac-
tor of three. Without vortex—correction, the aerodynamic lift is underestimated by
about 3%, measured on the finest mesh. Application of the vortex—correction greatly
enhances the solution. On the fine grid, the potential flow solution is reached very
accurately. On the coarser grid, the aerodynamic lift is underpredicted by about 2%,
even with applied vortex—correction. This deficit results from insufficient resolution
about the stagnation area at the leading edge. The maximum Mach number only
reaches a value of M. =~ 0.964, compared with M, .. ~ 0.987 for the fine grid.
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Figure 33 Mach number contours for Figure 34 Mach distribution for

NACAOQ012 airfoil, M, = 0.63, a = NACAQ0012 airfoil, M. = 0.63,
2.0°. Mpin = 0.0, Mypeo = 0.975, a=2.0°
AM =0.025

Table4 Aerodynamic coefficients for NACA0012 airfoil, M = 0.63, o = 2.0°

€=5.0-10"2 €=3.0-10"3
vortex correction no yes no yes
number of cells 5638 5962 17035 17083
oF) 0.3138246 0.3266950 || 0.3223484 0.3329005
1-C1./CL pot [%] || 57583783 1.8933933 || 3.1986786 0.0298798
Mooz 0.9553167 0.9641491 || 0.9787976 0.9872640

6.2 Transonic SFB 401 Cruise Configuration

We revisit the inviscid flow around the SFB 401 cruise configuration at M, = 0.85,
a = 0°. In Section 5.2.3, this test case has been investigated using a regular, non-
adaptive structured grid. In the following study, the fully adaptive algorithm is
utilized. Computations are initialized on a grid consisting of four blocks, each with
a resolution of 16x16 cells, see Figure 35. Adaptation is carried out each time the
residual decreased to 2.5 - 10, based on the initial residual, measured in the L,
norm of the density. 14 adaptation cycles have been conducted, with a maximum
refinement level of L,,,,. = 9. Adaptationis applied to the set of primitive variables.
The threshold value for the multiscale analysis is e = 8 - 1072,

Figure 36 and Figure 37 present computational grids and corresponding pressure
distributions for three different stages of adaptation. Namely, for grid no. 1, 4 and
14. Figure 38 shows the corresponding pressure distribution on the airfoil surface
for grid no. 1 and grid no. 14. On the coarsest mesh, the shock at the trailing edge
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of the upper surface can already be identified. On the lower surface, the shock at
x =~ 0.53 is very smeared while the shock near the leading edge cannot be iden-
tified at all. After 3 cycles of adaptation, all three shocks are present (Figure 36,
Figure 37). The mesh contains 7405 cells, with a maximum grid level L = 4. The
locally finest resolution of the grid approximately corresponds to the resolution of
a structured, non-adaptive mesh with 256x32 cells, as used in Section 5.2.3. With
further adaptation, the shock resolution can still be improved significantly. On grid
no. 14, all shocks are highly resolved. The mesh contains 28288 cells, with a max-
imum grid level L = 9. A large number of cells is concentrated within the shock
regions. Although the number of grid cells of the finest mesh appears to be rather
high, compared with the structured grid used in Section 5.2.3, it has to be empha-
sized that the shock resolution is greatly improved by the adaptive scheme. Further,
to obtain the same solution quality, the utilization of a structured, non-adaptive grid
would prospectively require a significantly higher number of cells than the locally
adapted grid. In addition, the process of adjusting a structured grid to the shock
location requires a detailed a-priori knowledge of the solution to provide adequate
grid resolution.

The aerodynamic lift coefficient is C', = 0.514092, measured on the finest mesh
(grid no. 14). In Section 5.2.3 we determined a lift coefficient of C';, = 0.463527
(FLOWer) and C';, = 0.497806 (QUADFLOW), respectively. This reflects a differ-
ence of 10% (FLOWer) and 3% (QUADFLOW), compared with the locally adapted
solution.

Figure 39 presents the evolution of the number of grid cells for different stages
of adaptation. During the initial phase, the mesh size rapidly increases with each
adaptation step. With further adaptation, the number of cells converges against a
constant. It is important to note, that large regions of the shocks have not been
resolved by the highest refinement level possible (L. = 9), but have only reached
a lower level of adaptation L < L,,... l.e., convergence of the mesh size has not
been enforced by reaching the highest grid level. Even in the presence of shocks,
the adaptation process converges within the range of the prescribed threshold value.
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Figure35 SFB 401 cruise configuration, M., = 0.85, & = 0°: Initial grid (partial view)
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Figure36 SFB 401 cruise configuration, M., = 0.85, a = 0°. Left Figure: Computational
grid. Right Figure: ¢, distribution, cp,min = —1.35, ¢p,maz = 1.2, Acp, = 0.075
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Figure 37 SFB 401 cruise configuration: Detailed view of stagnation area, Mo, = 0.85,

a = 0°. Left Figure: Computational grid. Right Figure: ¢, distribution, ¢, min
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Figure 38 Pressure distribution for SFB 401 cruise configuration, Mo, = 0.85, a = 0°
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6.3 Transonic NACAO0012 airfoil

The next test case concerns the transonic flow over a NACA0012 airfoil at M, =
0.95, a = 0° (AGARD reference test case 03 [65]). The far-field boundary is lo-
cated about 20 chord lengths away from the airfoil. Standard characteristic bound-
ary conditions are applied at the far-field, where the incoming Riemann invariant is
set by free stream quantities.

Computations are initialized on a structured grid consisting of 4 blocks with a res-
olution of 20x20 cells each. 13 cycles of adaptation have been performed with a
maximum refinement level of L,,,. = 8. Adaptation has been carried out on the
set of primitive variables, each time the density residual decreased to 10~4. The
threshold value for the multiscale analysis is e = 4 - 1072,

The flow pattern downstream of the trailing edge is characterized by a complex
shock configuration. Two oblique shocks are formed at the trailing edge. The re-
maining supersonic region behind the oblique shocks is closed by a further normal
shock. This configuration is often related to as so-called fish-tail. Figure 40 presents
the locally adapted grid and the corresponding Mach distribution in the vicinity of
the airfoil, after 13 cycles of adaptation. The grid consists of 55084 cells. All three
shocks are highly resolved by the adaptive grid. The position of the normal shock is
located at z ~ 2.1721 chord length behind the trailing edge of the airfoil.

Figure 41 presents a total view of the shock configuration. The oblique shocks ex-
tend about 10 to 12 chord lengths into the flow domain. The adaptive grid provides
high resolution over the complete extent of the shocks. Such a high shock reso-
lution is not feasible using standard structured grids. Discretization of the shock
region between z € [1, 5], y € [—10,10], by a uniform structured mesh according
to a refinement level L = 8 equals about 29.5 - 108 grid cells. A uniform discretiza-
tion of the complete flow domain according to L = 8 would result in about 102
cells.

72



S
‘g\\\t\\\\\\%%&\\\\\“\“lll
W
SN

W
1

i
LNRRVAN
I/
e

Figure40 Partial view of NACAO0012 airfoil, M = 0.95, o = 0.0°. Left Figure: Computa-
tional grid. Right Figure: Mach distribution, My,in, = 0.0, Mype: = 1.45, AM = 0.05
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Figure4l Total view of NACA0012 airfoil, M = 0.95, o = 0.0°. Left Figure: Computa-
tional grid. Right Figure: Mach distribution, M,,;n, = 0.0, M0 = 1.45, AM = 0.05
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6.4 Laminar Boundary Layer using Adaptation

In this section, we will demonstrate the capability of the multiresolution scheme to
automatically resolve laminar boundary layers. The application of the multiscale
analysis to viscous flows is of particular interest, since the method has originally
been developed in the context of hyperbolic systems of partial differential equations.
The following issues are of essential interest for the successful application of the
adaptive algorithm to viscous flows:

1. detection and adequate resolution of the boundary layer
2. appropriate choice of the first grid spacing normal to the wall

3. convergence of the multiscale analysis in presence of steep velocity gradients

All three issues will be addressed here.

We reconsider the laminar flow over a flat plate extending on the x-axis in the do-
main x > 0. Flow conditions are equivalent to that used in Section 5.2.2, where a
regular structured, non-adaptive grid has been employed for validation of the basic
scheme. The initial grid consists of 20 x 8 cells (160 cells all together), with 12
cells located on the plate itself, see Figure 42. For simplicity, the mesh has been
generated by coarsening the structured grid employed in Section 5.2.2. The first
grid spacing normal to the wall is approximately 10~2, which equals y* ~ 10 at
Re = 10%. At the trailing edge of the plate, about four cells are located within the
boundary layer with thickness 4, see Figure 44(a).

05 I~

Figure 42 Initial grid for laminar flow over a flat plate. Plate extension: z € [0, 2]. Grid
resolution: 20 x 8 cells with 12 cells located on the plate

10 cycles of adaptation have been performed. Adaptation is carried out on the set of
primitive variables, each time the density residual decreased to 10~8, based on its
initial value. The highest refinement level permitted is L. = 8. A threshold value
of e = 8 - 1072 is chosen for the multiscale analysis. Figure 43 shows the locally
adapted grid after 10 cycles of adaptation. The grid consists of 3595 cells, which
is about 36% of the number of cells being used for the structured grid employed in
Section 5.2.2. The boundary layer is automatically detected by the present adapta-
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Figure43 Locally adapted grid for laminar flow over a flat plate. Plate extension: z € [0, 2].
Grid resolution: 3595 cells

0.25 - 0.25 -
0.2 0.2
0.15 0.15
Y ] Y ]
0.1 0.1
0.05 005 £ i 1
] ?S(ReL) ] JS(ReL)
0 F—F—7———7—— 0 B—mMm—m————
1.8 1.9 2 1.8 1.9 2
X X
(a) initial grid (b) adapted grid

Figure44 Partial view of trailing edge of flat plate. § = boundary layer thickness according
to Blasius solution

tion criteria. The detailed view of the trailing edge (Figure 44(b)) shows that after
reaching the border of the boundary layer (y > &), the mesh resolution is imme-
diately decreased. The boundary layer is resolved by about 25 cells, at the trailing
edge. The first spacing normal to the wall is about 10~2, which equals y* ~ 1.
It is important to note, that the resolution of the first grid spacing corresponds to a
refinement level of L = 4. l.e., the choice of the first grid spacing has not been en-
forced by reaching the highest refinement level possible (L, = 8). The highest
grid level has only been reached in vicinity of the stagnation point at the leading
edge of the plate. This fact indicates that even in the presence of steep gradients
within the boundary layer, the multiscale analysis converges within the range of the
prescribed threshold parameter. The number of grid cells remains bounded during
the adaptation process.

Figure 45(a) and Figure 45(b) present a comparison between the computed u-velocity
and v-velocity profiles with the Blasius solution at Re, = 9188.75, respectively.
Both velocity components are in good agreement with the theoretical solution. In
accordance with the results obtained in Section 5.2.2, the v-velocity is slightly over-
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predicted for n > 4 by the numerical scheme. We conclude that this discrepancy is
independent of the grid resolution.

Figure 46 shows evolution of the skin friction coefficient along the plate (please
note: the graph has been truncated for Re < 1000). The computed skin friction
agrees well with the Blasius solution.
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Figure45 Boundary layer profiles at Re, = 9188.75 for the laminar flow over an isother-
mal flat plate after 10 cycles of adaptation (Moo = 0.2, Reoo = 103, T\ = To)
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Figure46 Distribution of the skin friction coefficient for the laminar flow over an isothermal
flat plate as function of Reynolds number after 10 cycles of adaptation (Mo, = 0.2, Res =
103, Ty = Two)
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