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Abstract

The classical two-phase flow model of Baer and Nunziato is generalized to a thermody-
namic consistent multi-component model in multi dimensions. The extended model allows
to deal with phase transitions where exchange processes are modeled by relaxation terms.
In particular, chemical relaxation is based on chemical potentials instead of Gibbs free
energies. New procedures to determine the equilibrium state are derived that in combi-
nation with local grid refinement significantly reduce the computational effort and allow
for multi-dimensional computations also for more than two components. Artificial param-
eters in the model as well as numerical threshold values frequently introduced to stabilize
the computation are not needed for the extended model. Stability and efficiency of the
model and the implementation is verified by means of a spherical symmetric collapse of
a laser induced cavitation bubble as well as two-dimensional shock bubble interaction for
three-component fluid, where thermal relaxation is performed in the entire flow field.

Keywords: multi-component fluids, non-equilibrium model, phase transition, relaxation
process, bubble collapse.
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1 Introduction

Flows of compressible multi-component fluids, where the single components may be in the liquid
or the gas phase, respectively, have a wide range of applications. Difficulties in the modeling
result from the interaction of the fluids, especially from the exchange of mass and energy across
the phase interfaces. Therefore the treatment of the phase interfaces is in the focus of the
modeling.

In the literature several models are available that are distinguished in sharp interface and
diffuse interface models. A detailed survey of these models can be found in Zein [46]. Here our
main interest is on multi-component fluids derived from an ensemble averaging procedure of
Drew [12]. A comprehensive introduction to these models can be found in the classical book of
Drew and Passman [13].

There are simplified two-phase models available in the literature that can be derived from
the above general model by assuming zero relaxation times, see [24]. A detailed discussion
of these models is beyond the scope of this work. For this purpose the interested reader is
referred to [46] and the references cited therein. Typically reduced models suffer from some
short-comings. For instance, conservation of energy might be violated or the system looses its
hyperbolicity. Therefore we prefer a full non-equilibrium model, where each component has its
own pressure, velocity and temperature and is governed by its own set of fluid equations. For
this purpose we consider a general class of non-equilibrium multi-component models that is a
generalization of the three-phase model investigated by Hèrard, see Remark 7 in [23].

Obviously, the original two-phase model by Baer and Nunziato [5] is a full non-equilibrium
model which was modified by Saurel and Abgrall. The modified model also includes relax-
ation terms for the pressure and the velocities of the components. By instantaneous relaxation
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procedures equilibrium values for the pressure and the velocity can be found. Using further
relaxation procedures to drive the temperatures and the Gibbs free energies and chemical po-
tentials, respectively, into equilibrium mass transfer between the phases can be modeled, see
Saurel et al. [40] or Zein et al. [47]. Typically the relaxation procedures for temperature and
mass transfer are based on iterative algorithms that are very much time-consuming, see Zein et
al. [48]. Thus multi-dimensional applications are only feasible in acceptable computational time
on massive parallel architectures. It was just recently, that Pelanti und Shyue [34] published
two-dimensional results that were made possible by modifying the algorithm of the relaxation
process. Although they do not give any computational times for their results further improve-
ments seem to be possible. Therefore our main objective is to modify the relaxation models
and to design relaxation procedures that allow for more efficient multi-dimensional computa-
tions. The efficiency is further improved by combining the discretization of these models with
multiresolution-based grid adaptation techniques, see Müller [31, 32].

For the relaxation model we follow the ideas of Zein et al. [48] but improve the modeling in
several aspects: (1) First of all, we simplify the relaxation procedures for pressure, temperature
and Gibbs free energy, both for two-phase models with two and three components, respectively.
(2) Opposite to [48] we avoid the calculation of model parameters that allows us to find the
relaxed pressures and temperatures directly without performing an iterative procedure. (3) In
addition, the modeling of mass transfer between two unpurified phases is improved, see also
Pelanti and Shyue [34] who only considered pure phases. (4) Instead of Gibbs free energies we
relax the chemical potentials. Therefore we may take into account additional components in the
phases by considering the mixture entropy and, thus, the model becomes more accurate. (5)
Furthermore, we avoid the artificial definition of an interfacial region. This allows us to model
physical cavitation, which means that we can start from a pure liquid phase. The vapor phase
will be created by expansion. In previous work it was necessary to start with an appreciable
amount of vapor, for instance 1% in [47] and also in [34]. Nevertheless in our model we avoid
unphysical nucleation or unphysical cavitation. We will give evidence for this by numerical
examples. (6) Another essential difference to [47] is that we do not restrict mass transfer to
metastable states with liquid temperature larger than the saturation temperature. Typically,
condensation processes are not considered due to this restriction, cf. [47] and [34], whereas our
model allows also to deal with these processes. (7) Moreover, we perform thermal relaxation
also when no mass transfer occurs. This is physically reasonable. For instance this may happen
in gas mixtures. (8) Finally we improve the efficiency of the relaxation procedure where we
perform pressure and temperature relaxation simultaneously. By this we avoid the approximate
pressure relaxation procedure, see [26] or [46], that may cause numerical instabilities and, thus,
very small time steps.

For a physically relevant application we present simulations for laser induced cavitation
bubbles. These are motivated by experiments of Lauterborn et al.. An overview on this work can
be found in the review article [27]. Recent experiments [41, 44] at elevated water temperatures
indicate that the amount of non-condensable gas in the bubble might have a significant influence
on the collapse and the rebound of the bubble. In the book of Müller [30], p. 301-312, it is
explained that in addition of water vapor at least one further substance must be inside the
bubble to guarantee a stable equilibrium state of a surviving bubble. In order to investigate
this numerically the original two-component model had to be generalized to a multi-component
model.

Motivated by lithotripter shock wave experiments, see [1], we investigate the interaction
of a collapsing bubble with a planar shock wave. This is a genuinely two-dimensional prob-
lem. Again, we perform computations where the bubble is filled with liquid-vapor and non-
condensable gas.

The paper is organized as follows. In Section 2 we introduce the non-equilibrium multi-
component model and summarize some of its properties. In Section 3 we discretize the model
by an operator splitting. For this purpose, we first apply the Saurel-Abgrall approach for
the stable discretization of the homogeneous fluid equations. Then the relaxation terms are
relaxed to the equilibrium state. In particular, the thermal and chemical relaxation procedures
are given in detail due to its originality. Finally in Section 4 we present numerous numerical
results. First of all, real cavitation is investigated by means of one-dimensional computations.
Then the influence of the amount of non-condensable gas on the collapse of a vapor-filled
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bubble is studied by means of a spherical bubble collapse. We conclude with two-dimensional
computations for a shock-bubble interaction.

2 Mathematical formulation of the model

First of all, we describe the full non-equilibrium model and derive from this the mixture model
and the equilibrium model, see Section 2.1. To close the model we specify the equations of
state, see Section 2.2, and the relaxation terms, see Section 2.3. Finally we summarize some
physical and mathematical properties of the different models, see Section 2.4.

2.1 Non-equilibrium multi-component model

For the multi-component model we use the Saurel-Abgrall approach [37] that is derived by
the ensemble averaging procedure of Drew [12] and neglecting all dissipative terms everywhere
except at the interfaces. It can be considered a modified form of the Baer and Nunziato model
[5].

Thus the multi-component flow is described by a non-equilibrium model where all compo-
nents are present in each point of the space-time continuum. Each component k = 1, . . . ,K
has density ρk, velocity vk and pressure pk, The amount of each component is determined by
its volume fraction αk. The volume fractions are related by the saturation constraint

K∑
k=1

αk = 1, αk ∈ [0, 1]. (1)

In analogy to the two-phase model of Saurel and Abgrall [37] the fluid equations for each
component can be written as

∂t (αk ρk) +∇ · (αk ρk vk) = Sρ,k, (2)

∂t (αk ρk vk) +∇ · (αk ρk vk v
T
k + αk pk I) = −

K∑
l=1,6=k

Pk,l∇αl + Sρv ,k, (3)

∂t (αk ρk Ek) +∇ · (αk ρk vk (Ek + pk/ρk)) = −
K∑

l=1,6=k

Pk,l V I · ∇αl + SρE,k, (4)

where we neglect effects due to viscosity, heat conduction, surface tension and gravity. Nev-
ertheless, due to the thermal relaxation procedures we account for heat exchange between the
components. In our notation Ek = ek + v2

k/2 is the total specific energy with ek the specific
internal energy of component k. The terms Pk,l and V I are the interfacial pressures and veloc-
ity, respectively. The gradient terms on the right-hand side account for the interaction between
different components. There may be other contributions to be accounted for, see [13], p. 68 ff
and 144 ff. The fluid equations are supplemented by an equation of state

pk = pk(ρk, ek) resp. ek = ek(ρk, pk) (5)

for each of the components, see Section 2.2 for the specific choice. The evolution of the volume
fractions is characterized by the non-conservative equations

∂t αk + V I · ∇αk = Sα,k, k = 1, . . . ,K. (6)

Due to the saturation condition (1) we only need K − 1 equations. Without loss of generality
we express αK by the other volume fractions, i.e.,

αK = 1−
K−1∑
k=1

αk, ∇αK = −
K−1∑
k=1

∇αk, Sα,K = −
K−1∑
k=1

Sα,k. (7)

The source terms Sα,k, Sρ,k, Sρv ,k and SρE,k on the right-hand sides of (2), (3), (4) and (6)
describe the relaxation process corresponding to mass, momentum and energy transfer between
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the different components corresponding to the relaxation of velocity, pressure, temperature and
mass, ξ ∈ {v, p, T, µ}, i.e.,

Sα,k :=
∑
ξ

Sξα,k, Sρ,k :=
∑
ξ

Sξρ,k, Sρv ,k :=
∑
ξ

Sξρv ,k, SρE,k :=
∑
ξ

SξρE,k,

These depend on the specific components at hand that will be discussed in Section 2.3. In order
to ensure conservation of mass, momentum and energy at equilibrium the relaxation terms have
to satisfy the conservation constraints

K∑
k=1

Sξα,k = 0,

K∑
k=1

Sξρ,k = 0,

K∑
k=1

Sξρv ,k = 0,

K∑
k=1

SξρE,k = 0 (8)

for each relaxation type ξ ∈ {v, p, T, µ}.
From the non-equilibrium model we can derive the equations for the mixture. For this

purpose we introduce the mixture quantities

p :=

K∑
k=1

αk pk, ρ :=

K∑
k=1

αk ρk, ρv :=

K∑
k=1

αk ρk vk, ρE :=

K∑
k=1

αk ρk Ek (9)

for pressure, density, momentum and total energy, respectively. In order to ensure conservation
of mass, momentum and total energy of the mixture we need to impose constraints on the
interfacial pressures

K∑
k=1,6=l

Pk,l = PI = const. ∀ l = 1, . . . ,K. (10)

Then by summation of the single-component fluid equations (2), (3), (4) and employing the
constraints (1) and (8) we obtain

∂t (ρ) +∇ · (ρv) = 0, (11)

∂t (ρv) +∇ · (ρv vT + p I) = −∇ ·

(
K∑
k=1

αk ρk (v − vk) (v − vk)T

)
, (12)

∂t (ρE) +∇ · (ρv (E + p/ρ)) = −∇ ·

(
K∑
k=1

αk ρk (Hk −H) (vk − v)

)
. (13)

Here the total enthalpy of the single components and the mixture, respectively, are defined as

Hk := Ek +
pk
ρk
, H :=

1

ρ

K∑
k=1

αk ρkHk = E +
p

ρ
. (14)

We note that there are contributions corresponding to the slip between the mixture velocity v
and the velocities of the components vk. In the multi-component model of Drew and Passman
these terms are added to the mixture stress tensor and the mixture heat flux, see [13], p. 82-83.
However, assuming that the velocities are at equilibrium, i.e.,

v = v1 = . . . = vK , (15)

then the right-hand sides vanish and we are left with the equilibrium model

∂t ρ+∇ · (ρv) = 0, (16)

∂t (ρv) +∇ · (ρv vT + p I) = 0, (17)

∂t (ρE) +∇ · (ρv (E + p/ρ)) = 0. (18)

It remains to define the interfacial pressures Pk,l and the interfacial velocity V I . They have
to be chosen in agreement with the 2nd law of thermodynamics. An admissible choice has to
satisfy the constraints

K∑
k=1

1

Tk
(Pk,l − pk)(1− δl,k)(vk − V I) =

K−1∑
k=1

1

Tk
(Pk,K − pk)(vk − V I) (19)
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for l = 1, . . . ,K − 1 in addition to the conservation constraint (10). This ensures that the
interfacial pressures and the interfacial velocity do not contribute to the entropy production of
the mixture entropy. In [20] it has been proven that for

PI :=

K∑
k=2

pk, V I := v1 (20)

there exists a unique choice for Pk,l satisfying the constraints (19) and (10). Obviously, in case
of pressure equilibrium, i.e., pk = const., k = 1, . . . ,K, we may choose Pk,l = p. Therefore
we will assume that for any admissible choice of Pk,l and V I the interfacial pressures and the
interfacial velocity coincide with the equilibrium state, i.e.,

Pk,l = p and V I = v . (21)

2.2 Equation of State

Each component is complemented by its own equation of state (EOS) as a pure material.
Here we choose the stiffened gas model that was introduced by Harlow and Amsden [22]. It
can be considered as a combination of the perfect gas law and the barotropic Tait equation
supplemented with an appropriate energy law [42]. The corresponding thermal and caloric
EOS read

pk(ρk, ek) = (γk − 1) ρk (ek − qk)− γk πk, (22)

Tk(ρk, ek) = (ek − qk − πk/ρk)/cv,k, (23)

where Tk is the temperature and the material parameters are the ratio of specific heats γk, the
specific heat at constant volume cv,k, the minimal pressure πk and the heat of formation qk.
Equivalently, these equations can be rewritten as

ek(ρk, pk) =
pk + γkπk
ρk (γk − 1)

+ qk, (24)

Tk(ρk, pk) =
pk + πk

cv,k ρk (γk − 1)
. (25)

From the equation of states we conclude by

Tkdsk = dek −
pk
ρ2
k

dρk (26)

from equilibrium thermodynamics for the specific entropy sk and the Gibbs free energy gk

sk(pk, Tk) = cv,k ln

(
T γkk

(pk + πk)γk−1

)
+ q′k, (27)

gk(pk, Tk) = ek + pk/ρk − Tksk. (28)

Here q′k is another material parameter. Furthermore the speed of sound is given by

c2k :=
∂pk
∂ρk

∣∣∣∣
sk=const

=
pk
ρ2
k

∂pk
∂ek

∣∣∣∣
ρk=const

+
∂pk
∂ρk

∣∣∣∣
ek=const

=
(pk + πk)γk

ρk
. (29)

Note that the stiffened gas EOS allows for negative pressures while pk + πk remains positive,
i.e., the system is hyperbolic.

In particular, we are interested in the three-component model, i.e., K = 3, with water vapor
(k = 1), liquid water (k = 2) and inert gas (k = 3). The corresponding material parameters
are listed in Table 1. To model the chemical relaxation process we need the chemical potentials
of the vapor and the liquid phase. In this model the gas phase is a mixture of water vapor
and some other constituent, where all phases are modeled as an ideal gas. Then the chemical
potential of the vapor phase is given by

µ1 = g1 +
κbT

m01
ln

(
α1

α1 + α3

)
. (30)
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phase γ π [Pa] cv [J/kg/K] q [J/kg] q′ [J/kg/K]
vapor (1) 1.327 0 1200 1.995000× 106 2.410× 103

water (2) 2.057 1.066× 109 3449 −1.994674× 106 3.578× 104

gas (3) 1.4 0 10100 0 0

Table 1: Material parameters taken from [46].

Here κb denotes the Boltzmann constant and m01 is the mass of a single water molecule.
Note that we only sum over the gas phase components. In the special case of vanishing third
component, i.e., α3 = 0, the chemical potential of the vapor phase reduces to the vapor Gibbs
free energy. The chemical potential µ2 of the liquid phase equals its Gibbs free energy g2, i.e.,

µ2 = g2 .

In chemical equilibrium the chemical potentials of the vapor and the liquid phase equal each
other. For details see the book of Müller and Müller [30], Section 8.2.4.

2.3 Relaxation terms

The non-equilibrium model presented in Section 2.1 allows for different values for velocities,
pressures, temperatures as well as chemical potentials at the same point. Therefore one has to
introduce a relaxation mechanism, that drives all these quantities into equilibrium. Typically it
is distinguished between mechanical and thermal relaxation processes that relax either pressures
and velocities or temperatures and chemical potentials to equilibrium.

Mechanical relaxation. The pressure relaxation implies volume variations that induce en-
ergy variations due to the interfacial pressure work. Here we extend the pressure relaxation
vector given in [37] for a two-phase model according to [46] by introducing a pressure average
that we choose as the mixture pressure. The pressure relaxation terms then read

Spα,k := θp αk (pk − p), Spρ,k := 0, Spρv ,k := 0, SpρE,k := θp αk p(p− pk). (31)

Here θp denotes the pressure relaxation parameter. Similarly the velocity relaxation terms read

Svα,k = Svρ,k := 0, Svρv ,k := θv αk ρk (v − vk), SvρE,k := θv αk ρk v · (v − vk) (32)

with the velocity relaxation parameter θv. Performing velocity and pressure relaxation the fluid
mixture is in mechanical equilibrium, i.e., pk = p∞ and vk = v∞, k = 1, . . . ,K. Note that by
the definition of the mixture velocity and mixture pressure (9) the conservation constraints (8)
are satisfied. For more details on mechanical relaxation see Baer and Nunziato [5] or Baer [15]
for two-phase models.

Thermal relaxation. For the modeling of temperature relaxation we follow Zein [46] and
introduce the temperature relaxation parameter θT and the corresponding relaxation terms

STα,k :=
θT
κk

αk (T̂ − Tk), STρ,k := 0, STρv ,k := 0, STρE,k := θT αk (T̂ − Tk), (33)

where the mean of the temperature is defined as the mixture temperature

T̂ :=

K∑
k=1

αk Tk.

Note that by the definition of T̂ the conservation constraints (8) are satisfied and at temperature
equilibrium, i.e., Tk = T∞, k = 1, . . . ,K, it coincides with the equilibrium temperature, i.e.,
T̂ = T∞. The relaxation parameters κk are introduced in Zein [46] and Zein et al. [47] in case of
a two-phase and a three-phase model, respectively, to ensure the pressure keeping equilibrium
during the temperature relaxation.

However, in our new thermal relaxation approach these parameters do not enter explicitly
the computation of the equilibrium state, cf. [34] and, thus, is not given here.



2 MATHEMATICAL FORMULATION OF THE MODEL 7

Chemical potential relaxation. Mass transfer between different phases of the same sub-
stance occurs, whenever these phases are not in thermal equilibrium. This physical fact is the
key idea to model the mass transfer by relaxation of the chemical potentials. It is obvious, that
from now on it is necessary to identify the phases. The gas phase is assumed to be a mixture
of water vapor and some further gas. Here we only consider three components, i.e., K = 3,
with water vapor (k = 1), liquid water (k = 2) and inert gas (k = 3). Thermal equilibrium
is achieved, if the chemical potential of the water vapor phase equals the Gibbs free energy
of the liquid water phase. In the limit case of no inert gas the expression of the chemical po-
tential of the water vapor phase reduces to the Gibbs free energy, see (30). The mass flux ṁ
between the liquid and the vapor phase is driven by the difference of their chemical potentials,
i.e., ṁ = ṁ(µ1 − µ2). In particular, the mass flux vanishes if and only if the difference of the
chemical potentials is zero, i.e., µ1 = µ2.

The relaxation terms of chemical potentials are given by

Sµα,1 := θµ
ṁ

%1
, Sµρ,1 := θµ ṁ, S

µ
ρv ,1 := θµ ṁV I , S

µ
ρE,1 := θµ ṁ

(
ε1 +

V 2
I

2

)
,

Sµα,2 := θµ
ṁ

%2
, Sµρ,2 := −θµ ṁ, Sµρv ,2 := −θµ ṁV I , S

µ
ρE,2 := −θµ ṁ

(
ε2 +

V 2
I

2

)
,

Sµα,3 := −θµ ṁ
(

1

%1
+

1

%2

)
, Sµρ,3 := 0, Sµρv ,3 := 0, SµρE,3 := θµ ṁ (ε2 − ε1) , (34)

with the relaxation parameter θµ. Formulas for the parameters %1, %2, ε1, ε2 can be found in
[46, 48]. For details on the physics see the book of Müller and Müller [30].

The relaxation terms (31), (32), (33), (34) are of major importance when dealing with in-
terface problems, see for instance Saurel and Abgrall [37] or Lallemand and Saurel [26] for
mechanical relaxation terms. Typically, it is assumed that pressure and velocity relax instanta-
neously, see [37], whereas the thermal relaxation and the relaxation of chemical potentials are
much slower, see Zein [46]. Here we are interested only in the equilibrium state that is charac-
terized by vanishing relaxation terms rather than the transient relaxation process itself. Since
the equilibrium state does not depend on the order of relaxation, the relaxation parameters θξ,
ξ ∈ {p, v, T, µ}, drop out and have not to be known explicitly.

As will be explained later on in Section 3.3 in our new procedure to determine the temper-
ature equilibrium state and the mass equilibrium state the parameters κk and εk, %k, k = 1, 2,
respectively, do not enter explicitly and, thus, are not given here. This is an important im-
provement to the modeling proposed in [46, 48], since we avoid an additional iteration process
in the relaxation procedure.
Furthermore, our modeling of the mass equilibrium state is much more physical than the one
presented in [46, 48] by taking into account chemical potentials instead of Gibbs free energies.
In [46, 48] the Gibbs free energy is relaxed, which neglects the effect of mixture entropy in cases
of impure substances. The expression for the chemical potential is based on the assumption
that the vapor phase is modeled as an ideal gas.

2.4 Properties of the non-equilibrium model, the mixture model and
the equilibrium model

Here we will briefly summarize some physical and mathematical properties of the non-equilibrium
model (2), (3), (4), (6), the mixture model (11), (12), (13) and the equilibrium model (16), (17),
(18). Details on the proofs can be found in [20].

Conservation property: Due to the interaction terms corresponding to the gradients of
the volume fractions on the right-hand side of the non-equilibrium model the system cannot
be written in divergence form and, thus, momentum and energy are not conserved. However,
thanks to the conservation constraints (8) and the saturation condition (1) these terms vanish
in the mixture model and the equilibrium model, respectively. Hence, mass, momentum and
energy are conserved in these models. Note that in our computations we are interested only in
the equilibrium state.

Hyperbolicity and subcharacteristic condition: Neglecting the relaxation terms in
the non-equilibrium model it can be proven that the system is non-strictly hyperbolic, if the
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non-resonance condition

(vk · n− V I · n)2 6= c2k and αk 6= 0 ∀ k = 1, . . . ,K

holds. In particular, the eigenvalues corresponding to the quasi-conservative non-equilibrium
system for αk, k = 1, . . . ,K − 1, and (ρk,vk, pk), k = 1, . . . ,K, in normal direction n are

λI,k = V I · n, k = 1, . . . ,K − 1, (35)

λk,i = vk · n, k = 1, . . . ,K, i = 1, . . . , d, (36)

λk,± = vk · n± ck, k = 1, . . . ,K, (37)

where ck is the sound speed (29) corresponding to component k. Similarly, the equilibrium
model is hyperbolic. In particular, the eigenvalues of the quasi-conservative equilibrium system
for (ρ,v, ρE) in normal direction n are determined by

λ± = v · n± c, λi = v · n, i = 1, . . . , d, (38)

where the mixture sound speed is defined as

ρ c2 :=

K∑
k=1

αkρk c
2
k. (39)

By the definition of the mixture velocity, the mixture density (9) and the mixture sound speed
(39) we observe that these eigenvalues are related to the eigenvalues (35) of the non-equilibrium
model in the following way:

λ± ∈
[

min
k=1,...,K

λk,±, max
k=1,...,K

λk,±

]
,

λi ∈
[
min

(
min

k=1,...,K−1
λI,k, min

k=1,...,K
λk,i

)
,max

(
max

k=1,...,K−1
λI,k, max

k=1,...,K
λk,i

)]
,

for i = 1, . . . , d. Here the eigenvalues of both the non-equilibrium and the equilibrium system are
evaluated at equilibrium states. Thus the so-called sub-characteristic condition first introduced
by Liu [28] holds true. This ensures stability in the limit of vanishing relaxation terms, i.e.,
θξ → ∞. Note that similar results have been proven recently by Fl̊atten and Lund [16] for a
hierarchy of two-phase relaxation models.

Frame indifference: Since the results of an experiment should be independent of the
observer’s position a physical meaningful model should reflect this behavior. This property is
referred to as frame indifference in the literature, cf. [13], p. 31 ff, i.e., performing the change
of frame

t∗ = t+ a, x∗ = x∗0(t) +Q(t)(x− x0), (40)

with constant values a and x0 and Q an orthogonal matrix, then a scalar f , a vector u and a
tensor T are called objective, if

f∗(t∗,x∗) = f(t, x), u∗(t∗,x∗) = Q(t)u(t, x), T ∗(t∗,x∗) = Q(t)T (t, x)QT (t).

It is well-known that the fluid equations for a single phase are not invariant under a general
Euclidean change of frame but under a Galilean transformation where we choose ẋ0 = 0,
Q̇ = 0 or, equivalently, Q = const, x∗0(t) = c0 + c1t, c1, c2 = const in (40). To ensure
Galilean invariance of the non-equilibrium model, the following relations have to hold true for
the relaxation terms

S∗α∗,k := Sα,k = Sα∗,k,

S∗ρ∗,k := Sρ,k = Sρ∗,k,

S∗(ρv)∗,k := Sρ,kẋ
∗
0 +QSρv,k = S(ρv)∗,k,

S∗(ρE)∗,k := S(ρE),k + (QSρv,k + Sρ,kẋ
∗
0) · x∗0 − 0.5(ẋ∗0))2Sρ,k = S(ρE)∗,k.
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These are satisfied for the relaxation terms introduced in Section 2.3. Since the mixture model
and the equilibrium model are derived from the non-equilibrium model by summation these
models are also Galilean invariant.

Entropy and 2nd law of thermodynamics: A physically meaningful model has to
satisfy the principles of thermodynamics. From the relation (26) resulting from equilibrium
thermodynamics we derive for the non-equilibrium model the entropy equation of component k

∂t (αkρksk) +∇ · (αkρkskvk) = Πk + Sρs,k

with the production terms due to interfacial quantities and relaxation terms

Πk :=
1

Tk

K∑
l=1,6=k

(Pk,l − pk) · (vk − V I) · ∇αl, (41)

Sρs,k :=
1

Tk
(pkSα,k + (uk − gk)Sρ,k − vk · Sρv ,k + SρE,k) . (42)

Introducing the entropy of the mixture ρs :=
∑K
k=1 αkρksk the entropy law of the mixture

reads

∂t (ρs) +∇ · (ρsv) = −∇ ·

(
K∑
k=1

αkρksk(vk − v)

)
+

K∑
k=1

(Πk + Sρs,k). (43)

Note that−ρs is a convex function of the volume fractions αk, k = 1, . . . ,K−1 and the conserved
quantities (αkρk, αkρkvk, αkρkEk), k = 1, . . . ,K provided that the energies ek are convex
functions of the specific volume τk = 1/ρk and entropy sk, i.e., in case of thermodynamical
stability. In view of the 2nd law of thermodynamics we have to ensure that the sums Π :=∑K
k=1 Πk and Sρs :=

∑K
k=1 Sρs,k are non-negative. This provides us with admissible closing

conditions for the interfacial pressures and interfacial velocity as well as the relaxation terms.
Obviously, the sign of Π cannot be controlled. Therefore this term must drop out. For instance,
this holds true for (20) where the interfacial pressures Pk,l have to be appropriately chosen,
see [20]. For a two-component fluid, another alternative is given in [17] that has been proven
in [36] to cancel this term. For the entropy production terms due to mechanical relaxation we
determine for the relaxation terms (31) and (32)

Svρs =

K∑
k=1

θv
αkρk
Tk

(v − vk)2 ≥ 0, Spρs =

K∑
k=1

θp
αk
Tk

(p− pk)2 ≥ 0. (44)

For the thermal relaxation we obtain for the relaxation term (33)

STρs = θT

K∑
k=1

1

Tk
αk(T̂ − Tk)

(pk
κ

+ 1
)
. (45)

This term can be proven to be non-negative only if the pressures are in equilibrium, see also
[46]. Finally, we derive for the entropy production due chemical relaxation

Sµρs = θµ
ṁ

T
(g2 − g1) =

θµṁ

T
(g2 − µ1) +

θµṁ

T

κbT

m01
ln

α1

1− α2
(46)

assuming mechanical and thermal equilibrium.

3∑
k=1

Sµρs,k =
θµṁ

T
(g2 − g1) =

θµṁ

T
(g2 − µ1) +

θµṁ

T

κbT

m01
ln

α1

1− α2

Since that ṁ is proportional to the difference of the chemical potentials µ2 − µ1 describing the
change of mass of the water vapor. Therefore the first term is non-negative whereas the second
term is proportional to −ṁ. Note that one would obtain a non-negative term when accounting
for the mixing in the entropy, i.e.,

ρs =

3∑
k=1

αkρksk − α1ρ1
κb
m01

ln
α1

α1 + α3
− α3ρ3

κb
m03

ln
α3

α1 + α3
.
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3 Discretization

For a condensed presentation of the discretization it is convenient to rewrite the system (2),
(3), (4) and (6) in matrix-vector representation

∂t αk + V I · ∇αk = Sα,k(w), k = 1, . . . ,K − 1, (47)

∂t uk +∇ · (fk(αk,uk)) = −
K∑

l=1, 6=k

Hk,l(w)∇αl + Su,k(w), k = 1, . . . ,K, (48)

where we make use of the convention (7). This forms a coupled system for the volume
fractions α := (α1, . . . , αK−1)T and the vectors uk of the conserved quantities of phase k =
1, . . . ,K. These are condensed in the vector w := (αT ,uT1 , . . . ,u

T
K)T , where the field fk :=

(fk,1, . . . ,fk,d) of the fluxes in the ith coordinate direction and the vector of relaxation terms
Su,k corresponding to uk as well as the matrices H are defined by

uk :=

 αk ρk
αk ρk vk
αk ρk Ek

 , fk,i :=

 αk ρkvk,i
αk ρkvk,i vk + αk pkei
αk ρkvk,i (Ek + pk/ρk)

 , (49)

Hk,l :=

 0T

Pk,lId×d
Pk,lV

T
I

 , Su,k :=

 Sρ,k
Sρv ,k
SρE,k

 . (50)

Here ei ∈ Rd and Id×d ∈ Rd×d denote the ith unit vector and the identity matrix in Rd
and Rd×d, respectively. Note that in case of constant interfacial pressures Pk,l = p it holds

−
K∑

l=1,6=k

Hk,l(w)∇αl = H(w)∇αk with H :=

 0T

pId×d
pV T

I

 (51)

due to the saturation constraint (1).
Because of the constraints (10) and (19) on the interfacial pressures Pk,l and the interfacial

velocity V I , the fluid equations of all phases are coupled, i.e., Pk,l = Pk,l(w), V I = V I(w),
whereas the left-hand side of (48) only depends on wk := (αk,u

T
k )T . Again note that for k = K

we make use of the convention (7).
Following [37] we do not discretize the coupled system (47) and (48) but perform an operator

splitting according to Godunov or Strang, see [43, 45], resulting in the system of equations of
fluid motion

∂t αk + V I · ∇αk = 0, k = 1, . . . ,K − 1, (52)

∂t uk +∇ · (fk(αk,uk)) = −
K∑

l=1,6=k

Hk,l(w)∇αl, k = 1, . . . ,K, (53)

and the system of relaxation

dαk
d t

= Sα,k(w), k = 1, . . . ,K − 1, (54)

duk
d t

= Su,k(w), k = 1, . . . ,K. (55)

Note that the differential equation (52), (53) describes a variation in time and space, whereas
the system (54), (55) is an evolution in time only although the state w depends on both time
and space. Therefore we use different symbols for the differentiation.

In each time step we thus perform alternately the evolution of the fluid and the relaxation
process. The discretization of these two subsystems are discussed below in Sections 3.1 and 3.3.

In order to use the multi-component model also in absence of one or several components,
the fluid must be modeled as a mixture of all components in the entire computational domain.
Therefore the fluid contains at least a negligible amount of each fluid. Thus we require αk ≥ ε
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for the initial data. This is common practice, see for instance [3, 26, 37, 7]. In [7] ε is chosen
to be 10−6, in [3] ε = 10−8. In our computation we mostly choose ε = 10−8. For more details
see Section 3.3.5.

During the computation αk may become smaller. In that case αk often is set to ε. However,
this leads to the violation of conservation of mass, momentum and energy. We avoid this by
allowing smaller values for αk. To guarantee that αk always stays positive, we terminate the
computation whenever αk drops below a tolerance value of 10−18 that never happened in our
computations.

3.1 Fluid Discretization: Saurel-Abgrall Approach

The fluid equations (53) are discretized by a finite volume scheme. However, due to the non-
conservative term on the right-hand side it is linked to the discretization of the non-conservative
evolution equation (52) for the volume fractions. In order to avoid oscillations in the pressures
and velocities at the phase interface Saurel and Abgrall [37] suggest to use a special upwind
discretization of (52) that preserves homogeneous pressure and velocity fields. Let be {Vi}i
the spatial discretization of the computational domain Ω ⊂ Rd and {tn}n≥0 the temporal
discretization which for ease of representation is assumed to be uniform, i.e., tn+1 = tn + ∆t.
Then the resulting scheme reads

(αk)n+1
i = (αk)ni −

∆t

|Vi|
∑

j∈N (i)

|Γij | (V I)ij · (∇αk)nij , (56)

(uk)n+1
i = (uk)ni −

∆t

|Vi|
∑

j∈N (i)

|Γij |Gn
ij , (57)

where the fluxes Gn
ij and the gradients of the volume fractions in normal direction are deter-

mined by

Gn
ij := F k(wn

ij ,w
n
ji,nij) +

K∑
l=1,6=k

Hk,l(wij)(∇αl)nij , (58)

(∇αl)nij := ((αl)ij − (αl)
n
i )nij . (59)

Here the quantities (αl)ij , (V I)ij and wij are determined by the solution of a Riemann problem
at the cell interface Γij evaluated from the interior of the cell Vi. For details on the derivation
we refer to Appendix A. In case of mechanical equilibrium, the right-hand side in (58) simplifies
to

Gn
ij = F k(wn

ij ,w
n
ji,nij) −H(wij)(∇αk)nij (60)

because of (51). At each cell interface Γij of cell Vi with a neighbor cell Vj , j ∈ N (i), a
numerical flux in outer normal direction nij to the cell interface is computed in two steps:

(i) In each of the two neighboring cells a quasi-one-dimensional 2nd order ENO reconstruction
of the primitive variables (ρk,vk, pk) with van Leer limiter and the volume fractions αk
is computed for all components to determine two states wn

ij , w
n
ji left and right of the

cell interface. Note that for the volume fractions we switch to 1st order reconstruction
whenever the higher order reconstruction of the volume fractions lies outside a tolerance
range [αTol, 1− αTol] with αTol = 10−18 in our computations.

(ii) A multi-phase multi-component Riemann problem determined by wn
ij , w

n
ji is approxi-

mately solved using an HLLC-type Riemann solver, see Section 3.2, providing us with an
intermediate state w := (αT ,uT1 , . . . ,u

T
k )T at the cell interface by which we evaluate the

flux at the cell interface in normal direction n, i.e,

F k(wn
ij ,w

n
ji,nij) :=

d∑
l=1

fk,l(w(wn
ij ,w

n
ji)) (nij)l. (61)

Note that the intermediate state also enters the approximation (56) of the volume fractions
and their gradients (59). In principle, any numerical flux is admissible that is consistent
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with the flux, i.e.,

F k(w,w,n) =

d∑
i=1

fk,i(αk,uk)ni, ∀w = (αT ,uT1 , . . . ,u
T
K)T , (62)∑

j∈N (i)

|Γij |nij = 0. (63)

3.2 HLLC-type Riemann solver

The numerical flux F k in (58) is determined by approximately solving a Riemann problem for
the fluid equations for mass, momentum and energy of all pure components, where the volume
fractions are considered to be frozen. For this purpose we employ an HLLC-type Riemann
solver

F k(wL,wR,n) :=


fk,n(wL), 0 ≤ sL
fk,n(wL∗) = fk,n(wL) + sL(uk,∗L − uk,L), sL ≤ 0 ≤ s∗
fk,n(wR∗) = fk,n(wR) + sR(uk,∗R − uk,R), s∗ ≤ 0 ≤ sR
fk,n(wR), 0 ≥ sR

(64)

where ”L” and ”R” refer to the left and right states at the cell interface, respectively, which
is characterized by its normal n. The flux normal to the interface is defined by fk,n :=∑d
i=1 fk,i ni.
Following Toro [45] for a single component the intermediate states corresponding to C ∈

{L,R} can be determined as αk ρk
αk ρk vk
αk ρk Ek


C∗

= (65)

(αk ρk)C
sC − vk,n,C
sC − vk,n,∗

 1
vk,C + (vk,n,∗ − vk,n,C)n

Ek,C + (vk,n,∗ − vk,n,C)
(
vk,n,∗ +

pk,C

ρk,C (sK−vk,n,C)

)


with normal velocity vk,n := vk · n. For the wave speeds sL and sR we follow Davis [11]

sL := min
k=1,...,K

{vk,n,L − ck,L, vk,n,R − ck,R}, (66)

sR := max
k=1,...,K

{vk,n,L + ck,L, vk,n,R + ck,R}. (67)

In case of a multiphase fluid the wave speed s∗ turns out to be

s∗ = vn,∗ =
pL − pR − ρL vn,L (sL − vn,L) + ρR vn,R (sR − vn,R)

ρR (sR − vn,R)− ρL (sL − vn,L)
. (68)

Opposite to [45], we use here the mixture values for pressure, velocity and density defined by (9),
where we employ velocity and pressure equilibrium. Note that (68) becomes an approximation
of the exact wave speed s∗ if the left and right states are not in mechanical equilibrium. A
detailed derivation of the HLLC-type Riemann solver can be found in Appendix B.

3.3 Relaxation procedure

After the evolution step for the fluids approximating (52), (53) the relaxation process solving
the system of ordinary differential equations (ODE) (54), (55) has to be performed. Since the
relaxation times differ for the different relaxation types, we solve the initial value problem

dw(t)

d t
= Sξ(w(t)), t ∈ [tn, tn+1], w(tn) = w0 (69)
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with Sξ = ((Sξαk
)k=1,...,K−1, (S

ξ
ρ,k,S

ξ
ρv,k, S

ξ
ρE,k)k=1,...,K)T separately for each relaxation type

ξ ∈ {v, p, T, µ}. To avoid the explicit computation of the relaxation times θξ in (31), (32), (33)
and (34), we may perform the change of variables t := (tn − t)θξ and w(t) := w(t) in (69), i.e.,

dw(t)

d t
=

1

θξ
Sξ(w(t)), t ∈ [0,∆tθξ], w(0) = w0. (70)

Then by definition of the relaxation terms, the relaxation parameter cancels on the right-hand
side of (70). Since for all relaxation processes the conservation constraints (8) are satisfied we
conclude from (69) that

K∑
k=1

dαk(t)

d t
= 0,

d ρ(t)

d t
= 0,

d (ρv)(t)

d t
= 0,

d (ρE)(t)

d t
= 0. (71)

Hence, the bulk quantities (9) for density, momentum and energy as well as the saturation
condition (1) remain constant during the relaxation process and it holds

K∑
k=1

α∞k =

K∑
k=1

α0
k = 1, ρ∞ = ρ0, (ρv)∞ = (ρv)0, (ρE)∞ = (ρE)0. (72)

Furthermore, the conservation of bulk mass and momentum imply that the bulk velocity remains
constant

dv

d t
= 0 (73)

and it holds
v∞ = v0. (74)

As already discussed in Section 2.3 we are only interested in the equilibrium state rather the
transient relaxation behavior. Therefore we assume that the relaxation process is infinitely
fast, i.e., θξ → ∞ and we do not need to model the relaxation parameters. To compute
the equilibrium state, where the source terms (31), (32), (33) and (34) vanish, we perform
integration of the ODE system to infinity. This results in a system of algebraic equations for
the equilibrium state that will be derived and solved in the subsequent sections. For ease of
notation we will use w instead of w in (70). In the following we consider one by one the different
relaxation processes to equilibrium. Note that the equilibrium state is independent of the order
of the relaxation procedures.

3.3.1 Velocity relaxation

In order to determine the equilibrium state of the velocity relaxation process we proceed similar
to Saurel and LeMetayer in [39]. The equilibrium state of the velocity relaxation process is
determined by solving the system of ODEs

dαk
d t

= 0, (75)

dαk ρk
d t

= 0, (76)

dαk ρk vk
d t

= αk ρk(v − vk), (77)

dαk ρk Ek
d t

= αk ρk v · (v − vk) (78)

resulting from (70) with the source terms (32). Since we assume that the relaxation process
is infinitely fast, the solution of the system of ODEs converges towards the equilibrium state
where the right-hand side vanishes. This holds true for

vk = v∞, t→∞. (79)

Integration of (75), (76) over [0,∞] then results in the algebraic equations

α∞k = α0
k, (80)

α∞k ρ∞k = α0
k ρ

0
k equiv. ρ∞k = ρ0

k. (81)
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From the equilibrium condition (79) and (74) we conclude that

v∞k = v∞ = v0. (82)

To determine the energy at equilibrium we first observe that by (77) and (78)

dαk ρk Ek
d t

= v
dαk ρk vk

d t
. (83)

Since the bulk velocity remains constant according to (73), we obtain by integration of (83)
over [0,∞] and (82)

α∞k ρ∞k E∞k = α0
k ρ

0
k E

0
k + α0

k ρ
0
k v

0 · (v0 − v0
k) (84)

or, equivalently by (81),
E∞k = E0

k + v0 · (v0 − v0
k). (85)

Finally, we end up with the algebraic system (74), (80), (81), (82) and (85) by which we
determine the velocity equilibrium state. The equilibrium state coincides with the results of
Saurel and LeMetayer in [39] for the two-phase model although the derivation is slightly different
considering e instead of E.

3.3.2 Pressure relaxation

The equilibrium state of the pressure relaxation process is determined by solving the system of
ODEs

dαk
d t

= αk (pk − p), (86)

dαk ρk
d t

= 0, (87)

dαk ρk vk
d t

= 0, (88)

dαk ρk Ek
d t

= αk p (p− pk) (89)

resulting from (70) with the source terms (31). Again we assume that the relaxation process is
infinitely fast, such that the solution of the system of ODEs converges towards the equilibrium
state, where the right-hand side vanishes. This holds true for

pk = p∞, t→∞. (90)

From (87) and (88) we immediately conclude the conservation of mass and momentum, i.e.,

α∞k ρ
∞
k = α0

kρ
0
k, (91)

v∞k = v0
k. (92)

Furthermore we deduce by (86) and (89) that

dαkρkek
d t

=
dαkρkEk

d t
= −pdαk

d t
.

Integration over [0,∞] then yields

α0
kρ

0
k(e∞k − e0

k) = −p̄(α∞k − α0
k)

with some intermediate interfacial pressure state p̄. Following [26] we use the approximation

p̄ ≈ p0 + p∞

2
(93)

and obtain

e∞k = e0
k −

p∞ + p0

2α0
kρ

0
k

(α∞k − α0
k). (94)
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The conservation of mass (91) together with the equations of state (22), equation (94) and
the saturation condition (1) give a non-linear algebraic system of 3K + 1 equations for the
3K + 1 unknowns α∞k , ρ∞k , e∞k and p∞. This system can be reduced. For this purpose we
substitute in (22) the single-component density ρ∞k by the mass conservation property (91) and
the single-component energy e∞k by (94):

p∞k = (γk − 1)ρ∞k (e∞k − qk)− γkπk

= (γk − 1)
α0
kρ

0
k

α∞k

(
e0
k −

p∞ + p0

2α0
kρ

0
k

(α∞k − α0
k)− qk

)
− γkπk.

Furthermore we conclude from the equation of state (22) that

e0
k =

p0
k + γkπk
ρ0
k(γk − 1)

+ qk

and thus the single-component pressure becomes

p∞k =
α0
k

α∞k
(p0
k + γkπk)− (γk − 1)(α∞k − α0

k)

2α∞k
(p∞ + p0)− γkπk. (95)

Since p∞k = p∞ holds in the equilibrium state, we finally deduce from the above equation that

p∞k =
akα

∞
k + bk

ckα∞k + dk

with
ak = −

[
(γk − 1)p0 + 2γkπk

]
, bk = (γk − 1)α0

kp
0 + 2α0

kp
0
k + 2α0

kγkπk,
ck = (γk + 1), dk = (1− γk)α0

k.

From the relation p∞1 = p∞k we derive

α∞k =
Akα

∞
1 +Bk

Ckα∞1 +Dk
(96)

with
Ak = bkc1 − a1dk, Bk = bkd1 − b1dk,
Ck = a1ck − akc1, Dk = b1ck − akd1,

Replacing these relations for α∞k , k = 2 . . . ,K, in the saturation equation (1) we end up with
a polynomial of degree K for α∞1 . Since we are only performing three-component simulations,
we give here for convenience of the reader only the third order polynomial for α∞1

a(α∞1 )3 + b(α∞1 )2 + bα∞1 + d = 0. (97)

The coefficients a, b, c, d are given by the following relations

a = C1C2,
b = C1D2 + C2D1 +A1C2 +A2C1 − C1C2,
c = D1D2 +A1D2 +B1C2 +A2D1 +B2C1 − C1D2 − C2D1,
d = B1D2 +B2D1 −D1D2.

Usually this equation exhibits three solutions. By the conditions α∞k ∈ (0, 1) and p∞ > 0 we
can single out the suitable solution. If there does not exist a unique solution for a given initial
state, we stop the computation. This may happen for large pressure difference p∞ − p0 when
the approximation error using (93) becomes significant. Then one may reduce the CFL number
or, as suggested in [26], the system of ODEs (86) – (89) is solved approximately by quadrature.

Once, we have computed α∞1 we can determine the remaining volume fractions α∞k by (96),
the pressures p∞k by (95), the internal energies e∞k by (94). These are completed by the relations
(91) and (92) to compute the equilibrium state.

Finally we want to remark that the above procedure to determine the pressure equilib-
rium state is similar to [26] for a two-phase model and [46] for a two-phase model with three
components.
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3.3.3 Temperature relaxation

For the temperature relaxation process we have to solve the system of ODEs

dαk
d t

=
αk
κk

(T̂ − Tk), (98)

dαk ρk
d t

= 0, (99)

dαk ρk vk
d t

= 0, (100)

dαk ρk Ek
d t

= αk (T̂ − Tk), (101)

resulting from (70) with the source terms (33). Since we assume that the relaxation process
is infinitely fast, the solution of the system of ODEs converges towards the equilibrium state
where the right-hand side vanishes. This holds true for

p∞k = p∞, T∞k = T∞, t→∞. (102)

Note that we also have to impose pressure equilibrium. Otherwise, the pressures p∞k might not
be in equilibrium even if the initial pressures are in equilibrium, i.e., p0

k = p0.
From (99) and (100) we again conclude on the conservation of mass and momentum, i.e.,

α∞k ρ
∞
k = α0

kρ
0
k, (103)

v∞k = v0
k. (104)

Then (101) implies the conservation of the bulk energy

K∑
k=1

(αkρkek)∞ =

K∑
k=1

(αkρkek)0. (105)

Due to the mass conservation (103) and the equation of state (24) this is equivalent to

K∑
k=1

α∞k
p∞k + γkπk

(γk − 1)
=

K∑
k=1

α0
k

p0
k + γkπk
(γk − 1)

=: Λ. (106)

The temperature equilibrium (102) implies T∞k = T∞k0 for all phases k, where we fix an arbitrary
phase k0 to be specified below. Since we also assume pressure equilibrium, i.e., p∞k = p∞, we
conclude together with the equation of state (25) that

α∞k = α∞k0
ak
ak0

p∞ + πk0
p∞ + πk

with ak := cv,k(γk − 1)α0
kρ

0
k. (107)

Then the saturation condition (1) yields

α∞k0 =

(
K∑
k=1

ak
ak0

p∞ + πk0
p∞ + πk

)−1

(108)

We now substitute α∞k in (106) by (107) and then replace α∞k0 by (108). For ease of representa-
tion we introduce the sets E := {k : πk = πk0 , k ∈ {1, . . . ,K}} and N := {k : πk 6= πk0 , k ∈
{1, . . . ,K}}. Together with the assumption of pressure equilibrium (102) we finally obtain after
some algebraic manipulations∑

k∈E

ak
ak0

(
p∞ + γkπk
γk − 1

− Λ

) ∏
l∈N

(p∞ + πl) + (109)

∑
k∈N

ak
ak0

(
p∞ + γkπk
γk − 1

− Λ

)
(p∞ + πk0)

∏
l∈N ,l 6=k

(p∞ + πl) = 0.
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Hence, the equilibrium pressure p∞ is characterized as the root of a polynomial of degree
#N + 1. By the conditions α∞k ∈ (0, 1) and p∞ > 0 we may single out the unique physically
admissible solution as we will do for some models at the end of this section. To reduce the
number of roots we therefore recommend that the index k0 should be chosen such that the
cardinality of N is smallest. In particular, if all πk coincide, then we may compute p∞ directly
as

p∞ =

K∑
k=1

ak
ak0

(
Λ− γkπk

γk − 1

)( K∑
k=1

ak
ak0

1

γk − 1

)−1

.

Another special case is the three-component model composed of water vapor, liquid water and
gas, see Section 2.3 and Table 1. Choosing k0 = 1 and multiplying (109) by ak0 = a1 we then
obtain the quadratic polynomial

A (p∞)2 +B p∞ + C = 0, (110)

where the coefficients are determined by

A :=

3∑
k=1

ak
γk − 1

,

B := a1

(
γ1π1 + π2

γ1 − 1
− Λ

)
+ a2

(
γ2π2 + π1

γ2 − 1
− Λ

)
+ a3

(
γ3π3 + π2

γ3 − 1
− Λ

)
,

C := a1π2

(
γ1π1

γ1 − 1
− Λ

)
+ a2π1

(
γ2π2

γ2 − 1
− Λ

)
+ a3π2

(
γ3π3

γ3 − 1
− Λ

)
.

Note that the equilibrium temperature T∞ may be directly computed from the equilibrium
pressure. Starting from the equation of state (25) we first employ mass conservation (103) and
replace α∞k by (107) and (108). Finally we obtain together with (108)

T∞k =

(
K∑
l=1

al
p∞ + πl

)−1

= T∞ (111)

After having determined p∞, the volume fractions α∞k0 and α∞k , k 6= k0, can be computed by
(108) and (107), respectively. Then the mass conservation (103) provides us with ρ∞k . Finally
we compute the internal energies e∞k according to the equation of state (24).

We conclude this section with some remarks on the physically admissible solution of (109)
confining ourselves to the following three models:
Two-component gas model: In this case π1 = π2 = 0 and there only exists one root of (109)

p∞ =
(a1 + a2) Λ

a1/(γ1 − 1) + a2/(γ2 − 1)
> 0.

According to (108) and (107) as well as (111) we compute the corresponding equilibrium states
for the volume fractions and the temperature, respectively, as

α∞k =
ak

a1 + a2
∈ [0, 1], k = 1, 2, T∞ =

p∞

a1 + a2
> 0.

Two-phase model: In this case π2 6= π1 = 0. There exist two roots of (110) with a3 = 0
because A = a1/(γ1− 1) + a2/(γ2− 1) > 0 and C = −a1Λπ2 < 0. The only admissible solution
is

p∞ = − B

2A
+

√
B2

4A2
− C

A
> 0. (112)

From (108) and (111) we then conclude

α∞1 =
a1(p∞ + π2)

(a1 + a2)p∞ + a1π2
= 1− α∞1 ∈ [0, 1], T∞ =

p∞(p∞ + π2)

(a1 + a2)p∞ + a1π2
> 0.

Three-component model: In this case we assume that π1 = π2 6= π3. Then we observe that
again A > 0 and C < 0 in (110) and thus (112) is the only admissible root. From (108), (107)
and (111) we then conclude α1 ∈ [0, 1], α2, α2 > 0 and T∞ > 0.
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3.3.4 Relaxation of chemical potentials

The equilibrium state of the chemical potential relaxation process is determined by solving the
system of ODEs

dαk
d t

=
ṁ

%k
, k = 1, 2,

d α3

d t
= −ṁ

(
1

%1
+

1

%2

)
, (113)

dαk ρk
d t

= (−1)k+1ṁ, k = 1, 2,
d α3 ρ3

d t
= 0, (114)

dαk ρk vk
d t

= (−1)k+1ṁV I , k = 1, 2,
d α3 ρ3 v3

d t
= 0, (115)

dαk ρk Ek
d t

= (−1)k+1ṁ

(
εk +

V 2
I

2

)
, k = 1, 2,

d α3 ρ3E3

d t
= ṁ (ε2 − ε1) (116)

resulting from (70) with the source terms (34). Again we assume that the relaxation process is
infinitely fast such that the solution of the system of ODEs converges towards the equilibrium
state, where the right-hand side vanishes. According to [46, 48] this holds true for

p∞1 = p∞2 = p∞3 = p∞, t→∞, (117)

T 1
1 = T 1

2 = T 1
3 = T∞, t→∞, (118)

µ∞1 = g∞2 , t→∞. (119)

Note that due to these equilibrium conditions the muss flux ṁ vanishes at equilibrium and, thus,
the right-hand sides in (113), (114), (115) and (116) become zero. Obviously, the equations
(113) are in agreement with the saturation condition (1), i.e.,

α∞1 + α∞2 + α∞3 = 1. (120)

The mass equations (114) induce

α∞3 ρ
∞
3 = α0

3ρ
0
3, (121)

α∞1 ρ
∞
1 + α∞2 ρ

∞
2 = α0

1ρ
0
1 + α0

2ρ
0
2 =: W . (122)

Furthermore, we assume that the single-component velocities are initially in equilibrium and
stay in equilibrium during the relaxation of the chemical potentials, i.e.,

v∞ = v∞k = v0
k = v0, k = 1, 2, 3. (123)

Note that this holds true for component k = 3 according to (114) and (115). Then we conclude
with (116) that

3∑
k=1

α∞k ρ
∞
k e
∞
k =

3∑
k=1

α0
kρ

0
ke

0
k=: E . (124)

Motivated by the equilibrium condition (119) the aim is now to derive a function

fµ(α1ρ1) := µ∞1 (α1ρ1)− g∞2 (α1ρ1) (125)

depending only on the product α1ρ1 such that the root α∞1 ρ
∞
1 is the solution for the relaxed

mass density for the first component. For this purpose we have to express α∞1 , α∞2 , T∞ and p∞

in terms of α∞1 ρ
∞
1 . Then the chemical potential for water vapor µ2 and the Gibbs free energies

gk, k = 1, 2, see Section 2.2, can be written as

µ∞1 (α1ρ1) = g∞1 (α1ρ1) +
κb
m01

T∞(α1ρ1) ln

(
α1(α1ρ1)

1− α2(α1ρ1)

)
(126)

g∞k (α1ρ1) = (cv,kγk − q′k)T∞(α1ρ1)− cv,kγkT∞(α1ρ1) ln(T∞(α1ρ1)) +

T∞(α1ρ1)cv,k(γk − 1) ln(p∞(α1ρ1) + πk) + qk, (127)

where

κb = 1.380656 · 10−23 J

K
and m01 =

2 · 1.0079 + 15.9994

6.02205 · 1026
kg
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denote the Boltzmann constant and the mass of a single water molecule, respectively.
Note that a root of (125) may not exist. Beside the existence of an equilibrium solution

the water vapor may completely condensate or the liquid water may completely evaporate.
Therefore in a first step one has to figure out, which of the four cases occurs:

(i-a) condensation process with equilibrium solution,

(i-b) total condensation,

(ii-a) evaporation process with equilibrium solution,

(ii-b) total evaporation.

In case (i-b) and (ii-b) the result can be directly obtained. In the cases (i-a) and (ii-a) a bisection
method is provided to find the equilibrium state. Due to the fact that the temperature relaxation
method is simple and always gives a unique, physical solution, we base the bisection method to
find the equilibrium state on the temperature relaxation procedure.

According to thermodynamics a condensation process and an evaporation process are char-
acterized by a positive or negative sign of µ1 − g2, respectively. Thus, using the data from the
temperature relaxation procedure we may identify condensation and evaporation processes.

Condensation. If a condensation process is identified by µ1 − g2 > 0 the expression α0
1ρ

0
1

is too large and α1ρ1 has to decrease. The smallest admissible value for this expression is
α∗1ρ

∗
1 = tol > 0. This means that all water vapor has condensated except a small amount due

to numerical reasons. Using the temperature relaxation procedure according to Section 3.3.3
with α∗1ρ

∗
1 instead of α0

1ρ
0
1 we determine the corresponding values for all variables of the phases.

Using these data one has to check the sign of the difference of the chemical potentials. If
still µ1 − g2 > 0 holds, then total condensation will occur. We keep α∗1ρ

∗
1 = tol > 0 and the

corresponding data. Otherwise the interval [α∗1ρ
∗
1 = tol, α0

1ρ
0
1] is admissible for the bisection

method.
Evaporation. If an evaporation process is identified by µ1 − g2 < 0 the expression α0

1ρ
0
1 is

too small and α1ρ1 has to increase. Because of (122) we have the bound α∗1ρ
∗
1 ≤W . Moreover,

we have to guarantee that

E − α1ρ1q1 −Wq2 + α1ρ1q2 =

3∑
k=1

αk
p+ γkπk
γk − 1

≥ 0 .

Here the left-hand side is derived from (124) where we plug in (122) and (24) and use π1 = 0
and q3 = 0. Thus we conclude

α∗1ρ
∗
1 = min

{
W − tol, E −Wq2

q1 − q2

}
.

Again using the temperature relaxation procedure according to Section 3.3.3 with α∗1ρ
∗
1 instead

of α0
1ρ

0
1 we find the corresponding values for all variables of the phases. Using these data one

has to check the sign of the difference of the chemical potentials. If still µ1− g2 < 0 holds, then
total evaporation will occur. We keep α∗1ρ

∗
1 = tol > 0 and the corresponding data. Otherwise

the interval [α0
1ρ

0
1, α
∗
1ρ
∗
1] is admissible for the bisection method.

Finally we summarize the relaxation of chemical potential.
Algorithm.

1. Identify condensation or evaporation processes (i) or (ii).

2. Check, whether an equilibrium solution exists; this leads to four possible cases (i-a), (i-b),
(ii-a), (ii-b):

• if (i-a): apply the bisection method to find the root of (125) in the interval [α∗1ρ
∗
1 =

tol, α0
1ρ

0
1]

• if (i-b): apply the temperature relaxation procedure with α∗1ρ
∗
1 = tol

• if (ii-a): apply the bisection method to find the root of (125) in the interval [α0
1ρ

0
1, α
∗
1ρ
∗
1]

with α∗1ρ
∗
1 = min

{
W − tol, E−Wq2

q1−q2

}
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• if (ii-b): apply the temperature relaxation procedure with α∗1ρ
∗
1 = W − tol

The above relaxation procedure can be considered an essential improvement of the original
one presented in [46, 48] due to the following aspects: In the original procedure the Gibbs
free energies are relaxed, i.e., the influence of the mixture entropy, which is described by the
difference of the chemical potential and the Gibbs free energy of the vapor phase, is neglected.
This extra term cancels in pure phases. Moreover, in the original procedure a double iteration
method was used. We now reduce the numerical costs significantly by simplifying the equilib-
rium system to a scalar equation depending only on α1ρ1 that has to be solved by a single
iteration process.

3.3.5 Application of relaxation procedures

We conclude the section on the relaxation to equilibrium by some remarks on (i) the order of
performing the relaxation procedures and (ii) where to apply them.
From a physical point of view the equilibrium state should not depend on the order of the
relaxation processes. For instance, performing relaxation of the chemical potentials does not
require to perform mechanical and thermal relaxation before. According to (117) and (118)
pressures and temperatures are relaxed to equilibrium together with the mass. On the other
hand, the equilibrium velocity is not changed by neither of the other relaxation procedures and
vice versa as becomes obvious from the definition (31), (32), (33) and (34) of the relaxation
terms. However, from a numerical point of view performing the latter relaxation procedures
will provide a better initial guess for the bisection method involved in performing the mass
transfer.
For the same reasons we do not have to perform pressure relaxation first when performing
temperature relaxation without accounting for mass transfer, see Section 3.3.3, because the
pressures are relaxed simultaneously to equilibrium together with the temperatures according
to (102).

Since by both the thermal and the chemical relaxation procedure we also relax the pressures
simultaneously there is no need to perform the pressure relaxation, see Section 3.3.2. The
advantage is twofold: First of all, for our three-component model we do not have to compute
the roots of the cubic polynomial (97) but the quadratic polynomial (110) where the admissible
root can be singled out apriorily. Furthermore, we avoid the approximation step (93) as usually
performed, cf. [47, 48, 34], that can cause instabilities in case of strong non-equilibrium, i.e.,
the differences p0

k − p∞ are large. In particular, we observe that by the pressure relaxation
small oscillations may be triggered that spoil significantly the performance of locally adaptive
computations due to denser grids. Consequently, the computational costs of our computations
could be significantly reduced.

Furthermore we strongly recommend that temperature relaxation should always be ac-
counted for in the computations. For the investigation of a bubble collapse, see Section 4.2, it
turned out that without temperature relaxation there will be unphysically high temperatures
for water vapor and inert gas that can take values in the order of 100000 K. This will cause
high sound speeds that trigger very small time discretizations due to the CFL number. When
performing the same computation with temperature relaxation, the equilibrium temperatures
stay in a physically admissible range and the computations will be much faster because the
CFL number is moderate and the time discretization does not become as small as before.

Finally, we note that after each evolution step the phases may be in non-equilibrium. There-
fore the relaxation procedures have to be performed in each cell of the computational domain.
In [46] an interfacial region or a mixture zone has been introduced to avoid unphysical nucle-
ation or cavitation. In Section 4.1 we will verify that these do not occur in our model due to
the sign of the difference of the chemical potentials. On the other hand, the model is able to
describe physical cavitation by expansion. For this reason we avoid introducing an artificial
interfacial region to avoid numerical instabilities.
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4 Numerical results

To verify our model we investigate three different configurations, namely, (i) one-dimensional
Riemann problems, (ii) quasi-one-dimensional bubble collapse and (iii)quasi-two-dimensional
shock-bubble interaction. For all these configurations we apply the three-component model
with water vapor, liquid water and inert gas with the material parameters listed in Table 1.
The relaxation process is modeled by the procedures for the velocity relaxation, the temperature
relaxation and the relaxation of chemical potentials according to Sections 3.3.1, 3.3.3 and 3.3.4,
respectively. These are applied after the time evolution of the conserved quantities in this
order. Note that by the procedure of the temperature relaxation the pressures will also be in
equilibrium.

The efficiency of the scheme is improved by local grid adaption where we employ the multires-
olution concept based on biorthogonal wavelets. The key idea is to perform a multiresolution
analysis on a sequence of nested grids providing a decomposition of the data on a coarse scale
and a sequence of details that encode the difference of approximations on subsequent resolu-
tion levels. The detail coefficients become small when the underlying data are locally smooth
and, hence, can be discarded when dropping below a threshold value εthresh. By means of the
thresholded sequence a new, locally refined grid is determined. Details on this concept can be
found in [31, 32].

4.1 Real cavitation

Cavitation induced by expansion is a frequently investigated problem in the literature. For
instance, in [47] an expansion tube filled with liquid water is investigated. For numerical
reasons it is necessary that some amount of vapor exists initially. In [47] a large initial vapor
volume fraction, αvapor = 0.01, was necessary due to the definition of an interfacial region and
the constraints for the thermal relaxation procedures. Here we use αvapor = 10−8. Although
the vapor volume fraction may decrease during the computation it always stays positive. This
also holds true for all phases that may be initialized by a small value. Furthermore, we avoid to
introduce technical parameters, e.g., the definition of an interfacial region or a tolerance range
[ε, 1 − ε] for the volume fractions. These may trigger oscillations and unphysical phenomena
in the solution, e.g. wave splitting. Nevertheless, we are able to simulate cavitation without
causing unphysical cavitation. For illustration we consider two symmetric examples where the
pressure, velocity and temperature of each component is in equilibrium. The volume fractions as
well as the pressure and the velocity are constant, whereas the velocity exhibits a discontinuity.
The fluid consists of almost pure liquid water perturbed by a small amount ε = 10−8 of the
other components. The parameters are listed in Table 2.

αvapor αwater p [bar] T [K] vleft [m/s] vright [m/s]
C1 ε 1− 2ε 1 293 -10 +10
C2 ε 1− 2ε 1 293 +10 -10

Table 2: Initial data for Riemann problems: Expansion (C1) and compression (C2) of water
with ε = 10−8.

For all our computations, the computational domain is Ω = [0, 1] m, where for boundary
conditions we set the initial left and right state, respectively. The initial jump is located at
x = 0.5 m. The domain is discretized by N0 = 5 cells on coarsest level and successively
refined using L = 10 refinement levels. The threshold value is set to εthresh = 10−4. The
temporal discretization is adjusted during the computation by a fixed CFL number of 0.5. The
computations terminate at the final time T = 2× 10−4 s.

In Example C1 the almost pure liquid water phase is expanded and the pressure drops.
This leads to cavitation, i.e., water vapor is created due to the phase transition where mass is
transferred from liquid water to water vapor, see Figure 1. Thus we can simulate cavitation
without having initialized a significant amount of water vapor.

Next we present the results for Example C2, see Figure 2. The liquid phase is now com-
pressed. The water volume fraction remains constant, i.e., no unphysical cavitation occurs. This
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confirms that we do not have to introduce an interfacial region but may perform relaxation of
chemical potentials throughout the computational domain.

Figure 1: Example C1: Pressure and velocity (left), volume fractions (middle) and temperature
(right).

Figure 2: Example C2: Pressure and velocity (left), volume fractions (middle) and temperature
(right).

4.2 Spherical bubble collapse

The collapse of a vapor-filled spherical bubble in water is a classical problem that has been
extensively investigated in the literature. There are simplified models available such as Rayleigh-
Plesset [35], Gilmore [18], Keller-Mikis [25], etc. that provide a good approximation of the bubble
radius. However, the prediction of the rebound and further oscillations are not well predicted.
The first collapse is dominated by incompressibility effects, whereas in the collapse other effects
such as compressibility and phase transition become effective. These are not properly taken
into account in the aforementioned models. Furthermore, these simplified models provide no
insight to the attached flow field neither in the liquid nor in the bubble.

In experiments performed with laser-induced cavitation bubbles, cf. [14, 41, 44] it was verified
that the water temperature significantly affects the rebound. By heating the water the vapor
pressure is increased which leads to a high vapor content, i.e., low amount of non-condensable
gas, and the bubble collapses more mildly due to a stronger damping. In particular, the increase
in the vapor pressure results in a larger maximum bubble radius, and, thus, the collapse time
is extended and the rebound is more pronounced.

Motivated by these experiments we want to investigate the influence of non-condensable gas
on the bubble collapse and its rebound by performing numerical simulations with the three-
component model for water vapor, liquid water and inert gas, see Section 2. Of special interest
are the bubble radius, temperature and gas volume fraction inside the bubble as well as grid
convergence for both with and without mass transfer. The corresponding material parameters
for the stiffened gas equation of state are listed in Table 1. Since the experiments cannot
provide the state inside the bubble, we perform a parameter study for a bubble with maximal
radius Rmax = 0.75 mm where we vary the amount of non-condensable gas instead of the water
temperature in the experiments. In particular, the water state is always chosen as p = 100000
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bubble p [Pa] T [K] αvapor [-] αwater [-] αgas [-]
G05 2339 293 0.949999 10−8 0.05
G10 2339 293 0.899999 10−8 0.10
G20 2339 293 0.799999 10−8 0.20
G40 2339 293 0.599999 10−8 0.4

liquid 100000 293 10−6 0.999998 10−6

Table 3: Initial Data inside the bubble and in the liquid.

bubble xvapor [-] xwater [-] xgas [-] xvapor/xgas [-]
G05 0.9944 0.00051 0.00508 195.6
G10 0.9888 0.00054 0.01067 92.7
G20 0.9757 0.00060 0.02369 41.2
G40 0.9385 0.00077 0.06077 15.4

Table 4: Mass fractions corresponding to initial data inside the bubble.

Pa, T = 293 K. Inside the bubble we always set the vapor pressure p = 2339 Pa at T = 293
K but vary the volume fraction of gas from 0.05, 0.1, 0.2 to 0.4 corresponding to case G05,
G10, G20 and G40, respectively. Note that the model does not allow for vanishing phases,
because we need to divide by the volume fraction in order to compute the pressure of a pure
phase. Therefore we have to add a small amount of vapor and non-condensable gas in the liquid
environment, i.e., αgas = αvapor = 10−6, and vice versa some tiny amount of water inside the
bubble, i.e., αwater = 10−8. Since the water density is much larger than the densities of the gas
and the vapor, the artificial amount of water is chosen much smaller. The initial data for the
computations are summarized in Table 3. All components inside and outside the bubble are
assumed to be in equilibrium. The corresponding densities are computed from the equations of
state (22) and (23). In Table 4 we also list the mass fraction of the phases inside the bubble.
We note that the artificial state of liquid water does not significantly pollute the gaseous states
inside the bubble.

Since the problem is inherently one-dimensional due to spherical symmetry, we perform
quasi-one-dimensional computations where we have to take the change of metric into account
in the fluid discretization (56) and (57). The resulting scheme in radial direction r thus reads

(αk)n+1
i = (αk)ni −

∆t

∆r3

(
ri+ 1

2
(VI)i,i+1(α′k)ni,i+1 − ri− 1

2
(VI)i−1,i(α

′
k)ni−1,i

)
, (128)

(uk)n+1
i = (uk)ni −

∆t

∆r3

(
ri+ 1

2
Gn
i,i+1 − ri− 1

2
Gn
i−1,i

)
+ 2 r̂i

∆r∆t

∆r3
Sk(wn

i ), (129)

where the fluxes and the derivatives of the volume fractions are determined by

Gn
i,i+1 := F k(wn

i,i+1,w
n
i+1,i)−H(wi,i+1)(α′k)ni,i+1,

Gn
i−1,i := F k(wn

i−1,i,w
n
i,i−1)−H(wi−1,i)(α

′
k)ni−1,i,

(α′k)ni,i+1 := ((αk)i,i+1 − (αk)ni ), (α′k)ni−1,i := ((αk)i−1,i − (αk)ni ).

Since in each time step pressure is at equilibrium, we employ here the identity (51). Note that
uk = αk(ρk, ρkvk, Ek)T is now composed of the density, the momentum in radial direction and
total energy of component k and H(w) = (0, PI , PIVI)

T is now a vector. The additional metric
term is defined by Sk(w) = (0, αkpk, 0)T . The metric is determined by r̂i = 0.5(ri+ 1

2
+ ri− 1

2
)

and ∆r3 = (r3
i+ 1

2

+ r3
i− 1

2

)/3. This quasi-one-dimensional scheme can be derived from the three-

dimensional discretization applied to a special grid similar to [33]. A detailed derivation is given
in Appendix C.

For all our computations, the computational domain is Ω = [0, 0.384] m, where for boundary
conditions we choose symmetry and reflecting boundary conditions at the left and the right
boundary, respectively. The bubble center is located at r = Rmax. The domain is largely
extended to the right to avoid interaction of waves emanating from the right boundary with
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the collapsing bubble in the investigated time interval. The domain is discretized by N0 = 16
cells on coarsest level and successively refined using L = 16 refinement levels, i.e., there are
N16 = 1048576 cells on a uniformly refined grid with NI,L = 2048 cells located within the initial
bubble with radius rI = Rmax. The threshold value is always set to εthresh = 10−3. For the
time discretization we choose a constant CFL number 0.8. The computations terminated at
T = 240 µs.

Bubble Radius. First of all, we investigate the influence of the amount of non-condensable
gas on the bubble radius. In Figure 3, we show for all cases the transient bubble radius identified
by the water volume fraction αwater = 0.5. For comparison we also plot the radii that have been
deduced from an experiment with laser-induced cavitation bubbles and are taken from [33]. We
observe that in the first collapse the bubble radius and the collapse time is not affected by
the varying gas fraction and agrees perfectly with the experiment. This holds true for both
computations with and without mass transfer. Obviously, phase transition is not effective at
this stage whereas mechanical processes are dominating. However, at the instant of the collapse
the minimal bubble radius becomes larger, i.e., the collapse is milder, and the rebound is the
stronger the higher the amount of non-condensable gas. Thus the time for the subsequent
collapses increases as well. This phenomena can be explained by a spring that is loaded in
the collapse and releases when the bubble expands again. The tension of the spring is higher
with increasing amount of gas inside the bubble. However, when neglecting the mass transfer
the rebound is independent of the gas amount inside the bubble. Then the rebound becomes
stronger because there is no energy consumed by the mass transfer.

Figure 3: Bubble radius identified by αwater = 0.5 versus time for computations with L = 16.
Computation with (left) and without (right) mass transfer.

Temperature and gas volume fraction. In addition to the information of the bubble
radius our computations provide information on the spatial distribution of the bubble state.
Exemplarily we present in Figures 4 – 7 the temperature field and the field of the gas volume
fraction, respectively, for both with and without mass transfer. Note that these plots are
composed of the respective data extracted from the computations in the spatial interval [0,0.8]
µm at every 24000 time step. We observe that in the first collapse the bubble state changes
almost homogeneously in time and, thus, justifies the frequently made assumption in simplified
models. However, in the rebound the bubble state becomes heterogeneous also in space due to
the high compression of the bubble in the collapse and the acceleration of the interface causing
a shock wave in the gas that is emanating into the liquid. Furthermore we observe that the
highest temperatures reached in the first collapse stay within a reasonable range. In particular,
the maximal temperature increases with the amount of gas inside the bubble as expected.
Typically the maximal temperatures are smaller when taking mass transfer into account due
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(a) G05: Temperature (b) G05: Temperature

(c) G05: Gas volume fraction (d) G05: Gas volume fraction

Figure 4: Case G05: Temperature and gas volume fraction for computations with (left) and
without (right) mass transfer. Bubble interface identified by αwater = 0.5 for computations
with L = 16.

to the energy consumption in the phase change. Note that the temperature typically becomes
unphysically high in the collapse if no temperature relaxation is performed and, thus, is in
general not presented.

For the gas volume fraction we observe that it is not varying in the first collapse but remains
almost constant until the collapse. In the rebound we observe a higher concentration of gas near
the interface when taking mass transfer into account. Note that the interface is impermeable
for the gas because mass transfer is only accounted for between water vapor and liquid water.
Opposite to this, the gas volume fraction remains almost homogeneous without mass transfer.
Finally, we emphasize that the interface is not smeared in contrast to computations that have
been performed with the stiffened gas approach by Saurel-Abgrall [38] presented in [33].

Grid convergence. In order to investigate the influence of the resolution on the numerical re-
sults we perform additional computations using lower resolutions corresponding to L = 13, 14, 15
refinement levels. The corresponding numbers of cells on a uniformly refined grid in the com-
putational domain and inside the initial bubble of radius rI = Rmax are listed in Table 5. In
Figures 8 and 9 we present the bubble radius for different resolution levels for all four cases.
In the first rebound there is no difference visible, i.e., this part seems to be grid converged.
However, in the following bubble oscillations we note that the rebound becomes more pro-
nounced with increasing refinement level and, thus, the collapse times increase. There were
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(a) G10: Temperature (b) G10: Temperature

(c) G10: Gas volume fraction (d) G10: Gas volume fraction

Figure 5: Case G10: Temperature and gas volume fraction for computations with (left) and
without (right) mass transfer. Bubble interface identified by αwater = 0.5 for computations
with L = 16.
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(a) G20: Temperature (b) G20: Temperature

(c) G20: Gas volume fraction (d) G20: Gas volume fraction

Figure 6: Case G20: Temperature and gas volume fraction for computations with (left) and
without (right) mass transfer. Bubble interface identified by αwater = 0.5 for computations
with L = 16.
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(a) G40: Temperature (b) G40: Temperature

(c) G40: Gas volume fraction (d) G40: Gas volume fraction

Figure 7: Case G40: Temperature and gas volume fraction for computations with (left) and
without (right) mass transfer. Bubble interface identified by αwater = 0.5 for computations
with L = 16.
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L 13 14 15 16
NL 131072 262144 524288 1048576
NI,L 256 512 1024 2048

Table 5: Number of cells on uniformly refined grid (NL) and number of cells inside initial bubble
(NI,L) for different number of refinement levels (L).

similar findings reported in [48]. Thus the solution seems not yet to be grid converged.
One reason might be that viscosity and heat conduction have been neglected in the multi-

component model. In our computations we observe that with finer resolution the maximal
pressure and temperature states inside the bubble are increasing. A similar observation was
made by Guderley in case of the focusing of spherical shock waves, see [19]. His asymptotic
analysis predicts infinite states when the shock focuses in the center for the inviscid case but
these remain bounded taking into account viscosity and heat conduction. This was later on
confirmed numerically, see [21].

Another reason might be that in our model we do not account for the interaction of different
components due to velocity and inertia. This is only justified for small velocities, see [13], p. 146.
However, in the collapse the phase interface is significantly accelerated. For the same reason,
the equilibrium assumption of the mass transfer is questionable. Condensation and vaporization
will proceed on different time scales and should therefore be modeled in non-equilibrium.

Remark. Finally we would like to comment on similar results presented in [48]. There a
reduced three-component model is used where only one velocity for all phases is taken into
account. Although less equations had to be solved and the computational domain [0,0.099]
m has been much smaller, the computational costs are much higher due to iterations involved
in the relaxation procedures as discussed in Section 3.3 and performing the computations on
uniform grids. Computational times were in the order of 1000 CPU hours on the system 4 core
AMD Opteron(tm) 2218, 2.6 GHz, 32 GB Ram.

Due to local grid adaptation applied in our computations the number of cells in the locally
refined grids is by several orders smaller than the one used for the computations presented in [48]
although the fully refined grids corresponding to L = 13, 14, 15 provide the same resolution
as in [48] corresponding to the computations with NI = 250, 500, 1000, see Table 5 and 6.
Therefore our computations that have been performed on the system 84 core AMD Opteron
8356, 2.3 GHz, 256 GB Ram took at most 60 CPU hours. This is a tremendous speedup in
comparison to [48]. Furthermore, in [48] only two components have been relaxed and the third
component has been determined by the saturation constraint (1). This may cause unphysical
production of energy and momentum.

L 13 14 15 16
G05 1517 1720 2102 3024
G10 1480 1719 2193 3079
G20 1422 1655 2237 2889
G40 1352 1624 2123 2924

L 13 14 15 16
G05 1176 1591 2020 2844
G10 1179 1551 2032 2736
G20 1182 1584 2083 2632
G40 1188 1577 1998 2624

Table 6: Maximal number of cells on locally refined grid for different number of refinement
levels L. Computations with (left) and without (right) mass transfer.

4.3 Shock-bubble interaction

For a multi-dimensional application we consider the interaction of a collapsing bubble with a
planar shock wave. This problem is important for medical applications such as shock wave
lithotripsy, as well as from a more fundamental point of view because bubbles in a cloud are
exposed to the collapse shock waves of neighboring bubbles. This problem has been investigated
both by so-called lithotripter shock wave (LSW) experiments and numerical simulations. For
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(a) G05 (b) G05

(c) G10 (d) G10

Figure 8: Bubble radius identified by αwater = 0.5 versus time for different number of refinement
levels. Computations with (left) and without (right) mass transfer.
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(a) G20 (b) G20

(c) G40 (d) G40

Figure 9: Bubble radius identified by αwater = 0.5 versus time for different number of refinement
levels. Computations with (left) and without (right) mass transfer.
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Figure 10: Computational setup.

Sb S0 Sp
p [Pa] 2339 1× 105 8× 107

T [K] 293 293 293
v [m/s] 0 0 0
αvapor 0.1− ε2 ε1 ε1
αwater ε2 1− 2ε1 1− 2ε1
αgas 0.9 ε1 ε1

Table 7: Initial data with ε1 = 10−4 and ε2 = 10−8. The state inside the bubble Sb, the ambient
water state S0 and the pressure pulse Sp are assumed to be in equilibrium.

a detailed review we refer to [1, 4] and references cited therein. Since in this paper the main
objective is on the feasibility of multi-dimensional multi-component simulations the focus is
on the numerical simulation rather than the comparison with experiments, we therefore con-
fine ourselves to a simplified quasi-two-dimensional computational setting employing rotational
symmetry as sketched in Figure 10.

Computational setup. The computation is initialized with a bubble of radius 0.8 mm
filled with liquid vapor and non-condensable gas. Since the state inside the bubble cannot be
observed experimentally, we assume that the state is homogeneous and at rest with pressure
2339 Pa and temperature 293 K referred to as state Sb. The bubble is embedded in water
at rest where the ambient state S0 is determined by the pressure 1 bar and the temperature
293 K. The computation is first started without perturbation in the water. Then at time
T0 = 37.45µs a pressure pulse with pressure condition Sp of 80 MPa starts propagating from
the left boundary. The pressure pulse lasts 0.23µs before recovering the initial water state at
rest S0. The boundary conditions at the left boundary are thus given by

S(t) =

{
S0, t < T0 or t > T1

Sp, T0 ≤ t ≤ T1
(130)

with T1 = 37.68µs. The initial conditions are recorded in Table 7.
Discretization. Since the problem is inherently two-dimensional due to rotational symme-

try, we perform quasi-two-dimensional computations where we have to take the change of metric
into account in the fluid discretization (56) and (57). For a structured grid in a two-dimensional
space with longitudinal coordinate z and radial coordinate r, i.e., Vi = [zi− 1

2
, zi+ 1

2
]×[rj− 1

2
, rj+ 1

2
]
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with i = (i, j), the resulting scheme can be written as

(αk)n+1
i = (αk)ni −

∆t

‖Vi‖
∑

j∈N (i)

‖Γij‖ (V I)ij · (∇αk)nij , (131)

(uk)n+1
i = (uk)ni −

∆t

‖Vi‖
∑

j∈N (i)

‖Γij‖Gn
ij +

∆t|Vij |
‖Vij‖

Snij , (132)

with the volumes |V(i,j)| := ∆zi ∆rj = (zi+ 1
2
− zi− 1

2
) (rj+ 1

2
− rj− 1

2
), ‖V(ij)‖ := rj∆rj∆zi, rj :=

(rj+ 1
2

+rj− 1
2
)/2 and the interface areas ‖Γ(i,j),(i,j±1)‖ := ∆zi rj± 1

2
and ‖Γ(i,j),(i±1,j)‖ := rj ∆rj .

Since in each time step pressure is at equilibrium, we employ here the identity (51), i.e., the
fluxes and the derivatives of the volume fractions are given by (60) and (59), respectively. Here
the fluxes and the derivatives of the volume fractions are given by (58) and (59), respectively.
Note that uk = αk(ρk, ρk(vz)k, ρk(vr)k, Ek)T is now composed of the density, the momentum
in longitudinal and radial direction and total energy of component k. The additional metric
term is defined by Sk(w) = (0, αkpk, 0, 0)T . This quasi-two-dimensional scheme can be derived
from the three-dimensional discretization applied to a special grid similar to [6] and, in more
details, in [4], Appendix A. For our problem we choose the computational domain as Ω =
[0, 0.0445]× [0, 0.00445] m2 to avoid unphysical reflections from the right boundary and a short
distance between the pressure pulse and the bubble at the left boundary. The domain is
discretized by 50 × 5 cells on the coarsest level using L = 7 refinement levels. The threshold
value is chosen as εthresh = 10−3. We perform 120000 time steps with CFL number 0.5. The
computation is performed with mass transfer.

Numerical results. The initial phase of the computation is characterized by a rarefaction
wave and a shock wave both emanating from the bubble interface and running into the liquid
and towards the bubble center, respectively, see Fig. 11(a). The shock wave is focusing in the
bubble center where it is reflected. The reflected shock wave is then interacting with the bubble
interface where it is partially transmitted into the liquid and partially reflected. Thus the shock
wave is bouncing between the bubble center and the bubble interface. Due to the interactions
the bubble starts shrinking.
The second phase starts at time t = T0 where the pressure pulse enters the computational
domain at the left boundary, see Fig. 11(b). It hits the bubble at about t = 39.5 µs with the
bubble at a radius of approximately 0.59 mm, see Fig. 12. The LSW is partially transmitted
and reflected at the interface, see Figs. 11(c) and 11(d). The reflected LSW causes a significant
pressure drop in the water causing vaporization, see Fig. 11(e). With advancing time the
pressure raises again and the vapor condensates again causing pressure waves, see Fig. 11(f).
In a final phase the bubble interface is significantly accelerated due to the interaction with the
LSW and the bubble collapses, see Fig. 11(f). When the bubble collapses at about t = 44.32
µs shock waves are emanated into the liquid, see Fig. 12.
An overview of the wave dynamics is given in Fig. 12 where we extract data on the symmetry
axis every 50 time steps. The pressure gradient magnitude shows very well the collapse of the
bubble and the emanated shock waves.
Finally we present in Fig. 13 a pressure probe taken on the symmetry axis at a distance of
1.88 mm behind the initial bubble center, see probe location in Fig. 10. The first peak is the
pressure measurement of the LSW and the second one is shock-induced by the collapse.

5 Conclusion

A generalized multi-component fluid model has been introduced. This model is thermodynam-
ically consistent as proven in [20]. It accounts for relaxation of velocity, pressure, temperature,
and chemical potentials.

Opposite to former work, cf. [47, 34], pressure and temperature are relaxed simultaneously.
Typically pressure relaxation relies on an approximation process that can cause numerical in-
stabilities in case of strong pressure non-equilibrium, cf. [26]. Alternatively, iterative procedures
can be used that make computations very expensive, in particular in multi dimensions. This
is avoided in our pressure-temperature relaxation procedure. In particular, we have proven
that an equilibrium state always exists such that the equilibrium temperature as well as the



5 CONCLUSION 34

(a) 3.50 µs (b) 38.74 µs

(c) 39.80 µs (d) 40.80 µs

(e) 44.39 µs (f) 45.40 µs

Figure 11: Pressure gradient magnitude with bubble interface IF identified by αwater = 0.5,
rarefaction wave RW, lithotripter shock wave LSW, vaporization region V and collapse shock
CS.
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Figure 12: Pressure gradient magnitude with bubble interface IF identified by αwater = 0.5,
rarefaction wave RW, shock wave SW, lithotripter shock wave LSW and collapsing shock waves
CS.

Figure 13: Pressure probe.
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equilibrium pressure are positive and the volume fractions are in the admissible range. This
proof applies for an arbitrary number of components.

Instead of relaxing Gibbs free energies as in [48] we perform relaxation of the chemical
potentials in case of three or more components. Exemplarily for a three-component model
consisting of water vapor, liquid water and inert gas we have verified that either a unique
equilibrium state exists or one phase vanishes. This model is consistent with the two-component
model if the inert gas is not present. We emphasize that determining the equilibrium state only
requires a single iteration procedure whereas in [48] an additional internal iteration is needed.
This significantly speeds up the computation.

This model is solved numerically by applying an operator splitting where the evolution of
the fluid and the relaxation to equilibrium are separated in each time step. For the solution of
the homogenized fluid equations we apply a second order finite volume solver based on ENO
reconstruction and the HLLC Riemann solver. Computations are performed on a locally re-
fined grid where grid adaptation is triggered by advanced multi-scale techniques, cf. [31, 32].
We emphasize that local grid adaptation is a key ingredient to perform the computations in
affordable time. Moreover, we apply thermal and chemical relaxation throughout the compu-
tational domain instead of an artificial interface region near the phase boundary as done for
instance in [34, 48].

Stability and efficiency of the model and the implementation are verified by means of a
spherical symmetric collapse of a laser induced cavitation bubble as well as a two-dimensional
shock-bubble interaction for a three-component fluid.

Quasi-one-dimensional numerical simulations of a collapsing bubble filled with non-condensable
gas and condensable water vapor in liquid water are performed for varying amount of non-
condensable gas. The computations show a strong effect on the rebound with increasing amount
of non-condensable gas. However, the rebound is grid-dependent, i.e., the rebound increases
under grid refinement. This indicates that some physical effect is still missing in the model. The
asymptotic analysis of Guderley [19] for the collapse of a spherical shock wave in a single-phase
fluid indicates that viscosity and heat conduction might be accounted for. This is in agreement
with the findings in [10]. In addition, the phase transition might be modeled in non-equilibrium
because of the very high speeds of the phase interface in the collapse.

In order to verify that also multi-dimensional computations are feasible for the model at
hand we have considered the interaction of a collapsing bubble with a planar shock wave. This
problem is important for medical applications such as shock wave lithotripsy. To our knowl-
edge this is one of the first 2d-computations presented using this type of model besides the
two-component simulations in [34]. However, we emphasize that our computations are more
complex due to three components and taking into account also chemical potentials, but are
more efficient due to grid adaptation and the improved relaxation procedures.

Acknowledgments: The authors would like to thank Prof. Nicolas Seguin for fruitful
discussions on the properties of the non-equilibrium model.
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A Upwind discretization according to Saurel and Abgrall

For the discretization of the hyperbolic problem (52) and (53) we follow the Saurel-Abgrall
approach [37]. Opposite to the original work, we derive it for a general multi-dimensional
discretization as outlined in Section 3.1. The key idea is to design a discretization that preserves
homogeneous pressure and velocity fields. For this purpose, we start with an arbitrary finite
volume discretization for (52) that is in conservation form. For each phase k = 1, . . . ,K it reads

(uk)n+1
i = (uk)ni − ∆t

|Vi|
∑

j∈N (i)

|Γij |F k(wn
ij ,w

n
ji,nij)

− ∆t

K∑
l=1,6=k

Hk,l(w
n
i ) (∇αl)ni , (133)

where we use the notation introduced in Section 3. Note that these discrete evolution equations
are coupled by the numerical fluxes F k that depend on the mass fractions and conserved
quantities of all phases. The numerical fluxes in normal direction n are chosen arbitrarily but
are assumed to satisfy the following consistency conditions

F k(w,w,n) =

d∑
i=1

fk,i(αk,uk)ni, ∀w = (αT ,uT1 , . . . ,u
T
K)T , (134)∑

j∈N (i)

|Γij |nij = 0. (135)

Obviously, condition (134) holds if the numerical flux is computed by the original flux for an
intermediate state determined by a Riemann solver, i.e.,

F k(wL,wR,n) =

d∑
i=1

fk,i ((αk,uk)∗(wL,wR,n)) ni. (136)

The gradients (∇αk)ni of the volume fractions are not yet determined. In order to derive an
appropriate approximation of these terms we assume that at some time step n a homogeneous
pressure and velocity field is given

(pk)ni = p, (vk)ni = v. (137)

In general the numerical fluxes involve the higher order reconstruction and the approximate
solution of a Riemann problem. These are chosen such that they preserve homogeneous pressure
and velocity fields. Therefore it is useful to apply the reconstruction to the primitive variables
ρk, vk and pk instead of the conserved quantities of mass momentum and energy. Moreover,
primitive reconstruction also preserves pressure and velocity equilibrium. We thus obtain for
the homogeneous pressure and velocity fields

(pk)nij = (pk)nji = p, (vk)nij = (vk)nji = v (primitive reconstruction) (138)

(pk)nij = (pk)nji = p, (vk)nij = (vk)nji = v (Riemann solver) . (139)

Since we assume that in mechanical equilibrium the interfacial pressures and the interfacial
velocity coincide with the equilibrium states, see equation (21), we also have

(Pk,l)
n
i = p, (V I)

n
i = v (interfacial states) . (140)

Then according to (136) the numerical flux F nk ≡ F k(wn
ij ,w

n
ji,nij) reads

F nk = (αk ρkvkn)nij

 1
(vk)nij

(Ek)nij + (pk)nij/(ρk)nij

+ (αk)nij

 0
(pk)nijnij

0

 (141)
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with the normal velocities (vkn)nij := (vk)nij · nij . Furthermore, the right-hand side in (133)
simplifies due to the homogeneity of the interfacial pressures (140)

−
K∑

l=1,6=k

Hk,l(w
n
i ) (∇αl)ni = H(wn

i ) (∇αk)ni with H(wn
i ) :=

 0T

Pni Id×d
Pni ((V I)

n
i )T


see also equation (51), where we assume that the saturation condition (1) also holds on the
discrete level.

¿From the homogeneity of velocity (139) we then deduce for the discrete density equation
of phase k

(αk ρk)n+1
i = (αk ρk)ni −

∆t

|Vi|
∑

j∈N (i)

|Γij |(αk)nij (ρk)nij vkn. (142)

Furthermore, for the discrete momentum equation of phase k we obtain by the homogeneity of
pressure and velocity (139) and (140) as well as the discrete density equation (142)

(αk ρk vk)n+1
i = v (αk ρk)n+1

i − p

 ∆t

|Vi|
∑

j∈N (i)

|Γij | (αk)nij nij −∆t (∇αk)ni

 . (143)

In order to preserve the homogeneous velocity field at the new time step, i.e.,

(vk)n+1
i = v, (144)

the last term has to vanish. This gives one equation for the approximation of the gradient of
the volume fraction

(∇αk)ni =
1

|Vi|
∑

j∈N (i)

|Γij | (αk)nij nij =
1

|Vi|
∑

j∈N (i)

|Γij | ((αk)nij − (αk)ni )nij , (145)

where in the last step we apply the geometric consistency (135) to point out the upwind char-
acter of the discretization. Next, we split the discrete energy into its internal and kinetic part,
respectively,

(αk ρk v
2
k)n+1
i = (αk ρk v

2
k)ni −

∆t

|Vi|
∑

j∈N (i)

|Γij |vnkn,ij
(

(αk ρk v2
k)nij

)
(146)

(αk ρk ek)n+1
i = (αk ρk ek)ni −

∆t

|Vi|
∑

j∈N (i)

|Γij |(vkn)nij
(
(αk ρk ek)nij + (αk)nij (pk)nij

)
+ ∆t Pni V

n
i · (∇αk)ni (147)

Again, from the homogeneity of pressure and velocity (139) and (140) as well as the discrete
density equation (142) we conclude that by (144) the discrete kinetic energy is satisfied and by
(145) the discrete energy equation simplifies to

(αk ρk ek)n+1
i = (αk ρk ek)ni −

∆t

|Vi|
∑

j∈N (i)

|Γij |(vkn)nij (αk ρk ek)nij . (148)

In case of the stiffened gas law (22) and the homogeneity of the pressure (139) we conclude

ρk (ek − qk) =
pk + γk πk
γk − 1

=
p+ γk πk
γk − 1

= const. (149)

On the other hand, we may add a constant to the discrete energy equation (148), because of
the geometric consistency (135)

(αk ρk (ek − qk))n+1
i =

(αk ρk (ek − qk))ni −
∆t

|Vi|
∑

j∈N (i)

|Γij |(vkn)nij (αk ρk (ek − qk))nij . (150)
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Together with (149) we finally obtain the discrete evolution equation for the volume fraction

(αk)n+1
i = (αk)ni −

∆t

|Vi|
∑

j∈N (i)

|Γij |(vkn)nij (αk)nij . (151)

Note that because of the assumptions (140) and (139) we may replace (vk)nij by V n
i · nij in

(151), see Zein et al. [47], and, hence, conclude with (145)

(αk)n+1
i = (αk)ni −∆tV n

i · (∇αk)ni . (152)

Plugging (145) into (133) we finally obtain the finite volume discretization. In particular, it
can be written in divergence form

(uk)n+1
i = (uk)ni −

∆t

|Vi|
∑

j∈N (i)

|Γij |(F k)nij (153)

with modified numerical flux

(F k)nij = F k(wn
ij ,w

n
ji,nij)−H(wn

i )nij ((αk)nij − (αk)ni ). (154)

Note, however, that this discretization is not conservative because of the term H(wn
i ), i.e.,

(F k)nij 6= −(F k)nji . The above discretization is appropriate in case of mechanical equilibrium
because of (51). In the non-equilbrium case, we have to replace (154) by

(F k)nij = F k(wn
ij ,w

n
ji,nij) +

K∑
l=1,6=k

Hk,l(w
n
i )nij ((αl)

n
ij − (αl)

n
i ). (155)

B HLLC Riemann Solver

The Riemann problem at the cell interfaces is not solved for the fully coupled system (2), (3),
(4) and (6) but we only consider the fluid equations for mass, momentum and energy of the
pure phases, where the volume fractions are considered to be frozen. Let be n normal to the
interface. Thus we consider the following Cauchy problem in normal direction ξ = x · n

ut + (F (u,α))ξ = 0, (156)

u(0, ξ) =

{
uL , ξ < 0

uR , ξ > 0
. (157)

Here u = (uT1 , . . . ,u
T
K)T denotes the vector of all conserved quantities of all phases composed

of the vector uk = αk (ρk, ρk v
T
k , ρk Ek)T of the conserved quantities of a pure phase k and

α = (α1, . . . , αK)T is the vector of volume fractions. The flux F = (F T1,n, . . . ,F
T
K,n)T in

normal direction n is defined by the corresponding fluxes for the pure phases

F k,n = αk
(
ρkvk,n, ρkvk,n v

T
k + pkn

T , ρkvk,n (Ek + pk/ρk)
)T

(158)

with normal velocity vk,n = vk · n. The solution of the Riemann problem (156) and (157) is
approximated by the HLLC solver, i.e.,

u(t, ξ) =


uL , ξ/t < SL

uL∗ , SL < ξ/t < S∗

uR∗ , S∗ < ξ/t < SR

uR , SR < ξ/t

, (159)

where the intermediate states uL∗, uR∗ and the velocities SL, S∗ and SR are to be appropriately
determined. Here we proceed similar to the case of a single-phase fluid described in the Toro’s
book [45]. Starting point are the Rankine-Hugoniot jump conditions for the system (156)

FK∗ = FK + SK (uK∗ − uK), (160)

FR∗ = FL∗ + S∗ (uR∗ − uL∗), (161)
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where K ∈ {L,R} represents the left and right state, respectively. These are three equations
for four unknown vectors uK∗ and FK∗. The task is to find uK∗ such that the fluxes FK∗
satisfy the jump conditions (160) and (161), respectively. For this purpose, we assume that the
following assumptions hold true for all phases k = 1, . . . ,K

pk,L∗ = pk,R∗ = pk,∗, (162)

vkn,L∗ = vkn,R∗ = vkn,∗, (163)

αk,K∗ = αk,K , K ∈ {L,R} (164)

i.e., we assume pressure and velocity equilibrium and the volume fractions only jump across the
contact discontinuity. Then by rearranging of (160) and assumptions (162), (163) and (164) we
obtain

(SK − vk,n,∗)

 αk ρk
αk ρk vk
αk ρk Ek


K∗

=

(SK − vk,n,K)

 αk ρk
αk ρk vk
αk ρk Ek


K

+

 0
αk,K (pk,∗ − pk,K)n
αk,K (vk,n,∗ pk,∗ − vk,n,K pk,K)

 (165)

¿From this relation we can deduce the intermediate states for density, momentum, and energy αk ρk
αk ρk vk
αk ρk Ek


K∗

= (166)

(αk ρk)K
SK − vk,n,K
SK − vk,n,∗

 1
vk,K + (vk,n,∗ − vk,n,K)n

Ek,K + (vk,n,∗ − vk,n,K)
(
vk,n,∗ +

pk,K

ρk,K (SK−vk,n,K)

)


Here the intermediate density follows directly from (165). For the intermediate velocity state
we first determine an intermediate pressure state where we multiply the momentum equation of
(165) by nT and use the assumptions (162), (163), (164) together with the intermediate density
state:

(pk,∗ − pk,K) = ρk,K (vk,n,K − SK) (vk,n,K − vk,n,∗). (167)

The intermediate energy state then follows from (165) together with the intermediate pressure
state (167) and assumptions (162), (163).

In order to derive S∗ we assume that SL and SR are known. Then we conclude from the
intermediate pressure state (167) and assumption (162)

Sk,∗ ≡ vk,n,∗ =
pk,L − pk,R − ρk,L vk,n,L (SL − vk,n,L) + ρk,R vk,n,R (SR − vk,n,R)

ρk,R (SR − vk,n,R)− ρk,L (SL − vk,n,L)
. (168)

Assuming pressure and velocity equilibrium with the mixture pressure and the mixture velocity,
respectively, defined in (9), i.e.,

pmixK′ = p1,K′ = . . . = pK,K′ , K ′ ∈ {L,R} (169)

vmixK′ = v1,K′ = . . . = vK,K′ , K ′ ∈ {L,R} (170)

we obtain for the still phase dependent intermediate wave speed

vk,n,∗ =
pmixL − pmixR − ρk,L vmixn,L (SL − vmixn,L ) + ρk,R v

mix
n,R (SR − vmixn,R )

ρk,R (SR − vmixn,R )− ρk,L (SL − vmixn,L )
. (171)

Replacing the phase densities by the mixture density (9) we finally obtain one value for the
intermediate wave speed S∗:

S∗ = vmixn,∗ =
pmixL − pmixR − ρmixL vmixn,L (SL − vmixn,L ) + ρmixR vmixn,R (SR − vmixn,R )

ρmixR (SR − vmixn,R )− ρmixL (SL − vmixn,L )
(172)
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It remains to fix the left and right wave speeds SL and SR. For this we follow the choice
suggested by Davis [11], i.e.,

SL = mink=1,...,K{vk,n,L − ck,L, vk,n,R − ck,R}, (173)

SR = maxk=1,...,K{vk,n,L + ck,L, vk,n,R + ck,R}. (174)

C Quasi-1D Scheme: Spherical Symmetry

Here we present the derivation of the quasi-1D scheme in analogy to previous work [6, 33].
The basic idea is to consider the full 3D scheme determined by the evolution equations for the
conserved variables (153) of each phase k and the non-conservative volume fractions (152) for
a special discretization that allows for spherical symmetry. For this purpose, we introduce the
”mixed” vector of conserved and non-conserved quantities

w = (αT ,uT1 , . . . ,u
T
K)T . (175)

The corresponding evolution equations are determined by the coupled system determined by
(52) and (53). Its finite volume discretization then reads

wn+1
i = wn

i −
∆t

|Vi|
∑

j∈N (i)

|Γij |G(wn
i ,w

n
j ,nij) (176)

where the numerical flux is defined as

G = (GT
α ,G

T
1 , . . . ,G

T
K)T . (177)

with

Gα(wn
i ,w

n
j ,nij) = (V I)

n
i nij (αk)nij , (178)

Gk(wn
i ,w

n
j ,nij) = F k(wn

ij ,w
n
ji,nij) +

K∑
l=1, 6=k

Hk,l(w
n
i )nij (αl)

n
ij . (179)

Here wn
ij denotes some reconstructed value of cell Vi at the cell interface Γij . For a first order

reconstruction this coincides with the cell average, i.e., wn
ij = wn

i . Moreover the normal vectors
at the interface only differ in sign, i.e., nij = −nji.

Let us note that the numerical flux is made of a conservative part F k coming from the
standard Godunov-type approach, i.e.,

F k(wi,wj ,nij) = −F k(wj ,wi,nji),

and a non-conservative part corresponding to the terms Hk,l(w
n
i ) and (V I)

n
i coming from a

simple upwind approximation of the transport equation.
Next, we apply this scheme to a special discretization where the underlying computational

domain is the ball
B =

{
(x, y, z), x2 + y2 + z2 < R2

}
.

In order to mesh it, we consider spherical coordinates

x = r cosϕ cos θ, y = r sinϕ cos θ, z = r sin θ,

with parameters

0 ≤ r ≤ R, −π
2
≤ θ ≤ π

2
, −π ≤ ϕ ≤ π.

We now construct a regular discretization in spherical coordinates. For this purpose, we choose
three integers Nr, Nθ, Nϕ and introduce the step sizes

∆r :=
R

Nr
, ∆θ :=

π

Nθ
, ∆ϕ :=

2π

Nϕ
.
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Note that in order to obtain the quasi-1D scheme, we will have to let tend ∆θ and ∆ϕ to zero
later on. The discretization of the parameter space is then determined by

ri := (i+ 1/2)∆r, i = 0, 1, · · ·
θj := j∆θ, j = · · · − 2,−1, 0, 1, 2, · · ·
ϕl := l∆ϕ, l = · · · − 2,−1, 0, 1, 2, · · ·

By these grid points, we define the discretization in the parameter space by the cells

C(i,j,l) = (ri−1/2, ri+1/2)× (θj−1/2, θj+1/2)× (ϕl−1/2, ϕl+1/2).

The discretization in the physical space is then determined by the cells

V(i,j,l) =
{

(r cosϕ cos θ, r sinϕ cos θ, r sin θ), (r, θ, ϕ) ∈ C(i,j,l)

}
.

In order to obtain the quasi-1D scheme, we suppose that the approximate solution also satisfies
a discrete rotational symmetry. More precisely, we suppose that

vk,(i,j,l) = vkr,i(cosϕl cos θj , sinϕl cos θj , sin θj)
T (180)

and also that
ρk,(i,j,l) = ρk,i pk,(i,j,l) = pk,i αk,(i,j,l) = αk,i (181)

do not depend on (j, l). In this way, it is sufficient to write the scheme (176) on the cells V(i,0,0).
This will permit to compute the one-dimensional solution through

wn
(i,0,0) = ((αni )T , ((v1)ni )T , . . . , ((vK)ni )T )T , (182)

vnk,i = ((αkρk)ni , (αkρkvkr)
n
i , 0, 0, (αkρkEk)ni )

T
. (183)

We denote by

ΓW the (West) edge between the cells V(i,0,0) and V(i−1,0,0),

ΓE the (East) edge between the cells V(i,0,0) and V(i+1,0,0),

ΓN the (North) edge between the cells V(i,0,0) and V(i,0,1),

ΓS the (South) edge between the cells V(i,0,0) and V(i,0,−1),

ΓU the (Upper) edge between the cells V(i,0,0) and V(i,1,0),

ΓB the (Bottom) edge between the cells V(i,0,0) and V(i,−1,0).

We take as a convention that the corresponding unit normal vectors are pointing toward the
exterior of V(i,0,0). The finite volume scheme then reads

∫
Vi,0,0

wn+1
(i,0,0) −w

n
(i,0,0)

∆t
+∫

ΓW

G(wn
(i,0,0),w

n
(i−1,0,0),nW ) +

∫
ΓE

G(wn
(i,0,0),w

n
(i+1,0,0),nE) +∫

ΓN

G(wn
(i,0,0),w

n
(i,0,1),nN ) +

∫
ΓS

G(wn
(i,0,0),w

n
(i,0,−1),nS) +∫

ΓU

G(wn
i,0,0,w

n
i,1,0,nU ) +

∫
ΓB

G(wn
(i,0,0),w

n
(i,−1,0),nB) = 0.

The important fact here is that for computing the North, South, Upper and Bottom fluxes we
have to solve symmetric Riemann problems with two opposite normal velocities, cf. [6]. This
is implied by the discrete rotational symmetry condition (180). In particular, the velocities in
longitudinal and circumferential direction inside the cell Vi,0,0) vanish, i.e.,

vk,(i,0,0) = (vkr, 0, 0)T . (184)
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The corresponding numerical fluxes corresponding to a single phase are then of the form

F k(wL,wR,n) = (αkρkv
∗
kn, v

∗
knv
∗
kαkp

∗
kn

T , 0)T = (0, αkp
∗
kn

T , 0)T

where p∗k and v∗k = 0, v∗kn = v∗k · n = 0 are the pressure and the velocity between the two
symmetric rarefaction waves in the Riemann problem solution. Note that due to the rotational
symmetry condition (181) there are common values for ρk = ρk,L = ρk,R, pk = pk,L = pk,R and
αk = αk,L = αk,R. Together with (184) the mixture source terms then read

Hk,ln = (0, Pk,ln
T , Pk,lVI,n)T = (0, Pk,ln

T , 0)T .

For the composed numerical fluxes (179) and (178) we thus conclude

Gα(wL,wR,n) = Vnαk = 0, (185)

Gk(wL,wR,n) = (0, αkp
∗
kn

T , 0)T +

K∑
l=1,6=k

(0, Pk,ln
T , 0)T αl. (186)

In addition, the pressure p∗k tends to the common pressure pk = pk,L = pk,R when ∆θ → 0
and ∆ϕ→ 0. Note, that the discrete geometric source term will come from these North, South,
Upper and Bottom edges.

Introducing the volume ∆r3 := 1
3 (r3

i+1/2 − r
3
i−1/2) and the interface area by r2

i+1/2, then by
Taylor expansions for small ∆ϕ and ∆θ the scheme can also be written as

∆r3∆ϕ∆θ
wn+1
i,0,0 −wn

i,0,0

∆t
+

r2
i+1/2∆ϕ∆θG(wn

i,0,0,w
n
i−1,0,0, (−1, 0, 0)T ) +

r2
i−1/2∆ϕ∆θG(wn

i,0,0,w
n
i+1,0,0, (1, 0, 0)T ) +

∆r3∆θ(0T , (0,−(αkpk)ni
∆ϕ

2
, (αkpk +

K∑
l=1,6=k

Pk,lαl)
n
i , 0, 0)k=1,...,K)T +

∆r3∆θ(0T , (0,−(αkpk)ni
∆ϕ

2
,−(αkpk +

K∑
l=1, 6=k

Pk,lαl)
n
i , 0, 0)k=1,...,K)T +

∆r3∆ϕ(0T , (0,−(αkpk)ni
∆θ

2
, 0, (αkpk +

K∑
l=1,6=k

Pk,lαl)
n
i , 0)k=1,...,K)T ) +

∆r3∆ϕ(0T , (0,−(αkpk)ni
∆θ

2
, 0,−(αkpk +

K∑
l=1,6=k

Pk,lαl)i, 0)k=1,...,K)T =

o(∆ϕ2 + ∆θ2).

Dividing by ∆ϕ∆θ and passing to the limit, we finally obtain

wn+1
(i,0,0) = wn

(i,0,0) −
∆t

∆r3

(
G(wn

(i,0,0),w
n
(i+1,0,0), (1, 0, 0)T ) +G(wn

(i,0,0),w
n
(i−1,0,0), (−1, 0, 0)T )

)
+

∆r∆t

∆r3
(0T , (0, 2r̂i(αkpk)ni , 0, 0, 0)k=1,...,K)T

with the cell center r̂i := 1
2 (ri+1/2 + ri−1/2).

Removing the momentum equations in longitudinal and circumferential direction in the
mixed vector w in (175) we finally conclude with the quasi-1D scheme

wn+1
i = wn

i −
∆t

∆r3

(
ri+ 1

2
G(wn

i ,w
n
i+1)− ri− 1

2
G(wn

i−1,w
n
i )
)

+
∆r∆t

∆r3
Sni , (187)
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where the numerical flux is defined according to (177) with

Gα(wn
i ,w

n
j ) = V nri (αk)nij , (188)

Gk(wn
i ,w

n
j ) = F k(wn

ij ,w
n
ji) +

K∑
l=1,6=k

Hk,l(w
n
i ) (αl)

n
ij (189)

and

F k(wL,wR) = fk(w) = αkρkvkr(1, vkr, Ek + pk/ρk)T + (0, αkpk, 0)T (190)

Hk,l(w) = (0, Pk,l, Pk,lVI,r)
T . (191)

In case of pressure equilibrium, the numerical fluxes Gk simplify to

Gk(wn
i ,w

n
j ) = F k(wn

ij ,w
n
ji)−H(wn

i ) (αk)nij

with
H(w) = (0, p, pVI,r)

T ,

because of (51) and (188). The numerical source term due to the change in the metric reads

S = (STα ,S
T
1 , . . . ,S

T
K)T . (192)

with

Sα(wn
i ) = 0, (193)

Sk(wn
i ) = (0, 2r̂i(αkpk)ni , 0)T . (194)

In particular, we note that there is no metric source term in the quasi-one-dimensional dis-
cretization of the volume fractions.


