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Abstract. We study a recent timestep adaptation technique for hyperbolic conservation
laws. The key tool is a space-time splitting of adjoint error representations for target func-
tionals due to Süli[19] and Hartmann[13]. It provides an efficient choice of timesteps for
implicit computations of weakly instationary flows. The timestep will be very large in re-
gions of stationary flow, and become small when a perturbation enters the flow field. Besides
using adjoint techniques which are already well-established, we also add a new ingredient
which simplifies the computation of the dual problem. Due to Galerkin orthogonality, the
dual solution ϕ does not enter the error representation as such. Instead, the relevant term is
the difference of the dual solution and its projection to the finite element space, ϕ−ϕh. We
can show that it is therefore sufficient to compute the spatial gradient of the dual solution,
w = ∇ϕ. This gradient satisfies a conservation law instead of a transport equation, and
it can therefore be computed with the same algorithm as the forward problem, and in the
same finite element space. We demonstrate the capabilities of the approach for a weakly
instationary test problem for scalar conservation laws.
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1. Introduction

For explicit calculations of instationary solutions to hyperbolic conservation laws, the
timestep is dictated by the CFL condition due to Courant, Friedrichs and Lewy [4], which
requires that the numerical speed of propagation should be at least as large as the physical
one. For implicit schemes, the CFL condition does not provide a restriction, since the numer-
ical speed of propagation is infinite. Depending on the equations and the scheme, restrictions
may come in via the stiffness of the resulting nonlinear problem. These restrictions are usu-
ally not as strict as in the explicit case, where the CFL number should be below unity. For
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implicit calculations, CFL numbers of 10, 100 or even 1000 may well be possible. Therefore,
it is a serious question how large the timestep, i.e. the CFL number, should be chosen.

We are particularly interested in timestep control which is based upon computable, a-
posteriori error estimates. In [17, 18] Kröner and Ohlberger based their space-time adaptivity
upon L1, Kuznetsov type estimates for scalar conservation laws. In [8, 9, 10, 11, 12], Eriksson
and Johnson developed space-time adaptive methods for parabolic pde’s. These a-posteriori
error estimates require the solution of an adjoint problem. A space-time projection of the
adjoint solution makes it possible to consider spatial and temporal error separately. They
closed the error estimates by an a-priori bound on the dual solution. In [19, 20], Süli and
Houston developed an analogous approach for hyperbolic transport equations.

The work of Eriksson and Johnson has been extended by many authors, see, for example,
the review articles of Becker and Rannacher [5, 6] and of Hoffman and Johnson [16]. We
would like to mention that we learned a lot about these developments from the unpublished
thesis of Ralf Hartmann [13]. Instead of relying upon an (usually pessimistic) a-priori error
estimate for the adjoint solution, Hartmann and others [14, 20] computed the adjoint solution
and hence obtained an (in principle exact) error representation.

More recently these methods have also been developed for hyperbolic problem by Barth,
Hartmann, Houston, Giles, Süli, Schwab and others. An excellent collection of review papers
may be found in [1].

Let us briefly summarize the space-time splitting of the adjoint error representation (see
[8, 9, 10, 11, 12, 5, 19, 13] for details). The error representation expresses the error in a
target functional as a scalar product of the finite element residual with the dual solution.
This error representation is decomposed into separate spatial and temporal components.
The spatial part will decrease under refinement of the spatial grid, and the temporal part
under refinement of the timestep. Technically, this decomposition is achieved by inserting
an additional projection. Usually, in the error representation, one subtracts from the dual
solution its projection onto space-time polynomials. Now, we also insert the projection of the
dual solution onto polynomials in time having values which are H1 functions with respect to
space.

This splitting can be used to develop a strategy for a local choice of timestep. Here we
add to the results in [19, 13] by studying a weakly instationary solution to Burgers’ equation,
for which the timestep will be very large (and we will quantify this) in regions of stationary
flow, and become small when a perturbation enters the flow field. We believe that this type
of flow is a prime example where the space-time splitting can become useful.

Besides applying adjoint techniques which are already well-established to a new test prob-
lem, we also add a new ingredient which simplifies and accelerates the computation of the
dual problem. Due to Galerkin orthogonality, the dual solution ϕ does not enter the error
representation as such. Instead, the relevant term is the difference of the dual solution and
its projection to the finite element space, ϕ− ϕh. We can show that it is therefore sufficient
to compute the spatial gradient of the dual solution, w = ∇ϕ. This gradient satisfies a
conservation law instead of a transport equation, and it can therefore be computed with the
same algorithm as the forward problem, and in the same finite element space.

Our goal here is time step adaptation. Ultimately, this will become a building block of
an aerodynamic and aeroelastic solver which is currently being developed by the SFB 401
research group at RWTH Aachen [3]. In that solver, multiscale analysis is used to compress
data, coarsen and refine the spatial grid. Time stepping for instationary problems is done by
a methods of lines approach, using explicit or implicit Runge-Kutta schemes. The latter is,
of course, a standard set-up used for aerodynamic, or conservation law, solvers.

In the aerodynamical applications which we have in mind, we may have to resolve many
different features of the flow, more than can be controlled by a small number of functionals
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like drag and lift. Therefore, an adaptive monitoring of the complete flow field, as done by
the multiscale analysis, is very desirable.

Here we develop our strategy for a test case. Since we focus on timestep adaptation we
will use uniformly refined meshes in space. Starting with a very coarse spatial mesh and
CFL below unity, we gradually establish sequences of timesteps which are well adapted to
the physical problem at hand. The scheme detects stationary regions, where it switches to
very high CFL numbers, but reduces the time steps appropriately as soon as a perturbation
enters the flow field.

Depending on the CFL number and the cost of the nonlinear solver, the adaptive scheme
chooses either explicit or implicit timesteps. For reasons of efficiency, very small timesteps
CFL ≪ 1 may be merged into a single step. This strategy is detailed in Section 4.1.

Once we arrive at the fine spatial mesh, on which we really want to compute and where
most of the work is being done, we already work with a very efficient time step. Moreover,
we have a rational criterion what the finest grid should be.

The paper is organized as follows: in Section 2 we review the theoretical background for
our adaptive timestep control: DG and FV methods, control of target functionals, error
representation, space-time splitting, error estimates. The new conservative approach for
solving the dual problem is presented in Section 3. In Section 4 we define our adaptive
strategy and apply it to compute perturbations of a stationary shock. Some conclusions are
drawn in Section 5.

2. Derivation of space-time-split error estimates

In this section, we recall some of the theoretical background of adjoint error control, and we
represent the extensions needed in our time adaptive strategy. In Section 2.1 we introduce the
DG method used in the paper. In Section 2.2 we state the adjoint based error representation
for target functionals. In Section 2.3 we introduce a variant of the projections in space and
time which lead to a splitting of the error representation. One part decreases when the spatial
grid is refined, and the other part decays with the timestep. The corresponding decay rates
are a crucial ingredient of the time-adaptation strategy. This strategy and its application
will be presented in Section 4 below.

2.1. Discontinuous Galerkin methods for conservation laws. Let D be an open con-
nected subset of R

d, d ≥ 1, let I := (0, T ) be the time interval and let Ω := D × I be the
space-time domain, with boundary Γ and outside unit normal ν. We consider the system

∂tu+ ∇f(u) = 0 in Ω,(1)

fν(u) = γν on Γin,(2)

where u = (u1, . . . , um)T : Ω → R
d is the vector of conservative variables and f(u) =

(f1(u), . . . , fd(u)) the flux matrix, with fi ∈ C
1(Rm,Rm). The vector

fν(u) := (f(u), u) · ν

is the space-time normal flux across the boundary, and for scalar equations, the inflow bound-
ary is given by

Γin := {(x, t) ∈ Γ |
d

du
((f(u), u) · ν < 0}.

Note that (2) includes initial data, since D × {0} ⊂ Γin, and fν(u(x, 0)) = u(x, 0). For
systems of conservation laws, the definition of in- and outflow boundaries may be generalized
via characteristic decompositions [15, 20].
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Let us define a partition of our time interval I into subintervalls In = (tn−1, tn), where

0 = t0 < t1 < . . . < tn < . . . < tN = T.

Later on this partition will be defined automatically by the adaptive algorithm. Furthermore
we define a regular polygonal spatial grid TD =

⋃

j{Dj} such that D =
⋃

j Dj . We denote
the corresponding space time prisms by

Ωn
j := Dj × In.

For future reference, we denote the outward unit normal vector to Ωn
j by νn

j or simply ν.
Thus we have constructed a subdivision

TΩ =
⋃

j,n

{Ωn
j }

of the computational domain Ω. The spatial discretisation TD can change adaptively from
timestep to timestep, and for each fixed time interval In, the timestep is global (i.e. it is the
same for all spatial cells Dj).

Remark 1. We do not admit local timesteps, since we want to couple our time-adaptive
strategy to standard Runge-Kutta Finite Volume methods and Runge-Kutta Discontinuous
Galerkin methods.

On this grid we define the following function spaces: First, let Sh(Ω) be the mesh dependent
broken space of discontinuous piecewise H1 functions defined on TΩ,

Sh(Ω) :=

{

u | u|Ωn
j

∈ H1(Ωn
j ),∀Ωn

j ∈ TΩ

}

.(3)

Furthermore we denote by Ss,r
h (Ω) the (locally) finite dimensional space consisting of dis-

continuous piecewise polynomial functions of degree s in space and r in time defined on
Th

Ss,r
h (Ω) := {uh | uh(·, t) ∈ Ps(Dj),∀t ∈ In, uh(x, ·) ∈ Pr(In),∀x ∈ Dj ,∀Dj × In ∈ TΩ} ,(4)

where Pr(In) denotes the space of polynomials of degree r on In and Ps(Dj) the space of
polynomials of degree s on Dj . Given a cell Ωn

j and a point (x, t) ∈ Γn
j , we define the inner

(u+) and outer (u−) values of a function u ∈ Sh(Ω) with via

u±(x, t) := lim
δց0+

δր0−

u((x, t) − δνn
j ).(5)

Defining the DG method for nonlinear conservation laws, whose solutions in general contain
shock waves, requires a careful application of the theory of weak solutions, which states that
for a weak solution u and a continuously differentiable test functions v,

−(u, ∂tv)Ωn
j
− (f(u),∇v)Ωn

j
+ (fν(u), v)Γn

j
= 0 ∀j, n.

Thus we have to define the normal flux fν(u) at the cell boundaries, where the approximate
solution uh is discontinuous. This can be done with the help of numerical flux functions,
which we denote by f∗ν . So suppose that (x, t) ∈ Γn

j \ Γ is contained in an interior edge. If

(x, t) ∈ ∂Dj × In, so that the normal points into the spatial direction, then the canonical
choice for f∗ν is an approximate Riemann solver

f∗ν := f(u+
h , u

−
h , nj),(6)

where nj is the outer normal to Dj (i.e. νn
j = (nj , 0)). We require that the flux f∗ν is

consistent and conservative in the sense of Lax. If, on the other hand, (x, t) ∈ Dj × ∂In, so
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that the normal points into the time direction and fν(u) = u, then we simply require that f∗ν
be a convex combination of uh(x, t±). More specifically, suppose that t = tn. Then we set

f∗ν := u∗h(x, tn) := (1 − θ)uh(x, t+n ) + θuh(x, t−n )(7)

for some value θ ∈ [0, 1]. Different values of θ will yield different time discretisations, e.g.
explicit Euler for θ = 0, implicit Euler for θ = 1, if we work with piecewise constant ansatz
functions.

On the boundary of the domain, i.e. for (x, t) ∈ Γ, we set

f∗ν :=

{
γν if (x, t) ∈ Γin

fν(u
+
h (x, t)) if (x, t) ∈ Γout

(8)

In the following definition we simply state the resulting DG(s,r) method, which is a discon-
tinuous method both in space and time. This definition is very similar to, see e.g. [2, 7, 14, 20]
and the references therein.

Definition 2. (i) The abstract semilinear form N : Sh(Ω) × Sh(Ω) → R is given by

N (uh, vh) :=
∑

j,n

{

(∂tuh + ∇f(uh), vh)Ωn
j

+ (f∗ν − fν(u
+
h ), v+

h )∂Ωn
j

}

.(9)

(ii) Now the DG(s,r) finite element method for the system of hyperbolic conservation laws
(2) is defined as follows: Find uh ∈ Ss,r

h (Ω), such that

N (uh, vh) = 0 ∀vh ∈ Ss,r
h (Ω).(10)

As usual, the variational formulation (9), (10) can be exploited as follows: Given uh ∈
Sh(Ω), N (uh, ·) is a linear functional on Sh(Ω). Thus it can be represented by an element of
Sh(Ω), which we call R(uh), the residual. On the interior of a cell Ωn

j we introduce the cell
residual

(11) Rh := ∂tuh + ∇f(uh)

and on the boundaries Γn
j the edge residual

(12) rh := f∗ν − fν(u
+
h ).

Then (9) can be rewritten as

(13) (R(uh), vh) =
∑

j,n

{

(Rh, vh)Ωn
j

+ (rh, v
+
h )∂Ωn

j

}

.

The DG(s, r) solution uh ∈ Ss,r
h (Ω) of (10) is now given by

(14) (R(uh), vh) = 0 ∀vh ∈ Ss,r
h (Ω),

which is the classical Galerkin orthogonality: the residual R(uh) is orthogonal to the test
space Ss,r

h (Ω).
In the following, we mostly work with the DG(0, 0) and DG(1, 1) methods, both in their

explicit (θ = 0) and implicit (θ = 1) form. The DG(0,0) method is equivalent to a first
order accurate finite volume scheme, using explicit order implicit Euler scheme for the time
integration. In [2], Barth and Larson derive a weak formulation of the form (14) for higher
oder accurate finite volume schemes.

Therefore, the techniques presented in this paper can be applied to finite volume and
Discontinuous Galerkin methods.
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2.2. Adjoint error representation for target functional. In this section we define the
class of target functionals treated in this paper, state the corresponding adjoint problem and
recall the classical error representation which we will later use for adaptive time step control.

Our objective is to estimate the error in a user specified functional J(u), which can be
expressed as a sum of weighted integrals over the domain Ω and the outflow boundary Γout.
Typical examples of such functionals are the lift or the drag of a body immersed into a fluid.

To simplify matters we consinder functionals of the following form:

J(u) = (u, ψ)Ω − (fν(u), ψΓ)Γout

Our purpose is to control the error

J(u) − J(uh).

In order to derive the classical error representation one linearizes the evolution equation
satisfied by the error u − uh and works with the adjoint equation of the linearized error
equation. Thus we introduce an approximate Jacobian a(u;uh) of f by

a(u;uh) :=

1∫

0

d

dτ
f(uh + τ(u− uh))dτ.(15)

Note that

f(u) − f(uh) = a(u;uh)(u− uh).

In practice we linearize around the approximate solution. A direct calculation yields the
following theorem:

Theorem 3. Suppose ϕ ∈ H1(Ω) solves the adjoint problem

ϕ = ψΓ on Γout(16)

∂tϕ+ a(u;uh)∇ϕ = ψ in Ω.(17)

Then for all ϕh ∈ Ss,r
h (Ω), the error in the target functional satisfies

J(u) − J(uh) = (R(uh), ϕ− ϕh).(18)

Equivalently one can also define the adjoint solution via a variational formulation (see e.g.
[2, 14, 20]). In [21] Tadmor proves the well-posedness of the adjoint problem (16) – (17)
for scalar, convex, one-dimensional conservation laws. The key observation is that, if the
forward solution u has jump discontinuities, then due to the entropy condition the jump of
the transport coefficient a(u;uh) has a distinct sign. This makes it possible to follow the
characteristics of the adjoint problem backwards in time.

Identity (18) is the error representation which we discussed in the introduction and onto
which we are going to base our adaptive strategy. By definition (11) - (13) of the residual
R(uh), the error representation may be decomposed as a sum over the cells and edges of
inner products of the local residuals with the solution of our dual problem. Due to Galerkin
orthogonality (14), we can subtract an arbitrary test function ϕh, which is very convenient
when we derive local error estimates later on.

2.3. Space-time splitting and the error estimate. The error representation (18) is not
yet suitable for time adaptivity, since it combines space and time components of the residual
and of the difference ϕ−ϕh of the dual solution and the test function. The main result of this
section is an error estimate whose components depend either on the spatial grid size h or the
time step k, but never on both. The key ingredient is a space-time splitting of (18) based on
L2 projections. Similar space-time projections were introduced previously in [13, 19]. Here
we adapt them to the finite element spaces used in the error representation (18).
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Let Ps,r(Ω
n
j ) = Ps(Dj) × Pr(In) be the space of polynomials of degree s on Dj and r on

In. Furthermore let P̂ r
In

(Ωn
j ) = {w ∈ L2(Ωn

j )|w(x, ·) ∈ Pr(In),∀x ∈ Dj}, and P̂ s
Dj

= {w ∈

L2(Ωn
j )|w(·, t) ∈ Ps(Dj),∀t ∈ In}. For r ≥ 0 define the L2 projection Πr

In
: L2(Ωn

j ) → P̂ r
In

(Ωn
j )

via

(u− Πr
In
u, ϕ)In = 0 ∀ϕ ∈ P̂ r

In
(Ωn

j ),∀x ∈ Dj ,(19)

and for s ≥ 0 define the L2 projection Πs
Dj

: L2(Ωn
j ) → P̂ s

Dj
(Ωn

j ) via

(u− Πs
Dj
u, ϕ)Dj

= 0 ∀ϕ ∈ P̂ s
Dj

(Ωn
j ),∀t ∈ In.(20)

Similarly let the L2 projection Πs,r
Ωn

j
:= L2(Ωn

j ) → Ps,r(Ω
n
j ) be defined via

(u− Πs,r
Ωn

j
u, ϕ)Ωn

j
= 0 ∀ϕ ∈ Ps,r(Ω

n
j ).(21)

Note that Πs,r
Ωn

j
= Πs

Dj
Πr

In
.

First we choose ϕh in the error representation (18) to be ϕh = Πs,r
h,kϕ, i.e. ϕh |Ωn

j
=

Πs
Dj

Πr
In
ϕ = Πr

In
Πs

Dj
ϕ, with Πr

In
and Πs

Dj
as defined above. Using the identity

ϕ− Πs,r
h,kϕ = ϕ− Πr

In
ϕ+ Πr

In
ϕ− Πs,r

h,kϕ = (id− Πr
In

)ϕ+ (id− Πs
Dj

)Πr
In
ϕ

we obtain the following splitting of the error representation:

J(u) − J(uh) = (R(uh), (id − Πr
In

)ϕ+ (id − Πs
Dj

)Πr
In
ϕ)(22)

=
∑

j,n

{(Rh, (id− Πr
In

)ϕ)Ωn
j

+ (rh, (id− Πr
In

)ϕ+)∂Ωn
j

︸ ︷︷ ︸

η
jn
k

(23)

+ (Rh, (id − Πs
Dj

)Πr
In
ϕ)Ωn

j
+ (rh, (id − Πs

Dj
)Πr

In
ϕ+)∂Ωn

j
︸ ︷︷ ︸

η
jn
h

}(24)

=: ηk + ηh,(25)

where ηk is the time-component and ηh the space-component of the error representation η.
In this paper we consider grids, which are locally tensor products of a spatial grid TDj

and

a timestep In. For an implicit Runge-Kutta Finite Volume Method ηjn
k and ηjn

h then take
the form

ηjn
k =(Rh, (id − Πr

In
)ϕ)Dj×In + (f∗ν − fν(u

+
h ), (id − Πr

In
)ϕ+)∂Dj×In

+ ([uh]n−1 , (id − Πr
In

)ϕ+
n−1)Dj

ηjn
h =(Rh, (id − Πs

Dj
)Πr

In
ϕ)Dj×In + (f∗ν − fν(u

+
h ), ((id − Πs

Dj
)Πr

In
ϕ)+)∂Dj×In

+ ([uh]n−1 , ((id − Πs
Dj

)Πr
In
ϕ)+n−1)Dj

where the flux difference on the spatial boundaries ∂Dj × In and the jump of uh on the
time boundary Dj × {tn−1} are realizations of the residual term rh in (12).
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For future reference, we also introduce the quantities

ηk :=
∑

j,n

ηjn
k ηh :=

∑

j,n

ηjn
h(26)

η̄n
k :=

1

kn

∑

Dj∈T

|η̄jn
k | η̄n

h :=
1

kn

∑

Dj∈T

|η̄jn
h |(27)

η̄k :=
∑

n

kn|η̄
n
k | η̄h :=

∑

n

kn|η̄
n
h |(28)

η̄ := η̄k + η̄h.(29)

In Section 4.2.1 we will show numerically, that the error terms η̄k and η̄h depend on k and
h.

3. A new approach to solving the adjoint problem

The error representation (18) assumes that the exact solution ϕ of the dual problem (17)
is available. This is, of course, not the case. All we can do is to compute an approximation
ϕ♯ of ϕ. An important question is in which space we should choose the approximation ϕ♯

(let us call this space S♯ ). If we choose S♯ ⊆ Ss,r
h , then - due to Galerkin orthogonality of

the residual - the error representation (18) would return zero. Therefore, S♯ should not be
contained in Ss,r

h .
There are essentially three approaches in the literature to compute an approximate solution

to the dual problem. The first approach is to keep the polynomial degrees r and s fixed, but
compute the solution to the dual problem on a finer grid TDj

⊂ TDj+1
. The second approach

is to compute the dual solution using higher order finite elements and using projections to
get ϕh:

Compute: ϕ♯ ∈ Ss+1,r+1
h (Ω)  ϕh := Πϕ♯,

where Π is the projection from the higher order finite element space onto the test space
Ss,r

h (Ω). The third way is to compute a solution in the test space of the forward problem,
which means to use the same order finite elements, and then do a higher order reconstruction
R.

Compute: ϕh ∈ Ss,r
h (Ω)  ϕ♯ := Rϕh

In the following, we describe a fourth approach, which avoids to approximate ϕ alltogether.
Instead, we approximate the spatial gradient ∇xϕ. The remarkable fact is that this gradient
satisfies a conservation law instead of a nonlinear transport equation, and its numerical
approximation is therefore very robust in the presence of shocks. In the present paper we
limit our presentation to first order schemes in one space dimension. Our approach can be
applied to the dual problem, if the forward problem is approximated by a first order DG
method, or a Finite Volume method. The backward problem can then be computed by the
same method as the forward problems. The generalization of our ansatz to higher order
schemes is relatively straightforward in one space dimension.

Let us look at the details: Due to Galerkin orthogonality, the dual solution ϕ does not
enter the error representation as such. Instead, the relevant term is the difference of the dual
solution and its projection to the finite element space, ϕ−ϕh. Using one of the three methods
described above, one needs additional degrees of freedom to compute an approximation ϕ to
the dual problem, and some computed information will never be used, since only the difference
ϕ−ϕh enters the error representation. Therefore we suggest to compute the spatial gradient
of the dual solution.
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To illustrate our approach (still in one spatial dimension), we assume that ϕh is the piece-
wise constant function satisfying

ϕh(x, t) ≡ ϕ(x0, t0) for (x, t) ∈ Dj × In.

for some given point (x0, t0) ∈ Dj × In (e.g. the midpoint). Expanding ϕ around (x0, t0),

ϕ(x, t) = ϕ(x0, t0) + (x− x0)∂xϕ(x0, t0) + (t− t0)∂tϕ(x0, t0) +O(h2 + k2),

and using the adjoint equation (17), we obtain that

ϕ− ϕh(x, t) = (x− x0)∂xϕ(x0, t0) + (t− t0)∂tϕ(x0, t0) +O(h2 + k2)

= (x− x0)∂xϕ(x0, t0) + (t− t0)(ψ − a(u;uh)∂xϕ(x0, t0)) +O(h2 + k2)

= [(x− x0) + (t− t0)(ψ − a(u;uh))]∂xϕ(x0, t0) +O(h2 + k2).

Since ψ and a(u;uh) are assumed to be known, the only unknown function is ∂xϕ(x0, t0).
In order to derive the differential equation which is satisfied by ∂xϕ, we differentiate the

adjoint equation (17),

ϕ = ψΓ on Γout

∂tϕ+ a(u;uh)∂xϕ = ψ in Ω

with respect to x and obtain

w = ∂xψΓ on Γout(30)

∂tw + ∂x(a(u;uh)w) = ∂xψ in Ω,(31)

where w := ∂xϕ.
Therefore it is not necessary to compute the approximations ϕ♯ and ϕh of ϕ, but it is

sufficient to compute an approximation w♯ ∈ Ss,r
h (Ω) of ∂xϕ.

Remark 4. It is striking to note that the gradient w = ∂xϕ actually satisfies a conserva-
tion law, (30)-(31), instead of a linear transport equation, (16)-(17). Therefore, w♯ can be
computed with the same algorithm as the forward problem, and in the same finite element
space. This leads to an efficient and robust solver: for discontinuous a(u;uh), finite differ-
ence schemes for (16)-(17) may suffer from serious stability problems. Due to their upwind
nature, finite volume schemes for the conservation law (30)-(31) handle discontinuous coef-
ficients easily.

In work in progress, we are analysing the efficiency of the new approach in more detail, gen-
eralize it to higher order and several space dimensions, and study related issues like boundary
conditions for compressible fluid flows.

We will use this new approach in the numerical examples in Section 4.

4. Time adaptive strategy and application to perturbed shocks

In this section we describe the strategy for adaptive time step control, define a suitable
numerical experiment and present first numerical results which demonstrate the potential of
this approach.

4.1. The adaptive strategy. In many applications, there are canonical target functionals
which are of great interest to the user, like the lift and drag in aerodynamics. In some cases,
an error margin may be prescribed for a given application. In other cases, it is less clear which
accuracy should be and can be provided by a numerical computation, and with reasonable
resources. In the following, we suggest prototype strategies to deal with both situations,
where the tolerance may be, or may not be, prescribed. Many equally valid variants of these
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could be proposed, as well. As pointed out before, we focus on the time adaptation. For
clarity of exposition, we therefore use uniformly refined spatial grids.

In the present paper, we only treat Burgers’ equation. In a paper in preparation, we extend
this to the Euler equations of gas dynamics. We begin by computing the forward and the
dual solution as well as the error estimator on a relatively coarse spatial grid (L = 0). Usually
this spatial grid is much coarser than the grid we actually want to compute on. Since we
want to compute a solution with accuracy comparable to an explicit solution, we prescribe a
uniform CFL number below unity in this first computation (e.g. CFL=0.8).

After evaluating the error representation, we have to take two decisions:

(1) the refinement level L of the next spatial grid. In some cases we will gradually increase
the level by one. This careful approach may be important if it is not clear whether
the dynamics of the solution is already captured on the present grid. In other cases
(including the example treated below), the time dynamics is already resolved very
well on level L = 0, and we can immediately proceed to the finest grid level.

(2) the tolerance Tolk(L) for the temporal component of the error, η̄k. The choice of
Tolk(L) will be based on assumptions of the asymptotic decay of the error. If, as in
Figure 2, the error decays to first order, then we may choose Tolk(L+1) = 0.5Tolk(L).

Now we adapt the timestep locally in order to equidistribute the error densities η̄n
k . Recall

from (27) that

η̄n
k =

1

kn

∑

Dj∈T

|η̄jn
k |,

and
∑

n

knη̄
n
k = η̄k.

If the η̄n
k were already equidistributed with respect to n, then they would satisfy

η̄n
k = η̄k/T for all n.

Now, instead of aiming at local error densities of η̄k/T , we target at an equidistribution of

η̄n
k ≈ Tolk(L+ 1)/T for all n,

where Tolk(L + 1) is a given tolerance on grid (L + 1). Assuming once more that the time
component of the error varies linearly with the time step, we compute the new timestep km

(on level (L+ 1)) as

km := kn
Tolk(L+ 1)/T

η̄n
k

.(32)

Using this new timestep distribution we perform a new computation on the finer spatial grid.
Note that due to the linear decay of the error with the timestep, often the new distribution
has a similar number of timesteps as the previous one.

If a total tolerance for the error, |J(u)− J(uh)| < Toltot is prescribed, then the above loop
is stopped once

η̄k + η̄h < Toltot.

Our experience so far is the following: already on very coarse grids, the method detects the
areas of stationary and instationary flow quite well, and chooses the time steps accordingly.

We would like to call the approach which combines (32) with an implicit solver the adaptive,
fully implicit strategy. A possible drawback of this strategy is that it may lead to extremely
small timesteps (CFL ≪ 1) when strong instationary waves pass the computational domain.
Therefore, in the second and third example, we restrict the time step size from below. When
the equidistribution of the error suggests CFL < 5, we switch to an explicit solver with
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CFL = 0.8. This saves a considerable number of timesteps. We call this approach the
adaptive, implicit/explicit strategy.

4.2. Test problem and asymptotic decay rates. Now we set up an instationary test
case, which is almost stationary, such that an implicit (or implicit/explicit) scheme might
be superior to a fully explicit one. Our choice is a perturbed stationary shock for Burgers’
equation

ut + (
1

2
u2)x = 0 for x ∈ [0, 1] and t ∈ [0, 48].

The initial data and corresponding unperturbed solution are given by

u(x, t) =

{
1 for x < 0.5

−1 for x > 0.5
.

Then we place a disturbance at the left boundary of the domain, which makes the stationary
shock move. The new shock position as a function of time is given by

s(t) =







0.5 for t < 12
0.5 + θ1(t)sin(2π

3 (t− 12)) for 12 < t < 18
0.5 for 18 < t < 30

0.5 + θ2(t)sin(2π
3 (t− 30)) for 30 < t < 36

0.5 for 36 < t

.

where

θ1(t) = 7.5 · 10−3(t− 12)4(t− 18)4/6561

θ2(t) = 0.5 · 10−3(t− 30)4(t− 36)4/6561

Using characteristic theory, we can derive the perturbed left boundary condition, which is
displayed in Figure 1. Note that the magnitude of the first perturbation is about 1.5 percent
of the shock strength and that of the second perturbation about 0.1 percent. The functional

0 10 20 30 40 50
0.95

0.97

0.99

1.01

1.03

1.051.05

Figure 1. Burgers’ equation: Left boundary data for perturbed stationary shock.

J(u) is a weighted mean value in space and time of the solution,

J(u) :=

∫ T

0

∫ 0.65

0.25
u(x, t) exp

(

−
1

1 − y(x)2

)

dxdt,

where y(x) := (x − 0.45)/0.2. Note that the integration area completely covers the domain
containing the shock.
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L dx dt η̄k η̄h ηk ηh J(uh) ηh + ηk θ
1 0.050000 0.038795 1.96e-03 2.02e-01 1.29e-04 2.00e-01 1.72e+00 2.01e-01 5.57e+00
2 0.025000 0.019398 9.81e-04 4.83e-02 1.83e-05 4.75e-02 1.74e+00 4.75e-02 5.49e+00
3 0.012500 0.009699 4.81e-04 1.21e-02 3.57e-06 1.17e-02 1.75e+00 1.17e-02 5.71e+00
4 0.062550 0.004849 2.37e-04 3.10e-03 1.30e-06 2.89e-03 1.75e+00 2.89e-03 7.06e+00

Table 1. Efficiency θ = ηh+ηk

J(u)−J(uh)of the error representation

4.2.1. Asymptotic decay rates. Since the adaptive strategy outlined in Section 4.1 above de-
pends on assumptions on the assymptotic behavior of the error, we first try to estimate these
decay rates. There is no analytical result which shows how the error terms η̄k and η̄h depend
on k and h. Therefore, we estimate this dependence numerically. We compute the perturbed
shock described in Section 4.2 with a first order finite volume method with Engquist-Osher
flux, which is equal to a DG(0,0) method. We compare the two approaches:

• refinement only time
• and refinement only space.
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(a) uniform refinement in time
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(b) uniform refinement in space

Figure 2. Error representation for Burgers equation, first order method, η̄k

and η̄h versus level of refinement. (a) uniform refinement in time. (b) uniform
refinement in space.

Each of the plots in Figure 2 show the error estimators η̄k (error in time) and η̄h (error in
space). In the Figure 2(a) we refined only in time. Here the spatial error remains constant,
while the time error still decreases with first order. The second Figure 2(b) shows the refine-
ment only in space. The time error η̄k is almost constant, while the spatial error is decreasing
with second order.

Numerically the terms η̄t and η̄h behave as expected. They depend either on k or on h,
but never on both. The behaviour of ηh and ηk is very similar, and not displayed here.

Remark 5. The numerically validated results can be used for adaptive grid refinement. The
error estimator η̄h can be used as an indicator for spatial adaption and the estimator η̄k for
time step control.

4.3. Computational results. Example 1: The first computation (L = 0) is done on a
grid with 20 spatial cells and a uniform CFL number of 0.8 using explicit timesteps. It needs
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L N η̄k/J(uh) η̄h/J(uh) η̄/J(uh)
0 1238 1.34e-03 1.17e-01 1.19e-01
1 1238 7.37e-04 2.20e-02 2.27e-02

Table 2. Example 1: Perturbed shock for Burgers’ equation. From left to
right: level L, number of time steps N , time component of error estimator
η̄k/J(uh), spatial component of error estimator η̄h/J(uh), total error estimator
η̄/J(uh).

N = 1238 timesteps, reaching a total error of η̄ = 0.204 and a relative error of |η̄/J(uh)| =
11.9%, but a temporal error of |η̄k/J(uh)| = 0.13%. Our adaptive strategy now aims at a
time step distribution on the next grid with tolerance Tolk(L + 1) = η̄k(L). Based on the
assumption that the time component of the error varies linearly with the time step (which
is motivated by Fig. 2), the scheme chooses new timesteps on the next grid according to the
equidistribution rule (32).

The second row of Table 2, for level L = 1, gives also N = 1238 time steps, now using
adaptive implicit timesteps. Now the relative temporal error is |η̄k/J(uh)| = 0.073%, and it
is dominated by the spatial error |η̄h/J(uh)| = 2.2%.

Important additional information can be gained by looking at the plots in Figure 3, showing
the CFL distribution on each time interval In and the normalized time components of the
error estimator η̄n

k , both in logarithmic scale. The stationary and instationary regions are
separated by the estimator. In particular, note that

• the time component of the error varies over more than 14 orders of magnitude.
• in the three stationary regions, η̄n

k is very close to zero.
• the two instationary waves are distinguished very clearly. The second wave is about

one order of magnitude smaller than the first wave. This corresponds closely to the
different magnitudes of the inflow perturbations.

• furthermore, one can clearly identify an initial layer, where η̄n
k = O(1) at the inflow

boundary t = 0, and η̄n
k decays exponentially for time t > 0 until it reaches machine

accuracy.

We advance to level L = 1, Figures 3(c) and (d). We observe that

• the error on level L = 1 varies by less than 2 orders of magnitude, 12 orders of mag-
nitude less than on level L = 0. The magnitude of the maximal error has decreased
by almost two orders of magnitude. Therefore the solution is much better resolved
in the instationary regions, and the computational recources are clearly distributed
more efficiently.

• in the initial layer, the CFL number starts with O(10−2). Then it grows at least
exponentially until it reaches a maximal value of about 500. At the same time, the
error η̄n

k decays roughly by two orders of magnitude. Thus, these initial steps can be
seen as a preprocessing of the initial data, to translate a prescribed steady shock on
the pde level into a steady discrete shock layer. The initial layer is also clearly visible
in the plot of the error distribution (and this will never disappear). Indeed, the initial
data, a sharp jump from 1 to -1, are a steady shock only on the level of the exact
solution. Numerically, the scheme has to converge towards a discrete shock layer,
and this will always need a few time steps. In fact this is an instance of a scheme
converging towards a numerical steady state solution, using adaptive time steps.

• in the stationary region between the initial layer and the first perturbation, the error
is more than three orders of magnitudes smaller than in the following flow field.
Observe that the whole stationary region is computed by a single time step. Thus the
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Figure 3. Example 1: Perturbed shock for Burgers’ equation with equidis-
tributed time error. Left column: CFL(t); right column: η̄n

k (tn). Upper row:
level L = 0, fully explicit scheme, uniform timestep. Lower row: level L = 1,
fully implicit scheme, adaptive timestep. (from top to bottom).

scheme is only held back from choosing a larger time step by the appearance of the
instationary perturbation. If we had introduced this perturbation at a later time, the
time step and thus the local CFL number would haves been correspondingly larger.

• The next region of stationary flow is again bridged by a single time step, and corre-
spondingly the local error is somewhat below the equidistributed one.

• For the two perturbations, the normalized error is already close to being uniformly
distributed.

• Using large timesteps does not mean that each timestep has higher computational
costs. Since the adaptation chooses large timesteps, where the solution is(nearly)
stationary, these timesteps have low computational costs.

We would also like to point out one drawback of the equidistribution strategy for the timestep.
In the first (and larger) instationary wave, the proposed CFL number is often much smaller
than unity, e.g. min

n
(CFL(tn)) = 0.009 in Figure 3. It is well-known that lowering the

CFL number much below unity smears the solution. Therefore, while such small timesteps
may improve the temporal accuracy somewhat, they will deteriorate the spatial accuracy
considerably. Moreover, they increase the number of timesteps, and hence the computational
cost. In the following example, we discuss a more efficient strategy.

Example 2: This example is a modification of the first example which used a fully implicit
strategy for the timestep. Here we introduce a mixed implicit/explicit strategy. We still
want the equidistribute the error, but we will give up this goal partially when the local CFL
number drops below a certain threshhold.
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L N(expl) η̄k/J(uh) η̄h/J(uh) η̄/J(uh)
1 449 (283) 8.50e-04 2.14e-02 2.23e-02

Table 3. Example 2: Same as Table 2, but CFL restriction from below
(implicit/explicit strategy).

As discussed above, choosing timestep sizes with CFL much less than unity seems to be
inefficient both for explicit and for implicit schemes. For implicit methods, even timesteps
with CFL < 5 are not efficient, since we have to solve a nonlinear system of equations
at each timestep. Thus, the new implicit/explicit strategy switches to the cheaper (and
less dissipative) explicit method, if CFL < 5, computing perhaps a few more timesteps if
0.8 < CFL < 5, and saving timesteps if CFL < 0.8. (Of course, we could choose other
thresholds than CFL = 0.8 and 5.)

As we can see in Table 3, the new strategy requires only 449 timesteps, instead of 1238
with the direct equidistribution in Example 1. Out of these, only 166 are implicit and hence
expensive. This leads to considerable speed-up.
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(b) Error η̄n
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Figure 4. Example 2: Same as Figure 3 but adaptive implicit/explicit strat-
egy (CFL restriction from below).

Example 3: Table 4 and Figure 5 show three extensions of Example 2. We used the same
implicit/explicit strategy as in Example 2, but after the explicit reference computation on

the coarse grid (L=0, error η̄ref
k ), we proceed directly to a finer grid with 320 cells (L=4).

We compare an explicit and two implicit/explicit computations on the fine grid.
The first row shows results of the fully explicit scheme with uniform refinement in time

and space for L=4. As expected, the errors are about 24 times smaller than those on the
original coarse grid. Now suppose we wanted to reach comparable errors on level L = 4

using adaptive timestepping. Then we should set the tolerance to be Tol(4) = 2−4η̄ref
k . The

results of this computation are shown in the second row of Table 4. The three components
of the error are comparable with those of the fully explicit computation, but the number of
timesteps is only 3975 instead of 19200. Out of these 3975 steps, only 1235 are implicit.

Another strategy for equidistributing the error might be to fix any constant tolerance, for

example Tol(4) = η̄ref
k itself. The results of this computation are displayed in the last row

of the table. The error in time is now a factor 5-8 higher than for the other two computa-
tions, while the spatial error is comparable. Remarkably, this computation needs only 1780
timesteps, and only 507 of these are implicit.

Both of these calculations show that considerable savings are possible with the implicit/exp-
licit, time-adaptive strategy.
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strategy Tolk N(expl) η̄k/J(uh) η̄h/J(uh) η̄/J(uh)
fully expl. – 19200 (19200) 7.11e-05 4.57e-04 5.28e-04

impl./expl. 2−4η̄ref
k 3975 (2740) 1.06e-04 3.71e-04 4.77e-04

impl./expl. η̄ref
k 1780 (1243) 5.46e-04 3.66e-04 9.12e-04

Table 4. Example 3: Same as Table 3, but on level L =4 and with different tolerances.
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Figure 5. Example 3: Same as Figure 4 but on Level L =4 and with different
tolerances.

5. Conclusions

In this paper, we combine space- and time-projections of Süli, Houston and Hartmann
to split the classical adjoint based error representation formula for target functionals into
space and time components. Based on a numerical study of these components we design an
adaptive strategy which attempts to minimize the number of time steps by equidistributing
the time components of the error. We apply the adaptive scheme to a weak perturbation of
a stationary shock.



Space-time splitting of adjoint error representations for conservation laws 17

Already on a very coarse mesh of 20 points the error representation formula precisely
gives the location and strength of the instationary perturbations. This can be translated
into efficient timestep distributions, which respect a desired accuracy. We show that these
timestep distributions can be applied successfully to much finer spatial grids.

We never compute implicit timesteps below CFL=5. Instead, when the error analysis
suggests a timestep below CFL=5, we switch to an explicit scheme with CFL=0.8. This
implicit/explicit strategy gives considerable savings.

For nonlinear perturbations of a stationary shock, we have demonstrated that our strategy
does reach its goals: it separates initial layers, stationary regions and perturbations cleanly
and chooses just the right timestep for each of them.

Besides building upon well-established adjoint techniques, we have also added a new in-
gredient which simplifies the computation of the dual problem. We show that it is sufficient
to compute the spatial gradient of the dual solution, w = ∇ϕ, instead of the dual solution ϕ
itself. This gradient satisfies a conservation law instead of a transport equation, and it can
therefore be computed with the same algorithm as the forward problem, and in the same
finite element space. For discontinuous transport coefficients, the new conservative algorithm
for w is more robust than our previous transport schemes for ϕ.

In ongoing work, we are adapting this strategy to aerodynamic problems. First test cal-
culations show a promising speed-up.
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[17] D. Kröner, M. Ohlberger, A posteriori error estimates for upwind finite volume schemes for nonlinear
conservation laws in multi dimensions. Math. Comp. 69 (2000), 25-39.

[18] M. Ohlberger, A posteriori error estimate for finite volume approximations to singularly perturbed non-
linear convection-diffusion equations. Numer. Math. 87 (2001) 4, 737-761.
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