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3Abstra
tIn this paper we review some re
ent work on high-order well-balan
eds
hemes for hyperboli
 systems of balan
e laws. A 
hara
teristi
 featureof su
h systems is the existen
e of non-trivial steady state solutions,where the e�e
ts of 
onve
tive �uxes and sour
e terms 
an
el ea
h other.Well-balan
ed s
hemes satisfy a dis
rete analogue of this balan
e andare therefore able to maintain a steady state. We dis
uss two 
lassesof s
hemes, one based on high-order a

urate, non-os
illatory �nite dif-feren
e operators whi
h are well-balan
ed for a general 
lass of steadystates, and the other one based on well-balan
ed quadratures, whi
h 
an- in prin
iple - be applied to all steady states. Hyperboli
 systems ofbalan
e laws have a wide appli
ation, exempli�ed by shallow water equa-tions (SWE) whi
h have steady states at rest, where the �ow velo
ityvanishes, and also the more 
hallenging moving �ow steady states. Nu-meri
al experiments show ex
ellent resolution of unperturbed as well asslightly perturbed steady states.Keywords: shallow water equations, fundamental steady states, high-order upwind �nite volume s
hemes, well-balan
ed s
hemes
1. IntroductionIn many appli
ations we en
ounter hyperboli
 balan
e laws, whi
h in onedimension are in the form(1.1) Ut + f(U, x)x = s(U, x)where U is the solution ve
tor, f(U, x) is the �ux and s(U, x) is the sour
e term.The sour
e term may 
ome from geometri
al, rea
tive or other 
onsiderations.Examples of hyperboli
 balan
e laws in
lude the shallow water equation with anon-�at bottom topology, elasti
 wave equation [2℄, 
hemosensitive movement[16℄ and nozzle �ow [14℄.Comparing with the standard hyperboli
 
onservation laws, namely (1.1)with s(U, x) = 0, the numeri
al approximation to the balan
e laws (1.1) isusually not too mu
h more di�
ult: we simply need to put the point values



4(for �nite di�eren
e s
hemes) or the 
ell averages (for �nite volume s
hemes) ofthe sour
e term s(U, x) dire
tly into the dis
retization of the spatial operator.There is, however, one noti
eable ex
eption. The balan
e law (1.1) often admitssteady state solutions in whi
h the sour
e term s(U, x) is exa
tly balan
edby the �ux gradient f(U, x)x. Su
h steady state solutions are usually non-trivial (they are usually not polynomial fun
tions of the spa
ial variable x)and they often 
arry important physi
al meaning (for example, the still wateror steady moving water solution of the shallow water equation, to be studiedin more detail later in this paper). The obje
tive of well-balan
ed s
hemes isto preserve exa
tly some of these steady state solutions. The most importantadvantage of well-balan
ed s
hemes is hat they 
an a

urately resolve smallperturbations to su
h steady state solutions with relatively 
oarse meshes. In
omparison, a non-well-balan
ed s
heme will introdu
e trun
ation errors to thesteady state solution, hen
e it 
annot resolve small perturbations to su
h steadystates unless the trun
ation error is already smaller than su
h perturbations,thus requiring a re�ned mesh. In Se
tion 5 we will provide su
h examples.However, it is quite di�
ult to design well-balan
ed s
hemes whi
h are high-order a

urate and non-os
illatory in the presen
e of dis
ontinuities in thesolution.In this paper we use the shallow water equation as a prototype to survey afew re
ently developed well-balan
ed high-order �nite di�eren
e, �nite volumeand dis
ontinuous Galerkin �nite element methods. We attempt to explainthe main ingredients in these algorithms whi
h allow us to a
hieve the well-balan
ed property without losing other ni
e properties of the original s
heme,su
h as high-order a

ura
y and non-os
illatory performan
e in the presen
e ofsolution dis
ontinuities.The paper is organized as follows. In Se
tion 2 we �rst dis
uss a numberof interesting steady states. Then we introdu
e the residual whi
h need to bewell-balan
ed near stationary states.At this point the paper splits into two approa
hes: The �rst approa
h, seeSe
tion 3, applies to �nite di�eren
e, �nite volume and dis
ontinuous Galerkins
hemes. It treats steady states for whi
h the sour
e term 
an be de
omposedinto sums of produ
ts of the form (3.4). The 
hallenge is to 
onstru
t �nite



5di�eren
e operators whi
h are high-order a

urate and non-os
illatory for the
onservative �ux di�eren
e and the sour
e term, and whi
h 
oin
ide for bothterms in the 
ase of steady state solutions.The se
ond approa
h, designed for general steady states and �nite volumes
hemes, is 
overed in Se
tion 4. The key task is to �nd well-balan
ed quadra-tures for the integral of the residual, see equation (4.1). Subse
tion 4.2 presentsa general framework to de
ompose this integral into suitable parts. Subse
-tion 4.3 realizes this approa
h for moving water steady states for shallow water�ows.In Se
tion 5 we present numeri
al results showing the a

ura
y and well-balan
ed properties of both 
lasses of s
hemes for a number of 
hallenging �ows.Se
tion 6 
ontains some 
on
luding remarks.It is perhaps surprising that the two approa
hes outlined in Se
tions 3 and4 require su
h di�erent te
hniques. Indeed, the reader might skip either se
tionon a �rst reading, and then pro
eed to the numeri
al experiments in Se
tion 5.On the other hand, we hope that the presentation of both approa
hes ina single paper will provide a 
lear understanding that well-balan
ing requiresa detailed study of the trun
ation error for ea
h individual s
heme (sin
e thetrun
ation error should disappear for dis
rete steady states). The broad setof ideas and te
hniques presented in this paper might be helpful to the readerdeveloping his/her own version of high-order well-balan
ing in a new situation.
2. Preliminaries: steady states and the residualIn this se
tion we introdu
e equilibrium variableswhi
h 
hara
terize smoothsteady states, and dis
uss the residual whi
h monitors the deviation of thesystem from stationary states. In parti
ular, two forms of the residual aresingled out whi
h are the bases of the �nite di�eren
e algorithms in Se
tion 3on one hand and the �nite volume algorithm in Se
tion 4 on the other hand.We will generally refer to a time-independent solution of the hyperboli
balan
e law as a steady state. When we refer to pointwise or 
ell-wise lo
altransformations, we may use the terms equilibrium-transvormation, -variable,-re
onstru
tion, -limiting and so forth.



62.1. Steady statesLet us again 
onsider the system of balan
e laws (1.1). For example, forthe shallow water equations
U = (h, m)T , f(U) = (m, m2/h + gh2/2)T , s(U, x) = (0,−ghbx(x))T ,(2.1)where h is the water height, m is the momentum (dis
harge in hydrauli
s), b(x)is the pres
ribed bottom topography above a given referen
e height, and g isthe gravitational a

eleration.Many su
h systems 
an be rewritten in the form

Vt + c(V, x)Vx = 0(2.2)for some variable
V = V (U, x),(2.3)whi
h we would like to 
all the equilibrium variables, sin
e 
onstant V impliesa stationary state.Note that 
onstant V does not imply that U is 
onstant, sin
e V dependsalso on x through the variable fun
tion b. Therefore, one should expe
t non-trivial steady states.For shallow water, the equilibrium variables are V (U, x) = (m, E), wherethe equilibrium energy E is given by

E(U, b) =
m2

2h2
+ g(h + b).(2.4)In the following we des
ribe various 
lasses E of stationary states.Example 2.1 - (1) The 
lass of all steady states, Etot.(2) Smooth steady states Esmooth.(3) Conservation laws: Here s(U, b) ≡ 0 and f(U) ≡ const. Stationary statesin
lude

• E0 = 
onstant states.
• E1 = two 
onstant states separated by a stationary sho
k or 
onta
t.
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• E2 = gas dynami
s with zero velo
ity, 
onstant pressure, and any boundedmeasurable fun
tion for the density.(4) Steady states for 1D s
alar balan
e laws.(5) 1D shallow water equations:
• The lake at rest ELaR, where m ≡ 0 and hen
e E = g(h + b) ≡ const.
• Smooth river �ows Eriver, where m is nonzero.
• Waterfalls Ewaterfall (dis
ontinuous river �ows)(6) Separable sour
e terms studied in [36℄.(7) Geostrophi
 jets Ejet for 2D shallow water, where (u, v) ≡ (u(y), 0), g(h +

b)y = fu and f is the 
oriolis for
e in the upper hemisphere.(8) Multi-layer shallow water: O
eans at rest and moving o
eans.Remark 2.1 - (1) There are many more 
lasses of steady states, espe
ially in2D.(2) It is important to note that most well-balan
ed s
hemes are designed topreserve only a 
ertain sub
lass of steady states exa
tly. Other steady statesmay be preserved approximately within a 
ertain order of a

ura
y.Se
tion 3 treats steady states for whi
h the sour
e terms are separable inthe sense of (3.4). This in
ludes the lake at rest as a prototype. The maintool is the 
onstru
tion of a well-balan
ed 
lass of �nite di�eren
e operators.In Se
tion 4 we outline a well-balan
ed �nite volume approa
h. While theframework in Subse
tion 4.1 
overs in prin
iple all steady states, we 
arry outthe spe
i�
 steps for moving water �ows in Subse
tion 4.3.2.2. The residualLet us again 
onsider the system of balan
e laws (1.1). We are parti
ularlyinterested in solutions 
lose to steady states, where Ut = 0. Therefore, weintrodu
e the residual
R := −f(U)x + s(U, x).(2.5)



8Note that
Ut = R,(2.6)and the solution U deviates from steady state if and only if R 6= 0.In Se
tion 3 we will study a 
lass of separable steady states satisfying (3.4).This assumption implies that

R = (−f(U) + t(U, x))x(2.7)for stationary solutions, where t(U, x) is determined by s(U, x). Using thisstru
ture, we 
onstru
t high-order a

urate well-balan
ed �nite di�eren
e op-erators.In Se
tion 4 we fo
us on �nite volume s
hemes and hen
e 
onsider 
ellaverages Ri of the residual. Well-balan
ed quadratures are 
onstru
ted for theregular and singular parts of these integrals.
3. Schemes based on well-balanced finite difference operatorsIn this se
tion, we fo
us on a 
lass of steady states for whi
h the sour
eterm is separable in the sense of Assumption 3.2. We develop well-balan
edhigh-order a

urate �nite di�eren
e operators for the residual. Based on thesedi�eren
e operators, we derive well-balan
ed �nite di�eren
e, �nite volume anddis
ontinuous Galerkin s
hemes. The steady states under 
onsideration in
ludethe lake at rest for the shallow water equations.The one-dimensional hyperboli
 system of 
onservation laws with sour
eterms under 
onsideration is given by (1.1). We start the dis
ussion by present-ing the well balan
ed �nite di�eren
e s
heme. The extension to �nite volumeand DG s
hemes is shown in the following subse
tions. Only one-dimensionalbalan
e law (1.1) is investigated in this se
tion, although the generalization tothe multi-dimensional 
ase(3.1) Ut + f(U, x, y)x + g(U, x, y)y = s(U, x, y)
an be done in some situations. For example, we 
an easily generalize theproposed te
hnique to the two-dimensional shallow water equations with lakeat rest steady state.



93.1. Finite di�eren
e s
hemeWe �rst 
onsider the 
ase that (1.1) is a s
alar balan
e law. The 
ase ofsystems will be explored later. We are interested in preserving exa
tly 
ertainsteady state solutions U of (1.1):(3.2) f(U)x = s(U, x).We make two assumptions on the equation (1.1) and the steady state solution
U of (3.2) that we are interested to preserve exa
tly.Assumption 3.1. The steady state solution U of (3.2) that we are interestedto preserve satis�es(3.3) V (U, x) = constantfor a known fun
tion V (U, x).Note that in [34, 35, 36℄ the equilibrium variables have been denoted by
a(U, x) instead of V (U, x).Assumption 3.2. The sour
e term s(U, x) in (1.1) 
an be de
omposed as(3.4) s(U, x) =

∑

i

si(V (U, x)) t′i(x)for some fun
tions si and ti.We will design a numeri
al s
heme whi
h 
an preserve exa
tly the steadystate solutions U whi
h satisfy Assumption 3.1, for a balan
e law (1.1) witha sour
e term satisfying Assumption 3.2. We remark here that the shallowwater system with a lake at rest steady state satis�es these assumptions, andwill 
omment on this later in this subse
tion. The key idea to a
hieve a well-balan
ed s
heme, is to de
ompose the sour
e term as in Assumption 3.2 and to�rst design a linear s
heme with an identi
al numeri
al approximation operatorfor the �ux derivative and the derivatives in the de
omposed sour
e terms, whenapplied to the steady state solution that we would like to balan
e.We de�ne a linear �nite di�eren
e operator D to be one satisfying D(af1 +

bf2) = aD(f1) + bD(f2) for 
onstants a, b and arbitrary grid fun
tions f1 and
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f2. A s
heme for (1.1) with a sour
e term given by (3.4) is said to be a linears
heme if all the spatial derivatives are approximated by linear �nite di�eren
eoperators. Su
h a linear s
heme would have a trun
ation error

D0(f(U)) −
∑

i

si(V (U, x))Di(ti(x)),where Di are linear �nite di�eren
e operators used to approximate the spatialderivatives. We further restri
t our attention to linear s
hemes whi
h satisfy(3.5) D0 = D1 = · · · = Dfor the steady state solution. Noti
e that we only require that the �nite dif-feren
e operators be
ome identi
al for the steady state solution that we areinterested to preserve, for general solutions these �nite di�eren
e operators 
anbe di�erent. For su
h linear s
hemes we haveProposition 3.1. For the balan
e law (1.1) with its sour
e term given by(3.4), linear s
hemes with (3.5) for the steady state solutions satisfying (3.3)
an preserve these steady state solutions exa
tly.The proof of this result is rather straightforward and 
an be found in [35℄.We now already have high-order well-balan
ed s
hemes for the balan
e lawsunder 
onsideration. However, these s
hemes are linear, hen
e they will be os-
illatory when the solution 
ontains dis
ontinuities. We would need to 
onsidernonlinear s
hemes, namely s
hemes whi
h are nonlinear even if the �ux f(U)and the sour
e s(U, x) in (1.1) are both linear fun
tions of U , for example,high-order �nite di�eren
e WENO s
hemes [3, 17, 21℄. Next, we will use the�fth order �nite di�eren
e WENO s
heme as an example to demonstrate thebasi
 ideas. We will not give the details of the base WENO s
hemes, and referto [17, 30℄ for su
h details.To present the basi
 ideas, we �rst 
onsider the situation when the WENOs
heme is used without a �ux splitting (e.g. the WENO-Roe s
heme as de-s
ribed in [17℄). We noti
e that the WENO approximation to dx where d =

f(U) 
an be eventually written out as(3.6) dx|x=xj
≈

r
∑

k=−r

akdk+j ≡ Dd(d)j



11where r = 3 for the �fth order WENO approximation and the 
oe�
ients akdepend nonlinearly on the smoothness indi
ators involving the grid fun
tion
d. The key idea now is to use the �nite di�eren
e operator Dd with d = f(U)�xed, namely to use the same 
oe�
ients ak obtained through the smoothnessindi
ator of d, and apply it to approximate t′i(x) in the sour
e terms (3.4).Thus

t′i(xj) ≈
r
∑

k=−r

ak ti(xk+j) = Dd (ti(x))j .Clearly, the �nite di�eren
e operator Dd, obtained from the high-order WENOpro
edure and when d = f(U) is �xed, is a high order a

urate linear approx-imation to the �rst derivative for any grid fun
tion. Therefore the result ofProposition 3.1 is still valid and we 
on
lude that the high-order �nite di�er-en
e WENO s
heme as stated above, without the �ux splitting, and with thespe
ial handling of the sour
e terms des
ribed above, maintains exa
tly thesteady state.Now, we 
onsider WENO s
hemes with a Lax-Friedri
hs �ux splitting, su
has the WENO-LF and WENO-LLF s
hemes des
ribed in [17℄. Here the �ux
f(U) is written as a sum of f+(U) and f−(U), de�ned by(3.7) f±(U) =

1

2
[f(U) ± αU ]where α = maxU

∣

∣

∣

∂f(U)
∂U

∣

∣

∣ with the maximum being taken over either a lo
al re-gion (WENO-LLF) or a global region (WENO-LF), see [17, 30℄ for more details.We now make a modi�
ation to this �ux splitting, by repla
ing ±αU in (3.7)with ±α sign
(

∂V (U,x)
∂U

)

V (U, x). We would need to assume here that ∂V (U,x)
∂Udoes not 
hange sign. The 
onstant α should be suitably adjusted by the sizeof ∂V (U,x)

∂U in order to maintain enough arti�
ial vis
osity. The term V (U, x)
an also be repla
ed by p(V (U, x)) for any fun
tion p, whose 
hoi
e should besu
h that p(V (U, x)) is as 
lose to U as possible in order to emulate the orig-inal LF �ux splitting with ±αU . This modi�
ation does not a�e
t a

ura
y,whi
h relies only on the fa
t f(U) = f+(U) + f−(U). For the steady statesolution satisfying (3.3), the arti�
ial vis
osity term ±α sign
(

∂V (U,x)
∂U

)

V (U, x)(or ±α sign
(

∂p(V (U,x))
∂U

)

p(V (U, x))) in the Lax-Friedri
hs �ux splitting be-
omes a 
onstant, and by the 
onsisten
y of the WENO approximation, the



12e�e
t of these vis
osity terms towards the approximation of f(U)x is zero.The �ux splitting WENO approximation in this situation be
omes simply
f±(U) = 1

2f(U), hen
e the steady state solution is preserved as before, ifwe simply split the derivatives in the sour
e term as:(3.8) t′i(x) =
1

2
t′i(x) +

1

2
t′i(x),and apply the same �ux splitting WENO pro
edure to approximate them withthe nonlinear 
oe�
ients ak 
oming from the WENO approximations to f±(U)respe
tively. This will guarantee (3.5). We thus obtainProposition 3.2. The WENO-Roe, WENO-LF and WENO-LLF s
hemes asimplemented above are exa
t for steady state solutions satisfying (3.3) and 
anmaintain the original high-order a

ura
y.We now dis
uss the system 
ase. The framework des
ribed for the s
alar
ase 
an be applied to systems provided that we have 
ertain knowledge aboutthe steady state solutions to be preserved in the form of (3.3). Typi
ally, for asystem with m equations, V is a ve
tor, and we would have m relationships inthe form of (3.3):(3.9) V1(U, x) = constant, · · · Vm(U, x) = constantfor the steady state solutions that we would like to preserve exa
tly. We wouldthen still aim for de
omposing ea
h 
omponent of the sour
e term in the formof (3.4), where si 
ould be arbitrary fun
tions of V1(U, x), · · · , Vm(U, x), andthe fun
tions si and ti 
ould be di�erent for di�erent 
omponents of the sour
eve
tor. The remaining pro
edure is then the same as that for the s
alar 
aseand we again obtain well balan
ed high-order WENO s
hemes. We shouldalso mention that lo
al 
hara
teristi
 de
omposition is typi
ally used in high-order WENO s
hemes in order to obtain better non-os
illatory property forstrong dis
ontinuities. When 
omputing the numeri
al �ux at xi+ 1

2
, the lo
al
hara
teristi
 matrix R, 
onsisting of the right eigenve
tors of the Ja
obian at

Ui+ 1
2
, is a 
onstant matrix for �xed i. Hen
e this 
hara
teristi
 de
ompositionpro
edure does not alter the argument presented above for the s
alar 
ase. Werefer to [34℄ for more details.



13The shallow water equations (1.1)�(2.1) take the form(3.10) 





ht + (hu)x = 0

(hu)t +

(

hu2 +
1

2
gh2

)

x

= −ghbx,The lake at rest solution satis�es (3.9) in the form(3.11) V1 ≡ hu = 0, V2 ≡ h + b = constant, .The �rst 
omponent of the sour
e term is 0. A de
omposition of the se
ond
omponent of the sour
e term in the form of (3.4) is(3.12) −ghbx = −g (h + b) bx +
1

2
g
(

b2
)

xi.e. s1 = s1(V2) = −g (h + b), s2 = 1
2g, t1(x) = b(x), and t2(x) = b2(x), whi
hsatis�es Assumption 3.2. Hen
e, the te
hnique designed above 
an be used toobtain high-order well-balan
ed �nite di�eren
e s
heme for the shallow waterequations with lake at rest solution (3.11). Two dimensional version of theshallow water equations 
an also be handled by the same te
hnique [34, 36℄,and are not shown here. Some numeri
al results will be shown in Se
tion5 to demonstrate the good properties of these well-balan
ed high-order �nitedi�eren
e s
hemes.3.2. Finite volume s
hemeFollowing the idea of obtaining well-balan
ed s
hemes by de
omposing thesour
e terms, as shown in Se
tion 3.1, we generalize �nite volume WENOs
hemes to obtain high-order well-balan
ed s
hemes. The 
ru
ial di�eren
ebetween the �nite volume and the �nite di�eren
e WENO s
hemes is thatthe WENO re
onstru
tion pro
edure for a �nite volume s
heme applies tothe solution and not to the �ux fun
tion values. As a 
onsequen
e, �nitevolume s
hemes are more suitable for 
omputations in 
omplex geometry andfor using adaptive meshes. The details of the �nite volume WENO s
hemes
an be found in [17, 27, 30℄. However, be
ause of a di�erent 
omputationalframework, the maintenan
e of the well-balan
ed property requires di�erentte
hni
al approa
hes.



14 The main idea in the previous subse
tion to design a well-balan
ed high-order �nite di�eren
e WENO s
heme is to de
ompose the sour
e term into asum of several terms, ea
h of whi
h is dis
retized independently using a �nitedi�eren
e formula 
onsistent with that of approximating the �ux derivativeterms in the 
onservation law. We follow a similar idea here and de
omposethe integral of the sour
e term into a sum of several terms, then 
ompute ea
hof them in a way 
onsistent with that of 
omputing the 
orresponding �uxterms. We �rst 
onsider the 
ase that (1.1) is a s
alar balan
e law. The 
aseof systems will be explored later.Similarly, we make some assumptions on the equation (1.1) and the steadystate solution U of (3.2) that we are interested to preserve exa
tly:Assumption 3.3. The steady state solution U of (3.2) that we are interestedto preserve satis�es(3.13) V (U, x) ≡ U + p(x)

q(x)
= constantfor some known fun
tions p(x) and q(x).Assumption 3.4. The sour
e term s(U, x) in (1.1) 
an be de
omposed as(3.14) s(U, x) =

∑

j

sj(V (U, x)) t′j(x)for some known fun
tions sj and tj .Note that Assumption 3.3 given here is more restri
tive than that in Se
tion3.1, due to the additional di�
ulties related to the �nite volume formulation.We 
onsider the semi-dis
rete formulation of the balan
e law(3.15) d

dt
Ūi(t) = − 1

△xi
(f(U(xi+ 1

2
), t) − f(U(xi− 1

2
), t)) +

1

△xi

∫

Ii

s(U, x)dx.The time dis
retization is usually performed by the 
lassi
al high order Runge-Kutta method. Before stating our numeri
al s
heme, we �rst present the pro-
edure to re
onstru
t the pointwise values by the WENO re
onstru
tion pro-
edure, and then de
ompose the integral of the sour
e term into several terms,with the obje
tive of keeping the exa
t balan
e property without redu
ing the



15high-order a

ura
y of the s
heme. The s
heme is then �nally introdu
ed witha minor 
hange on the �ux term, 
ompared with the original WENO s
heme.The �rst step in building the algorithm is to re
onstru
t U±

i+ 1
2

from thegiven 
ell averages Ūi by the WENO re
onstru
tion pro
edure, whi
h are highorder a

urate approximations to the exa
t value U(xi+ 1
2
). It 
an be eventuallywritten out as(3.16) U+

i+ 1
2

=

r
∑

k=−r+1

wkŪi+k ≡ S+
Ū

(Ū)i, U−

i+ 1
2

=

r−1
∑

k=−r

w̃kŪi+k ≡ S−

Ū
(Ū)i.where r = 3 for the �fth order WENO approximation and the 
oe�
ients

wk and w̃k depend nonlinearly on the smoothness indi
ators involving the 
ellaverage Ū . Here we obtain a linear operator S±

Ū
(v) (linear in v) whi
h isobtained from a WENO re
onstru
tion with �xed 
oe�
ients wk 
al
ulatedfrom the 
ell averages Ū . A key idea here is to use the linear operators S±

Ū
(v)and apply them to re
onstru
t the fun
tions p̄i and q̄i. Thus

p+
i+ 1

2

= S+
Ū

(p̄)i =
r
∑

k=−r+1

wkp̄i+k, p−
i+ 1

2

= S−

Ū
(p̄)i =

r−1
∑

k=−r

w̃kp̄i+k

q+
i+ 1

2

= S+
Ū

(q̄)i =
r
∑

k=−r+1

wk q̄i+k, q−
i+ 1

2

= S−

Ū
(q̄)i =

r−1
∑

k=−r

w̃k q̄i+k.(3.17)With the re
onstru
ted values p±
i+ 1

2

and q±
i+ 1

2

, we obtain the pointwise valueof V (U, x) by V (U, x)±
i+ 1

2

=
U±

i+ 1
2

+p±

i+ 1
2

q±

i+ 1
2

. Clearly, p±
i+ 1

2

and q±
i+ 1

2

are high-order a

urate pointwise approximation to the fun
tion of p(x) and q(x) atthe 
ell boundary xi+ 1
2
. Hen
e, V (U, x)±

i+ 1
2

is a high-order approximation to
V (U(xi+ 1

2
), xi+ 1

2
).Now assume that U is the steady state solution satisfying (3.3), namely
V (U, x) = c ⇔ U + p(x) = c q(x)for some 
onstant c. If the 
ell averages Ūi, p̄i and q̄i are 
omputed in the samefashion (e.g. all 
omputed exa
tly, or all 
omputed with the same numeri
alquadrature) from U , p(x) and q(x), then we 
learly also have

Ūi + p̄i = c q̄i



16for the same 
onstant c. Sin
e the re
onstru
ted values U±

i+ 1
2

, p±
i+ 1

2

and q±
i+ 1

2

are
omputed from the 
ell averages Ūj , p̄j and q̄j with the same linear operators
S±

ū (v), we 
learly have
U±

i+ 1
2

+ p±
i+ 1

2

= c q±
i+ 1

2for the same 
onstant c, that is,(3.18) V (U, x)±
i+ 1

2

= cfor the same 
onstant c. This is an important fa
t to design the well-balan
eds
hemes.Clearly, for a steady state solution U satisfying Assumptions 3.3 and 3.4,
d

dx



f(U) −
∑

j

sj(V (U, x)) tj(x)



 = f(U)x −
∑

j

sj(V (U, x)) t′j(x)

= f(U)x − s(U, x) = 0.Therefore, f(U)−∑j sj(V (U, x)) tj(x) is a 
onstant. We would need to 
hoosesuitably (tj)
±

i+ 1
2

, whi
h should be high-order approximations to tj(xi+ 1
2
) su
hthat(3.19) f(U±

i+ 1
2

) −
∑

j

sj(V (U, x)±
i+ 1

2

) (tj)
±

i+ 1
2

= constantfor a steady state solution U satisfying Assumptions 3.3 and 3.4. We willspe
ify the 
hoi
es of (tj)
±

i+ 1
2

for the shallow water equations at the end of thissubse
tion.Finally, we need to de
ompose the integral of the sour
e term in the follow-



17ing way in order to obtain a well-balan
ed s
heme
∫

Ii

s(U, x)dx =
∑

j

∫

Ii

sj(V (U, x))t′j(x)dx

=
∑

j

(

1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
)

∫

Ii

t′j(x)dx

+

∫

Ii

(

sj(V (U, x)) − 1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
)

)

t′j(x)dx

)

=
∑

j

(

1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
)

(tj(xi+ 1
2
) − tj(xi− 1

2
))

+

∫

Ii

(

sj(V (U, x)) − 1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
)

)

t′j(x)dx

)

.(3.20)The purpose of this de
omposition is to ensure that the integral of the sour
eterm equals the �rst term at the right hand side of (3.20) when V (U, x) = const,as the last term disappears in this 
ase.Now we are ready to des
ribe the �nal form of the algorithm(3.21) d

dt
Ūi(t) = − 1

△xi
(f̂i+ 1

2
− f̂i− 1

2
) +

1

△xi
ŝi,with(3.22)

ŝi =
∑

j

(

1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
) (

(t̂j)i+ 1
2
− (t̂j)i− 1

2

)

+ si,j

)where (t̂j)i+ 1
2
is a high-order approximation to tj(xi+ 1

2
), whose de�nition willbe des
ribed below, and si,j is any high-order approximation to the integral(3.23) ∫

Ii

(

sj(V (U, x)) − 1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
)

)

t′j(x) dx.The numeri
al �ux f̂i+ 1
2
is de�ned by a monotone �ux su
h as the Lax-Friedri
hs �ux(3.24) F (U−

i+ 1
2

, U+
i+ 1

2

) =
1

2

[

f(U−

i+ 1
2

) + f(U+
i+ 1

2

) − α(U+
i+ 1

2

− U−

i+ 1
2

)
]

.



18We need to make a modi�
ation to this �ux, by repla
ing α(U+
i+ 1

2

− U−

i+ 1
2

)in (3.24) with α sign(q(x))(V (U, x)+
i+ 1

2

− V (U, x)−
i+ 1

2

). The numeri
al �ux nowbe
omes(3.25)
f̂i+ 1

2
=

1

2

[

f(U−

i+ 1
2

) + f(U+
i+ 1

2

) − α sign(q(x))(V (U, x)+
i+ 1

2

− V (U, x)−
i+ 1

2

)
]

.We would need to assume here that q(x) in (3.3) does not 
hange sign. The
onstant α should be suitably adjusted by the size of 1
q(x) in order to maintainenough arti�
ial vis
osity. This modi�
ation does not a�e
t a

ura
y. For thesteady state solution (3.13),

α sign(q(x))(V (U, x)+
i+ 1

2

− V (U, x)−
i+ 1

2

) = 0be
ause of (3.18). Hen
e, the e�e
t of these vis
osity terms be
omes zero andthe numeri
al �ux turns out to be in a simple form(3.26) f̂i+ 1
2

=
1

2

[

f(U−

i+ 1
2

) + f(U+
i+ 1

2

)
]

.Following this, we treat the approximation (t̂j)i+ 1
2
in (3.22) in a similar way:(3.27) (t̂j)i+ 1

2
=

1

2

[

(tj)
−

i+ 1
2

+ (tj)
+
i+ 1

2

]where, as mentioned before, (tj)
±

i+ 1
2

are high order approximations to tj(xi+ 1
2
)satisfying (3.19). Note that we implement (3.27) for the general 
ase, not onlyfor the steady solution. There is no vis
osity term in the sour
e term, 
omparedwith the numeri
al �ux (3.25).For the remaining sour
e term si,j , we simply use a suitable high-orderGauss quadrature to evaluate the integral. The approximation of the valuesat those Gauss points are obtained by the WENO re
onstru
tion pro
edure.It is easy to observe that high order a

ura
y is guaranteed for our s
heme,and even if dis
ontinuities exist in the solution, the non-os
illatory property ismaintained.Proposition 3.3. The WENO-LF s
hemes as implemented above with (3.21),(3.22), (3.25) and (3.27) are exa
t for steady state solutions satisfying (3.13)and 
an maintain the original high-order a

ura
y for general solutions.



19The proof of this result is rather straightforward and 
an be found in [36℄.The extension to the system 
ase follows the same idea as that for the well-balan
ed �nite di�eren
e s
hemes.For the shallow water equations (3.10) with a lake at rest steady statesolution (3.11), we take the same de
omposition of the se
ond 
omponent of thesour
e term as in (3.12). We apply the WENO re
onstru
tion to the fun
tion
(b(x), 0)T , with 
oe�
ients 
omputed from (h, hu)T , to obtain b±

i+ 1
2

, and de�ne
(t1)

±

i+ 1
2

= b±
i+ 1

2

, (t2)
±

i+ 1
2

=
(

b±
i+ 1

2

)2

.Under these de�nitions and if the steady state h + b = c, u = 0 for some
onstant c is rea
hed, we have
f(U−

i+ 1
2

) −
∑

j

sj

(

V (U, x)−
i+ 1

2

)

(tj)
−

i+ 1
2

=
1

2
g
(

h−

i+ 1
2

)2

− 1

2
g
(

b−
i+ 1

2

)2

+ g
1

2

(

h−

i+ 1
2

+ b−
i+ 1

2

+ h+
i− 1

2

+ b+
i− 1

2

)

b−
i+ 1

2

=
1

2
g
(

h−

i+ 1
2

+ b−
i+ 1

2

)(

h−

i+ 1
2

− b−
i+ 1

2

)

+ g c b−
i+ 1

2

=
1

2
g c
(

h−

i+ 1
2

− b−
i+ 1

2

+ 2b−
i+ 1

2

)

=
1

2
g c2,whi
h is a 
onstant. A similar manipulation leads to

f(U+
i+ 1

2

) −
∑

j

sj

(

V (U, x)+
i+ 1

2

)

(tj)
+
i+ 1

2

=
1

2
g c2.Hen
e the high-order �nite volume WENO s
hemes 
an be designed followingthe above idea for the shallow water equations.3.3. Extension to dis
ontinuous Galerkin s
hemeWe have su

essfully designed high-order well-balan
ed �nite di�eren
e and�nite volume WENO well-balan
ed s
heme for a 
lass of hyperboli
 balan
elaws. In this subse
tion, we 
onsider the generalization of these ideas to theRunge-Kutta dis
ontinuous Galerkin (RKDG) methods. Well-balan
ed high-order RKDG s
hemes will be designed for a 
lass of 
onservation laws satisfyingAssumptions 3.3 and 3.4. The basi
 idea is the same as that for the �nite volume



20s
hemes, su
h as the te
hnique of de
omposing the sour
e term and repla
ingthe vis
osity term in the numeri
al �uxes, be
ause the RKDG methods 
an be
onsidered as a generalization of �nite volume s
hemes, even though they donot require a re
onstru
tion and evolve the 
omplete polynomial in ea
h 
ellforward in time. The RKDG methods are therefore easier to use for multi-dimensional problems in 
omplex geometry, than the �nite volume s
hemes, asthe 
ompli
ated re
onstru
tion pro
edure 
an be avoided. We refer to [8, 9, 10,11, 12℄ for more details of RKDG methods.The semi-dis
rete DG s
hemes for (1.1) take the form
∫

Ij
∂tUh(x, t)vh(x)dx −

∫

Ij
f(Uh(x, t))∂xvh(x)dx + f̂j+ 1

2
vh(x−

j+ 1
2

)

−f̂j− 1
2
vh(x+

j− 1
2

) =
∫

Ij
s(Uh(x, t), t)vh(x)dx(3.28)(3.29) ∫

Ij

Uh(x, 0)vh(x)dx =

∫

Ij

U0(x)vh(x)dx.First, we de�ne a high-order approximation Vh(Uh, x) = Uh+ph

qh
to V (Uh, x),where ph and qh are L2 proje
tions of p and q into Vh, see (3.29) for su
h aproje
tion. Now assume that U is the steady state solution satisfying (3.3),namely

U(x) + p(x) = c q(x)for some 
onstant c, and Uh is the L2 proje
tion of this steady state solution.Clearly, sin
e the L2 proje
tion is a linear operator,
Uh(x) + ph(x) = c qh(x)for the same 
onstant c at every point x. This implies

Vh(Uh, x) =
Uh(x) + ph(x)

qh(x)
= c.For su
h steady state solution U satisfying Assumptions 3.3 and 3.4, wehave

d

dx



f(U) −
∑

j

sj(V (U, x)) tj(x)



 = 0.



21We would need to suitably 
hoose a fun
tion (tj)h, whi
h should be a high-orderapproximation to tj and should satisfy the 
ondition(3.30) f(Uh(x)) −
∑

j

sj(Vh(Uh(x), x))(tj)h(x) = constantfor all x. The 
onstru
tion of (tj)h will be shown for the shallow water equationsin the end of this subse
tion.Similar to the de
omposition of the sour
e term in the well balan
ed �nitevolume s
hemes (3.20), we de
ompose the integral of the sour
e term on theright hand side of (3.28) as:
∫

Ii

s(Uh, x)vhdx

=
∑

j

(

1

2

(

sj(V (Uh, x)+
i− 1

2

) + sj(V (Uh, x)−
i+ 1

2

)
)

∫

Ii

t′j(x)vhdx

+

∫

Ii

(

sj(V (Uh, x)) − 1

2

(

sj(V (Uh, x)+
i− 1

2

) + sj(V (Uh, x)−
i+ 1

2

)
)

)

t′j(x)vhdx

)

=
∑

j

(

1

2

(

sj(V (Uh, x)+
i− 1

2

) + sj(V (Uh, x)−
i+ 1

2

)
)

·
(

tj(xi+ 1
2
)vh(x−

i+ 1
2

) − tj(xi− 1
2
)vh(x+

i− 1
2

) −
∫

Ii

tj(x)v′h(x)dx

)

+

∫

Ii

(

sj(V (Uh, x)) − 1

2

(

sj(V (Uh, x)+
i− 1

2

) + sj(V (Uh, x)−
i+ 1

2

)
)

)

t′j(x)vhdx

)

.We then repla
e this sour
e term with a high-order approximation of it givenby
∑

j

(

1

2

(

sj(Vh(Uh, x)+
i− 1

2

) + sj(Vh(Uh, x)−
i+ 1

2

)
)

·
(

(t̂j)h,i+ 1
2
vh(x−

i+ 1
2

) − (t̂j)h,i− 1
2
vh(x+

i− 1
2

) −
∫

Ii

(tj)h(x)v′h(x)dx

)

+

∫

Ii

(

sj(Vh(Uh, x)) − 1

2

(

sj(Vh(Uh, x)+
i− 1

2

) + sj(Vh(Uh, x)−
i+ 1

2

)
)

)

t′j(x)vhdx

)where (t̂j)h,i+ 1
2
is a high-order approximation to tj(xi+ 1

2
), whose de�nition



22follows (3.25) and (3.27) from Se
tion 3.2
f̂i+ 1

2
=

1

2

[

f((Uh)−
i+ 1

2

) + f((Uh)+
i+ 1

2

) − α sign(q(x))(Vh(Uh, x)+
i+ 1

2

− Vh(Uh, x)−
i+ 1

2

)
]

,

(t̂j)h,i+ 1
2

=
1

2

[

(tj)h(x−

i+ 1
2

) + (tj)h(x+
i+ 1

2

)
]

.Usually, we perform the limiter on the fun
tion Uh after ea
h Runge-Kuttastage. Now, our purpose is to maintain the steady state solution U whi
h satis-�es V (U, x) = constant. The above limiter pro
edure 
ould destroy the preser-vation of su
h steady state, sin
e if the limiter is ena
ted, the resulting modi�edsolution Uh may no longer satisfy Vh(Uh, x) = constant. We therefore proposeto �rst 
he
k whether any limiting is needed based on the fun
tion Vh(Uh, x)in ea
h Runge-Kutta stage, where the 
ell averages of Vh(Uh, x) (needed toimplement the TVB limiter) are 
omputed by a suitable Gauss quadrature.If a 
ertain 
ell is �agged by this pro
edure needing limiting, then the a
tuallimiter is implemented on Uh, not on Vh(Uh, x). When the limiting pro
edureis implemented this way, if the steady state U satisfying V (U, x) = constant isrea
hed, no 
ell will be �agged as requiring limiting sin
e Vh(Uh, x) is equal tothe same 
onstant, hen
e Uh will not be limited and therefore the steady stateis preserved.This �nishes the des
ription of the RKDG s
hemes. We 
an 
learly observethat the a

ura
y is maintained (see Table 7 in Se
tion 5). We also state belowthe proposition 
laiming the exa
t preservation of the steady state solution(3.3). The proof is straightforward and is therefore omitted.Proposition 3.4. The RKDG s
hemes as stated above are exa
t for steadystate solutions satisfying (3.13) and 
an maintain the original high-order a

u-ra
y for general solutions.The extension of the well-balan
ed high-order RKDG s
hemes to the system
ase follows the same idea as that for the well-balan
ed �nite volume s
hemes.For the shallow water equations (3.10) with a lake at rest steady statesolution (3.11), we 
an easily verify that the de�nitions of (ti)h,
(t1)h(x) = bh(x), (t2)h(x) = (bh(x))2



23where bh(x) is the L2 proje
tion of b(x) to the �nite element spa
e Vh, lead to
f(Uh) −

∑

j

sj(Vh(Uh, x))(tj)h =
1

2
g c2when the steady state h + b = c, u = 0 is rea
hed, satisfying our requirement.A new approa
h to obtain well balan
ed methods, by 
al
ulating the sour
eterm exa
tly at the steady state, was introdu
ed for RKDG methods to save
omputational 
ost in [37℄. The traditional RKDG methods are shown to be
apable of maintaining 
ertain steady states exa
tly, if a small modi�
ationon either the initial 
ondition or the �ux is provided. We refer the interestingreader to [37℄

4. Schemes based on well-balanced quadratureIn this se
tion, we follow [24℄ and develop an alternative approa
h to well-balan
ing. It is based on well-balan
ed quadrature rules for 
ell averages ofthe residual de�ned in (4.1) and leads to a high-order a

urate �nite volumes
heme whi
h is well-balan
ed for moving water steady states.The se
tion is organized as follows: Based on the residual of the balan
elaw introdu
ed in Subse
tion 2.2, we de�ne (in Subse
tion 4.1) a general 
lassof semidis
rete �nite volume s
hemes and give a de�nition for su
h s
hemesto be well-balan
ed for a steady state V . For ea
h building blo
k of theses
hemes - the pie
ewise smooth re
onstru
tion of the data, the quadrature ofthe regular part of the residual in the interior of the 
ells, and the re
onstru
tionof the singular part of the residual at the 
ell interfa
es - we de�ne a notionof well-balan
ing (Subse
tion 4.2). Theorem 4.1 states that these 
onditionsguarantee that the overall s
heme is well-balan
ed. In Subse
tion 4.3 we realizethis general program using equilibrium re
onstru
tions. In parti
ular, we treatthe 1D shallow water equations as a prototype and 
onsider the lake at rest,river �ows and waterfalls aligned with the grid. Ex
ept for dis
ontinuities whi
hare not aligned with the grid, we 
an therefore balan
e general 1D steady statesolutions for the shallow water equations. Many of the te
hniques presentedhere 
an be adapted to other 
lasses of balan
e laws. In Subse
tions 4.4 � 4.5we dis
uss some interesting aspe
ts of related s
hemes.



244.1. Framework of the �nite volume dis
retizationHere we 
onsider a general balan
e law in the form (2.6). Let
U(xi, t) ≈

1

△xi

∫

Ii

U(x, t) dx

Ri(t) ≈
1

△xi

∫

Ii

R(x, t) dx(4.1)be approximate 
ell averages of the solution and the residual. Then we 
onsidersemidis
rete s
hemes of the form
d

dt
U i(t) = Ri for i = 1, . . . , N.(4.2)De�nition 4.1. The s
heme (4.2) is well-balan
ed for a steady state V if
Ri = 0 for i = 1, . . . , N(4.3)whenever the original data are in steady state, i.e.
V (U, x) ≡ V = constant.(4.4)Remark 4.1 - (1) Su
h s
hemes have also been 
alled exa
tly well-balan
ed inthe literature, in order to distinguish them from approximately well-balan
eds
hemes, for whi
h

Ri = O(△xp)(4.5)for steady state data (4.4), where p should be higher than the order of 
onsis-ten
y of the overall s
heme.(2) Sin
e the solution U and also the topography b may be dis
ontinuous, we
onsider R to be a bounded Borel measure over Ω, i.e. R ∈ M(Ω). In general,
R has both regular and singular parts with respe
t to Lebesgues' measure, andtherefore it is not straightforward to give meaning to the integral in (4.1), or tode�ne a 
onsistent quadrature for this integral. However, these di�
ulties 
an-not and should not be avoided, and we believe that dis
ussing them dire
tly interms of measures makes the presentation of several re
ent well-balan
ed �nitevolume s
hemes most transparent. This point of view is 
losely related to the



25work on non-
onservative produ
ts of measures in [13, 26℄(3) We begin with s
hemes whi
h are semidis
rete in time. Later, we willuse Runge-Kutta time dis
retizations as in [15, 29, 31℄ to derive fully dis
retes
hemes.As is well known from 
onservation laws, the di�
ulty in dis
retizing (4.2)arises from dis
ontinuities in the solution. If the �ux fun
tion f is nonlinear,the solution U will develop sho
ks in �nite time. For stationary sho
ks f(U) is
ontinuous due to the Rankine-Hugoniot 
ondition, so Ut = 0 at the sho
k. Ifthe sho
k is unsteady, then f(U)x and hen
e Ut be
ome a Dira
 measure, and
U(x, t) jumps as the sho
k passes by.For balan
e laws, it is desirable to treat also dis
ontinuities in the data b,whi
h may be given either by the problem itself or by the dis
retization.In general, dis
ontinuities in the �ux f(U) or the data b will lead to singularparts in the measure R. The term f(U)x 
an be treated 
lassi
ally via thetheory of weak solutions of 
onservation laws. Singularities in the sour
e termare less well understood.4.2. Regular and singular parts of the residualIn order to evaluate the integral on the RHS of (4.1), we split R into itsregular and singular parts with respe
t to Lebesgue measure dx,

R = Rreg + Rsing.(4.6)Analogously, we split the 
ell averages of the residual via
Ri = R

i

reg + R
i

sing .(4.7)We assume that the singular parts of the residual are 
on
entrated at the 
ellinterfa
es, and de
ompose R
i

sing into
R

i

sing = R
i−1/2+

sing + R
i+1/2−

sing ,(4.8)so
Ri = R

i

reg + R
i−1/2+

sing + R
i+1/2−

sing(4.9)



26and
d

dt
U i(t) = R

i

reg + R
i−1/2+

sing + R
i+1/2−

sing .(4.10)For the rest of Se
tion 4, we give an overview how to treat the regular and thesingular 
omponents of the residual on the RHS of (4.10). In Theorem 4.1,we give general su�
ient 
onditions whi
h guarantee that the s
heme (4.10) iswell-balan
ed for a steady state V . In Subse
tion 4.3, we dis
uss a number ofs
hemes and steady states for whi
h these 
onditions are satis�ed.4.2.1. The regular part of the residualSuppose that
Ũ(x) ≈ U(x)(4.11)
b̃(x) ≈ b(x)(4.12)are pie
ewise smooth re
onstru
tions of the 
ell averages Ūi, b̄i over the 
ells

Ii. Let x
(1)
i . . . x

(p)
i be quadrature points within 
ell Ii, to be used in thequadrature (4.15) below. In Subse
tion 4.3 we will develop re
onstru
tionswith the following property:De�nition 4.2. Suppose that the original data (U, b) are in steady state, i.e.(4.4) holds for some steady state V . Suppose furthermore that (Ūi, b̄i) are the
ell averages of the data (U, b). Then the re
onstru
tion (Ũ , b̃) of (U, b) is well-balan
ed for the steady state V and the quadrature points x

(1)
i . . . x

(p)
i ∈ Iiif

Ṽ (x
(j)
i ) := V (Ũ(x

(j)
i ), b̃(x

(j)
i )) ≡ V for j = 1 . . . p.(4.13)In analogy to (2.5), let

R̃ := R(Ũ , b̃) = −f(Ũ)x + s(Ũ , b̃)(4.14)be the approximate residual. Let
K(R̃; Ii) :=

p
∑

j=1

ωjR̃(x
(j)
i ) ≈ 1

△xi

xi+1/2
∫

xi−1/2

R̃(x)dx(4.15)



27be a quadrature of the approximate residual R̃ over the interior of 
ell Ii andlet
R

i

reg := K(R̃; Ii).(4.16)We will study quadratures with the following property:De�nition 4.3. The quadrature (4.16) is well-balan
ed for the steady state
V if

R
i

reg = 0(4.17)for all (Ũ , b̃) whi
h satisfy (4.13).4.2.2. The singular part of the residualWe now turn to the singular part of the residual. Let us fo
us upon an interfa
e
xi+1/2. For in�nitesimal small ε, we introdu
e a boundary layer (xi+1/2 −
ε, xi+1/2 + ε). Within this layer, we 
onstru
t bounded 
ontinuous fun
tions
Ûε(y) and b̂ε(y), where y = x − xi+1/2. The boundary values are

Ûε(±ε) = Ũ(xi+1/2±) = Ũ±

i+1/2(4.18)
b̂ε(±ε) = b̃(xi+1/2±) = b̃±i+1/2,(4.19)where Ũ and b̃ are the pie
ewise smooth re
onstru
tions from (4.11), (4.12).Now we de�ne the singular parts of the residual on the RHS of (4.10) via
R

i+1/2−

sing := lim
ε→0

1

ε

0
∫

−ε

R̂ε(y)dy(4.20)
R

i+1/2+

sing := lim
ε→0

1

ε

ε
∫

0

R̂ε(y)dy,(4.21)where
R̂ε(y) := R(Ûε(y), b̂ε(y)).(4.22)



28De�nition 4.4. The approximation (4.20)�(4.21) of the singular parts of theresidual is well-balan
ed for the steady state V if
Ṽi+1/2− = Ṽi+1/2+ = V(4.23)implies
R

i+1/2−

sing = R
i+1/2+

sing = 0.(4.24)4.2.3. The general well-balan
ing theoremSo far we have introdu
ed a notion of well-balan
ing for ea
h building-blo
k ofthe semi-dis
rete �nite volume s
heme. Combining them we 
an immediatelyestablished the following theorem:Theorem 4.1. Consider the s
heme
d

dt
U i(t) = R

i

reg + R
i−1/2+

sing + R
i+1/2−

sing ,(4.25)where R
i

reg is given by (4.16), R
i+1/2−

sing by (4.20) and R
i−1/2+

sing by (4.21) with
i repla
ed by (i − 1). Suppose that for a 
onstant steady state V , the re
on-stru
tion (Ũ , b̃) in (4.11), (4.12), the quadrature (4.16) and the approximatesingular residua are well-balan
ed a

ording to De�nitions 4.2, 4.3, and 4.4.Then the s
heme (4.25) is well-balan
ed for the steady state V in the sense ofDe�nition 4.1, i.e.

d

dt
U i(t) ≡ 0.(4.26)This �nishes our general dis
ussion of well-balan
ed s
hemes. In the nextsubse
tion, we will 
onstru
t several s
hemes whi
h fall into the framework out-lined in Theorem 4.1, among them the re
ent se
ond order s
heme of Audusseet al. [1℄ and the high-order s
hemes of Castro, Pares et al. and the authors[5, 23, 24℄.4.3. Realization via equilibrium re
onstru
tionsIn this se
tion we will show that some re
ent s
hemes fall into the frameworkoutlined in the previous se
tion. In Subse
tions 4.3.1�4.3.3, we will therefore



29verify the well-balan
ing properties for the re
onstru
tion, the quadrature, andthe singular layer as introdu
ed in De�nitions 4.2, 4.3 and 4.4. On
e this hasbeen done, Theorem 4.1 implies that the overall s
hemes are well-balan
eda

ording to De�nition 4.1.4.3.1. Smooth re
onstru
tion in the 
ell interiorHydrostati
 re
onstru
tions in the 
ell interiorWe begin with a so-
alled hydrostati
 re
onstru
tion that preserves the dis-
harge m and the waterlevel η = h+b. Here we follow Audusse et al. [1℄. Theybegin the re
onstru
tion pro
ess by re
onstru
ting the dis
harge m, the waterlevel η and the bottom b. Then in [1, (2.8)℄, they de�ne the re
onstru
tedheight as
h̃(x) := η̃(x) − b̃(x).(4.27)Therefore, if the dis
harge and the water level are 
onstant to begin with, theywill remain 
onstant during the re
onstru
tion. In parti
ular, the lake at rest(m = 0, η = const) is preserved throughout the re
onstru
tion. Let us mentionin passing that h as de�ned in (4.27) is later on trun
ated by Audusse et al.in order to guarantee positivity of the water height. This is done in su
h away that the well-balan
ing relation (4.27) is preserved (see [1, (2.9), (2.13)℄).Therefore, the hydrostati
 re
onstru
tion is well-balan
ed for the lake at resta

ording to De�nition 4.2.Equilibrium re
onstru
tion in the 
ell interiorIn [24, Se
t.3.2℄ the authors devised a re
onstru
tion whi
h preserves all one-dimensional steady states for the shallow water equation. While we refer tothat paper for the details, we would like to give the key idea in a nutshell.Given 
ell averages (U i) and a bottom fun
tion b(x), we 
hoose lo
al referen
evalues V i of the equilibrium variables. These are de�ned impli
itly by therequirement that

1

△xi

∫

Ii

U(V i, x)dx = U i.(4.28)Let us pause for a moment and dis
uss this relation 
arefully: U(V, x) is theinverse of V (U, x), i.e. U(V (U, x), x) = U . Relation (4.28) 
hooses V i as the



30unique (see the paragraphs pre
eding [24, Def.3.2℄) lo
al equilibrium su
h thatthe 
orresponding 
onserved variables U(V i, b(x)) have the same 
ell average
U i as the numeri
al data. It is proven in [24, Def.3.2℄ that, if the data U(x)and b(x) are in lo
al equilibrium ( V (U(x), x) ≡ V for all 
ells Ii ), then thereferen
e equilibrium states V i 
omputed via (4.28) 
oin
ide with the true lo
alsteady state V .The re
onstru
tion is 
ompleted by limiting the re
onstru
tion Ṽ (x) withrespe
t to the referen
e values V i (see [24, (3.18)℄). The argument that ourre
onstru
tion is well-balan
ed for all steady states is now straightforward: ifthe data are globally in equilibrium (i.e. (4.4) holds for a global steady state
V ), then V i = V for all 
ells, and the equilibrium-limiter [24, (3.18)℄ enfor
esthat Ṽ (x) ≡ V .A well-balan
ed re
onstru
tion due to Castro, Pares et al.In [5℄ Castro, Gallardo, Lopez and Pares start by 
omputing V i as in (4.28).This gives the low order a

urate equilibrium re
onstru
tion

Ũ∗(x) := U(V i, b(x))whi
h is only based upon the values within the ith 
ell. Let us keep i andhen
e Ũ∗ �xed. To �nd the high-order 
orre
tion Castro et al. 
ompute are
onstru
tion polynomial
Qi(x) = p(x|(Ij , U j − ¯̃U∗

j ), j = i − k, . . . , i + k)whi
h interpolates the di�eren
es of the 
ell averages U j and the 
ell averagesof the low order re
onstru
tion Ũ∗. Note that U j only 
oin
ides with ¯̃U∗
j if

j = i. Finally Castro et al. re
onstru
t U by
Ũi(x) := Ũ∗

i (x) + Qi(x).It is proven in [5℄ that this re
onstru
tion is high-order a

urate, and well-balan
ed if V i = V for any i.4.3.2. Well-balan
ed quadrature in the 
ell interiorIn this se
tion we start from the smooth, well-balan
ed re
onstru
tions Ũ , b̃whi
h we 
onstru
ted in the previous se
tion and derive well-balan
ed interior



31quadratures K(R̃, Ii) (
f. (4.15)). In all of this se
tion, we restri
t ourselves tothe shallow water equations.For 
on
iseness, we use the following notation: suppose that
a, b : Ω → Rare real-valued fun
tions de�ned on our spatial domain. For a �xed 
ell Ii, let
ã, b̃ : Ii → Rbe smooth re
onstru
tions over the interior of the 
ell. Then we denote thedi�eren
e and mean operators by

Dã := ã−

i+1/2 − ã+
i−1/2, ā := (ã−

i+1/2 + ã+
i−1/2)/2(4.29)For later use, we observe the dis
rete produ
t rule of di�eren
ing

D(ãb̃) = ā Db̃ + Dã b̄.(4.30)Quadrature for the lake at restWe begin with a widely used quadrature whi
h is well-balan
ed for the lake atrest (m ≡ 0, h + b ≡ η̄). For any smooth Ũ , b̃

xi+1/2
∫

xi−1/2

R̃(x)dx =

xi+1/2
∫

xi−1/2

(−f2(Ũ)x − gh̃b̃x)(x)dx

= − Df2(Ũ) − g

xi+1/2
∫

xi−1/2

(h̃b̃x)(x)dx.(4.31)Therefore we need to de�ne a quadrature for the integral of the sour
e term.We will use the two nodes x
(1)
i = xi−1/2, x

(2)
i = xi+1/2 and approximate both

b̃ and h̃ by linear fun
tions. This gives
xi+1/2
∫

xi−1/2

(h̃b̃x)(x)dx =
h̃i−1/2 + h̃i+1/2

2
(b̃i+1/2 − b̃i−1/2) = h̄ Db̃(4.32)



32Inserting (4.31) and (4.32) into (4.15) we obtain the quadrature
K(R̃, Ii) :=

1

△xi

(

−Df2(Ũ) − gh̄Db̃
)

.(4.33)A simple 
al
ulation shows that this is well-balan
ed for the lake at rest: If
m̃i−1/2 = m̃i+1/2 = 0, b̃i−1/2 + h̃i−1/2 = b̃i+1/2 + h̃i+1/2 = η̄,(4.34)then f2(Ũi±1/2) = g

2 (h̃i±1/2)
2, so

−Df2(Ũ) = −g

2
D
(

h̃2
)

= −g h̄Dh̃ = −g h̄D(η̄ − b̃) = g h̄Db̃.(4.35)Plugging (4.35) into (4.33) we immediately obtain that
K(R̃, Ii) = 0(4.36)for the lake at rest.Quadrature for moving water steady statesIn [24℄ we re�ned the quadrature (4.33) to in
lude moving steady states. Thekey observation is that

Df2(Ũ) = D(m̃ũ + gh̃2/2)

= m̄Dũ + ūDm̃ + gh̄Dh̃

= m̄Dũ + ūDm̃ + h̄D(Ẽ − gb̃ − ũ2/2)

= ūDm̃ + h̄DẼ − gh̄Db̃ + (m̄ − h̄ū)Dũ.(4.37)Noting that m̄ − h̄ū = Dh̃Dũ/4, we obtain that
Df2(Ũ) = ūDm̃ + h̄DẼ − gh̄Db̃ +

1

4
Dh̃(Dũ)2.(4.38)Therefore, for a non-stationary steady state, where Dm̃ = DẼ = 0,

−Df2(Ũ) − gh̄Db̃ +
1

4
Dh̃(Dũ)2 = 0.(4.39)As a 
onsequen
e, the quadrature

K(R̃, Ii) :=
1

△xi

(

−Df2(Ũ) − gh̄Db̃ +
1

4
Dh̃(Dũ)2

)(4.40)is well-balan
ed for general steady states in 1D. For smooth �ows, the 
ubi

orre
tion term 1
4Dh̃(Dũ)2 is so small that it does not a�e
t the order of thequadrature rule. In [24℄ we showed how to limit this term when the jumps Dh̃and Dũ are no longer of the order of the gridsize.



334.3.3. Singular layers at the 
ell boundariesIn Subse
tion 4.2.2 we introdu
ed a general framework of well-balan
ed singularlayers. It would be 
onvenient if the equilibrium values are 
onstant throughoutthe singular layer. But this 
an be done only if Ṽi+1/2− = Ṽi+1/2+ = V . Inthis 
ase we set
Ûε(y) = U(V , b̂ε(y)),(4.41)where b̂ε(·) is any smooth re
onstru
tion of the bottom topography. From(4.22) we immediately obtain that

R̂ε(y) = R(Ûε(y), b̂ε(y)) = 0.(4.42)In the general 
ase, there is no straightforward 
onstru
tion of the residual inthe singular layer. However, we will mimi
 the 
onstru
tion (4.41)�(4.42) asmu
h as possible in suitable parts of the interval [−ε, ε].For this we turn to the s
hemes proposed in [1, 6, 24℄, whi
h are all relatedas follows: The 
ontinuous pie
ewise linear topography is de�ned by the fourvalues y = −ε,−ε/2, ε/2, ε, 
orresponding to the points xi+1/2 − ε, xi+1/2 −
ε/2, xi+1/2 + ε/2, xi+1/2 + ε. At these points our pie
ewise linear b̂ε takes thevalues

b̂ε(y) :=

{

b̃±i+1/2 for y = ± ε

b̂i+1/2 for y = ± ε/2,
(4.43)where the intermediate value near the interfa
e b̂i+1/2 still needs to be deter-mined. Certainly, it should be a suitable 
onvex 
ombinations of the values
b̃±i+1/2 at the endpoints. This intermediate value of the topography was de�nedslightly di�erently in ea
h of [1, 24, 6℄, and we will dis
uss this in the followingsubse
tion.Adja
ent to the interiors of the left and right neighboring 
ells, i.e. in theintervals [−ε,−ε/2] and [ε/2, ε], we keep the equilibrium values 
onstant, andde�ne Ûε and R̂ε via (4.41)�(4.42). In [24℄ we have 
alled the set [−ε,−ε/2]∪
[ε/2, ε], for whi
h the residual vanishes, the equilibrium layer. By 
onstru
tion,



34the values Ûε(±ε/2) are
Ûε(−

ε

2
) = U(Ṽ (xi+1/2−), b̂i+1/2) =: Ûi+1/2−(4.44)

Ûε(
ε

2
) = U(Ṽ (xi+1/2+), b̂i+1/2) =: Ûi+1/2+ .(4.45)Note that the fun
tion U(V, b) used in (4.44)�(4.45) depends strongly on theparti
ular steady state under 
onsideration. For example it di�ers for the lakeat rest 
onsidered in [1℄ and the moving water treated in [24℄.In the remaining interval [− ε

2 , ε
2 ], whi
h we 
alled 
onve
tive layer in [24℄,the topography is 
onstant, b̂ε(y) ≡ b̂i+1/2. Therefore, as for the exa
t solution,where

R(x) = −∂xf(U(x)),the approximate residual should redu
e to a 
onservative �ux di�eren
e. Forthis, we de�ne an approximate �ux f̂ε(y) as follows. In the 
enter y = 0, the�ux will be an approximate Riemann solver f̂(Ûi+1/2−, Ûi+1/2+), and at theendpoints y = ±ε/2, it takes the values f(Ûi+1/2±). In between, f̂ε may beany 
ontinuous fun
tion, e.g. pie
ewise linear. Then we set
R̂ε(y) := −∂y f̂ε(y).(4.46)From here, we 
an easily evaluate the singular parts of the residual in (4.20)�(4.21) and obtain

R
i+1/2−

sing = −f̂(Ûi+1/2−, Ûi+1/2+) + f(Ûi+1/2−)(4.47)
R

i+1/2+

sing = −f(Ûi+1/2+) + f̂(Ûi+1/2−, Ûi+1/2+).(4.48)Lemma 4.1. The approximation (4.47)�(4.48) of the singular parts of theresidual is well-balan
ed in the sense of De�nition 4.4.Proof � Sin
e the residual vanishes in the equilibrium layer, it is su�
ientto show that
Ûi+1/2− = Ûi+1/2+,(4.49)sin
e then

f(Ûi+1/2−) = f̂(Ûi+1/2−, Ûi+1/2+) = f(Ûi+1/2+)(4.50)



35and, from (4.47)�(4.48),
R

i+1/2−

sing = R
i+1/2+

sing = 0.(4.51)So suppose that we are in lo
al equilibrium in the sense of De�nition 4.4, i.e.
Ṽi+1/2− = Ṽi+1/2+ = V for some steady state V . Then

Ûi+1/2− = Ûi+1/2+ = U(V , b̂i+1/2),(4.52)whi
h is (4.49). �4.4. On the 
hoi
e of the intermediate bottom b̂i+1/2Now we fo
us upon an interfa
e xi+1/2 and the two values b̃±i+1/2, whi
hrepresent the jump of the bottom at the 
ell interfa
e. We require that theintermediate value b̂i+1/2 satis�es
min{b̃−i+1/2, b̃

+
i+1/2} ≤ b̂i+1/2 ≤ max{b̃−i+1/2, b̃

+
i+1/2}.(4.53)In [1, (2.9)℄, Audusse et al. 
hoose

b̂i+1/2 := max{b̃−i+1/2, b̃
+
i+1/2}.(4.54)Together with an appropriate CFL restri
tion and a suitable �ux fun
tion,(4.54) guarantees positivity of the waterheight. It has been used by variousauthors, in
luding the present authors, and we 
onsider it to be the standard
hoi
e.However, there is an important 
ase whi
h suggests that the standard 
hoi
eshould sometimes be repla
ed. While the 
hoi
e of Audusse et al. is parti
ularlyuseful at the shore of a lake with sub
riti
al velo
ity, we 
onsider the ratherdi�erent situation of a waterfall in steep, fast mountainous rivers (see [24℄ fordetails). In Figure 1 we show this stationary moving water �ow. The water�ows in super
riti
ally from the left until it hits a steep (or even dis
ontinuous)des
ent. Flowing down, the water a

elerates. Due to 
onservation of mass thewater height de
reases until the �ow be
omes 
riti
al. It is then stopped by astationary sho
k, or bore. Behind the sho
k, the water moves on slowly withsub
riti
al velo
ity.
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Figure 1 � Waterfall: a (�nitely or in�nitely) steep slide followed by a stationary sho
k.Dashed line: bottom topography. Cir
les: Water surfa
e.We obtain the same solution for the Riemann problem with dis
ontinuousbottom. The interesting observation is that the hydrodynami
 problem (thestationary sho
k) is resolved at the bottom of the topography, so we shouldrepla
e (4.54) by
b̂i+1/2 := min{b̃−i+1/2, b̃

+
i+1/2}.(4.55)In [6℄, Castro, Pardo, and Parés formulate well-balan
ed s
hemes with a general
hoi
e of b̂i+1/2 satisfying only (4.53). The optimal 
hoi
e of b̂i+1/2 remains anopen problem, whi
h seems to be 
losely related to the non-uniqueness of theRiemann problem, see [7, 18℄. Meanwhile we re
ommend to use (4.54) sin
e itis positivity preserving.



374.5. A note on the 
onservative 
hara
ter of the �uxes.In dis
ussions of re
ent well-balan
ed s
hemes, it was argued that the nu-meri
al �uxes in [1, (2.15)℄ were not 
onservative (see [20℄ for the de�nitionof 
onservative numeri
al �uxes). We would like to 
larify this point: In ournotation (see (4.2)), the �rst order s
heme of Audusse et al. reads
∆xi

d

dt
U i(t) = Fl(U i, U i+1, bi, bi+1) −Fr(U i−1, U i, bi−1, bi) = ∆xi Ri(4.56)with �uxes [1, (2.16)℄

Fr(U i−1, U i, bi−1, bi) = f̂(U i−1, U i) +

(

0
g
2h2

i − g
2h2

i−1/2+

)(4.57)
Fl(U i, U i+1, bi, bi+1) = f̂(U i, U i+1) +

(

0
g
2h2

i − g
2h2

i+1/2−

)(4.58)Indeed,
Fr(U i−1, U i, bi−1, bi) 6= Fl(U i−1, U i, bi−1, bi),so these �uxes are not 
onservative in the sense of the Lax-Wendro� theorem.Let us 
ompare this to the s
heme (4.10) derived in this se
tion:

d

dt
U i(t) = R

i

reg + R
i−1/2+

sing + R
i+1/2−

sing .(4.59)From (4.16), (4.47) and (4.48)
△xi R

i

reg = −f(Ũi+1/2−) + f(Ũi−1/2+) + △xi S̄i
reg(4.60)

△xi R
i+1/2−

sing = −f̂(Ûi+1/2−, Ûi+1/2+) + f(Ûi+1/2−)(4.61)
△xi R

i−1/2+

sing = −f(Ûi−1/2+) + f̂(Ûi−1/2−, Ûi−1/2+),(4.62)where the regular part of the sour
e term is given by
△xi S̄i

reg = −
(

0

gh̄iDb̃i

)

.(4.63)Setting
Dfi := f̂(Ûi+1/2−, Ûi+1/2+) − f̂(Ûi−1/2−, Ûi−1/2+),



38the s
heme (4.59) reads
△xi

d

dt
U i(t) = −Dfi + [f(Ũi−1/2+) − f(Ûi−1/2+)](4.64)

+ [f(Ûi+1/2−) − f(Ũi+1/2−)] + △xi S̄i
reg.Following the arguments in [1, 24℄ or the present paper, one 
an 
he
k that thes
hemes de�ned by (4.64) and (4.56) 
oin
ide. However, the 
urious non
on-servative �ux di�eren
es appear also in the form (4.64). We will now show thatthe two �ux di�eren
es in the square bra
kets are pre
isely the singular sour
eterms in the left and right equilibrium layers, where the sour
e term jumps.From (4.22) and (4.42) we know that the residual vanishes in the equilibriumlayer. More pre
isely, it 
onsists of a non-zero �ux di�eren
e and a non-zerosour
e term whi
h balan
e ea
h other:

△xi R̄
i−1/2+
equil = −f(Ũi−1/2+) + f(Ûi−1/2+) + △xi S̄

i−1/2+
sing = 0(4.65)

△xi R̄
i+1/2−
equil = −f(Ûi+1/2−) + f(Ũi+1/2−) + △xi S̄

i+1/2−
sing = 0.(4.66)Therefore,

△xi S̄
i−1/2+
sing = f(Ũi−1/2+) − f(Ûi−1/2+)(4.67)

△xi S̄
i+1/2−
sing = f(Ûi+1/2−) − f(Ũi+1/2−)(4.68)and the s
heme (4.64) 
an be rewritten in the natural form

d

dt
U i(t) = −Dfi + △xi

(

S̄
i−1/2+
sing + S̄i

reg + S̄
i+1/2−
sing

)(4.69)whi
h 
learly distinguishes 
onservative �ux di�eren
es, regular and singularsour
e terms.
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5. Numerical examples for the shallow water equationsWe have su

essfully designed high-order well-balan
ed s
hemes by di�er-ent approa
hes. In Se
tion 3, high-order well-balan
ed �nite di�eren
e, �nitevolume and RKDG s
hemes are designed for a 
lass of hyperboli
 balan
e laws,whi
h in
lude the shallow water equations with the lake at rest steady state.The key idea towards the well-balan
ed property is a spe
ial de
omposition ofthe sour
e term. Fifth order �nite di�eren
e, �nite volume WENO s
hemesand third order �nite element RKDG s
heme are implemented, and we denotethem by FD5, FV5-D (D for well-balan
ed �nite di�eren
ing) and RKDG3 re-spe
tively. In Subse
tion 4.3, high order �nite volume s
hemes whi
h are well-balan
ed for the steady river �ow of the shallow water equations have beenpresented. The well-balan
ed property relies on a spe
ial equilibrium re
on-stru
tion and non-trivial quadrature of the sour
e term, while the high-ordera

ura
y 
omes from the high-order WENO re
onstru
tion and extrapolationof the sour
e term. Fourth order a

ura
y 
an be obtained. We denote these�nite volume s
hemes as FV4-Q (Q for well-balan
ed quadrature). Note thatwe have two well-balan
ed �nite volume s
hemes, FV5-D and FV4-Q, obtainedthrough di�erent approa
hes.In this se
tion we provide numeri
al results to demonstrate the good prop-erties of these well-balan
ed s
hemes, when applied to the shallow water equa-tions. The examples in Se
tions 5.1�5.3 show well-balan
ing steady states toma
hine a

ura
y, high order of a

ura
y for unsteady solutions, and smallperturbations of steady states. The last two examples (dis
ontinuous bottom,Se
tion 5.4 and 2D pertubation, Se
tion 5.5) go somewhat beyond the s
opeof the numeri
al analysis of Se
tions 3 and 4. They provide some preliminaryinsight for whi
h appli
ations the methods might still work, even though thismay not yet be proven.In all numeri
al tests, time dis
retization is by the 
lassi
al third orderTVD Runge-Kutta method [31℄. For �nite volume, �nite di�eren
e WENOs
hemes, the CFL number is taken as 0.6, ex
ept for the a

ura
y tests wheresmaller time steps are taken to ensure that spatial errors dominate. For thethird order RKDG s
heme, the CFL number is 0.18. For the TVB limiterimplemented in the RKDG s
heme, the TVB 
onstant M (see [10, 28℄ for its



40de�nition) is taken as 0 in most numeri
al examples, unless otherwise stated.The gravitation 
onstant g is taken as 9.812m/s2 during the 
omputation.5.1. Well-balan
ed testsThe purpose of the �rst test problems is to verify the well balan
ed propertyof our algorithms. Note that FV4-Q is 
apable of 
apturing steady river �ows,and FV5-D, FD5, RKDG3 are designed for 
apturing the lake at rest. Hen
e,two di�erent test problems are proposed here. A �fth-order Gauss quadrature isemployed to 
ompute the initial value in the �nite volume and DG approa
hes.5.1.1. Lake at restThis test is shown to verify that FV5-D, FD5 and RKDG3 indeed maintainthe well-balan
ed property over a non-�at bottom. We 
hoose two di�erentfun
tions for the bottom topography given by (0 ≤ x ≤ 10):(5.1) b(x) = 5 e−
2
5
(x−5)2 ,whi
h is smooth, and(5.2) b(x) =

{

4 if 4 ≤ x ≤ 8,

0 otherwise,whi
h is dis
ontinuous. The initial data is the stationary solution:
h + b = 10, hu = 0.This steady state should be exa
tly preserved. We 
ompute the solutionuntil t = 0.5 using N = 200 uniform 
ells. In order to demonstrate that thewell-balan
ed property is indeed maintained up to round-o� error, we use singlepre
ision, double pre
ision and quadruple pre
ision to perform the 
omputa-tion, and show the L1 and L∞ errors for the water height h (note: h in this
ase is not a 
onstant fun
tion!) and the dis
harge hu in Tables 1 and 2 for thetwo bottom fun
tions (5.1) and (5.2) and di�erent pre
isions. For the RKDG



41Table 1 � L1 and L∞ errors for di�erent pre
isions for the steady solution with a smoothbottom (5.1).
L1 error L∞ errorpre
ision h hu h husingle 3.13E-07 1.05E-05 9.54E-07 4.85E-05FD5 double 1.24E-15 2.34E-14 7.11E-15 8.65E-14quadruple 1.62E-33 2.11E-32 6.16E-33 8.74E-32single 4.07E-06 3.75E-05 1.33E-05 1.33E-04FV5-D double 2.50E-14 2.23E-13 7.64E-14 7.97E-13quadruple 3.49E-33 2.90E-32 1.39E-32 9.62E-32single 6.44E-06 2.44E-05 2.57E-05 1.75E-04RKDG3 double 6.82E-15 2.90E-14 2.84E-14 2.14E-13quadruple 9.06E-31 3.92E-33 8.05E-29 1.12E-31method, the errors are 
omputed based on the numeri
al solutions at 
ell 
en-ters. We 
an 
learly see that the L1 and L∞ errors are at the level of round-o�errors for di�erent pre
isions, verifying the well-balan
ed property.We have also 
omputed stationary solutions using initial 
onditions whi
hare not the steady state solutions and letting time evolve into a steady state,obtaining similar results with the well-balan
ed property.5.1.2. Steady river �owWe pi
k di�erent test problems for FV4-Q, to verify the well balan
ed propertytowards the moving steady state solution. These steady state problems are
lassi
al test 
ases for trans
riti
al and sub
riti
al �ows, and they are widelyused to test numeri
al s
hemes for shallow water equations. For example, theyhave been used as a test 
ase in [32℄. Here, our purpose is to maintain thesesteady state solutions exa
tly.The bottom fun
tion is given by:(5.3) b(x) =

{

0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12,

0 otherwise,



42Table 2 � L1 and L∞ errors for di�erent pre
isions for the steady solution with a nonsmoothbottom (5.2).
L1 error L∞ errorpre
ision h hu h husingle 2.28E-07 3.61E-06 1.91E-06 2.37E-05FD5 double 9.05E-15 5.88E-14 3.55E-15 4.46E-14quadruple 1.30E-33 1.40E-32 4.62E-33 5.64E-32single 6.50E-06 2.61E-05 1.91E-05 1.53E-04FV5-D double 1.73E-14 5.88E-14 4.62E-14 2.43E-13quadruple 2.69E-32 9.30E-32 5.85E-32 3.04E-31single 5.76E-07 3.54E-07 9.54E-07 1.18E-06RKDG3 double 1.41E-15 8.90E-16 3.55E-15 2.83E-15quadruple 2.69E-31 1.62E-35 8.06E-29 8.18E-34for a 
hannel of length 25m. Three steady states, sub
riti
al or trans
riti
al�ow with or without a steady sho
k will be investigated.a): Trans
riti
al �ow without a sho
k. The initial 
ondition is given by:(5.4) E =

1.532

2 × 0.662
+ 9.812 × 0.66, m = 1.53,together with the boundary 
ondition

• upstream: The dis
harge hu=1.53 m2/s is imposed.
• downstream: The water height h=0.66 m is imposed when the �ow issub
riti
al.This steady state should be exa
tly preserved. We 
ompute the solution until

t = 20 using N = 200 uniform mesh points. The 
omputed surfa
e level h + band the bottom b are plotted in Figure 2. In order to demonstrate that thesteady state is indeed maintained up to round-o� error, we use single pre
isionand double pre
ision to perform the 
omputation, and show the L1 and L∞errors for the water height h and the dis
harge hu (note: neither h nor hu



43in this 
ase is a 
onstant or polynomial fun
tion!) in Tables 3 for di�erentpre
isions. We 
an 
learly see that the L1 and L∞ errors are at the level ofround-o� errors for di�erent pre
isions, verifying the well-balan
ed property.
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Figure 2 � The surfa
e level h+ b and the bottom b for the trans
riti
al �ow without a sho
k.
Table 3 � L1 and L∞ errors for di�erent pre
isions for the trans
riti
al �ow without a sho
k.

L1 error L∞ errorpre
ision h hu h husingle 2.19E-08 4.74E-09 1.61E-06 1.19E-07FV4-Q double 1.15E-16 3.21E-16 5.55E-16 1.33E-15b): Trans
riti
al �ow with a sho
k. The initial 
ondition is given by:



44(5.5)
E =







3
2 (9.812 × 0.18)

2
3 ) + 9.812 × 0.2 if x ≤ 11.665504281554291,

0.182

2 × 0.332 + 9.812× 0.33 otherwise, m = 0.18,together with the boundary 
ondition
• upstream: The dis
harge hu=0.18 m2/s is imposed.
• downstream: The water height h=0.33 m is imposed.This steady state should be exa
tly preserved. As we mentioned in Subse
-tion 4.3, we only dis
uss the 
ase when the sho
k is exa
tly lo
ated at the
ell boundary. Hen
e we shift the 
omputational domain to put the sho
k atthe 
ell boundary. For this 
ase when stationary sho
k exists, we need to usethe Roe's �ux to 
ompute the approximate Riemann problem, and repla
e thelimiter pro
edure by a one-sided limiter for the two 
ells next to the sho
k.Also, the left and right approximated values of bottom at the sho
k must beexa
t, so that the Roe's �ux 
an 
apture this sho
k exa
tly. Here we 
omputethe solution until t = 20 using N = 400 uniform mesh points. The 
omputedsurfa
e level h+b and the bottom b are plotted in Figure 3. In order to demon-strate that the steady state is indeed maintained up to round-o� error, we usesingle pre
ision and double pre
ision to perform the 
omputation, and showthe L1 and L∞ errors for the water height h and the dis
harge hu in Tables 4for di�erent pre
isions. We 
an 
learly see that the L1 and L∞ errors are atthe level of round-o� errors for di�erent pre
isions, verifying the well-balan
edproperty.Table 4 � L1 and L∞ errors for di�erent pre
isions for the trans
riti
al �ow with a sho
k.

L1 error L∞ errorpre
ision h hu h husingle 2.78E-09 2.74E-09 3.87E-07 2.53E-07FV4-Q double 1.06E-15 1.23E-15 8.37E-14 8.32E-14
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Figure 3 � The surfa
e level h + b and the bottom b for the trans
riti
al �ow with a sho
k.
): Sub
riti
al �ow. The initial 
ondition is given by:(5.6) E = 22.06605, m = 4.42,together with the boundary 
ondition
• upstream: The dis
harge hu=4.42 m2/s is imposed.
• downstream: The water height h=2 m is imposed.This steady state should be exa
tly preserved. We 
ompute the solution until

t = 20 using N = 200 uniform mesh points. The 
omputed surfa
e level h + band the bottom b are plotted in Figure 4. In order to demonstrate that thesteady state is indeed maintained up to round-o� error, we use single pre
isionand double pre
ision to perform the 
omputation, and show the L1 and L∞errors for the water height h and the dis
harge hu in Tables 5 for di�erentpre
isions. We 
an 
learly see that the L1 and L∞ errors are at the level ofround-o� errors for di�erent pre
isions, verifying the well-balan
ed property.
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Figure 4 � The surfa
e level h + b and the bottom b for the sub
riti
al �ow.5.2. Testing the orders of a

ura
yIn this example we will test the high-order a

ura
y of our s
hemes for asmooth solution. There are some known exa
t solutions to the shallow waterequation with non-�at bottom in the literature, su
h as some stationary so-lutions, but they are not generi
 test 
ases for a

ura
y. We have therefore
hosen to use the following bottom fun
tion and initial 
onditions
b(x) = sin2(πx), h(x, 0) = 5 + ecos(2πx), (hu)(x, 0) = sin(cos(2πx)), x ∈ [0, 1]Table 5 � L

1 and L
∞ errors for di�erent pre
isions for the sub
riti
al �ow.

L1 error L∞ errorpre
ision h hu h husingle 4.62E-07 3.23E-07 6.81E-06 7.23E-06double 1.44E-17 8.84E-17 6.66E-16 1.77E-15



47with periodi
 boundary 
onditions, see [34℄. Sin
e the exa
t solution isnot known expli
itly for this 
ase, we use the �fth order �nite volume WENOs
heme with N = 12, 800 
ells to 
ompute a referen
e solution, and treat thisreferen
e solution as the exa
t solution in 
omputing the numeri
al errors.We 
ompute up to t = 0.1 when the solution is still smooth (sho
ks developlater in time for this problem). Tables 6 and 7 
ontain the L1 errors for the
ell averages for FV4-Q, FV5-D and RKDG3, and for the point values forFD5, and numeri
al orders of a

ura
y. We 
an 
learly see that the designedorder of a

ura
y is a
hieved. For the RKDG s
heme, the TVB 
onstant M istaken as 32. Noti
e that the CFL number we have used for the �nite volumes
heme de
reases with the mesh size and is re
orded in Tables 6 and 7. Forthe RKDG method, the CFL number is �xed at 0.18. We note that �fth-ordera

ura
y is observed for FV4-Q. The �fth-order WENO re
onstru
tion has beenused in spa
e, but the sour
e term is approximated by a fourth order a

urateextrapolation. Hen
e the approximation of the sour
e term in the algorithm
ontributes less to the overall error. This phenomena has been investigated in[23℄.5.3. A small perturbation of a steady-state waterThe following test 
ases are 
hosen to demonstrate the 
apability of the pro-posed s
hemes for 
omputations on the perturbation of a steady state solution,whi
h 
annot be 
aptured well by a non well-balan
ed s
heme. For the samereason as in Se
tion 5.1, two test 
ases are proposed for di�erent algorithms.5.3.1. Perturbation of a lake at restThe following quasi-stationary test 
ase was proposed by LeVeque [19℄. It was
hosen to demonstrate the 
apability of the proposed s
heme for 
omputationson a rapidly varying �ow over a smooth bed, and the perturbation of a sta-tionary state. We test it on FV5-D, FD5 and RKDG3 methods.The bottom topography 
onsists of one hump:(5.7) b(x) =

{

0.25(cos(10π(x − 1.5)) + 1) if 1.4 ≤ x ≤ 1.6,

0 otherwise,



48 Table 6 � L1 errors and numeri
al orders of a

ura
y for the example in Se
tion 5.2.FV4-QNo. of CFL h hu
ells L1 error order L1 error order25 0.6 1.48E-02 9.78E-0250 0.6 2.41E-03 2.68 1.97E-02 2.31100 0.4 2.97E-04 3.02 2.58E-03 2.93200 0.3 2.44E-05 3.61 2.13E-04 3.60400 0.2 1.03E-06 4.56 8.97E-06 4.57800 0.1 3.49E-08 4.89 2.95E-07 4.93FV5-DCFL h hu

L1 error order L1 error order25 0.6 1.48E-02 9.45E-0250 0.6 2.40E-03 2.63 1.98E-02 2.26100 0.4 2.97E-04 3.01 2.58E-03 2.93200 0.3 2.43E-05 3.61 2.13E-04 3.60400 0.2 1.02E-06 4.57 8.96E-06 4.57800 0.1 3.26E-08 4.97 2.85E-07 4.97The initial 
onditions are given with(5.8) (hu)(x, 0) = 0 and h(x, 0) =

{

1 − b(x) + ǫ if 1.1 ≤ x ≤ 1.2,

1 − b(x) otherwise,where ǫ is a non-zero perturbation 
onstant. Two 
ases have been run: ǫ =0.2 (big pulse) and ǫ = 0.001 (small pulse). Theoreti
ally, for small ǫ, thisdisturban
e should split into two waves, propagating left and right at the 
har-a
teristi
 speeds ±√
gh. Many numeri
al methods have di�
ulty with the
al
ulations involving su
h small perturbations of the water surfa
e. Both setsof initial 
onditions are shown in Figure 5. The solution at time t=0.2s for thebig pulse ǫ = 0.2, obtained on a 200 
ell uniform grid with simple transmissive



49Table 7 � L1 errors and numeri
al orders of a

ura
y for the example in Se
tion 5.2.FD5No. of CFL h hu

L1 error order L1 error order25 0.6 1.70E-02 1.06E-0150 0.6 2.17E-03 2.97 1.95E-02 2.45100 0.6 3.33E-04 2.71 2.83E-03 2.78200 0.6 2.36E-05 3.82 2.04E-04 3.80400 0.6 9.67E-07 4.61 8.38E-06 4.61800 0.6 3.38E-08 4.84 2.94E-07 4.83RKDG3CFL h hu

L1 error order L1 error order25 0.6 2.35E-03 2.12E-0250 0.6 1.15E-04 4.36 1.01E-03 4.39100 0.4 1.24E-05 3.20 1.09E-04 3.21200 0.3 1.02E-06 3.59 8.97E-06 3.60400 0.2 1.11E-07 3.19 9.79E-07 3.19800 0.1 1.30E-08 3.09 1.14E-07 3.08boundary 
onditions, and 
ompared with a 3000 
ell solution, is shown in Fig-ure 6 for the FD5, in Figure 7 for the FV5-D and in Figure 8 for the RKDG3.The results for the small pulse ǫ = 0.001 are shown in Figures 9, 10 and 11. Atthis time, the downstream-traveling water pulse has already passed the bump.We 
an 
learly see that there are no spurious numeri
al os
illations.5.3.2. Perturbation of steady river �owIn subse
tion 5.1.2, we presented three steady state solutions and showed thatour numeri
al s
hemes did maintain them exa
tly. In this test 
ase, we imposeto them a small perturbation 0.01 on the height in the interval [5.75,6.25℄, and
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Figure 5 � The initial surfa
e level h + b and the bottom b for a small perturbation of asteady-state water. Left: a big pulse ǫ=0.2; right: a small pulse ǫ=0.001.
he
k whether the FV4-Q method 
aptures it well. We remark that FV5-D,FD5 and RKDG3 are not well balan
ed for these steady states and they all failto 
apture this perturbation on 
oarse meshes.Theoreti
ally, this disturban
e should split into two waves, propagatingto the left and right respe
tively. Many numeri
al methods have di�
ultywith the 
al
ulations involving su
h small perturbations of the water surfa
e.The solution obtained on a 200 
ell uniform grid with simple transmissiveboundary 
onditions, 
ompared with the results using 2000 uniform 
ells, isshown in Figure 12 for the trans
riti
al �ow without a sho
k, in Figure 13 forthe trans
riti
al �ow with a sho
k and in Figure 14 for the sub
riti
al �ow.The stopping time T is set as 1.5 for the �rst and third �ow, 3 for the se
ond�ow. At this time, the downstream-traveling water pulse has already passedthe bump. We 
an 
learly see that there are no spurious numeri
al os
illationsand the resolution for the propagated small perturbation is very good.5.4. The dam breaking problem over a re
tangular bumpIn this example we use the SW model to simulate the dam breaking prob-lem over a re
tangular bump, whi
h involves a rapidly varying �ow over adis
ontinuous bottom topography. This example was used in [33℄.It is not yet settled whether SW models give meaningful predi
tions for �ows
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Figure 6 � FD5: Small perturbation of a steady-state water with a big pulse. t=0.2s. Left:surfa
e level h + b; right: the dis
harge hu.
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Figure 7 � FV5-D: Small perturbation of a steady-state water with a big pulse. t=0.2s. Left:surfa
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harge hu.
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Figure 8 � RKDG3: Small perturbation of a steady-state water with a big pulse. t=0.2s.Left: surfa
e level h + b; right: the dis
harge hu.
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Figure 10 � FV5-D: Small perturbation of a steady-state water with a small pulse. t=0.2s.Left: surfa
e level h + b; right: the dis
harge hu.
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Figure 11 � RKDG3: Small perturbation of a steady-state water with a small pulse. t=0.2s.Left: surfa
e level h + b; right: the dis
harge hu.
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Figure 12 � FV4-Q: Small perturbation of the trans
riti
al �ow without a sho
k.over dis
ontinuous bottoms, where key modelling assumptions are violated.Should a user have to swit
h to the full Euler or Navier-Stokes equations, assoon as there is a step in the bottom? The present example shows that theSW model, and our algorithms, may provide stable and sharp 
omputationalresults for dis
ontinuous topography.The bottom topography takes the form:(5.9) b(x) =

{

8 if |x − 750| ≤ 1500/8,

0 otherwise,for x ∈ [0, 1500]. The initial 
onditions are(5.10) (hu)(x, 0) = 0 and h(x, 0) =

{

20 − b(x) if x ≤ 750,

15 − b(x) otherwise.
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Figure 13 � FV4-Q: Small perturbation of the trans
riti
al �ow with a sho
k.
Figure 15 shows numeri
al results obtained by FD5 500 uniform 
ells (and a
omparison with the results using 5000 uniform 
ells) with ending time t=60s.In this example, the water height h(x) is dis
ontinuous at the points x=562.5and x=937.5, while the surfa
e level h(x) + b(x) is smooth there. All s
hemesFV4-Q, FD5, FV5-D, RKDG3 work well for this example, giving well resolved,non-os
illatory solutions using 400 
ells whi
h agree with the 
onverged resultsusing 4000 
ells.
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Figure 14 � FV4-Q: Small perturbation of the sub
riti
al �ow.5.5. A two-dimensional exampleThe shallow water system in two spa
e dimensions takes the form:(5.11) 





















ht + (hu)x + (hv)y = 0

(hu)t +

(

hu2 +
1

2
gh2

)

x

+ (huv)y = −ghbx

(hv)t + (huv)x +

(

hv2 +
1

2
gh2

)

y

= −ghbywhere again h is the water height, (u, v) is the velo
ity of the �uid, b representsthe bottom topography and g is the gravitational 
onstant. It is straightfor-ward to generalize 1D s
hemes dimension by dimension to this 2D system, andusually one will maintain the 2D well-balan
ing of the lake at rest. It is also
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Figure 15 � FD5: The surfa
e level h + b for the dam breaking problem at time t=60s. Left:the numeri
al solution using 500 grid 
ells, plotted with the initial 
ondition and the bottomtopography; Right: the numeri
al solution using 500 and 5000 grid 
ells.fairly straightforward to balan
e geostrophi
 jets, driven by the Coriolis for
e,whi
h are aligned with the grid, see e.g. [4, 22, 25℄. In general, however, thereis an abundan
e of steady states, ea
h being a solution of a mixed hyperboli
-ellipti
 boundary value problem in (x, y)-spa
e. In parti
luar, there is no waywe 
ould well-balan
e general moving steady �ows.However, the 1D te
hniques presented in this paper are already useful forsome 2D �ows. Note that river and 
hannel �ows have a pronoun
ed dire
tionof propagation (usually 
lose to the downhill dire
tion). Also the topographyin rivers and 
hannels (dams, barrages) is often essentially one-dimensional. Inthe present example, we will apply the 1D te
hniques of Se
tion 4 (i.e. well-balan
ing non-stationary steady �ows) only in the x-dire
tion (the dire
tionof the underlying unperturbed �ow). This will be of great advantage when
omputing a fully 2D perturbation of this non-stationary steady �ow.We solve the system in the re
tangular domain [0, 25]× [0, 25]. The bottomtopography is given by:(5.12) b(x, y) =

{

0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12,

0 otherwise.Noti
e that the bottom is a fun
tion of x only. A steady state solution 
an be
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Figure 16 � The 
ontours of the di�eren
e between the height h and the initial steady state(5.12) for the problem in Se
tion 5.5 at time t = 0.5. 30 uniformly spa
ed 
ontour lines from-0.009 to 0.012. Left: results with a 100× 100 uniform mesh. Right: results with a 200× 200uniform mesh.
omputed from:(5.13) 1

2
u2 + g(h + b) = 22.06605, hu(x, y, 0) = 4.42, hv(x, y, 0) = 0.These data 
orrespond pre
isely to the one-dimensional sub
riti
al steady stateof (5.6), and the 
ross se
tion of the unperturbed solution 
an be seen in Figure4. Our initial 
ondition is given by a two dimensional small perturbation of thatsteady state, where h is perturbed upward by 0.05 in the box 6.5 ≤ x ≤ 7.5,

12 ≤ y ≤ 13. Figures 16 and 17 display the disturban
e as it intera
ts withthe hump, on two di�erent uniform meshes with 100× 100 
ells and 200× 200
ells for 
omparison. The di�eren
e between the height h and the initial steadystate (5.12) is presented at di�erent times t = 0.5 and t = 1. We also run thesame numeri
al test with FV5-D. Note that FV5-D is not well-balan
ed formoving steady states. The 
omparison of the numeri
al results are presentedin Figures 18 and 19. The results indi
ate that FV4-Q 
an resolve the 
omplexsmall features of the �ow very well, without spurious features whi
h do appearin the results obtained with FV5-D.
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Figure 17 � The 
ontours of the di�eren
e between the height h and the initial steady state(5.12) for the problem in Se
tion 5.5 at time t = 1. 30 uniformly spa
ed 
ontour lines from-0.005 to 0.008. Left: results with a 100× 100 uniform mesh. Right: results with a 200× 200uniform mesh.
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Figure 18 � The 3D �gure of the di�eren
e between the height h and the initial steady state(5.12) for the problem in Se
tion 5.5 at time t = 0.5 with a 200 × 200 uniform mesh. Left:results based on FV4-Q. Right: results based on FV5-D.
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Figure 19 � The 3D �gure of the di�eren
e between the height h and the initial steady state(5.12) for the problem in Se
tion 5.5 at time t = 1 with a 200 × 200 uniform mesh. Left:results based on FV4-Q. Right: results based on FV5-D.
6. ConclusionIn this paper we gave an overview of some re
ently developed high-orderwell-balan
ed s
hemes, in
luding fourth and �fth order s
hemes. The ex
ellentresolution of the s
hemes is demonstrated by a number of 
hallenging exper-iments for the shallow water equations. The presentation and dis
ussion ofthe 
onstru
tion prin
iples should enable the reader to implement them anddevelop them further for an appli
ation at hand. The 
onstru
tions were eitherbased on well-balan
ed, high-order a

urate, non-os
illatory �nite di�eren
eoperators, or an well-balan
ed and a

urate quadrature for the regular andsingular parts of the 
ell-averaged residuals. The �nite di�eren
e 
onstru
tionmay be somewhat simpler and faster, whi
h would play an even greater rolein several spa
e dimensions. But the quadrature approa
h 
an already handlemoving water steady states and is in this sense more general.
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