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3AbstratIn this paper we review some reent work on high-order well-balanedshemes for hyperboli systems of balane laws. A harateristi featureof suh systems is the existene of non-trivial steady state solutions,where the e�ets of onvetive �uxes and soure terms anel eah other.Well-balaned shemes satisfy a disrete analogue of this balane andare therefore able to maintain a steady state. We disuss two lassesof shemes, one based on high-order aurate, non-osillatory �nite dif-ferene operators whih are well-balaned for a general lass of steadystates, and the other one based on well-balaned quadratures, whih an- in priniple - be applied to all steady states. Hyperboli systems ofbalane laws have a wide appliation, exempli�ed by shallow water equa-tions (SWE) whih have steady states at rest, where the �ow veloityvanishes, and also the more hallenging moving �ow steady states. Nu-merial experiments show exellent resolution of unperturbed as well asslightly perturbed steady states.Keywords: shallow water equations, fundamental steady states, high-order upwind �nite volume shemes, well-balaned shemes
1. IntroductionIn many appliations we enounter hyperboli balane laws, whih in onedimension are in the form(1.1) Ut + f(U, x)x = s(U, x)where U is the solution vetor, f(U, x) is the �ux and s(U, x) is the soure term.The soure term may ome from geometrial, reative or other onsiderations.Examples of hyperboli balane laws inlude the shallow water equation with anon-�at bottom topology, elasti wave equation [2℄, hemosensitive movement[16℄ and nozzle �ow [14℄.Comparing with the standard hyperboli onservation laws, namely (1.1)with s(U, x) = 0, the numerial approximation to the balane laws (1.1) isusually not too muh more di�ult: we simply need to put the point values



4(for �nite di�erene shemes) or the ell averages (for �nite volume shemes) ofthe soure term s(U, x) diretly into the disretization of the spatial operator.There is, however, one notieable exeption. The balane law (1.1) often admitssteady state solutions in whih the soure term s(U, x) is exatly balanedby the �ux gradient f(U, x)x. Suh steady state solutions are usually non-trivial (they are usually not polynomial funtions of the spaial variable x)and they often arry important physial meaning (for example, the still wateror steady moving water solution of the shallow water equation, to be studiedin more detail later in this paper). The objetive of well-balaned shemes isto preserve exatly some of these steady state solutions. The most importantadvantage of well-balaned shemes is hat they an aurately resolve smallperturbations to suh steady state solutions with relatively oarse meshes. Inomparison, a non-well-balaned sheme will introdue trunation errors to thesteady state solution, hene it annot resolve small perturbations to suh steadystates unless the trunation error is already smaller than suh perturbations,thus requiring a re�ned mesh. In Setion 5 we will provide suh examples.However, it is quite di�ult to design well-balaned shemes whih are high-order aurate and non-osillatory in the presene of disontinuities in thesolution.In this paper we use the shallow water equation as a prototype to survey afew reently developed well-balaned high-order �nite di�erene, �nite volumeand disontinuous Galerkin �nite element methods. We attempt to explainthe main ingredients in these algorithms whih allow us to ahieve the well-balaned property without losing other nie properties of the original sheme,suh as high-order auray and non-osillatory performane in the presene ofsolution disontinuities.The paper is organized as follows. In Setion 2 we �rst disuss a numberof interesting steady states. Then we introdue the residual whih need to bewell-balaned near stationary states.At this point the paper splits into two approahes: The �rst approah, seeSetion 3, applies to �nite di�erene, �nite volume and disontinuous Galerkinshemes. It treats steady states for whih the soure term an be deomposedinto sums of produts of the form (3.4). The hallenge is to onstrut �nite



5di�erene operators whih are high-order aurate and non-osillatory for theonservative �ux di�erene and the soure term, and whih oinide for bothterms in the ase of steady state solutions.The seond approah, designed for general steady states and �nite volumeshemes, is overed in Setion 4. The key task is to �nd well-balaned quadra-tures for the integral of the residual, see equation (4.1). Subsetion 4.2 presentsa general framework to deompose this integral into suitable parts. Subse-tion 4.3 realizes this approah for moving water steady states for shallow water�ows.In Setion 5 we present numerial results showing the auray and well-balaned properties of both lasses of shemes for a number of hallenging �ows.Setion 6 ontains some onluding remarks.It is perhaps surprising that the two approahes outlined in Setions 3 and4 require suh di�erent tehniques. Indeed, the reader might skip either setionon a �rst reading, and then proeed to the numerial experiments in Setion 5.On the other hand, we hope that the presentation of both approahes ina single paper will provide a lear understanding that well-balaning requiresa detailed study of the trunation error for eah individual sheme (sine thetrunation error should disappear for disrete steady states). The broad setof ideas and tehniques presented in this paper might be helpful to the readerdeveloping his/her own version of high-order well-balaning in a new situation.
2. Preliminaries: steady states and the residualIn this setion we introdue equilibrium variableswhih haraterize smoothsteady states, and disuss the residual whih monitors the deviation of thesystem from stationary states. In partiular, two forms of the residual aresingled out whih are the bases of the �nite di�erene algorithms in Setion 3on one hand and the �nite volume algorithm in Setion 4 on the other hand.We will generally refer to a time-independent solution of the hyperbolibalane law as a steady state. When we refer to pointwise or ell-wise loaltransformations, we may use the terms equilibrium-transvormation, -variable,-reonstrution, -limiting and so forth.



62.1. Steady statesLet us again onsider the system of balane laws (1.1). For example, forthe shallow water equations
U = (h, m)T , f(U) = (m, m2/h + gh2/2)T , s(U, x) = (0,−ghbx(x))T ,(2.1)where h is the water height, m is the momentum (disharge in hydraulis), b(x)is the presribed bottom topography above a given referene height, and g isthe gravitational aeleration.Many suh systems an be rewritten in the form

Vt + c(V, x)Vx = 0(2.2)for some variable
V = V (U, x),(2.3)whih we would like to all the equilibrium variables, sine onstant V impliesa stationary state.Note that onstant V does not imply that U is onstant, sine V dependsalso on x through the variable funtion b. Therefore, one should expet non-trivial steady states.For shallow water, the equilibrium variables are V (U, x) = (m, E), wherethe equilibrium energy E is given by

E(U, b) =
m2

2h2
+ g(h + b).(2.4)In the following we desribe various lasses E of stationary states.Example 2.1 - (1) The lass of all steady states, Etot.(2) Smooth steady states Esmooth.(3) Conservation laws: Here s(U, b) ≡ 0 and f(U) ≡ const. Stationary statesinlude

• E0 = onstant states.
• E1 = two onstant states separated by a stationary shok or ontat.



7
• E2 = gas dynamis with zero veloity, onstant pressure, and any boundedmeasurable funtion for the density.(4) Steady states for 1D salar balane laws.(5) 1D shallow water equations:
• The lake at rest ELaR, where m ≡ 0 and hene E = g(h + b) ≡ const.
• Smooth river �ows Eriver, where m is nonzero.
• Waterfalls Ewaterfall (disontinuous river �ows)(6) Separable soure terms studied in [36℄.(7) Geostrophi jets Ejet for 2D shallow water, where (u, v) ≡ (u(y), 0), g(h +

b)y = fu and f is the oriolis fore in the upper hemisphere.(8) Multi-layer shallow water: Oeans at rest and moving oeans.Remark 2.1 - (1) There are many more lasses of steady states, espeially in2D.(2) It is important to note that most well-balaned shemes are designed topreserve only a ertain sublass of steady states exatly. Other steady statesmay be preserved approximately within a ertain order of auray.Setion 3 treats steady states for whih the soure terms are separable inthe sense of (3.4). This inludes the lake at rest as a prototype. The maintool is the onstrution of a well-balaned lass of �nite di�erene operators.In Setion 4 we outline a well-balaned �nite volume approah. While theframework in Subsetion 4.1 overs in priniple all steady states, we arry outthe spei� steps for moving water �ows in Subsetion 4.3.2.2. The residualLet us again onsider the system of balane laws (1.1). We are partiularlyinterested in solutions lose to steady states, where Ut = 0. Therefore, weintrodue the residual
R := −f(U)x + s(U, x).(2.5)



8Note that
Ut = R,(2.6)and the solution U deviates from steady state if and only if R 6= 0.In Setion 3 we will study a lass of separable steady states satisfying (3.4).This assumption implies that

R = (−f(U) + t(U, x))x(2.7)for stationary solutions, where t(U, x) is determined by s(U, x). Using thisstruture, we onstrut high-order aurate well-balaned �nite di�erene op-erators.In Setion 4 we fous on �nite volume shemes and hene onsider ellaverages Ri of the residual. Well-balaned quadratures are onstruted for theregular and singular parts of these integrals.
3. Schemes based on well-balanced finite difference operatorsIn this setion, we fous on a lass of steady states for whih the soureterm is separable in the sense of Assumption 3.2. We develop well-balanedhigh-order aurate �nite di�erene operators for the residual. Based on thesedi�erene operators, we derive well-balaned �nite di�erene, �nite volume anddisontinuous Galerkin shemes. The steady states under onsideration inludethe lake at rest for the shallow water equations.The one-dimensional hyperboli system of onservation laws with soureterms under onsideration is given by (1.1). We start the disussion by present-ing the well balaned �nite di�erene sheme. The extension to �nite volumeand DG shemes is shown in the following subsetions. Only one-dimensionalbalane law (1.1) is investigated in this setion, although the generalization tothe multi-dimensional ase(3.1) Ut + f(U, x, y)x + g(U, x, y)y = s(U, x, y)an be done in some situations. For example, we an easily generalize theproposed tehnique to the two-dimensional shallow water equations with lakeat rest steady state.



93.1. Finite di�erene shemeWe �rst onsider the ase that (1.1) is a salar balane law. The ase ofsystems will be explored later. We are interested in preserving exatly ertainsteady state solutions U of (1.1):(3.2) f(U)x = s(U, x).We make two assumptions on the equation (1.1) and the steady state solution
U of (3.2) that we are interested to preserve exatly.Assumption 3.1. The steady state solution U of (3.2) that we are interestedto preserve satis�es(3.3) V (U, x) = constantfor a known funtion V (U, x).Note that in [34, 35, 36℄ the equilibrium variables have been denoted by
a(U, x) instead of V (U, x).Assumption 3.2. The soure term s(U, x) in (1.1) an be deomposed as(3.4) s(U, x) =

∑

i

si(V (U, x)) t′i(x)for some funtions si and ti.We will design a numerial sheme whih an preserve exatly the steadystate solutions U whih satisfy Assumption 3.1, for a balane law (1.1) witha soure term satisfying Assumption 3.2. We remark here that the shallowwater system with a lake at rest steady state satis�es these assumptions, andwill omment on this later in this subsetion. The key idea to ahieve a well-balaned sheme, is to deompose the soure term as in Assumption 3.2 and to�rst design a linear sheme with an idential numerial approximation operatorfor the �ux derivative and the derivatives in the deomposed soure terms, whenapplied to the steady state solution that we would like to balane.We de�ne a linear �nite di�erene operator D to be one satisfying D(af1 +

bf2) = aD(f1) + bD(f2) for onstants a, b and arbitrary grid funtions f1 and



10
f2. A sheme for (1.1) with a soure term given by (3.4) is said to be a linearsheme if all the spatial derivatives are approximated by linear �nite di�ereneoperators. Suh a linear sheme would have a trunation error

D0(f(U)) −
∑

i

si(V (U, x))Di(ti(x)),where Di are linear �nite di�erene operators used to approximate the spatialderivatives. We further restrit our attention to linear shemes whih satisfy(3.5) D0 = D1 = · · · = Dfor the steady state solution. Notie that we only require that the �nite dif-ferene operators beome idential for the steady state solution that we areinterested to preserve, for general solutions these �nite di�erene operators anbe di�erent. For suh linear shemes we haveProposition 3.1. For the balane law (1.1) with its soure term given by(3.4), linear shemes with (3.5) for the steady state solutions satisfying (3.3)an preserve these steady state solutions exatly.The proof of this result is rather straightforward and an be found in [35℄.We now already have high-order well-balaned shemes for the balane lawsunder onsideration. However, these shemes are linear, hene they will be os-illatory when the solution ontains disontinuities. We would need to onsidernonlinear shemes, namely shemes whih are nonlinear even if the �ux f(U)and the soure s(U, x) in (1.1) are both linear funtions of U , for example,high-order �nite di�erene WENO shemes [3, 17, 21℄. Next, we will use the�fth order �nite di�erene WENO sheme as an example to demonstrate thebasi ideas. We will not give the details of the base WENO shemes, and referto [17, 30℄ for suh details.To present the basi ideas, we �rst onsider the situation when the WENOsheme is used without a �ux splitting (e.g. the WENO-Roe sheme as de-sribed in [17℄). We notie that the WENO approximation to dx where d =

f(U) an be eventually written out as(3.6) dx|x=xj
≈

r
∑

k=−r

akdk+j ≡ Dd(d)j



11where r = 3 for the �fth order WENO approximation and the oe�ients akdepend nonlinearly on the smoothness indiators involving the grid funtion
d. The key idea now is to use the �nite di�erene operator Dd with d = f(U)�xed, namely to use the same oe�ients ak obtained through the smoothnessindiator of d, and apply it to approximate t′i(x) in the soure terms (3.4).Thus

t′i(xj) ≈
r
∑

k=−r

ak ti(xk+j) = Dd (ti(x))j .Clearly, the �nite di�erene operator Dd, obtained from the high-order WENOproedure and when d = f(U) is �xed, is a high order aurate linear approx-imation to the �rst derivative for any grid funtion. Therefore the result ofProposition 3.1 is still valid and we onlude that the high-order �nite di�er-ene WENO sheme as stated above, without the �ux splitting, and with thespeial handling of the soure terms desribed above, maintains exatly thesteady state.Now, we onsider WENO shemes with a Lax-Friedrihs �ux splitting, suhas the WENO-LF and WENO-LLF shemes desribed in [17℄. Here the �ux
f(U) is written as a sum of f+(U) and f−(U), de�ned by(3.7) f±(U) =

1

2
[f(U) ± αU ]where α = maxU

∣

∣

∣

∂f(U)
∂U

∣

∣

∣ with the maximum being taken over either a loal re-gion (WENO-LLF) or a global region (WENO-LF), see [17, 30℄ for more details.We now make a modi�ation to this �ux splitting, by replaing ±αU in (3.7)with ±α sign
(

∂V (U,x)
∂U

)

V (U, x). We would need to assume here that ∂V (U,x)
∂Udoes not hange sign. The onstant α should be suitably adjusted by the sizeof ∂V (U,x)

∂U in order to maintain enough arti�ial visosity. The term V (U, x)an also be replaed by p(V (U, x)) for any funtion p, whose hoie should besuh that p(V (U, x)) is as lose to U as possible in order to emulate the orig-inal LF �ux splitting with ±αU . This modi�ation does not a�et auray,whih relies only on the fat f(U) = f+(U) + f−(U). For the steady statesolution satisfying (3.3), the arti�ial visosity term ±α sign
(

∂V (U,x)
∂U

)

V (U, x)(or ±α sign
(

∂p(V (U,x))
∂U

)

p(V (U, x))) in the Lax-Friedrihs �ux splitting be-omes a onstant, and by the onsisteny of the WENO approximation, the



12e�et of these visosity terms towards the approximation of f(U)x is zero.The �ux splitting WENO approximation in this situation beomes simply
f±(U) = 1

2f(U), hene the steady state solution is preserved as before, ifwe simply split the derivatives in the soure term as:(3.8) t′i(x) =
1

2
t′i(x) +

1

2
t′i(x),and apply the same �ux splitting WENO proedure to approximate them withthe nonlinear oe�ients ak oming from the WENO approximations to f±(U)respetively. This will guarantee (3.5). We thus obtainProposition 3.2. The WENO-Roe, WENO-LF and WENO-LLF shemes asimplemented above are exat for steady state solutions satisfying (3.3) and anmaintain the original high-order auray.We now disuss the system ase. The framework desribed for the salarase an be applied to systems provided that we have ertain knowledge aboutthe steady state solutions to be preserved in the form of (3.3). Typially, for asystem with m equations, V is a vetor, and we would have m relationships inthe form of (3.3):(3.9) V1(U, x) = constant, · · · Vm(U, x) = constantfor the steady state solutions that we would like to preserve exatly. We wouldthen still aim for deomposing eah omponent of the soure term in the formof (3.4), where si ould be arbitrary funtions of V1(U, x), · · · , Vm(U, x), andthe funtions si and ti ould be di�erent for di�erent omponents of the sourevetor. The remaining proedure is then the same as that for the salar aseand we again obtain well balaned high-order WENO shemes. We shouldalso mention that loal harateristi deomposition is typially used in high-order WENO shemes in order to obtain better non-osillatory property forstrong disontinuities. When omputing the numerial �ux at xi+ 1

2
, the loalharateristi matrix R, onsisting of the right eigenvetors of the Jaobian at

Ui+ 1
2
, is a onstant matrix for �xed i. Hene this harateristi deompositionproedure does not alter the argument presented above for the salar ase. Werefer to [34℄ for more details.



13The shallow water equations (1.1)�(2.1) take the form(3.10) 





ht + (hu)x = 0

(hu)t +

(

hu2 +
1

2
gh2

)

x

= −ghbx,The lake at rest solution satis�es (3.9) in the form(3.11) V1 ≡ hu = 0, V2 ≡ h + b = constant, .The �rst omponent of the soure term is 0. A deomposition of the seondomponent of the soure term in the form of (3.4) is(3.12) −ghbx = −g (h + b) bx +
1

2
g
(

b2
)

xi.e. s1 = s1(V2) = −g (h + b), s2 = 1
2g, t1(x) = b(x), and t2(x) = b2(x), whihsatis�es Assumption 3.2. Hene, the tehnique designed above an be used toobtain high-order well-balaned �nite di�erene sheme for the shallow waterequations with lake at rest solution (3.11). Two dimensional version of theshallow water equations an also be handled by the same tehnique [34, 36℄,and are not shown here. Some numerial results will be shown in Setion5 to demonstrate the good properties of these well-balaned high-order �nitedi�erene shemes.3.2. Finite volume shemeFollowing the idea of obtaining well-balaned shemes by deomposing thesoure terms, as shown in Setion 3.1, we generalize �nite volume WENOshemes to obtain high-order well-balaned shemes. The ruial di�erenebetween the �nite volume and the �nite di�erene WENO shemes is thatthe WENO reonstrution proedure for a �nite volume sheme applies tothe solution and not to the �ux funtion values. As a onsequene, �nitevolume shemes are more suitable for omputations in omplex geometry andfor using adaptive meshes. The details of the �nite volume WENO shemesan be found in [17, 27, 30℄. However, beause of a di�erent omputationalframework, the maintenane of the well-balaned property requires di�erenttehnial approahes.



14 The main idea in the previous subsetion to design a well-balaned high-order �nite di�erene WENO sheme is to deompose the soure term into asum of several terms, eah of whih is disretized independently using a �nitedi�erene formula onsistent with that of approximating the �ux derivativeterms in the onservation law. We follow a similar idea here and deomposethe integral of the soure term into a sum of several terms, then ompute eahof them in a way onsistent with that of omputing the orresponding �uxterms. We �rst onsider the ase that (1.1) is a salar balane law. The aseof systems will be explored later.Similarly, we make some assumptions on the equation (1.1) and the steadystate solution U of (3.2) that we are interested to preserve exatly:Assumption 3.3. The steady state solution U of (3.2) that we are interestedto preserve satis�es(3.13) V (U, x) ≡ U + p(x)

q(x)
= constantfor some known funtions p(x) and q(x).Assumption 3.4. The soure term s(U, x) in (1.1) an be deomposed as(3.14) s(U, x) =

∑

j

sj(V (U, x)) t′j(x)for some known funtions sj and tj .Note that Assumption 3.3 given here is more restritive than that in Setion3.1, due to the additional di�ulties related to the �nite volume formulation.We onsider the semi-disrete formulation of the balane law(3.15) d

dt
Ūi(t) = − 1

△xi
(f(U(xi+ 1

2
), t) − f(U(xi− 1

2
), t)) +

1

△xi

∫

Ii

s(U, x)dx.The time disretization is usually performed by the lassial high order Runge-Kutta method. Before stating our numerial sheme, we �rst present the pro-edure to reonstrut the pointwise values by the WENO reonstrution pro-edure, and then deompose the integral of the soure term into several terms,with the objetive of keeping the exat balane property without reduing the



15high-order auray of the sheme. The sheme is then �nally introdued witha minor hange on the �ux term, ompared with the original WENO sheme.The �rst step in building the algorithm is to reonstrut U±

i+ 1
2

from thegiven ell averages Ūi by the WENO reonstrution proedure, whih are highorder aurate approximations to the exat value U(xi+ 1
2
). It an be eventuallywritten out as(3.16) U+

i+ 1
2

=

r
∑

k=−r+1

wkŪi+k ≡ S+
Ū

(Ū)i, U−

i+ 1
2

=

r−1
∑

k=−r

w̃kŪi+k ≡ S−

Ū
(Ū)i.where r = 3 for the �fth order WENO approximation and the oe�ients

wk and w̃k depend nonlinearly on the smoothness indiators involving the ellaverage Ū . Here we obtain a linear operator S±

Ū
(v) (linear in v) whih isobtained from a WENO reonstrution with �xed oe�ients wk alulatedfrom the ell averages Ū . A key idea here is to use the linear operators S±

Ū
(v)and apply them to reonstrut the funtions p̄i and q̄i. Thus

p+
i+ 1

2

= S+
Ū

(p̄)i =
r
∑

k=−r+1

wkp̄i+k, p−
i+ 1

2

= S−

Ū
(p̄)i =

r−1
∑

k=−r

w̃kp̄i+k

q+
i+ 1

2

= S+
Ū

(q̄)i =
r
∑

k=−r+1

wk q̄i+k, q−
i+ 1

2

= S−

Ū
(q̄)i =

r−1
∑

k=−r

w̃k q̄i+k.(3.17)With the reonstruted values p±
i+ 1

2

and q±
i+ 1

2

, we obtain the pointwise valueof V (U, x) by V (U, x)±
i+ 1

2

=
U±

i+ 1
2

+p±

i+ 1
2

q±

i+ 1
2

. Clearly, p±
i+ 1

2

and q±
i+ 1

2

are high-order aurate pointwise approximation to the funtion of p(x) and q(x) atthe ell boundary xi+ 1
2
. Hene, V (U, x)±

i+ 1
2

is a high-order approximation to
V (U(xi+ 1

2
), xi+ 1

2
).Now assume that U is the steady state solution satisfying (3.3), namely
V (U, x) = c ⇔ U + p(x) = c q(x)for some onstant c. If the ell averages Ūi, p̄i and q̄i are omputed in the samefashion (e.g. all omputed exatly, or all omputed with the same numerialquadrature) from U , p(x) and q(x), then we learly also have

Ūi + p̄i = c q̄i



16for the same onstant c. Sine the reonstruted values U±

i+ 1
2

, p±
i+ 1

2

and q±
i+ 1

2

areomputed from the ell averages Ūj , p̄j and q̄j with the same linear operators
S±

ū (v), we learly have
U±

i+ 1
2

+ p±
i+ 1

2

= c q±
i+ 1

2for the same onstant c, that is,(3.18) V (U, x)±
i+ 1

2

= cfor the same onstant c. This is an important fat to design the well-balanedshemes.Clearly, for a steady state solution U satisfying Assumptions 3.3 and 3.4,
d

dx



f(U) −
∑

j

sj(V (U, x)) tj(x)



 = f(U)x −
∑

j

sj(V (U, x)) t′j(x)

= f(U)x − s(U, x) = 0.Therefore, f(U)−∑j sj(V (U, x)) tj(x) is a onstant. We would need to hoosesuitably (tj)
±

i+ 1
2

, whih should be high-order approximations to tj(xi+ 1
2
) suhthat(3.19) f(U±

i+ 1
2

) −
∑

j

sj(V (U, x)±
i+ 1

2

) (tj)
±

i+ 1
2

= constantfor a steady state solution U satisfying Assumptions 3.3 and 3.4. We willspeify the hoies of (tj)
±

i+ 1
2

for the shallow water equations at the end of thissubsetion.Finally, we need to deompose the integral of the soure term in the follow-



17ing way in order to obtain a well-balaned sheme
∫

Ii

s(U, x)dx =
∑

j

∫

Ii

sj(V (U, x))t′j(x)dx

=
∑

j

(

1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
)

∫

Ii

t′j(x)dx

+

∫

Ii

(

sj(V (U, x)) − 1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
)

)

t′j(x)dx

)

=
∑

j

(

1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
)

(tj(xi+ 1
2
) − tj(xi− 1

2
))

+

∫

Ii

(

sj(V (U, x)) − 1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
)

)

t′j(x)dx

)

.(3.20)The purpose of this deomposition is to ensure that the integral of the soureterm equals the �rst term at the right hand side of (3.20) when V (U, x) = const,as the last term disappears in this ase.Now we are ready to desribe the �nal form of the algorithm(3.21) d

dt
Ūi(t) = − 1

△xi
(f̂i+ 1

2
− f̂i− 1

2
) +

1

△xi
ŝi,with(3.22)

ŝi =
∑

j

(

1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
) (

(t̂j)i+ 1
2
− (t̂j)i− 1

2

)

+ si,j

)where (t̂j)i+ 1
2
is a high-order approximation to tj(xi+ 1

2
), whose de�nition willbe desribed below, and si,j is any high-order approximation to the integral(3.23) ∫

Ii

(

sj(V (U, x)) − 1

2

(

sj(V (U, x)+
i− 1

2

) + sj(V (U, x)−
i+ 1

2

)
)

)

t′j(x) dx.The numerial �ux f̂i+ 1
2
is de�ned by a monotone �ux suh as the Lax-Friedrihs �ux(3.24) F (U−

i+ 1
2

, U+
i+ 1

2

) =
1

2

[

f(U−

i+ 1
2

) + f(U+
i+ 1

2

) − α(U+
i+ 1

2

− U−

i+ 1
2

)
]

.



18We need to make a modi�ation to this �ux, by replaing α(U+
i+ 1

2

− U−

i+ 1
2

)in (3.24) with α sign(q(x))(V (U, x)+
i+ 1

2

− V (U, x)−
i+ 1

2

). The numerial �ux nowbeomes(3.25)
f̂i+ 1

2
=

1

2

[

f(U−

i+ 1
2

) + f(U+
i+ 1

2

) − α sign(q(x))(V (U, x)+
i+ 1

2

− V (U, x)−
i+ 1

2

)
]

.We would need to assume here that q(x) in (3.3) does not hange sign. Theonstant α should be suitably adjusted by the size of 1
q(x) in order to maintainenough arti�ial visosity. This modi�ation does not a�et auray. For thesteady state solution (3.13),

α sign(q(x))(V (U, x)+
i+ 1

2

− V (U, x)−
i+ 1

2

) = 0beause of (3.18). Hene, the e�et of these visosity terms beomes zero andthe numerial �ux turns out to be in a simple form(3.26) f̂i+ 1
2

=
1

2

[

f(U−

i+ 1
2

) + f(U+
i+ 1

2

)
]

.Following this, we treat the approximation (t̂j)i+ 1
2
in (3.22) in a similar way:(3.27) (t̂j)i+ 1

2
=

1

2

[

(tj)
−

i+ 1
2

+ (tj)
+
i+ 1

2

]where, as mentioned before, (tj)
±

i+ 1
2

are high order approximations to tj(xi+ 1
2
)satisfying (3.19). Note that we implement (3.27) for the general ase, not onlyfor the steady solution. There is no visosity term in the soure term, omparedwith the numerial �ux (3.25).For the remaining soure term si,j , we simply use a suitable high-orderGauss quadrature to evaluate the integral. The approximation of the valuesat those Gauss points are obtained by the WENO reonstrution proedure.It is easy to observe that high order auray is guaranteed for our sheme,and even if disontinuities exist in the solution, the non-osillatory property ismaintained.Proposition 3.3. The WENO-LF shemes as implemented above with (3.21),(3.22), (3.25) and (3.27) are exat for steady state solutions satisfying (3.13)and an maintain the original high-order auray for general solutions.



19The proof of this result is rather straightforward and an be found in [36℄.The extension to the system ase follows the same idea as that for the well-balaned �nite di�erene shemes.For the shallow water equations (3.10) with a lake at rest steady statesolution (3.11), we take the same deomposition of the seond omponent of thesoure term as in (3.12). We apply the WENO reonstrution to the funtion
(b(x), 0)T , with oe�ients omputed from (h, hu)T , to obtain b±

i+ 1
2

, and de�ne
(t1)

±

i+ 1
2

= b±
i+ 1

2

, (t2)
±

i+ 1
2

=
(

b±
i+ 1

2

)2

.Under these de�nitions and if the steady state h + b = c, u = 0 for someonstant c is reahed, we have
f(U−

i+ 1
2

) −
∑

j

sj

(

V (U, x)−
i+ 1

2

)

(tj)
−

i+ 1
2

=
1

2
g
(

h−

i+ 1
2

)2

− 1

2
g
(

b−
i+ 1

2

)2

+ g
1

2

(

h−

i+ 1
2

+ b−
i+ 1

2

+ h+
i− 1

2

+ b+
i− 1

2

)

b−
i+ 1

2

=
1

2
g
(

h−

i+ 1
2

+ b−
i+ 1

2

)(

h−

i+ 1
2

− b−
i+ 1

2

)

+ g c b−
i+ 1

2

=
1

2
g c
(

h−

i+ 1
2

− b−
i+ 1

2

+ 2b−
i+ 1

2

)

=
1

2
g c2,whih is a onstant. A similar manipulation leads to

f(U+
i+ 1

2

) −
∑

j

sj

(

V (U, x)+
i+ 1

2

)

(tj)
+
i+ 1

2

=
1

2
g c2.Hene the high-order �nite volume WENO shemes an be designed followingthe above idea for the shallow water equations.3.3. Extension to disontinuous Galerkin shemeWe have suessfully designed high-order well-balaned �nite di�erene and�nite volume WENO well-balaned sheme for a lass of hyperboli balanelaws. In this subsetion, we onsider the generalization of these ideas to theRunge-Kutta disontinuous Galerkin (RKDG) methods. Well-balaned high-order RKDG shemes will be designed for a lass of onservation laws satisfyingAssumptions 3.3 and 3.4. The basi idea is the same as that for the �nite volume



20shemes, suh as the tehnique of deomposing the soure term and replaingthe visosity term in the numerial �uxes, beause the RKDG methods an beonsidered as a generalization of �nite volume shemes, even though they donot require a reonstrution and evolve the omplete polynomial in eah ellforward in time. The RKDG methods are therefore easier to use for multi-dimensional problems in omplex geometry, than the �nite volume shemes, asthe ompliated reonstrution proedure an be avoided. We refer to [8, 9, 10,11, 12℄ for more details of RKDG methods.The semi-disrete DG shemes for (1.1) take the form
∫

Ij
∂tUh(x, t)vh(x)dx −

∫

Ij
f(Uh(x, t))∂xvh(x)dx + f̂j+ 1

2
vh(x−

j+ 1
2

)

−f̂j− 1
2
vh(x+

j− 1
2

) =
∫

Ij
s(Uh(x, t), t)vh(x)dx(3.28)(3.29) ∫

Ij

Uh(x, 0)vh(x)dx =

∫

Ij

U0(x)vh(x)dx.First, we de�ne a high-order approximation Vh(Uh, x) = Uh+ph

qh
to V (Uh, x),where ph and qh are L2 projetions of p and q into Vh, see (3.29) for suh aprojetion. Now assume that U is the steady state solution satisfying (3.3),namely

U(x) + p(x) = c q(x)for some onstant c, and Uh is the L2 projetion of this steady state solution.Clearly, sine the L2 projetion is a linear operator,
Uh(x) + ph(x) = c qh(x)for the same onstant c at every point x. This implies

Vh(Uh, x) =
Uh(x) + ph(x)

qh(x)
= c.For suh steady state solution U satisfying Assumptions 3.3 and 3.4, wehave

d

dx



f(U) −
∑

j

sj(V (U, x)) tj(x)



 = 0.



21We would need to suitably hoose a funtion (tj)h, whih should be a high-orderapproximation to tj and should satisfy the ondition(3.30) f(Uh(x)) −
∑

j

sj(Vh(Uh(x), x))(tj)h(x) = constantfor all x. The onstrution of (tj)h will be shown for the shallow water equationsin the end of this subsetion.Similar to the deomposition of the soure term in the well balaned �nitevolume shemes (3.20), we deompose the integral of the soure term on theright hand side of (3.28) as:
∫

Ii

s(Uh, x)vhdx

=
∑

j

(

1

2

(

sj(V (Uh, x)+
i− 1

2

) + sj(V (Uh, x)−
i+ 1

2

)
)

∫

Ii

t′j(x)vhdx

+

∫

Ii

(

sj(V (Uh, x)) − 1

2

(

sj(V (Uh, x)+
i− 1

2

) + sj(V (Uh, x)−
i+ 1

2

)
)

)

t′j(x)vhdx

)

=
∑

j

(

1

2

(

sj(V (Uh, x)+
i− 1

2

) + sj(V (Uh, x)−
i+ 1

2

)
)

·
(

tj(xi+ 1
2
)vh(x−

i+ 1
2

) − tj(xi− 1
2
)vh(x+

i− 1
2

) −
∫

Ii

tj(x)v′h(x)dx

)

+

∫

Ii

(

sj(V (Uh, x)) − 1

2

(

sj(V (Uh, x)+
i− 1

2

) + sj(V (Uh, x)−
i+ 1

2

)
)

)

t′j(x)vhdx

)

.We then replae this soure term with a high-order approximation of it givenby
∑

j

(

1

2

(

sj(Vh(Uh, x)+
i− 1

2

) + sj(Vh(Uh, x)−
i+ 1

2

)
)

·
(

(t̂j)h,i+ 1
2
vh(x−

i+ 1
2

) − (t̂j)h,i− 1
2
vh(x+

i− 1
2

) −
∫

Ii

(tj)h(x)v′h(x)dx

)

+

∫

Ii

(

sj(Vh(Uh, x)) − 1

2

(

sj(Vh(Uh, x)+
i− 1

2

) + sj(Vh(Uh, x)−
i+ 1

2

)
)

)

t′j(x)vhdx

)where (t̂j)h,i+ 1
2
is a high-order approximation to tj(xi+ 1

2
), whose de�nition



22follows (3.25) and (3.27) from Setion 3.2
f̂i+ 1

2
=

1

2

[

f((Uh)−
i+ 1

2

) + f((Uh)+
i+ 1

2

) − α sign(q(x))(Vh(Uh, x)+
i+ 1

2

− Vh(Uh, x)−
i+ 1

2

)
]

,

(t̂j)h,i+ 1
2

=
1

2

[

(tj)h(x−

i+ 1
2

) + (tj)h(x+
i+ 1

2

)
]

.Usually, we perform the limiter on the funtion Uh after eah Runge-Kuttastage. Now, our purpose is to maintain the steady state solution U whih satis-�es V (U, x) = constant. The above limiter proedure ould destroy the preser-vation of suh steady state, sine if the limiter is enated, the resulting modi�edsolution Uh may no longer satisfy Vh(Uh, x) = constant. We therefore proposeto �rst hek whether any limiting is needed based on the funtion Vh(Uh, x)in eah Runge-Kutta stage, where the ell averages of Vh(Uh, x) (needed toimplement the TVB limiter) are omputed by a suitable Gauss quadrature.If a ertain ell is �agged by this proedure needing limiting, then the atuallimiter is implemented on Uh, not on Vh(Uh, x). When the limiting proedureis implemented this way, if the steady state U satisfying V (U, x) = constant isreahed, no ell will be �agged as requiring limiting sine Vh(Uh, x) is equal tothe same onstant, hene Uh will not be limited and therefore the steady stateis preserved.This �nishes the desription of the RKDG shemes. We an learly observethat the auray is maintained (see Table 7 in Setion 5). We also state belowthe proposition laiming the exat preservation of the steady state solution(3.3). The proof is straightforward and is therefore omitted.Proposition 3.4. The RKDG shemes as stated above are exat for steadystate solutions satisfying (3.13) and an maintain the original high-order au-ray for general solutions.The extension of the well-balaned high-order RKDG shemes to the systemase follows the same idea as that for the well-balaned �nite volume shemes.For the shallow water equations (3.10) with a lake at rest steady statesolution (3.11), we an easily verify that the de�nitions of (ti)h,
(t1)h(x) = bh(x), (t2)h(x) = (bh(x))2



23where bh(x) is the L2 projetion of b(x) to the �nite element spae Vh, lead to
f(Uh) −

∑

j

sj(Vh(Uh, x))(tj)h =
1

2
g c2when the steady state h + b = c, u = 0 is reahed, satisfying our requirement.A new approah to obtain well balaned methods, by alulating the soureterm exatly at the steady state, was introdued for RKDG methods to saveomputational ost in [37℄. The traditional RKDG methods are shown to beapable of maintaining ertain steady states exatly, if a small modi�ationon either the initial ondition or the �ux is provided. We refer the interestingreader to [37℄

4. Schemes based on well-balanced quadratureIn this setion, we follow [24℄ and develop an alternative approah to well-balaning. It is based on well-balaned quadrature rules for ell averages ofthe residual de�ned in (4.1) and leads to a high-order aurate �nite volumesheme whih is well-balaned for moving water steady states.The setion is organized as follows: Based on the residual of the balanelaw introdued in Subsetion 2.2, we de�ne (in Subsetion 4.1) a general lassof semidisrete �nite volume shemes and give a de�nition for suh shemesto be well-balaned for a steady state V . For eah building blok of theseshemes - the pieewise smooth reonstrution of the data, the quadrature ofthe regular part of the residual in the interior of the ells, and the reonstrutionof the singular part of the residual at the ell interfaes - we de�ne a notionof well-balaning (Subsetion 4.2). Theorem 4.1 states that these onditionsguarantee that the overall sheme is well-balaned. In Subsetion 4.3 we realizethis general program using equilibrium reonstrutions. In partiular, we treatthe 1D shallow water equations as a prototype and onsider the lake at rest,river �ows and waterfalls aligned with the grid. Exept for disontinuities whihare not aligned with the grid, we an therefore balane general 1D steady statesolutions for the shallow water equations. Many of the tehniques presentedhere an be adapted to other lasses of balane laws. In Subsetions 4.4 � 4.5we disuss some interesting aspets of related shemes.



244.1. Framework of the �nite volume disretizationHere we onsider a general balane law in the form (2.6). Let
U(xi, t) ≈

1

△xi

∫

Ii

U(x, t) dx

Ri(t) ≈
1

△xi

∫

Ii

R(x, t) dx(4.1)be approximate ell averages of the solution and the residual. Then we onsidersemidisrete shemes of the form
d

dt
U i(t) = Ri for i = 1, . . . , N.(4.2)De�nition 4.1. The sheme (4.2) is well-balaned for a steady state V if
Ri = 0 for i = 1, . . . , N(4.3)whenever the original data are in steady state, i.e.
V (U, x) ≡ V = constant.(4.4)Remark 4.1 - (1) Suh shemes have also been alled exatly well-balaned inthe literature, in order to distinguish them from approximately well-balanedshemes, for whih

Ri = O(△xp)(4.5)for steady state data (4.4), where p should be higher than the order of onsis-teny of the overall sheme.(2) Sine the solution U and also the topography b may be disontinuous, weonsider R to be a bounded Borel measure over Ω, i.e. R ∈ M(Ω). In general,
R has both regular and singular parts with respet to Lebesgues' measure, andtherefore it is not straightforward to give meaning to the integral in (4.1), or tode�ne a onsistent quadrature for this integral. However, these di�ulties an-not and should not be avoided, and we believe that disussing them diretly interms of measures makes the presentation of several reent well-balaned �nitevolume shemes most transparent. This point of view is losely related to the



25work on non-onservative produts of measures in [13, 26℄(3) We begin with shemes whih are semidisrete in time. Later, we willuse Runge-Kutta time disretizations as in [15, 29, 31℄ to derive fully disreteshemes.As is well known from onservation laws, the di�ulty in disretizing (4.2)arises from disontinuities in the solution. If the �ux funtion f is nonlinear,the solution U will develop shoks in �nite time. For stationary shoks f(U) isontinuous due to the Rankine-Hugoniot ondition, so Ut = 0 at the shok. Ifthe shok is unsteady, then f(U)x and hene Ut beome a Dira measure, and
U(x, t) jumps as the shok passes by.For balane laws, it is desirable to treat also disontinuities in the data b,whih may be given either by the problem itself or by the disretization.In general, disontinuities in the �ux f(U) or the data b will lead to singularparts in the measure R. The term f(U)x an be treated lassially via thetheory of weak solutions of onservation laws. Singularities in the soure termare less well understood.4.2. Regular and singular parts of the residualIn order to evaluate the integral on the RHS of (4.1), we split R into itsregular and singular parts with respet to Lebesgue measure dx,

R = Rreg + Rsing.(4.6)Analogously, we split the ell averages of the residual via
Ri = R

i

reg + R
i

sing .(4.7)We assume that the singular parts of the residual are onentrated at the ellinterfaes, and deompose R
i

sing into
R

i

sing = R
i−1/2+

sing + R
i+1/2−

sing ,(4.8)so
Ri = R

i

reg + R
i−1/2+

sing + R
i+1/2−

sing(4.9)



26and
d

dt
U i(t) = R

i

reg + R
i−1/2+

sing + R
i+1/2−

sing .(4.10)For the rest of Setion 4, we give an overview how to treat the regular and thesingular omponents of the residual on the RHS of (4.10). In Theorem 4.1,we give general su�ient onditions whih guarantee that the sheme (4.10) iswell-balaned for a steady state V . In Subsetion 4.3, we disuss a number ofshemes and steady states for whih these onditions are satis�ed.4.2.1. The regular part of the residualSuppose that
Ũ(x) ≈ U(x)(4.11)
b̃(x) ≈ b(x)(4.12)are pieewise smooth reonstrutions of the ell averages Ūi, b̄i over the ells

Ii. Let x
(1)
i . . . x

(p)
i be quadrature points within ell Ii, to be used in thequadrature (4.15) below. In Subsetion 4.3 we will develop reonstrutionswith the following property:De�nition 4.2. Suppose that the original data (U, b) are in steady state, i.e.(4.4) holds for some steady state V . Suppose furthermore that (Ūi, b̄i) are theell averages of the data (U, b). Then the reonstrution (Ũ , b̃) of (U, b) is well-balaned for the steady state V and the quadrature points x

(1)
i . . . x

(p)
i ∈ Iiif

Ṽ (x
(j)
i ) := V (Ũ(x

(j)
i ), b̃(x

(j)
i )) ≡ V for j = 1 . . . p.(4.13)In analogy to (2.5), let

R̃ := R(Ũ , b̃) = −f(Ũ)x + s(Ũ , b̃)(4.14)be the approximate residual. Let
K(R̃; Ii) :=

p
∑

j=1

ωjR̃(x
(j)
i ) ≈ 1

△xi

xi+1/2
∫

xi−1/2

R̃(x)dx(4.15)



27be a quadrature of the approximate residual R̃ over the interior of ell Ii andlet
R

i

reg := K(R̃; Ii).(4.16)We will study quadratures with the following property:De�nition 4.3. The quadrature (4.16) is well-balaned for the steady state
V if

R
i

reg = 0(4.17)for all (Ũ , b̃) whih satisfy (4.13).4.2.2. The singular part of the residualWe now turn to the singular part of the residual. Let us fous upon an interfae
xi+1/2. For in�nitesimal small ε, we introdue a boundary layer (xi+1/2 −
ε, xi+1/2 + ε). Within this layer, we onstrut bounded ontinuous funtions
Ûε(y) and b̂ε(y), where y = x − xi+1/2. The boundary values are

Ûε(±ε) = Ũ(xi+1/2±) = Ũ±

i+1/2(4.18)
b̂ε(±ε) = b̃(xi+1/2±) = b̃±i+1/2,(4.19)where Ũ and b̃ are the pieewise smooth reonstrutions from (4.11), (4.12).Now we de�ne the singular parts of the residual on the RHS of (4.10) via
R

i+1/2−

sing := lim
ε→0

1

ε

0
∫

−ε

R̂ε(y)dy(4.20)
R

i+1/2+

sing := lim
ε→0

1

ε

ε
∫

0

R̂ε(y)dy,(4.21)where
R̂ε(y) := R(Ûε(y), b̂ε(y)).(4.22)



28De�nition 4.4. The approximation (4.20)�(4.21) of the singular parts of theresidual is well-balaned for the steady state V if
Ṽi+1/2− = Ṽi+1/2+ = V(4.23)implies
R

i+1/2−

sing = R
i+1/2+

sing = 0.(4.24)4.2.3. The general well-balaning theoremSo far we have introdued a notion of well-balaning for eah building-blok ofthe semi-disrete �nite volume sheme. Combining them we an immediatelyestablished the following theorem:Theorem 4.1. Consider the sheme
d

dt
U i(t) = R

i

reg + R
i−1/2+

sing + R
i+1/2−

sing ,(4.25)where R
i

reg is given by (4.16), R
i+1/2−

sing by (4.20) and R
i−1/2+

sing by (4.21) with
i replaed by (i − 1). Suppose that for a onstant steady state V , the reon-strution (Ũ , b̃) in (4.11), (4.12), the quadrature (4.16) and the approximatesingular residua are well-balaned aording to De�nitions 4.2, 4.3, and 4.4.Then the sheme (4.25) is well-balaned for the steady state V in the sense ofDe�nition 4.1, i.e.

d

dt
U i(t) ≡ 0.(4.26)This �nishes our general disussion of well-balaned shemes. In the nextsubsetion, we will onstrut several shemes whih fall into the framework out-lined in Theorem 4.1, among them the reent seond order sheme of Audusseet al. [1℄ and the high-order shemes of Castro, Pares et al. and the authors[5, 23, 24℄.4.3. Realization via equilibrium reonstrutionsIn this setion we will show that some reent shemes fall into the frameworkoutlined in the previous setion. In Subsetions 4.3.1�4.3.3, we will therefore



29verify the well-balaning properties for the reonstrution, the quadrature, andthe singular layer as introdued in De�nitions 4.2, 4.3 and 4.4. One this hasbeen done, Theorem 4.1 implies that the overall shemes are well-balanedaording to De�nition 4.1.4.3.1. Smooth reonstrution in the ell interiorHydrostati reonstrutions in the ell interiorWe begin with a so-alled hydrostati reonstrution that preserves the dis-harge m and the waterlevel η = h+b. Here we follow Audusse et al. [1℄. Theybegin the reonstrution proess by reonstruting the disharge m, the waterlevel η and the bottom b. Then in [1, (2.8)℄, they de�ne the reonstrutedheight as
h̃(x) := η̃(x) − b̃(x).(4.27)Therefore, if the disharge and the water level are onstant to begin with, theywill remain onstant during the reonstrution. In partiular, the lake at rest(m = 0, η = const) is preserved throughout the reonstrution. Let us mentionin passing that h as de�ned in (4.27) is later on trunated by Audusse et al.in order to guarantee positivity of the water height. This is done in suh away that the well-balaning relation (4.27) is preserved (see [1, (2.9), (2.13)℄).Therefore, the hydrostati reonstrution is well-balaned for the lake at restaording to De�nition 4.2.Equilibrium reonstrution in the ell interiorIn [24, Set.3.2℄ the authors devised a reonstrution whih preserves all one-dimensional steady states for the shallow water equation. While we refer tothat paper for the details, we would like to give the key idea in a nutshell.Given ell averages (U i) and a bottom funtion b(x), we hoose loal referenevalues V i of the equilibrium variables. These are de�ned impliitly by therequirement that

1

△xi

∫

Ii

U(V i, x)dx = U i.(4.28)Let us pause for a moment and disuss this relation arefully: U(V, x) is theinverse of V (U, x), i.e. U(V (U, x), x) = U . Relation (4.28) hooses V i as the



30unique (see the paragraphs preeding [24, Def.3.2℄) loal equilibrium suh thatthe orresponding onserved variables U(V i, b(x)) have the same ell average
U i as the numerial data. It is proven in [24, Def.3.2℄ that, if the data U(x)and b(x) are in loal equilibrium ( V (U(x), x) ≡ V for all ells Ii ), then thereferene equilibrium states V i omputed via (4.28) oinide with the true loalsteady state V .The reonstrution is ompleted by limiting the reonstrution Ṽ (x) withrespet to the referene values V i (see [24, (3.18)℄). The argument that ourreonstrution is well-balaned for all steady states is now straightforward: ifthe data are globally in equilibrium (i.e. (4.4) holds for a global steady state
V ), then V i = V for all ells, and the equilibrium-limiter [24, (3.18)℄ enforesthat Ṽ (x) ≡ V .A well-balaned reonstrution due to Castro, Pares et al.In [5℄ Castro, Gallardo, Lopez and Pares start by omputing V i as in (4.28).This gives the low order aurate equilibrium reonstrution

Ũ∗(x) := U(V i, b(x))whih is only based upon the values within the ith ell. Let us keep i andhene Ũ∗ �xed. To �nd the high-order orretion Castro et al. ompute areonstrution polynomial
Qi(x) = p(x|(Ij , U j − ¯̃U∗

j ), j = i − k, . . . , i + k)whih interpolates the di�erenes of the ell averages U j and the ell averagesof the low order reonstrution Ũ∗. Note that U j only oinides with ¯̃U∗
j if

j = i. Finally Castro et al. reonstrut U by
Ũi(x) := Ũ∗

i (x) + Qi(x).It is proven in [5℄ that this reonstrution is high-order aurate, and well-balaned if V i = V for any i.4.3.2. Well-balaned quadrature in the ell interiorIn this setion we start from the smooth, well-balaned reonstrutions Ũ , b̃whih we onstruted in the previous setion and derive well-balaned interior



31quadratures K(R̃, Ii) (f. (4.15)). In all of this setion, we restrit ourselves tothe shallow water equations.For oniseness, we use the following notation: suppose that
a, b : Ω → Rare real-valued funtions de�ned on our spatial domain. For a �xed ell Ii, let
ã, b̃ : Ii → Rbe smooth reonstrutions over the interior of the ell. Then we denote thedi�erene and mean operators by

Dã := ã−

i+1/2 − ã+
i−1/2, ā := (ã−

i+1/2 + ã+
i−1/2)/2(4.29)For later use, we observe the disrete produt rule of di�erening

D(ãb̃) = ā Db̃ + Dã b̄.(4.30)Quadrature for the lake at restWe begin with a widely used quadrature whih is well-balaned for the lake atrest (m ≡ 0, h + b ≡ η̄). For any smooth Ũ , b̃

xi+1/2
∫

xi−1/2

R̃(x)dx =

xi+1/2
∫

xi−1/2

(−f2(Ũ)x − gh̃b̃x)(x)dx

= − Df2(Ũ) − g

xi+1/2
∫

xi−1/2

(h̃b̃x)(x)dx.(4.31)Therefore we need to de�ne a quadrature for the integral of the soure term.We will use the two nodes x
(1)
i = xi−1/2, x

(2)
i = xi+1/2 and approximate both

b̃ and h̃ by linear funtions. This gives
xi+1/2
∫

xi−1/2

(h̃b̃x)(x)dx =
h̃i−1/2 + h̃i+1/2

2
(b̃i+1/2 − b̃i−1/2) = h̄ Db̃(4.32)



32Inserting (4.31) and (4.32) into (4.15) we obtain the quadrature
K(R̃, Ii) :=

1

△xi

(

−Df2(Ũ) − gh̄Db̃
)

.(4.33)A simple alulation shows that this is well-balaned for the lake at rest: If
m̃i−1/2 = m̃i+1/2 = 0, b̃i−1/2 + h̃i−1/2 = b̃i+1/2 + h̃i+1/2 = η̄,(4.34)then f2(Ũi±1/2) = g

2 (h̃i±1/2)
2, so

−Df2(Ũ) = −g

2
D
(

h̃2
)

= −g h̄Dh̃ = −g h̄D(η̄ − b̃) = g h̄Db̃.(4.35)Plugging (4.35) into (4.33) we immediately obtain that
K(R̃, Ii) = 0(4.36)for the lake at rest.Quadrature for moving water steady statesIn [24℄ we re�ned the quadrature (4.33) to inlude moving steady states. Thekey observation is that

Df2(Ũ) = D(m̃ũ + gh̃2/2)

= m̄Dũ + ūDm̃ + gh̄Dh̃

= m̄Dũ + ūDm̃ + h̄D(Ẽ − gb̃ − ũ2/2)

= ūDm̃ + h̄DẼ − gh̄Db̃ + (m̄ − h̄ū)Dũ.(4.37)Noting that m̄ − h̄ū = Dh̃Dũ/4, we obtain that
Df2(Ũ) = ūDm̃ + h̄DẼ − gh̄Db̃ +

1

4
Dh̃(Dũ)2.(4.38)Therefore, for a non-stationary steady state, where Dm̃ = DẼ = 0,

−Df2(Ũ) − gh̄Db̃ +
1

4
Dh̃(Dũ)2 = 0.(4.39)As a onsequene, the quadrature

K(R̃, Ii) :=
1

△xi

(

−Df2(Ũ) − gh̄Db̃ +
1

4
Dh̃(Dũ)2

)(4.40)is well-balaned for general steady states in 1D. For smooth �ows, the ubiorretion term 1
4Dh̃(Dũ)2 is so small that it does not a�et the order of thequadrature rule. In [24℄ we showed how to limit this term when the jumps Dh̃and Dũ are no longer of the order of the gridsize.



334.3.3. Singular layers at the ell boundariesIn Subsetion 4.2.2 we introdued a general framework of well-balaned singularlayers. It would be onvenient if the equilibrium values are onstant throughoutthe singular layer. But this an be done only if Ṽi+1/2− = Ṽi+1/2+ = V . Inthis ase we set
Ûε(y) = U(V , b̂ε(y)),(4.41)where b̂ε(·) is any smooth reonstrution of the bottom topography. From(4.22) we immediately obtain that

R̂ε(y) = R(Ûε(y), b̂ε(y)) = 0.(4.42)In the general ase, there is no straightforward onstrution of the residual inthe singular layer. However, we will mimi the onstrution (4.41)�(4.42) asmuh as possible in suitable parts of the interval [−ε, ε].For this we turn to the shemes proposed in [1, 6, 24℄, whih are all relatedas follows: The ontinuous pieewise linear topography is de�ned by the fourvalues y = −ε,−ε/2, ε/2, ε, orresponding to the points xi+1/2 − ε, xi+1/2 −
ε/2, xi+1/2 + ε/2, xi+1/2 + ε. At these points our pieewise linear b̂ε takes thevalues

b̂ε(y) :=

{

b̃±i+1/2 for y = ± ε

b̂i+1/2 for y = ± ε/2,
(4.43)where the intermediate value near the interfae b̂i+1/2 still needs to be deter-mined. Certainly, it should be a suitable onvex ombinations of the values
b̃±i+1/2 at the endpoints. This intermediate value of the topography was de�nedslightly di�erently in eah of [1, 24, 6℄, and we will disuss this in the followingsubsetion.Adjaent to the interiors of the left and right neighboring ells, i.e. in theintervals [−ε,−ε/2] and [ε/2, ε], we keep the equilibrium values onstant, andde�ne Ûε and R̂ε via (4.41)�(4.42). In [24℄ we have alled the set [−ε,−ε/2]∪
[ε/2, ε], for whih the residual vanishes, the equilibrium layer. By onstrution,



34the values Ûε(±ε/2) are
Ûε(−

ε

2
) = U(Ṽ (xi+1/2−), b̂i+1/2) =: Ûi+1/2−(4.44)

Ûε(
ε

2
) = U(Ṽ (xi+1/2+), b̂i+1/2) =: Ûi+1/2+ .(4.45)Note that the funtion U(V, b) used in (4.44)�(4.45) depends strongly on thepartiular steady state under onsideration. For example it di�ers for the lakeat rest onsidered in [1℄ and the moving water treated in [24℄.In the remaining interval [− ε

2 , ε
2 ], whih we alled onvetive layer in [24℄,the topography is onstant, b̂ε(y) ≡ b̂i+1/2. Therefore, as for the exat solution,where

R(x) = −∂xf(U(x)),the approximate residual should redue to a onservative �ux di�erene. Forthis, we de�ne an approximate �ux f̂ε(y) as follows. In the enter y = 0, the�ux will be an approximate Riemann solver f̂(Ûi+1/2−, Ûi+1/2+), and at theendpoints y = ±ε/2, it takes the values f(Ûi+1/2±). In between, f̂ε may beany ontinuous funtion, e.g. pieewise linear. Then we set
R̂ε(y) := −∂y f̂ε(y).(4.46)From here, we an easily evaluate the singular parts of the residual in (4.20)�(4.21) and obtain

R
i+1/2−

sing = −f̂(Ûi+1/2−, Ûi+1/2+) + f(Ûi+1/2−)(4.47)
R

i+1/2+

sing = −f(Ûi+1/2+) + f̂(Ûi+1/2−, Ûi+1/2+).(4.48)Lemma 4.1. The approximation (4.47)�(4.48) of the singular parts of theresidual is well-balaned in the sense of De�nition 4.4.Proof � Sine the residual vanishes in the equilibrium layer, it is su�ientto show that
Ûi+1/2− = Ûi+1/2+,(4.49)sine then

f(Ûi+1/2−) = f̂(Ûi+1/2−, Ûi+1/2+) = f(Ûi+1/2+)(4.50)



35and, from (4.47)�(4.48),
R

i+1/2−

sing = R
i+1/2+

sing = 0.(4.51)So suppose that we are in loal equilibrium in the sense of De�nition 4.4, i.e.
Ṽi+1/2− = Ṽi+1/2+ = V for some steady state V . Then

Ûi+1/2− = Ûi+1/2+ = U(V , b̂i+1/2),(4.52)whih is (4.49). �4.4. On the hoie of the intermediate bottom b̂i+1/2Now we fous upon an interfae xi+1/2 and the two values b̃±i+1/2, whihrepresent the jump of the bottom at the ell interfae. We require that theintermediate value b̂i+1/2 satis�es
min{b̃−i+1/2, b̃

+
i+1/2} ≤ b̂i+1/2 ≤ max{b̃−i+1/2, b̃

+
i+1/2}.(4.53)In [1, (2.9)℄, Audusse et al. hoose

b̂i+1/2 := max{b̃−i+1/2, b̃
+
i+1/2}.(4.54)Together with an appropriate CFL restrition and a suitable �ux funtion,(4.54) guarantees positivity of the waterheight. It has been used by variousauthors, inluding the present authors, and we onsider it to be the standardhoie.However, there is an important ase whih suggests that the standard hoieshould sometimes be replaed. While the hoie of Audusse et al. is partiularlyuseful at the shore of a lake with subritial veloity, we onsider the ratherdi�erent situation of a waterfall in steep, fast mountainous rivers (see [24℄ fordetails). In Figure 1 we show this stationary moving water �ow. The water�ows in superritially from the left until it hits a steep (or even disontinuous)desent. Flowing down, the water aelerates. Due to onservation of mass thewater height dereases until the �ow beomes ritial. It is then stopped by astationary shok, or bore. Behind the shok, the water moves on slowly withsubritial veloity.
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Figure 1 � Waterfall: a (�nitely or in�nitely) steep slide followed by a stationary shok.Dashed line: bottom topography. Cirles: Water surfae.We obtain the same solution for the Riemann problem with disontinuousbottom. The interesting observation is that the hydrodynami problem (thestationary shok) is resolved at the bottom of the topography, so we shouldreplae (4.54) by
b̂i+1/2 := min{b̃−i+1/2, b̃

+
i+1/2}.(4.55)In [6℄, Castro, Pardo, and Parés formulate well-balaned shemes with a generalhoie of b̂i+1/2 satisfying only (4.53). The optimal hoie of b̂i+1/2 remains anopen problem, whih seems to be losely related to the non-uniqueness of theRiemann problem, see [7, 18℄. Meanwhile we reommend to use (4.54) sine itis positivity preserving.



374.5. A note on the onservative harater of the �uxes.In disussions of reent well-balaned shemes, it was argued that the nu-merial �uxes in [1, (2.15)℄ were not onservative (see [20℄ for the de�nitionof onservative numerial �uxes). We would like to larify this point: In ournotation (see (4.2)), the �rst order sheme of Audusse et al. reads
∆xi

d

dt
U i(t) = Fl(U i, U i+1, bi, bi+1) −Fr(U i−1, U i, bi−1, bi) = ∆xi Ri(4.56)with �uxes [1, (2.16)℄

Fr(U i−1, U i, bi−1, bi) = f̂(U i−1, U i) +

(

0
g
2h2

i − g
2h2

i−1/2+

)(4.57)
Fl(U i, U i+1, bi, bi+1) = f̂(U i, U i+1) +

(

0
g
2h2

i − g
2h2

i+1/2−

)(4.58)Indeed,
Fr(U i−1, U i, bi−1, bi) 6= Fl(U i−1, U i, bi−1, bi),so these �uxes are not onservative in the sense of the Lax-Wendro� theorem.Let us ompare this to the sheme (4.10) derived in this setion:

d

dt
U i(t) = R

i

reg + R
i−1/2+

sing + R
i+1/2−

sing .(4.59)From (4.16), (4.47) and (4.48)
△xi R

i

reg = −f(Ũi+1/2−) + f(Ũi−1/2+) + △xi S̄i
reg(4.60)

△xi R
i+1/2−

sing = −f̂(Ûi+1/2−, Ûi+1/2+) + f(Ûi+1/2−)(4.61)
△xi R

i−1/2+

sing = −f(Ûi−1/2+) + f̂(Ûi−1/2−, Ûi−1/2+),(4.62)where the regular part of the soure term is given by
△xi S̄i

reg = −
(

0

gh̄iDb̃i

)

.(4.63)Setting
Dfi := f̂(Ûi+1/2−, Ûi+1/2+) − f̂(Ûi−1/2−, Ûi−1/2+),



38the sheme (4.59) reads
△xi

d

dt
U i(t) = −Dfi + [f(Ũi−1/2+) − f(Ûi−1/2+)](4.64)

+ [f(Ûi+1/2−) − f(Ũi+1/2−)] + △xi S̄i
reg.Following the arguments in [1, 24℄ or the present paper, one an hek that theshemes de�ned by (4.64) and (4.56) oinide. However, the urious nonon-servative �ux di�erenes appear also in the form (4.64). We will now show thatthe two �ux di�erenes in the square brakets are preisely the singular soureterms in the left and right equilibrium layers, where the soure term jumps.From (4.22) and (4.42) we know that the residual vanishes in the equilibriumlayer. More preisely, it onsists of a non-zero �ux di�erene and a non-zerosoure term whih balane eah other:

△xi R̄
i−1/2+
equil = −f(Ũi−1/2+) + f(Ûi−1/2+) + △xi S̄

i−1/2+
sing = 0(4.65)

△xi R̄
i+1/2−
equil = −f(Ûi+1/2−) + f(Ũi+1/2−) + △xi S̄

i+1/2−
sing = 0.(4.66)Therefore,

△xi S̄
i−1/2+
sing = f(Ũi−1/2+) − f(Ûi−1/2+)(4.67)

△xi S̄
i+1/2−
sing = f(Ûi+1/2−) − f(Ũi+1/2−)(4.68)and the sheme (4.64) an be rewritten in the natural form

d

dt
U i(t) = −Dfi + △xi

(

S̄
i−1/2+
sing + S̄i

reg + S̄
i+1/2−
sing

)(4.69)whih learly distinguishes onservative �ux di�erenes, regular and singularsoure terms.



39
5. Numerical examples for the shallow water equationsWe have suessfully designed high-order well-balaned shemes by di�er-ent approahes. In Setion 3, high-order well-balaned �nite di�erene, �nitevolume and RKDG shemes are designed for a lass of hyperboli balane laws,whih inlude the shallow water equations with the lake at rest steady state.The key idea towards the well-balaned property is a speial deomposition ofthe soure term. Fifth order �nite di�erene, �nite volume WENO shemesand third order �nite element RKDG sheme are implemented, and we denotethem by FD5, FV5-D (D for well-balaned �nite di�erening) and RKDG3 re-spetively. In Subsetion 4.3, high order �nite volume shemes whih are well-balaned for the steady river �ow of the shallow water equations have beenpresented. The well-balaned property relies on a speial equilibrium reon-strution and non-trivial quadrature of the soure term, while the high-orderauray omes from the high-order WENO reonstrution and extrapolationof the soure term. Fourth order auray an be obtained. We denote these�nite volume shemes as FV4-Q (Q for well-balaned quadrature). Note thatwe have two well-balaned �nite volume shemes, FV5-D and FV4-Q, obtainedthrough di�erent approahes.In this setion we provide numerial results to demonstrate the good prop-erties of these well-balaned shemes, when applied to the shallow water equa-tions. The examples in Setions 5.1�5.3 show well-balaning steady states tomahine auray, high order of auray for unsteady solutions, and smallperturbations of steady states. The last two examples (disontinuous bottom,Setion 5.4 and 2D pertubation, Setion 5.5) go somewhat beyond the sopeof the numerial analysis of Setions 3 and 4. They provide some preliminaryinsight for whih appliations the methods might still work, even though thismay not yet be proven.In all numerial tests, time disretization is by the lassial third orderTVD Runge-Kutta method [31℄. For �nite volume, �nite di�erene WENOshemes, the CFL number is taken as 0.6, exept for the auray tests wheresmaller time steps are taken to ensure that spatial errors dominate. For thethird order RKDG sheme, the CFL number is 0.18. For the TVB limiterimplemented in the RKDG sheme, the TVB onstant M (see [10, 28℄ for its



40de�nition) is taken as 0 in most numerial examples, unless otherwise stated.The gravitation onstant g is taken as 9.812m/s2 during the omputation.5.1. Well-balaned testsThe purpose of the �rst test problems is to verify the well balaned propertyof our algorithms. Note that FV4-Q is apable of apturing steady river �ows,and FV5-D, FD5, RKDG3 are designed for apturing the lake at rest. Hene,two di�erent test problems are proposed here. A �fth-order Gauss quadrature isemployed to ompute the initial value in the �nite volume and DG approahes.5.1.1. Lake at restThis test is shown to verify that FV5-D, FD5 and RKDG3 indeed maintainthe well-balaned property over a non-�at bottom. We hoose two di�erentfuntions for the bottom topography given by (0 ≤ x ≤ 10):(5.1) b(x) = 5 e−
2
5
(x−5)2 ,whih is smooth, and(5.2) b(x) =

{

4 if 4 ≤ x ≤ 8,

0 otherwise,whih is disontinuous. The initial data is the stationary solution:
h + b = 10, hu = 0.This steady state should be exatly preserved. We ompute the solutionuntil t = 0.5 using N = 200 uniform ells. In order to demonstrate that thewell-balaned property is indeed maintained up to round-o� error, we use singlepreision, double preision and quadruple preision to perform the omputa-tion, and show the L1 and L∞ errors for the water height h (note: h in thisase is not a onstant funtion!) and the disharge hu in Tables 1 and 2 for thetwo bottom funtions (5.1) and (5.2) and di�erent preisions. For the RKDG



41Table 1 � L1 and L∞ errors for di�erent preisions for the steady solution with a smoothbottom (5.1).
L1 error L∞ errorpreision h hu h husingle 3.13E-07 1.05E-05 9.54E-07 4.85E-05FD5 double 1.24E-15 2.34E-14 7.11E-15 8.65E-14quadruple 1.62E-33 2.11E-32 6.16E-33 8.74E-32single 4.07E-06 3.75E-05 1.33E-05 1.33E-04FV5-D double 2.50E-14 2.23E-13 7.64E-14 7.97E-13quadruple 3.49E-33 2.90E-32 1.39E-32 9.62E-32single 6.44E-06 2.44E-05 2.57E-05 1.75E-04RKDG3 double 6.82E-15 2.90E-14 2.84E-14 2.14E-13quadruple 9.06E-31 3.92E-33 8.05E-29 1.12E-31method, the errors are omputed based on the numerial solutions at ell en-ters. We an learly see that the L1 and L∞ errors are at the level of round-o�errors for di�erent preisions, verifying the well-balaned property.We have also omputed stationary solutions using initial onditions whihare not the steady state solutions and letting time evolve into a steady state,obtaining similar results with the well-balaned property.5.1.2. Steady river �owWe pik di�erent test problems for FV4-Q, to verify the well balaned propertytowards the moving steady state solution. These steady state problems arelassial test ases for transritial and subritial �ows, and they are widelyused to test numerial shemes for shallow water equations. For example, theyhave been used as a test ase in [32℄. Here, our purpose is to maintain thesesteady state solutions exatly.The bottom funtion is given by:(5.3) b(x) =

{

0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12,

0 otherwise,



42Table 2 � L1 and L∞ errors for di�erent preisions for the steady solution with a nonsmoothbottom (5.2).
L1 error L∞ errorpreision h hu h husingle 2.28E-07 3.61E-06 1.91E-06 2.37E-05FD5 double 9.05E-15 5.88E-14 3.55E-15 4.46E-14quadruple 1.30E-33 1.40E-32 4.62E-33 5.64E-32single 6.50E-06 2.61E-05 1.91E-05 1.53E-04FV5-D double 1.73E-14 5.88E-14 4.62E-14 2.43E-13quadruple 2.69E-32 9.30E-32 5.85E-32 3.04E-31single 5.76E-07 3.54E-07 9.54E-07 1.18E-06RKDG3 double 1.41E-15 8.90E-16 3.55E-15 2.83E-15quadruple 2.69E-31 1.62E-35 8.06E-29 8.18E-34for a hannel of length 25m. Three steady states, subritial or transritial�ow with or without a steady shok will be investigated.a): Transritial �ow without a shok. The initial ondition is given by:(5.4) E =

1.532

2 × 0.662
+ 9.812 × 0.66, m = 1.53,together with the boundary ondition

• upstream: The disharge hu=1.53 m2/s is imposed.
• downstream: The water height h=0.66 m is imposed when the �ow issubritial.This steady state should be exatly preserved. We ompute the solution until

t = 20 using N = 200 uniform mesh points. The omputed surfae level h + band the bottom b are plotted in Figure 2. In order to demonstrate that thesteady state is indeed maintained up to round-o� error, we use single preisionand double preision to perform the omputation, and show the L1 and L∞errors for the water height h and the disharge hu (note: neither h nor hu



43in this ase is a onstant or polynomial funtion!) in Tables 3 for di�erentpreisions. We an learly see that the L1 and L∞ errors are at the level ofround-o� errors for di�erent preisions, verifying the well-balaned property.
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Figure 2 � The surfae level h+ b and the bottom b for the transritial �ow without a shok.
Table 3 � L1 and L∞ errors for di�erent preisions for the transritial �ow without a shok.

L1 error L∞ errorpreision h hu h husingle 2.19E-08 4.74E-09 1.61E-06 1.19E-07FV4-Q double 1.15E-16 3.21E-16 5.55E-16 1.33E-15b): Transritial �ow with a shok. The initial ondition is given by:



44(5.5)
E =







3
2 (9.812 × 0.18)

2
3 ) + 9.812 × 0.2 if x ≤ 11.665504281554291,

0.182

2 × 0.332 + 9.812× 0.33 otherwise, m = 0.18,together with the boundary ondition
• upstream: The disharge hu=0.18 m2/s is imposed.
• downstream: The water height h=0.33 m is imposed.This steady state should be exatly preserved. As we mentioned in Subse-tion 4.3, we only disuss the ase when the shok is exatly loated at theell boundary. Hene we shift the omputational domain to put the shok atthe ell boundary. For this ase when stationary shok exists, we need to usethe Roe's �ux to ompute the approximate Riemann problem, and replae thelimiter proedure by a one-sided limiter for the two ells next to the shok.Also, the left and right approximated values of bottom at the shok must beexat, so that the Roe's �ux an apture this shok exatly. Here we omputethe solution until t = 20 using N = 400 uniform mesh points. The omputedsurfae level h+b and the bottom b are plotted in Figure 3. In order to demon-strate that the steady state is indeed maintained up to round-o� error, we usesingle preision and double preision to perform the omputation, and showthe L1 and L∞ errors for the water height h and the disharge hu in Tables 4for di�erent preisions. We an learly see that the L1 and L∞ errors are atthe level of round-o� errors for di�erent preisions, verifying the well-balanedproperty.Table 4 � L1 and L∞ errors for di�erent preisions for the transritial �ow with a shok.

L1 error L∞ errorpreision h hu h husingle 2.78E-09 2.74E-09 3.87E-07 2.53E-07FV4-Q double 1.06E-15 1.23E-15 8.37E-14 8.32E-14
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Figure 3 � The surfae level h + b and the bottom b for the transritial �ow with a shok.): Subritial �ow. The initial ondition is given by:(5.6) E = 22.06605, m = 4.42,together with the boundary ondition
• upstream: The disharge hu=4.42 m2/s is imposed.
• downstream: The water height h=2 m is imposed.This steady state should be exatly preserved. We ompute the solution until

t = 20 using N = 200 uniform mesh points. The omputed surfae level h + band the bottom b are plotted in Figure 4. In order to demonstrate that thesteady state is indeed maintained up to round-o� error, we use single preisionand double preision to perform the omputation, and show the L1 and L∞errors for the water height h and the disharge hu in Tables 5 for di�erentpreisions. We an learly see that the L1 and L∞ errors are at the level ofround-o� errors for di�erent preisions, verifying the well-balaned property.
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Figure 4 � The surfae level h + b and the bottom b for the subritial �ow.5.2. Testing the orders of aurayIn this example we will test the high-order auray of our shemes for asmooth solution. There are some known exat solutions to the shallow waterequation with non-�at bottom in the literature, suh as some stationary so-lutions, but they are not generi test ases for auray. We have thereforehosen to use the following bottom funtion and initial onditions
b(x) = sin2(πx), h(x, 0) = 5 + ecos(2πx), (hu)(x, 0) = sin(cos(2πx)), x ∈ [0, 1]Table 5 � L

1 and L
∞ errors for di�erent preisions for the subritial �ow.

L1 error L∞ errorpreision h hu h husingle 4.62E-07 3.23E-07 6.81E-06 7.23E-06double 1.44E-17 8.84E-17 6.66E-16 1.77E-15



47with periodi boundary onditions, see [34℄. Sine the exat solution isnot known expliitly for this ase, we use the �fth order �nite volume WENOsheme with N = 12, 800 ells to ompute a referene solution, and treat thisreferene solution as the exat solution in omputing the numerial errors.We ompute up to t = 0.1 when the solution is still smooth (shoks developlater in time for this problem). Tables 6 and 7 ontain the L1 errors for theell averages for FV4-Q, FV5-D and RKDG3, and for the point values forFD5, and numerial orders of auray. We an learly see that the designedorder of auray is ahieved. For the RKDG sheme, the TVB onstant M istaken as 32. Notie that the CFL number we have used for the �nite volumesheme dereases with the mesh size and is reorded in Tables 6 and 7. Forthe RKDG method, the CFL number is �xed at 0.18. We note that �fth-orderauray is observed for FV4-Q. The �fth-order WENO reonstrution has beenused in spae, but the soure term is approximated by a fourth order aurateextrapolation. Hene the approximation of the soure term in the algorithmontributes less to the overall error. This phenomena has been investigated in[23℄.5.3. A small perturbation of a steady-state waterThe following test ases are hosen to demonstrate the apability of the pro-posed shemes for omputations on the perturbation of a steady state solution,whih annot be aptured well by a non well-balaned sheme. For the samereason as in Setion 5.1, two test ases are proposed for di�erent algorithms.5.3.1. Perturbation of a lake at restThe following quasi-stationary test ase was proposed by LeVeque [19℄. It washosen to demonstrate the apability of the proposed sheme for omputationson a rapidly varying �ow over a smooth bed, and the perturbation of a sta-tionary state. We test it on FV5-D, FD5 and RKDG3 methods.The bottom topography onsists of one hump:(5.7) b(x) =

{

0.25(cos(10π(x − 1.5)) + 1) if 1.4 ≤ x ≤ 1.6,

0 otherwise,



48 Table 6 � L1 errors and numerial orders of auray for the example in Setion 5.2.FV4-QNo. of CFL h huells L1 error order L1 error order25 0.6 1.48E-02 9.78E-0250 0.6 2.41E-03 2.68 1.97E-02 2.31100 0.4 2.97E-04 3.02 2.58E-03 2.93200 0.3 2.44E-05 3.61 2.13E-04 3.60400 0.2 1.03E-06 4.56 8.97E-06 4.57800 0.1 3.49E-08 4.89 2.95E-07 4.93FV5-DCFL h hu

L1 error order L1 error order25 0.6 1.48E-02 9.45E-0250 0.6 2.40E-03 2.63 1.98E-02 2.26100 0.4 2.97E-04 3.01 2.58E-03 2.93200 0.3 2.43E-05 3.61 2.13E-04 3.60400 0.2 1.02E-06 4.57 8.96E-06 4.57800 0.1 3.26E-08 4.97 2.85E-07 4.97The initial onditions are given with(5.8) (hu)(x, 0) = 0 and h(x, 0) =

{

1 − b(x) + ǫ if 1.1 ≤ x ≤ 1.2,

1 − b(x) otherwise,where ǫ is a non-zero perturbation onstant. Two ases have been run: ǫ =0.2 (big pulse) and ǫ = 0.001 (small pulse). Theoretially, for small ǫ, thisdisturbane should split into two waves, propagating left and right at the har-ateristi speeds ±√
gh. Many numerial methods have di�ulty with thealulations involving suh small perturbations of the water surfae. Both setsof initial onditions are shown in Figure 5. The solution at time t=0.2s for thebig pulse ǫ = 0.2, obtained on a 200 ell uniform grid with simple transmissive



49Table 7 � L1 errors and numerial orders of auray for the example in Setion 5.2.FD5No. of CFL h hu

L1 error order L1 error order25 0.6 1.70E-02 1.06E-0150 0.6 2.17E-03 2.97 1.95E-02 2.45100 0.6 3.33E-04 2.71 2.83E-03 2.78200 0.6 2.36E-05 3.82 2.04E-04 3.80400 0.6 9.67E-07 4.61 8.38E-06 4.61800 0.6 3.38E-08 4.84 2.94E-07 4.83RKDG3CFL h hu

L1 error order L1 error order25 0.6 2.35E-03 2.12E-0250 0.6 1.15E-04 4.36 1.01E-03 4.39100 0.4 1.24E-05 3.20 1.09E-04 3.21200 0.3 1.02E-06 3.59 8.97E-06 3.60400 0.2 1.11E-07 3.19 9.79E-07 3.19800 0.1 1.30E-08 3.09 1.14E-07 3.08boundary onditions, and ompared with a 3000 ell solution, is shown in Fig-ure 6 for the FD5, in Figure 7 for the FV5-D and in Figure 8 for the RKDG3.The results for the small pulse ǫ = 0.001 are shown in Figures 9, 10 and 11. Atthis time, the downstream-traveling water pulse has already passed the bump.We an learly see that there are no spurious numerial osillations.5.3.2. Perturbation of steady river �owIn subsetion 5.1.2, we presented three steady state solutions and showed thatour numerial shemes did maintain them exatly. In this test ase, we imposeto them a small perturbation 0.01 on the height in the interval [5.75,6.25℄, and
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Figure 5 � The initial surfae level h + b and the bottom b for a small perturbation of asteady-state water. Left: a big pulse ǫ=0.2; right: a small pulse ǫ=0.001.hek whether the FV4-Q method aptures it well. We remark that FV5-D,FD5 and RKDG3 are not well balaned for these steady states and they all failto apture this perturbation on oarse meshes.Theoretially, this disturbane should split into two waves, propagatingto the left and right respetively. Many numerial methods have di�ultywith the alulations involving suh small perturbations of the water surfae.The solution obtained on a 200 ell uniform grid with simple transmissiveboundary onditions, ompared with the results using 2000 uniform ells, isshown in Figure 12 for the transritial �ow without a shok, in Figure 13 forthe transritial �ow with a shok and in Figure 14 for the subritial �ow.The stopping time T is set as 1.5 for the �rst and third �ow, 3 for the seond�ow. At this time, the downstream-traveling water pulse has already passedthe bump. We an learly see that there are no spurious numerial osillationsand the resolution for the propagated small perturbation is very good.5.4. The dam breaking problem over a retangular bumpIn this example we use the SW model to simulate the dam breaking prob-lem over a retangular bump, whih involves a rapidly varying �ow over adisontinuous bottom topography. This example was used in [33℄.It is not yet settled whether SW models give meaningful preditions for �ows
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Figure 6 � FD5: Small perturbation of a steady-state water with a big pulse. t=0.2s. Left:surfae level h + b; right: the disharge hu.
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Figure 8 � RKDG3: Small perturbation of a steady-state water with a big pulse. t=0.2s.Left: surfae level h + b; right: the disharge hu.
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Figure 10 � FV5-D: Small perturbation of a steady-state water with a small pulse. t=0.2s.Left: surfae level h + b; right: the disharge hu.
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Figure 12 � FV4-Q: Small perturbation of the transritial �ow without a shok.over disontinuous bottoms, where key modelling assumptions are violated.Should a user have to swith to the full Euler or Navier-Stokes equations, assoon as there is a step in the bottom? The present example shows that theSW model, and our algorithms, may provide stable and sharp omputationalresults for disontinuous topography.The bottom topography takes the form:(5.9) b(x) =

{

8 if |x − 750| ≤ 1500/8,

0 otherwise,for x ∈ [0, 1500]. The initial onditions are(5.10) (hu)(x, 0) = 0 and h(x, 0) =

{

20 − b(x) if x ≤ 750,

15 − b(x) otherwise.
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Figure 15 shows numerial results obtained by FD5 500 uniform ells (and aomparison with the results using 5000 uniform ells) with ending time t=60s.In this example, the water height h(x) is disontinuous at the points x=562.5and x=937.5, while the surfae level h(x) + b(x) is smooth there. All shemesFV4-Q, FD5, FV5-D, RKDG3 work well for this example, giving well resolved,non-osillatory solutions using 400 ells whih agree with the onverged resultsusing 4000 ells.
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Figure 14 � FV4-Q: Small perturbation of the subritial �ow.5.5. A two-dimensional exampleThe shallow water system in two spae dimensions takes the form:(5.11) 





















ht + (hu)x + (hv)y = 0

(hu)t +

(

hu2 +
1

2
gh2

)

x

+ (huv)y = −ghbx

(hv)t + (huv)x +

(

hv2 +
1

2
gh2

)

y

= −ghbywhere again h is the water height, (u, v) is the veloity of the �uid, b representsthe bottom topography and g is the gravitational onstant. It is straightfor-ward to generalize 1D shemes dimension by dimension to this 2D system, andusually one will maintain the 2D well-balaning of the lake at rest. It is also
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Figure 15 � FD5: The surfae level h + b for the dam breaking problem at time t=60s. Left:the numerial solution using 500 grid ells, plotted with the initial ondition and the bottomtopography; Right: the numerial solution using 500 and 5000 grid ells.fairly straightforward to balane geostrophi jets, driven by the Coriolis fore,whih are aligned with the grid, see e.g. [4, 22, 25℄. In general, however, thereis an abundane of steady states, eah being a solution of a mixed hyperboli-ellipti boundary value problem in (x, y)-spae. In partiluar, there is no waywe ould well-balane general moving steady �ows.However, the 1D tehniques presented in this paper are already useful forsome 2D �ows. Note that river and hannel �ows have a pronouned diretionof propagation (usually lose to the downhill diretion). Also the topographyin rivers and hannels (dams, barrages) is often essentially one-dimensional. Inthe present example, we will apply the 1D tehniques of Setion 4 (i.e. well-balaning non-stationary steady �ows) only in the x-diretion (the diretionof the underlying unperturbed �ow). This will be of great advantage whenomputing a fully 2D perturbation of this non-stationary steady �ow.We solve the system in the retangular domain [0, 25]× [0, 25]. The bottomtopography is given by:(5.12) b(x, y) =

{

0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12,

0 otherwise.Notie that the bottom is a funtion of x only. A steady state solution an be
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Figure 16 � The ontours of the di�erene between the height h and the initial steady state(5.12) for the problem in Setion 5.5 at time t = 0.5. 30 uniformly spaed ontour lines from-0.009 to 0.012. Left: results with a 100× 100 uniform mesh. Right: results with a 200× 200uniform mesh.omputed from:(5.13) 1

2
u2 + g(h + b) = 22.06605, hu(x, y, 0) = 4.42, hv(x, y, 0) = 0.These data orrespond preisely to the one-dimensional subritial steady stateof (5.6), and the ross setion of the unperturbed solution an be seen in Figure4. Our initial ondition is given by a two dimensional small perturbation of thatsteady state, where h is perturbed upward by 0.05 in the box 6.5 ≤ x ≤ 7.5,

12 ≤ y ≤ 13. Figures 16 and 17 display the disturbane as it interats withthe hump, on two di�erent uniform meshes with 100× 100 ells and 200× 200ells for omparison. The di�erene between the height h and the initial steadystate (5.12) is presented at di�erent times t = 0.5 and t = 1. We also run thesame numerial test with FV5-D. Note that FV5-D is not well-balaned formoving steady states. The omparison of the numerial results are presentedin Figures 18 and 19. The results indiate that FV4-Q an resolve the omplexsmall features of the �ow very well, without spurious features whih do appearin the results obtained with FV5-D.
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Figure 17 � The ontours of the di�erene between the height h and the initial steady state(5.12) for the problem in Setion 5.5 at time t = 1. 30 uniformly spaed ontour lines from-0.005 to 0.008. Left: results with a 100× 100 uniform mesh. Right: results with a 200× 200uniform mesh.
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Figure 18 � The 3D �gure of the di�erene between the height h and the initial steady state(5.12) for the problem in Setion 5.5 at time t = 0.5 with a 200 × 200 uniform mesh. Left:results based on FV4-Q. Right: results based on FV5-D.
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Figure 19 � The 3D �gure of the di�erene between the height h and the initial steady state(5.12) for the problem in Setion 5.5 at time t = 1 with a 200 × 200 uniform mesh. Left:results based on FV4-Q. Right: results based on FV5-D.
6. ConclusionIn this paper we gave an overview of some reently developed high-orderwell-balaned shemes, inluding fourth and �fth order shemes. The exellentresolution of the shemes is demonstrated by a number of hallenging exper-iments for the shallow water equations. The presentation and disussion ofthe onstrution priniples should enable the reader to implement them anddevelop them further for an appliation at hand. The onstrutions were eitherbased on well-balaned, high-order aurate, non-osillatory �nite di�ereneoperators, or an well-balaned and aurate quadrature for the regular andsingular parts of the ell-averaged residuals. The �nite di�erene onstrutionmay be somewhat simpler and faster, whih would play an even greater rolein several spae dimensions. But the quadrature approah an already handlemoving water steady states and is in this sense more general.
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