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Abstract

In this paper we review some recent work on high-order well-balanced
schemes for hyperbolic systems of balance laws. A characteristic feature
of such systems is the existence of non-trivial steady state solutions,
where the effects of convective fluxes and source terms cancel each other.
Well-balanced schemes satisfy a discrete analogue of this balance and
are therefore able to maintain a steady state. We discuss two classes
of schemes, one based on high-order accurate, non-oscillatory finite dif-
ference operators which are well-balanced for a general class of steady
states, and the other one based on well-balanced quadratures, which can
- in principle - be applied to all steady states. Hyperbolic systems of
balance laws have a wide application, exemplified by shallow water equa-
tions (SWE) which have steady states at rest, where the flow velocity
vanishes, and also the more challenging moving flow steady states. Nu-
merical experiments show excellent resolution of unperturbed as well as

slightly perturbed steady states.

Keywords: shallow water equations, fundamental steady states, high-

order upwind finite volume schemes, well-balanced schemes

1. Introduction

In many applications we encounter hyperbolic balance laws, which in one

dimension are in the form
(1.1) Us+ F(U, %), = s(U,2)

where U is the solution vector, f(U, x) is the flux and s(U, x) is the source term.
The source term may come from geometrical, reactive or other considerations.
Examples of hyperbolic balance laws include the shallow water equation with a
non-flat bottom topology, elastic wave equation [2], chemosensitive movement
[16] and nozzle flow [14].

Comparing with the standard hyperbolic conservation laws, namely (1.1)
with s(U,z) = 0, the numerical approximation to the balance laws (1.1) is

usually not too much more difficult: we simply need to put the point values



(for finite difference schemes) or the cell averages (for finite volume schemes) of
the source term s(U, z) directly into the discretization of the spatial operator.
There is, however, one noticeable exception. The balance law (1.1) often admits
steady state solutions in which the source term s(U,z) is exactly balanced
by the flux gradient f(U,z),. Such steady state solutions are usually non-
trivial (they are usually not polynomial functions of the spacial variable x)
and they often carry important physical meaning (for example, the still water
or steady moving water solution of the shallow water equation, to be studied
in more detail later in this paper). The objective of well-balanced schemes is
to preserve exactly some of these steady state solutions. The most important
advantage of well-balanced schemes is hat they can accurately resolve small
perturbations to such steady state solutions with relatively coarse meshes. In
comparison, a non-well-balanced scheme will introduce truncation errors to the
steady state solution, hence it cannot resolve small perturbations to such steady
states unless the truncation error is already smaller than such perturbations,
thus requiring a refined mesh. In Section 5 we will provide such examples.
However, it is quite difficult to design well-balanced schemes which are high-
order accurate and non-oscillatory in the presence of discontinuities in the
solution.

In this paper we use the shallow water equation as a prototype to survey a
few recently developed well-balanced high-order finite difference, finite volume
and discontinuous Galerkin finite element methods. We attempt to explain
the main ingredients in these algorithms which allow us to achieve the well-
balanced property without losing other nice properties of the original scheme,
such as high-order accuracy and non-oscillatory performance in the presence of

solution discontinuities.

The paper is organized as follows. In Section 2 we first discuss a number
of interesting steady states. Then we introduce the residual which need to be

well-balanced near stationary states.

At this point the paper splits into two approaches: The first approach, see
Section 3, applies to finite difference, finite volume and discontinuous Galerkin
schemes. It treats steady states for which the source term can be decomposed

into sums of products of the form (3.4). The challenge is to construct finite



difference operators which are high-order accurate and non-oscillatory for the
conservative flux difference and the source term, and which coincide for both
terms in the case of steady state solutions.

The second approach, designed for general steady states and finite volume
schemes, is covered in Section 4. The key task is to find well-balanced quadra-
tures for the integral of the residual, see equation (4.1). Subsection 4.2 presents
a general framework to decompose this integral into suitable parts. Subsec-
tion 4.3 realizes this approach for moving water steady states for shallow water
flows.

In Section 5 we present numerical results showing the accuracy and well-
balanced properties of both classes of schemes for a number of challenging flows.
Section 6 contains some concluding remarks.

It is perhaps surprising that the two approaches outlined in Sections 3 and
4 require such different techniques. Indeed, the reader might skip either section
on a first reading, and then proceed to the numerical experiments in Section 5.

On the other hand, we hope that the presentation of both approaches in
a single paper will provide a clear understanding that well-balancing requires
a detailed study of the truncation error for each individual scheme (since the
truncation error should disappear for discrete steady states). The broad set
of ideas and techniques presented in this paper might be helpful to the reader
developing his/her own version of high-order well-balancing in a new situation.

2. Preliminaries: steady states and the residual

In this section we introduce equilibrium variables which characterize smooth
steady states, and discuss the residual which monitors the deviation of the
system from stationary states. In particular, two forms of the residual are
singled out which are the bases of the finite difference algorithms in Section 3
on one hand and the finite volume algorithm in Section 4 on the other hand.

We will generally refer to a time-independent solution of the hyperbolic
balance law as a steady state. When we refer to pointwise or cell-wise local
transformations, we may use the terms equilibrium-transvormation, -variable,

-reconstruction, -limiting and so forth.



2.1. Steady states

Let us again consider the system of balance laws (1.1). For example, for

the shallow water equations
(2.1) U= (h,m)", f(U) = (m,m®/h+gh*/2)", s(U,z) = (0, —ghbs(x))",

where h is the water height, m is the momentum (discharge in hydraulics), b(x)
is the prescribed bottom topography above a given reference height, and g is
the gravitational acceleration.

Many such systems can be rewritten in the form
(2.2) Vi+c(V,2)V, =0
for some variable
(2.3) V=V({U,x),

which we would like to call the equilibrium variables, since constant V' implies
a stationary state.

Note that constant V' does not imply that U is constant, since V' depends
also on x through the variable function b. Therefore, one should expect non-
trivial steady states.

For shallow water, the equilibrium variables are V (U, z) = (m, E), where
the equilibrium energy F is given by

m2
(2.4) EU,b) = o2 +g(h+0b).

In the following we describe various classes £ of stationary states.

Example 2.1 - (1) The class of all steady states, &;t.
(2) Smooth steady states Esmooth-

(3) Conservation laws: Here s(U,b) = 0 and f(U) = const. Stationary states
include

050

e £ = two constant states separated by a stationary shock or contact.

constant states.



e & = gas dynamics with zero velocity, constant pressure, and any bounded

measurable function for the density.

(4) Steady states for 1D scalar balance laws.

(5) 1D shallow water equations:

e The lake at rest £4r, where m = 0 and hence E = g(h + b) = const.
e Smooth river flows &,;yer, where m is nonzero.

o Waterfalls Eyqterfau (discontinuous river flows)

6) Separable source terms studied in [36].

(
(7) Geostrophic jets Eje; for 2D shallow water, where (u,v) = (u(y),0), g(h +

b)y = fu and f is the coriolis force in the upper hemisphere.

(8) Multi-layer shallow water: Oceans at rest and moving oceans.

Remark 2.1 - (1) There are many more classes of steady states, especially in
2D.

(2) It is important to note that most well-balanced schemes are designed to
preserve only a certain subclass of steady states exactly. Other steady states

may be preserved approximately within a certain order of accuracy.

Section 3 treats steady states for which the source terms are separable in
the sense of (3.4). This includes the lake at rest as a prototype. The main
tool is the construction of a well-balanced class of finite difference operators.
In Section 4 we outline a well-balanced finite volume approach. While the
framework in Subsection 4.1 covers in principle all steady states, we carry out

the specific steps for moving water flows in Subsection 4.3.

2.2. The residual

Let us again consider the system of balance laws (1.1). We are particularly
interested in solutions close to steady states, where U; = 0. Therefore, we

introduce the residual

(2.5) Ri=—f(U), + s(U, ).



Note that
(2.6) U =R,

and the solution U deviates from steady state if and only if R # 0.
In Section 3 we will study a class of separable steady states satisfying (3.4).

This assumption implies that
(2.7) R=(=f(U)+t{U z))e

for stationary solutions, where ¢(U,x) is determined by s(U,z). Using this
structure, we construct high-order accurate well-balanced finite difference op-
erators.

In Section 4 we focus on finite volume schemes and hence consider cell
averages R; of the residual. Well-balanced quadratures are constructed for the

regular and singular parts of these integrals.

3. Schemes based on well-balanced finite difference operators

In this section, we focus on a class of steady states for which the source
term is separable in the sense of Assumption 3.2. We develop well-balanced
high-order accurate finite difference operators for the residual. Based on these
difference operators, we derive well-balanced finite difference, finite volume and
discontinuous Galerkin schemes. The steady states under consideration include
the lake at rest for the shallow water equations.

The one-dimensional hyperbolic system of conservation laws with source
terms under consideration is given by (1.1). We start the discussion by present-
ing the well balanced finite difference scheme. The extension to finite volume
and DG schemes is shown in the following subsections. Only one-dimensional
balance law (1.1) is investigated in this section, although the generalization to

the multi-dimensional case
(3.1) Ui+ f(U,z,y)z + 9(U,3,y)y = s(U,z,y)

can be done in some situations. For example, we can easily generalize the
proposed technique to the two-dimensional shallow water equations with lake

at rest steady state.



3.1. Finite difference scheme

We first consider the case that (1.1) is a scalar balance law. The case of
systems will be explored later. We are interested in preserving exactly certain
steady state solutions U of (1.1):

(3.2) F(O)z = s(U, x).

We make two assumptions on the equation (1.1) and the steady state solution

U of (3.2) that we are interested to preserve exactly.

Assumption 3.1. The steady state solution U of (3.2) that we are interested
to preserve satisfies

(3.3) V(U,x) = constant
for a known function V (U, x).

Note that in [34, 35, 36] the equilibrium variables have been denoted by
a(U, z) instead of V (U, x).

Assumption 3.2. The source term s(U,x) in (1.1) can be decomposed as

(3.4) s(U,x) =Y sV (U,2)) ti(x)

i
for some functions s; and t;.

We will design a numerical scheme which can preserve exactly the steady
state solutions U which satisfy Assumption 3.1, for a balance law (1.1) with
a source term satisfying Assumption 3.2. We remark here that the shallow
water system with a lake at rest steady state satisfies these assumptions, and
will comment on this later in this subsection. The key idea to achieve a well-
balanced scheme, is to decompose the source term as in Assumption 3.2 and to
first design a linear scheme with an identical numerical approximation operator
for the flux derivative and the derivatives in the decomposed source terms, when
applied to the steady state solution that we would like to balance.

We define a linear finite difference operator D to be one satistying D(a f1 +
bf2) = aD(f1) + bD(f2) for constants a, b and arbitrary grid functions f; and
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f2. A scheme for (1.1) with a source term given by (3.4) is said to be a linear
scheme if all the spatial derivatives are approximated by linear finite difference

operators. Such a linear scheme would have a truncation error

Do(f(U) = 3 s:(V(U,2)) Di(t:(a))
i
where D; are linear finite difference operators used to approximate the spatial
derivatives. We further restrict our attention to linear schemes which satisfy

(3.5) Dy=Dy=---=D

for the steady state solution. Notice that we only require that the finite dif-
ference operators become identical for the steady state solution that we are
interested to preserve, for general solutions these finite difference operators can

be different. For such linear schemes we have

Proposition 3.1. For the balance law (1.1) with its source term given by
(3.4), linear schemes with (3.5) for the steady state solutions satisfying (3.3)

can preserve these steady state solutions exactly.

The proof of this result is rather straightforward and can be found in [35].

We now already have high-order well-balanced schemes for the balance laws
under consideration. However, these schemes are linear, hence they will be os-
cillatory when the solution contains discontinuities. We would need to consider
nonlinear schemes, namely schemes which are nonlinear even if the flux f(U)
and the source s(U,z) in (1.1) are both linear functions of U, for example,
high-order finite difference WENO schemes [3, 17, 21]. Next, we will use the
fifth order finite difference WENO scheme as an example to demonstrate the
basic ideas. We will not give the details of the base WENO schemes, and refer
to [17, 30] for such details.

To present the basic ideas, we first consider the situation when the WENQO
scheme is used without a flux splitting (e.g. the WENO-Roe scheme as de-
scribed in [17]). We notice that the WENO approximation to d, where d =

f(U) can be eventually written out as

(3.6) dyl ey, ™ > ardit; = Da(d);
k=—r
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where r = 3 for the fifth order WENQO approximation and the coefficients ay,
depend nonlinearly on the smoothness indicators involving the grid function
d. The key idea now is to use the finite difference operator Dg with d = f(U)
fixed, namely to use the same coefficients aj obtained through the smoothness
indicator of d, and apply it to approximate t;(x) in the source terms (3.4).
Thus -
ti(w;) = Y arti(zry) = Da(ti(@)); -
k=—r

Clearly, the finite difference operator Dg, obtained from the high-order WENO
procedure and when d = f(U) is fixed, is a high order accurate linear approx-
imation to the first derivative for any grid function. Therefore the result of
Proposition 3.1 is still valid and we conclude that the high-order finite differ-
ence WENO scheme as stated above, without the flux splitting, and with the
special handling of the source terms described above, maintains exactly the
steady state.

Now, we consider WENO schemes with a Lax-Friedrichs flux splitting, such
as the WENO-LF and WENO-LLF schemes described in [17]. Here the flux
f(U) is written as a sum of f+(U) and f~(U), defined by

(3.7) FHU) = 3 [F(U) & aU]

82([5]) ‘ with the maximum being taken over either a local re-

gion (WENO-LLF) or a global region (WENO-LF), see [17, 30] for more details.
We now make a modification to this flux splitting, by replacing +aU in (3.7)
with +asign (%) V(U,z). We would need to assume here that %

does not change sign. The constant « should be suitably adjusted by the size
Of 8V(U,I)
U

where o« = maxy

in order to maintain enough artificial viscosity. The term V (U, z)
can also be replaced by p(V (U, z)) for any function p, whose choice should be
such that p(V (U, z)) is as close to U as possible in order to emulate the orig-
inal LF flux splitting with +aU. This modification does not affect accuracy,
which relies only on the fact f(U) = f*(U) + f~(U). For the steady state
solution satisfying (3.3), the artificial viscosity term +« sign (%) V(U,z)

(or fasign (W) p(V(U,z))) in the Lax-Friedrichs flux splitting be-

comes a constant, and by the consistency of the WENO approximation, the
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effect of these viscosity terms towards the approximation of f(U), is zero.
The flux splitting WENO approximation in this situation becomes simply
frHU) = %f(U), hence the steady state solution is preserved as before, if
we simply split the derivatives in the source term as:
/ 1 !/ 1 /

(3.8) ti(x) = 5151(33) + §ti(x)a

and apply the same flux splitting WENO procedure to approximate them with
the nonlinear coefficients aj, coming from the WENO approximations to f*(U)

respectively. This will guarantee (3.5). We thus obtain

Proposition 3.2. The WENO-Roe, WENO-LF and WENO-LLF schemes as
implemented above are exact for steady state solutions satisfying (3.3) and can

maintain the original high-order accuracy.

We now discuss the system case. The framework described for the scalar
case can be applied to systems provided that we have certain knowledge about
the steady state solutions to be preserved in the form of (3.3). Typically, for a
system with m equations, V is a vector, and we would have m relationships in
the form of (3.3):

(3.9) Vi(U,x) = constant, . Vin (U, x) = constant

for the steady state solutions that we would like to preserve exactly. We would
then still aim for decomposing each component of the source term in the form
of (3.4), where s; could be arbitrary functions of V4 (U, x),- -, Vin(U,x), and
the functions s; and t; could be different for different components of the source
vector. The remaining procedure is then the same as that for the scalar case
and we again obtain well balanced high-order WENO schemes. We should
also mention that local characteristic decomposition is typically used in high-
order WENO schemes in order to obtain better non-oscillatory property for
strong discontinuities. When computing the numerical flux at Tig 1, the local
characteristic matrix R, consisting of the right eigenvectors of the Jacobian at
U

procedure does not alter the argument presented above for the scalar case. We

1 is a constant matrix for fixed 7. Hence this characteristic decomposition

refer to [34] for more details.
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The shallow water equations (1.1)—(2.1) take the form
1
(hu)y + (hu2 + §gh2) = —ghb,,

x

(3.10)

The lake at rest solution satisfies (3.9) in the form
(3.11) Vi=hu=0, Vo = h + b = constant, .

The first component of the source term is 0. A decomposition of the second

component of the source term in the form of (3.4) is
1
(3.12) —ghby, = —g (h+b) by + 39 (%),

ie. 51 =s1(V2) = —g(h+D), s2 = g, t1(x) = b(x), and ty(z) = b*(z), which
satisfies Assumption 3.2. Hence, the technique designed above can be used to
obtain high-order well-balanced finite difference scheme for the shallow water
equations with lake at rest solution (3.11). Two dimensional version of the
shallow water equations can also be handled by the same technique [34, 36],
and are not shown here. Some numerical results will be shown in Section
5 to demonstrate the good properties of these well-balanced high-order finite

difference schemes.

3.2. Finite volume scheme

Following the idea of obtaining well-balanced schemes by decomposing the
source terms, as shown in Section 3.1, we generalize finite volume WENO
schemes to obtain high-order well-balanced schemes. The crucial difference
between the finite volume and the finite difference WENQO schemes is that
the WENO reconstruction procedure for a finite volume scheme applies to
the solution and not to the flux function values. As a consequence, finite
volume schemes are more suitable for computations in complex geometry and
for using adaptive meshes. The details of the finite volume WENO schemes
can be found in [17, 27, 30]. However, because of a different computational
framework, the maintenance of the well-balanced property requires different

technical approaches.
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The main idea in the previous subsection to design a well-balanced high-
order finite difference WENO scheme is to decompose the source term into a
sum of several terms, each of which is discretized independently using a finite
difference formula consistent with that of approximating the flux derivative
terms in the conservation law. We follow a similar idea here and decompose
the integral of the source term into a sum of several terms, then compute each
of them in a way consistent with that of computing the corresponding flux
terms. We first consider the case that (1.1) is a scalar balance law. The case
of systems will be explored later.

Similarly, we make some assumptions on the equation (1.1) and the steady

state solution U of (3.2) that we are interested to preserve exactly:

Assumption 3.3. The steady state solution U of (3.2) that we are interested

to preserve satisfies

U + p(x)

= constant
q(z)

(3.13) V(U, )

for some known functions p(x) and q(z).

Assumption 3.4. The source term s(U,x) in (1.1) can be decomposed as

(3.14) s(U,z) =Y s;(V(U,x)) t(x)

J
for some known functions s; and t;.

Note that Assumption 3.3 given here is more restrictive than that in Section
3.1, due to the additional difficulties related to the finite volume formulation.

We consider the semi-discrete formulation of the balance law

d - 1
a0 = Ay

(3.15) —

W) = FUlee )t + 5 [ s

2

The time discretization is usually performed by the classical high order Runge-
Kutta method. Before stating our numerical scheme, we first present the pro-
cedure to reconstruct the pointwise values by the WENO reconstruction pro-
cedure, and then decompose the integral of the source term into several terms,

with the objective of keeping the exact balance property without reducing the
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high-order accuracy of the scheme. The scheme is then finally introduced with
a minor change on the flux term, compared with the original WENO scheme.

The first step in building the algorithm is to reconstruct Ulfr% from the
given cell averages U; by the WENO reconstruction procedure, which are high
order accurate approximations to the exact value U(z; 1). It can be eventually

written out as

T r—1
(3.16) U:F% = Z wkUHk = S;—;(U)“ U;r% = Z @kUi-i-k = 55(0)1
k=—r+4+1 k=—r

where r = 3 for the fifth order WENO approximation and the coefficients
wy, and wy depend nonlinearly on the smoothness indicators involving the cell
average U. Here we obtain a linear operator Sg(v) (linear in v) which is
obtained from a WENO reconstruction with fixed coefficients w;, calculated
from the cell averages U. A key idea here is to use the linear operators S’g (v)

and apply them to reconstruct the functions p; and ¢;. Thus

T r—1
Pl =55 ()i = Z WiPitk,  Pi1 =S5(P)i = Z WkPitk

k=—r+1 k=—r
T r—1

(3-17)%7;% =SH@i= Y wkGisk, G =S5(@i = > dkGig
k=—r+1 k=—r

With the reconstructed values pil and qil, we obtain the pointwise value
2 2
N U:fr N ﬂoii+l
of V(U,{E) by V(Ua I)i+l = %
2 S 1
z+§
order accurate pointwise approximation to the function of p(z) and ¢(z) at

Clearly, pi% and qi% are high-

the cell boundary Tig1 Hence, V (U, x);il is a high-order approximation to
2

V(U(J;i-‘r%)? $i+%)-
Now assume that U is the steady state solution satisfying (3.3), namely

V(U,z)=c & U+ p(x) = cq(x)

for some constant c. If the cell averages U;, p; and ¢; are computed in the same
fashion (e.g. all computed exactly, or all computed with the same numerical

quadrature) from U, p(z) and ¢(z), then we clearly also have

Ui +pi =cq;
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for the same constant c. Since the reconstructed values U™ 1, p,i , and q.i , are
B i+ 3 i+5 i+3
computed from the cell averages U;, p; and ¢; with the same linear operators

S=(v), we clearly have
+ + .+
UH% +pi+% =Ca
for the same constant ¢, that is,

(3.18) V(U )

=C

[SIE

for the same constant c¢. This is an important fact to design the well-balanced

schemes.

Clearly, for a steady state solution U satisfying Assumptions 3.3 and 3.4,
)
)

d

o) - s @t | = @ - Y s v @
J J

= f(U)s —s(U,x) =0.

Therefore, f(U)—>_; s;(V(U,2))t;(z) is a constant. We would need to choose

suitably (tj);i-l’ which should be high-order approximations to ¢;(x;, 1) such
2

that

(3.19) f(Uli%) - Z s;(V(U, x);i%) (tj);i% = constant
J

for a steady state solution U satisfying Assumptions 3.3 and 3.4. We will
specify the choices of (tj)zil for the shallow water equations at the end of this
2

subsection.

Finally, we need to decompose the integral of the source term in the follow-
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ing way in order to obtain a well-balanced scheme

/h s(U,z)dx = Z /1 55 (V (U, 2))t) (z)dx

= > (% (Sj(V(U, ), 1)+ s (VU :v);r%)) /1 t(z)dx

J

+/1 <sj(V(U, r)) — % (Sj(V(U, x):i%) +5;(V(U, x)i;%))) t;(x)d:c)

i

= 5 (5 (VL) + 5 VO ) rlais) ~ o)

1
- 2
J

(3.20) +/1

i

(sj(V(U, z)) — % (Sj(V(U, )] )+ 5V, x);%))) t;(x)dx> .

The purpose of this decomposition is to ensure that the integral of the source
term equals the first term at the right hand side of (3.20) when V (U, z) = const,
as the last term disappears in this case.

Now we are ready to describe the final form of the algorithm

d - 1 . A 1
21 —U;(t) = — =)+ —8
(3 ) dtUl(t) Axi(f1+§ f17§)+ AZE,L'S“
with
(3.22)

=3 (5 (s @D D+ 5@ )) (Gl - Glis) +5)

where (fj)H% is a high-order approximation to t; (xi+%), whose definition will

be described below, and s; ; is any high-order approximation to the integral
1 _
329 [ (s0@) -5 (5@ )+ sV Wa),,)) )t b

The numerical flux fH% is defined by a monotone flux such as the Lax-
Friedrichs flux

(3:24)  FUL UL =5 [FUL )+ AU, - e, — UL )]

1
2
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We need to make a modification to this flux, by replacing oz(U;jrl -U..)

2 2
in (3.24) with assign(q(z))(V (U, :C):r% - V(U, x)i;%). The numerical flux now
becomes

(3.25)

fios = 5 [FU5) + FUF,,) — asiena@)(V(U,2)F,, ~V,2)7,,)].
We would need to assume here that g(x) in (3.3) does not change sign. The
constant « should be suitably adjusted by the size of le) in order to maintain
enough artificial viscosity. This modification does not affect accuracy. For the
steady state solution (3.13),

asign(q(z))(V(U, I);:_% - V(U, 3:);%) =0

because of (3.18). Hence, the effect of these viscosity terms becomes zero and

the numerical flux turns out to be in a simple form

1

=3 [/Wn + 1wl

(3.26) firy =3

Following this, we treat the approximation (tAj)H_% in (3.22) in a similar way:

(3.27) )iy = 5 (07 + )]

where, as mentioned before, (tj)l:,i% are high order approximations to t;(z;, 1)
satisfying (3.19). Note that we implement (3.27) for the general case, not only
for the steady solution. There is no viscosity term in the source term, compared
with the numerical flux (3.25).

For the remaining source term s; ;, we simply use a suitable high-order
Gauss quadrature to evaluate the integral. The approximation of the values
at those Gauss points are obtained by the WENO reconstruction procedure.
It is easy to observe that high order accuracy is guaranteed for our scheme,
and even if discontinuities exist in the solution, the non-oscillatory property is

maintained.

Proposition 3.3. The WENO-LF schemes as implemented above with (3.21),
(3.22), (3.25) and (3.27) are exact for steady state solutions satisfying (3.13)
and can maintain the original high-order accuracy for general solutions.
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The proof of this result is rather straightforward and can be found in [36].
The extension to the system case follows the same idea as that for the well-
balanced finite difference schemes.

For the shallow water equations (3.10) with a lake at rest steady state
solution (3.11), we take the same decomposition of the second component of the
source term as in (3.12). We apply the WENO reconstruction to the function
(b(z),0)T, with coefficients computed from (h, hu)”, to obtain b™ , , and define

i1
it35

2
+ g+ £ _ (pE
(tl)i-i-% - bi+%’ (t2)i+% - (bi+l) ‘

2

Under these definitions and if the steady state h + b = ¢, u = 0 for some

constant ¢ is reached, we have
FUL) =D (Vwa)s,) )5,
J
. h c_ 1 b, ’ 1h_ b ht b )b
= go(hiy) —30(ny) oz Aoy +ony +al, w0l )0,
1 _ _ _ _ _
= g9 (kay +ong) (g =0y +oe,
1 _ _ _ 1,
= 39¢ (hH% —bH% —|—2bi+%) =359¢,
which is a constant. A similar manipulation leads to

1
+ _ + N 12
FU ) =Y s (VOa)fy) @)f, = 59
J
Hence the high-order finite volume WENO schemes can be designed following

the above idea for the shallow water equations.

3.3. Extension to discontinuous Galerkin scheme

We have successfully designed high-order well-balanced finite difference and
finite volume WENO well-balanced scheme for a class of hyperbolic balance
laws. In this subsection, we consider the generalization of these ideas to the
Runge-Kutta discontinuous Galerkin (RKDG) methods. Well-balanced high-
order RKDG schemes will be designed for a class of conservation laws satisfying

Assumptions 3.3 and 3.4. The basic idea is the same as that for the finite volume
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schemes, such as the technique of decomposing the source term and replacing
the viscosity term in the numerical fluxes, because the RKDG methods can be
considered as a generalization of finite volume schemes, even though they do
not require a reconstruction and evolve the complete polynomial in each cell
forward in time. The RKDG methods are therefore easier to use for multi-
dimensional problems in complex geometry, than the finite volume schemes, as
the complicated reconstruction procedure can be avoided. We refer to [8, 9, 10,
11, 12] for more details of RKDG methods.
The semi-discrete DG schemes for (1.1) take the form
flj O U (z, t)vp (z)dx — fl F(Un(x,t)0pvp(x )dz+fj+1vh( i+ 1)

(3.28) 1op( f[ (Un(z,t),t)op(x)dx

j__

(3.29) / Uy (z,0)vp(x)dx = / Uo(x)vp (x)dx.

First, we define a high-order approximation V, (U, z) = % to V (U, x),
where p;, and g, are L? projections of p and ¢ into V}, see (3.29) for such a
projection. Now assume that U is the steady state solution satisfying (3.3),

namely
U(z) +p(z) = cq(x)

for some constant ¢, and U), is the L? projection of this steady state solution.

Clearly, since the L? projection is a linear operator,

Un(x) + pa(z) = cqn(x)
for the same constant ¢ at every point x. This implies

Vh(Uh,CL') = 7[];1(.%') +ph($) =cC

an ()
For such steady state solution U satisfying Assumptions 3.3 and 3.4, we
have

(% FU) - Zsj(V(U, x))ti(x) | =0.

J
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We would need to suitably choose a function (¢;)5,, which should be a high-order
approximation to ¢; and should satisfy the condition

(3.30) F(UR(z)) — Z $i(Va(Un(x), x))(t; )n(x) = constant
J
for all z. The construction of (¢;);, will be shown for the shallow water equations
in the end of this subsection.
Similar to the decomposition of the source term in the well balanced finite

volume schemes (3.20), we decompose the integral of the source term on the
right hand side of (3.28) as

/S(Uh, x)vpdx
= (% V (Up, ) )—|— s; (V(Uh,x);%)) /1 th(x)opd

+

R

—

<Sj(V(Uh,3:)) — % ( (V (U, ) ) + s (V(Uh,x)i;%))) t;(x)vhd:c)
( V (U, ) )-I—SJ(V(Uh,x);L%))

N =

. PN
S

sy onter )~ (o Jontaly) - [ i)

i

+/Ii <8j(V(Uh,:c))—%( \(V(Un, @) )+S;(V(Uh,w)i_+%)))t;(:t)vhd:v>.

We then replace this source term with a high-order approximation of it given
by

—_

> (e

J

(ViU )7 ) + 5 (VaUn,2) 7, )

N

(@i yontony) = G yontol ) - [ o)

1
2 .
i

+/Ii (sg‘(Vh(Uh,:v)) ;(SJ(Vh(Uha x)h )-i-sJ(Vh(Uh, x), 2))>t;(x)vhdx)

where (fj)hﬂqr% is a high-order approximation to t;(z;, 1), whose definition
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follows (3.25) and (3.27) from Section 3.2

1
2

N =

fix

1
2

(idnies = 3 (s ) + Wl )]

Usually, we perform the limiter on the function Uj, after each Runge-Kutta
stage. Now, our purpose is to maintain the steady state solution U which satis-
fies V(U, x) = constant. The above limiter procedure could destroy the preser-
vation of such steady state, since if the limiter is enacted, the resulting modified
solution U, may no longer satisfy V},(Uy, x) = constant. We therefore propose
to first check whether any limiting is needed based on the function Vj,(Up, )
in each Runge-Kutta stage, where the cell averages of V},(Up,x) (needed to
implement the TVB limiter) are computed by a suitable Gauss quadrature.
If a certain cell is flagged by this procedure needing limiting, then the actual
limiter is implemented on Uy, not on V3, (Up, z). When the limiting procedure
is implemented this way, if the steady state U satisfying V (U, z) = constant is
reached, no cell will be flagged as requiring limiting since V},(Up, ) is equal to
the same constant, hence Uy, will not be limited and therefore the steady state
is preserved.

This finishes the description of the RKDG schemes. We can clearly observe
that the accuracy is maintained (see Table 7 in Section 5). We also state below
the proposition claiming the exact preservation of the steady state solution

(3.3). The proof is straightforward and is therefore omitted.

Proposition 3.4. The RKDG schemes as stated above are exact for steady
state solutions satisfying (3.13) and can maintain the original high-order accu-

racy for general solutions.

The extension of the well-balanced high-order RKDG schemes to the system
case follows the same idea as that for the well-balanced finite volume schemes.
For the shallow water equations (3.10) with a lake at rest steady state

solution (3.11), we can easily verify that the definitions of (¢;)n,

(t)n(z) =bn(x),  (t2)n(z) = (ba(@))?

(W) + FO} ) = asign(a(@) (Vi Un o)}, Vi), )]
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where by, (z) is the L? projection of b(z) to the finite element space Vj, lead to

£ = 35 (Vi U, a)) (t)n = 59¢*

when the steady state h + b = ¢, u = 0 is reached, satisfying our requirement.

A new approach to obtain well balanced methods, by calculating the source
term exactly at the steady state, was introduced for RKDG methods to save
computational cost in [37]. The traditional RKDG methods are shown to be
capable of maintaining certain steady states exactly, if a small modification
on either the initial condition or the flux is provided. We refer the interesting
reader to [37]

4. Schemes based on well-balanced quadrature

In this section, we follow [24] and develop an alternative approach to well-
balancing. It is based on well-balanced quadrature rules for cell averages of
the residual defined in (4.1) and leads to a high-order accurate finite volume
scheme which is well-balanced for moving water steady states.

The section is organized as follows: Based on the residual of the balance
law introduced in Subsection 2.2, we define (in Subsection 4.1) a general class
of semidiscrete finite volume schemes and give a definition for such schemes
to be well-balanced for a steady state V. For each building block of these
schemes - the piecewise smooth reconstruction of the data, the quadrature of
the regular part of the residual in the interior of the cells, and the reconstruction
of the singular part of the residual at the cell interfaces - we define a notion
of well-balancing (Subsection 4.2). Theorem 4.1 states that these conditions
guarantee that the overall scheme is well-balanced. In Subsection 4.3 we realize
this general program using equilibrium reconstructions. In particular, we treat
the 1D shallow water equations as a prototype and consider the lake at rest,
river flows and waterfalls aligned with the grid. Except for discontinuities which
are not aligned with the grid, we can therefore balance general 1D steady state
solutions for the shallow water equations. Many of the techniques presented
here can be adapted to other classes of balance laws. In Subsections 4.4 4.5

we discuss some interesting aspects of related schemes.
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4.1. Framework of the finite volume discretization

Here we consider a general balance law in the form (2.6). Let

1
Az /11 Ul(z,t)de
— 1
(4.1) R;(t) =~ Ao /1 R(z,t) dx

i

Uz, t) ~

be approximate cell averages of the solution and the residual. Then we consider

semidiscrete schemes of the form

Definition 4.1. The scheme (4.2) is well-balanced for a steady state V if

(4.3) R;=0 fori=1,...,N

whenever the original data are in steady state, i.e.

(4.4) V(U,x) =V = constant.
Remark 4.1 - (1) Such schemes have also been called exactly well-balanced in
the literature, in order to distinguish them from approximately well-balanced

schemes, for which
(4.5) R; = O(AxP)

for steady state data (4.4), where p should be higher than the order of consis-

tency of the overall scheme.

(2) Since the solution U and also the topography b may be discontinuous, we
consider R to be a bounded Borel measure over Q, i.e. R € M(£). In general,
R has both regular and singular parts with respect to Lebesgues’ measure, and
therefore it is not straightforward to give meaning to the integral in (4.1), or to
define a consistent quadrature for this integral. However, these difficulties can-
not and should not be avoided, and we believe that discussing them directly in
terms of measures makes the presentation of several recent well-balanced finite

volume schemes most transparent. This point of view is closely related to the
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work on non-conservative products of measures in [13, 26|

(3) We begin with schemes which are semidiscrete in time. Later, we will
use Runge-Kutta time discretizations as in [15, 29, 31] to derive fully discrete

schemes.

As is well known from conservation laws, the difficulty in discretizing (4.2)
arises from discontinuities in the solution. If the flux function f is nonlinear,
the solution U will develop shocks in finite time. For stationary shocks f(U) is
continuous due to the Rankine-Hugoniot condition, so U; = 0 at the shock. If
the shock is unsteady, then f(U), and hence U; become a Dirac measure, and
U(z,t) jumps as the shock passes by.

For balance laws, it is desirable to treat also discontinuities in the data b,
which may be given either by the problem itself or by the discretization.

In general, discontinuities in the flux f(U) or the data b will lead to singular
parts in the measure R. The term f(U), can be treated classically via the
theory of weak solutions of conservation laws. Singularities in the source term
are less well understood.

4.2. Regular and singular parts of the residual

In order to evaluate the integral on the RHS of (4.1), we split R into its

regular and singular parts with respect to Lebesgue measure dzx,
(4.6) R = Ryeq + Rsing-

Analogously, we split the cell averages of the residual via

(4.7) R, =R +R.,

We assume that the singular parts of the residual are concentrated at the cell
i

interfaces, and decompose Rsing into
=i =i—1/2+ | i+1/2—
(48) Rsing = Rsing + Rsing ’
S0
= i =i—1/2+ | i+1/2—
(49) Rl = Rreg + Rsing + Rsing
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and

d T 7 -
2T =Ry + Ry + Ry’

For the rest of Section 4, we give an overview how to treat the regular and the

(4.10)

singular components of the residual on the RHS of (4.10). In Theorem 4.1,
we give general sufficient conditions which guarantee that the scheme (4.10) is
well-balanced for a steady state V. In Subsection 4.3, we discuss a number of

schemes and steady states for which these conditions are satisfied.
4.2.1. The regular part of the residual

Suppose that

(4.11) Ulz) ~ U(zx)

(4.12) b(z) ~ b(x)

are piecewise smooth reconstructions of the cell averages U;, b; over the cells
I;. Let a:z(-l) ...xl(p) be quadrature points within cell I;, to be used in the
quadrature (4.15) below. In Subsection 4.3 we will develop reconstructions

with the following property:

Definition 4.2. Suppose that the original data (U, b) are in steady state, i.e.
(4.4) holds for some steady state V. Suppose furthermore that (U;,b;) are the
cell averages of the data (U,b). Then the reconstruction (U,b) of (U,b) is well-
balanced for the steady state V and the quadrature points zz(-l) . ..xl(»p) e I;
if

(4.13) V() =v(OE),b@z?) =V for j=1...p.
In analogy to (2.5), let
(4.14) R:=R(U,b) = —f(U) + s(U,b)

be the approximate residual. Let

(4.15) Zw] (J) AL / R(z)dz
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be a quadrature of the approximate residual R over the interior of cell I; and
let

7 ~

(4.16) R,., = K(R: I).

We will study quadratures with the following property:
Definition 4.3. The quadrature (4.16) is well-balanced for the steady state
V if

(4.17) Rl =0

reg

for all (U,b) which satisfy (4.13).

4.2.2. The singular part of the residual

We now turn to the singular part of the residual. Let us focus upon an interface
Tiy1/2. For infinitesimal small e, we introduce a boundary layer (z;41/2 —
€,%i+1/2 +¢). Within this layer, we construct bounded continuous functions

U.(y) and b.(y), where y = z — T;y1/2. The boundary values are

(4.18) U.(e) = U(wig1/0E) = Ui:il/2
(4.19) be(e) = b(wip1/0%) = by o

where U and b are the piecewise smooth reconstructions from (4.11), (4.12).

Now we define the singular parts of the residual on the RHS of (4.10) via

0
—itl/2— 1 [ o
(4.20) Riing = lim = [ Re(y)dy
—E&
g
—it1/2+ .1 [«
(4.21) Ryng~ = lim E/Rs(y)dy,
0

where

(4.22) Re(y) == R(Us (¥),b:(y))-
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Definition 4.4. The approximation (4.20)—(4.21) of the singular parts of the

residual is well-balanced for the steady state V' if

(4.23) Vitijom = Vigrjoy =V
implies
(4.24) R =R~

4.2.3. The general well-balancing theorem

So far we have introduced a notion of well-balancing for each building-block of
the semi-discrete finite volume scheme. Combining them we can immediately
established the following theorem:

Theorem 4.1. Consider the scheme

d— —i —i—1/24  —=i+1/2—
(425) EUl (t) = Rreg + Rsing + Rsing ’
=i . . —i+1/2— —i—1/2+4 .
where R, is given by (4.16), R, by (4.20) and R, by (4.21) with

i replaced by (i — 1). Suppose that for a constant steady state V, the recon-
struction (U,b) in (4.11), (4.12), the quadrature (4.16) and the approximate
singular residua are well-balanced according to Definitions 4.2, 4.3, and 4.4.
Then the scheme (4.25) is well-balanced for the steady state V in the sense of
Definition 4.1, i.e.

4
dt

This finishes our general discussion of well-balanced schemes. In the next

(4.26) U;(t) =0.

subsection, we will construct several schemes which fall into the framework out-
lined in Theorem 4.1, among them the recent second order scheme of Audusse
et al. [1] and the high-order schemes of Castro, Pares et al. and the authors
[5, 23, 24].

4.3. Realization via equilibrium reconstructions

In this section we will show that some recent schemes fall into the framework

outlined in the previous section. In Subsections 4.3.1 4.3.3, we will therefore
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verify the well-balancing properties for the reconstruction, the quadrature, and
the singular layer as introduced in Definitions 4.2, 4.3 and 4.4. Once this has
been done, Theorem 4.1 implies that the overall schemes are well-balanced

according to Definition 4.1.

4.3.1. Smooth reconstruction in the cell interior

Hydrostatic reconstructions in the cell interior

We begin with a so-called hydrostatic reconstruction that preserves the dis-
charge m and the waterlevel n = h+b. Here we follow Audusse et al. [1]. They
begin the reconstruction process by reconstructing the discharge m, the water
level n and the bottom b. Then in [1, (2.8)], they define the reconstructed
height as

(4.27) h(z) :=7j(x) — b(x).
Therefore, if the discharge and the water level are constant to begin with, they
will remain constant during the reconstruction. In particular, the lake at rest
(m =0, n = const) is preserved throughout the reconstruction. Let us mention
in passing that h as defined in (4.27) is later on truncated by Audusse et al.
in order to guarantee positivity of the water height. This is done in such a
way that the well-balancing relation (4.27) is preserved (see [1, (2.9), (2.13)]).
Therefore, the hydrostatic reconstruction is well-balanced for the lake at rest
according to Definition 4.2.
Equilibrium reconstruction in the cell interior
In [24, Sect.3.2] the authors devised a reconstruction which preserves all one-
dimensional steady states for the shallow water equation. While we refer to
that paper for the details, we would like to give the key idea in a nutshell.
Given cell averages (U;) and a bottom function b(z), we choose local reference
values V; of the equilibrium variables. These are defined implicitly by the
requirement that

1

(4.28) A

/U(Vi,x)d:c =U,.

I;

Let us pause for a moment and discuss this relation carefully: U(V,z) is the
inverse of V(U, ), i.e. U(V(U,z),z) = U. Relation (4.28) chooses V; as the

3
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unique (see the paragraphs preceding [24, Def.3.2]) local equilibrium such that
the corresponding conserved variables U(V;,b(z)) have the same cell average
U; as the numerical data. It is proven in [24, Def.3.2] that, if the data U(z)
and b(z) are in local equilibrium ( V(U(z),z) = V for all cells I; ), then the
reference equilibrium states V; computed via (4.28) coincide with the true local
steady state V.

The reconstruction is completed by limiting the reconstruction V(x) with
respect to the reference values V; (see [24, (3.18)]). The argument that our
reconstruction is well-balanced for all steady states is now straightforward: if
the data are globally in equilibrium (i.e. (4.4) holds for a global steady state
V), then V; = V for all cells, and the equilibrium-limiter [24, (3.18)] enforces
that V(z) = V.

A well-balanced reconstruction due to Castro, Pares et al.
In [5] Castro, Gallardo, Lopez and Pares start by computing V; as in (4.28).
This gives the low order accurate equilibrium reconstruction

U*(x) == U(Vy,b(z))

which is only based upon the values within the i*" cell. Let us keep i and
hence U* fixed. To find the high-order correction Castro et al. compute a

reconstruction polynomial
Qi(z) =pa|(;,U; = U;),j=i—k,...,i+k)

which interpolates the differences of the cell averages Uj and the cell averages
of the low order reconstruction U*. Note that Uj only coincides with ﬁ; if

j = 1. Finally Castro et al. reconstruct U by

Ui(z) == U (z) + Qi(z).

It is proven in [5] that this reconstruction is high-order accurate, and well-
balanced if V; = V for any i.

4.3.2. Well-balanced quadrature in the cell interior

In this section we start from the smooth, well-balanced reconstructions U, b

which we constructed in the previous section and derive well-balanced interior
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quadratures K (R, I;) (cf. (4.15)). Tn all of this section, we restrict ourselves to
the shallow water equations.

For conciseness, we use the following notation: suppose that
a,b: Q2 —R
are real-valued functions defined on our spatial domain. For a fixed cell I;, let
ab: I, >R

be smooth reconstructions over the interior of the cell. Then we denote the

difference and mean operators by

S A _ G (6 o
(4.29) Da =y jy = 7y o @ = (A0 + A7 /9)/2

For later use, we observe the discrete product rule of differencing

(4.30) D(ab) = a Db+ Dab.

Quadrature for the lake at rest
We begin with a widely used quadrature which is well-balanced for the lake at
rest (m = 0, h+ b= 7). For any smooth U, b

Tit1/2 Tit1/2
Rdo = [ (a(0), i) )i
Ti_1/2 12
Tiy1/2
(431) —-Dp@) -9 [ (B,
o

Therefore we need to define a quadrature for the integral of the source term.

We will use the two nodes :vl(-l) = xi,l/g,xgz) = x;41/2 and approximate both

b and h by linear functions. This gives

Tit1/2 ~ ~
~~ hi, + hl ~ g 7 7
(4.32) / (hby)(x)dx = w (biy1/2 — bi—1/2) = h Db
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Inserting (4.31) and (4.32) into (4.15) we obtain the quadrature
- —~Df2(0) — ghDb).
Az ( fo(U)—yg

A simple calculation shows that this is well-balanced for the lake at rest: If

(4.33) K(R,I) :

(4.34) mi_1/2 = Mip172 =0, Bifl/Q + Bifl/Q = 51‘+1/2 + iLz‘+1/2 =1,

%
(4.35)  —Dfa(U) = —%D (iﬁ) = —g hDh = —g hD(ij — b) = g hDb.
Plugging (4.35) into (4.33) we immediately obtain that
(4.36) K(R,I;)=0

for the lake at rest.

Quadrature for moving water steady states

In [24] we refined the quadrature (4.33) to include moving steady states. The
key observation is that

= mDa + uDim + ghDh
= mDi + aDm + hD(E — gb — 4%/2)
(4.37) = wDm + hDE — ghDb + (in — ha) Di.

Noting that 7 — ht = DhD1i/4, we obtain that

(4.38) Dfy(U) = @D + hDE — ghDb + iDﬁ(Dﬁ)Q.
Therefore, for a non-stationary steady state, where Dm = DE =0,
(4.39) —Dfy(U) — ghDb + iDB(D@)z =0.

As a consequence, the quadrature

(4.40) K(R, ;) := Az,

is well-balanced for general steady states in 1D. For smooth flows, the cubic

<_Df2((7) — ghDb + iDﬁ(DW)

correction term %DB(DQP is so small that it does not affect the order of the
quadrature rule. In [24] we showed how to limit this term when the jumps Dh

and Du are no longer of the order of the gridsize.
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4.3.3. Singular layers at the cell boundaries

In Subsection 4.2.2 we introduced a general framework of well-balanced singular
layers. It would be convenient if the equilibrium values are constant throughout
the singular layer. But this can be done only if fle/Q, = ~i+1/2+ =V. In
this case we set

(4.41) Us(y) = UV, b(y)),

where 135() is any smooth reconstruction of the bottom topography. From
(4.22) we immediately obtain that

(4.42) Re(y) = R(Ua(y)v éa(y)) =0.

In the general case, there is no straightforward construction of the residual in
the singular layer. However, we will mimic the construction (4.41) (4.42) as
much as possible in suitable parts of the interval [—¢, ¢].

For this we turn to the schemes proposed in [1, 6, 24], which are all related

as follows: The continuous piecewise linear topography is defined by the four

values y = —e, —¢/2,£/2, ¢, corresponding to the points Tit1/2 — & Tiy1/2 —
€/2,Tiy12 +€/2,%41/2 +¢. At these points our piecewise linear be takes the
values
R bE for =+
(4.43) be(y) =13 T2 Y
biv1i2  for  y==+e/2,

where the intermediate value near the interface lSiH/Q still needs to be deter-

mined. Certainly, it should be a suitable convex combinations of the values

T+
biv1/2
slightly differently in each of [1, 24, 6], and we will discuss this in the following

at the endpoints. This intermediate value of the topography was defined

subsection.

Adjacent to the interiors of the left and right neighboring cells, i.e. in the
intervals [—e, —e/2] and [¢/2, €], we keep the equilibrium values constant, and
define U, and R, via (4.41) (4.42). In [24] we have called the set [—¢, —£/2] U

[€/2, €], for which the residual vanishes, the equilibrium layer. By construction,
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the values U (+¢/2) are

g

(4.44) Us(—g) = U(V($i+1/2—),5i+1/2) = Ai+1/2—
~ £ ~ ~ ~
(4.45) Ua(g) = U(V($i+1/2+),bi+1/2) =t Uig1/24 -

Note that the function U(V,b) used in (4.44)—(4.45) depends strongly on the
particular steady state under consideration. For example it differs for the lake
at rest considered in [1] and the moving water treated in [24].

In the remaining interval [—5, 5], which we called convective layer in [24],
the topography is constant, ISE (y) = I;i+1/2. Therefore, as for the exact solution,

where

R(z) = =0, f(U()),
the approximate residual should reduce to a conservative flux difference. For
this, we define an approximate flux fg(y) as follows. In the center y = 0, the
flux will be an approximate Riemann solver f(Ui+1/2_, Ui+1/2+), and at the
endpoints y = +¢/2, it takes the values f(ﬁH_l/Qi). In between, f. may be

any continuous function, e.g. piecewise linear. Then we set

(4.46) R.(y) == =0, f-().

From here, we can easily evaluate the singular parts of the residual in (4.20)—
(4.21) and obtain

—it1/2— s . R
(4.47) Rying = —fUiy172—Uir1y24) + f(Uig1/2-)
—it1/2+ - oo .
(4.48) Ryng = —fWUis1y24) + f(Uit172—, Uir1/24)-

Lemma 4.1. The approximation (4.47) (4.48) of the singular parts of the
residual is well-balanced in the sense of Definition 4.4.

Proor  Since the residual vanishes in the equilibrium layer, it is sufficient
to show that
(4.49) Uit1/2— = Uiy1/24,

since then

(4.50) FUis12-) = FUis1)o—: Uiprjo4) = F(Uit10+)
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and, from (4.47)—(4.48),

(4.51) JiH2- it/

sing — *lsing

=0.

So suppose that we are in local equilibrium in the sense of Definition 4.4, i.e.

VZ+1/2, =Viji204 = V for some steady state V. Then

(4.52) Uit1ja- = Uiy120 = UV, biy1/2),

which is (4.49). O
4.4. On the choice of the intermediate bottom l;i+1/2

Now we focus upon an interface x;; /o and the two values bt 127 which
represent the jump of the bottom at the cell interface. We require that the

intermediate value b; /o satisfies

(4.53) mln{bz+1/2, l+1/2} < bz+1/2 < max{bl+1/2, ZJr1/2}

In [1, (2.9)], Audusse et al. choose

(4.54) bz+1/2 = max{b i+1/2) b; +1/2}

Together with an appropriate CFL restriction and a suitable flux function,
(4.54) guarantees positivity of the waterheight. It has been used by various
authors, including the present authors, and we consider it to be the standard
choice.

However, there is an important case which suggests that the standard choice
should sometimes be replaced. While the choice of Audusse et al. is particularly
useful at the shore of a lake with subcritical velocity, we consider the rather
different situation of a waterfall in steep, fast mountainous rivers (see [24] for
details). In Figure 1 we show this stationary moving water flow. The water
flows in supercritically from the left until it hits a steep (or even discontinuous)
descent. Flowing down, the water accelerates. Due to conservation of mass the
water height decreases until the flow becomes critical. It is then stopped by a
stationary shock, or bore. Behind the shock, the water moves on slowly with

subcritical velocity.
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Figure 1 Waterfall: a (finitely or infinitely) steep slide followed by a stationary shock.
Dashed line: bottom topography. Circles: Water surface.

We obtain the same solution for the Riemann problem with discontinuous
bottom. The interesting observation is that the hydrodynamic problem (the
stationary shock) is resolved at the bottom of the topography, so we should
replace (4.54) by

(4.55) Bi+1/2 = min{z’;+1/2al~’;;1/2}'

In [6], Castro, Pardo, and Parés formulate well-balanced schemes with a general
choice of l;i+1/2 satisfying only (4.53). The optimal choice of Bi+1/2 remains an
open problem, which seems to be closely related to the non-uniqueness of the
Riemann problem, see |7, 18]. Meanwhile we recommend to use (4.54) since it

is positivity preserving.
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4.5. A note on the conservative character of the fluxes.

In discussions of recent well-balanced schemes, it was argued that the nu-
merical fluxes in [1, (2.15)] were not conservative (see [20] for the definition
of conservative numerical fluxes). We would like to clarify this point: In our

notation (see (4.2)), the first order scheme of Audusse et al. reads
d— — — — —
(4.56) Aw; EUi(t) =F(Ui,Uit1,bi, bip1) = Fr(Ui—1, Ui, bio1, b)) = Az Ry

with fluxes [1, (2.16)]

(4.57) FolUi1, Ui bi1,bi) = f(U-1,T;) +

(4.58) Fi0Tig1,0i,0041) = f(U;, i) +

%hzz - %hffl/u

O )
%h’zz - %h§+1/27

Indeed,
Fr(Uiz1,Usbic1,bi) # Fi(Ui—1,U;, b1, b;),

so these fluxes are not conservative in the sense of the Lax-Wendroff theorem.

Let us compare this to the scheme (4.10) derived in this section:

(4.59) %Ui(t) S AR i e ity

From (4.16), (4.47) and (4.48)

(4.60) Az E:eg = —fUis12-) + f(Uiz1j21) + D St eg
(4.61) Az Eijrig/2_ = —f(Uis1)2—, Uit124) + fF(Uit1)2-)
(4.62) Az Ei;nlg/wr = _f(Uifl/QJr) + f(Uifl/qu Ui71/2+)7

where the regular part of the source term is given by

(4.63) Ax; S, =— ),
g gthbl

Setting
Dfi = f(Ui1y2— Uitr724) = fFUic172—, Ui—1/24),
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the scheme (4.59) reads

(464)  Da LT0) = —Dfi+ fOrrjos) — F(Tr 150

dt
+ [f(UiH/z—) - f(Uz'H/z—)] + Aw; S’ieg'

Following the arguments in [1, 24] or the present paper, one can check that the
schemes defined by (4.64) and (4.56) coincide. However, the curious noncon-
servative flux differences appear also in the form (4.64). We will now show that
the two flux differences in the square brackets are precisely the singular source
terms in the left and right equilibrium layers, where the source term jumps.
From (4.22) and (4.42) we know that the residual vanishes in the equilibrium
layer. More precisely, it consists of a non-zero flux difference and a non-zero

source term which balance each other:

(4.65) Na; R = —f(Uic1jo4) + f(Uis1y24) + D Sl _

equil sing
(466) AIi RZ:5527 = _f(Ui+1/27) + f(U'H»l/Qf) + Al’l 52;19/27 =0.
Therefore,
(4.67) 225 Siid ™ = FUi1y24) = F(Ui1/24)
(4.68) Aw S;:’;zlg/z_ = fUir12-) = f(Uis1j2-)
and the scheme (4.64) can be rewritten in the natural form

d— —i— — —i _

(4.69) ZUi(t) = —Dfi+ Day (Ssmlg/ 8, + S0 )

which clearly distinguishes conservative flux differences, regular and singular

source terms.
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5. Numerical examples for the shallow water equations

We have successfully designed high-order well-balanced schemes by differ-
ent approaches. In Section 3, high-order well-balanced finite difference, finite
volume and RKDG schemes are designed for a class of hyperbolic balance laws,
which include the shallow water equations with the lake at rest steady state.
The key idea towards the well-balanced property is a special decomposition of
the source term. Fifth order finite difference, finite volume WENOQO schemes
and third order finite element RKDG scheme are implemented, and we denote
them by FD5, FV5-D (D for well-balanced finite differencing) and RKDG3 re-
spectively. In Subsection 4.3, high order finite volume schemes which are well-
balanced for the steady river flow of the shallow water equations have been
presented. The well-balanced property relies on a special equilibrium recon-
struction and non-trivial quadrature of the source term, while the high-order
accuracy comes from the high-order WENO reconstruction and extrapolation
of the source term. Fourth order accuracy can be obtained. We denote these
finite volume schemes as FV4-Q (Q for well-balanced quadrature). Note that
we have two well-balanced finite volume schemes, FV5-D and FV4-Q, obtained
through different approaches.

In this section we provide numerical results to demonstrate the good prop-
erties of these well-balanced schemes, when applied to the shallow water equa-
tions. The examples in Sections 5.1-5.3 show well-balancing steady states to
machine accuracy, high order of accuracy for unsteady solutions, and small
perturbations of steady states. The last two examples (discontinuous bottom,
Section 5.4 and 2D pertubation, Section 5.5) go somewhat beyond the scope
of the numerical analysis of Sections 3 and 4. They provide some preliminary
insight for which applications the methods might still work, even though this
may not yet be proven.

In all numerical tests, time discretization is by the classical third order
TVD Runge-Kutta method [31]. For finite volume, finite difference WENO
schemes, the CFL number is taken as 0.6, except for the accuracy tests where
smaller time steps are taken to ensure that spatial errors dominate. For the
third order RKDG scheme, the CFL number is 0.18. For the TVB limiter
implemented in the RKDG scheme, the TVB constant M (see [10, 28] for its
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definition) is taken as 0 in most numerical examples, unless otherwise stated.

The gravitation constant g is taken as 9.812m/s? during the computation.
5.1. Well-balanced tests

The purpose of the first test problems is to verify the well balanced property
of our algorithms. Note that FV4-Q is capable of capturing steady river flows,
and FV5-D, FD5, RKDG3 are designed for capturing the lake at rest. Hence,
two different test problems are proposed here. A fifth-order Gauss quadrature is

employed to compute the initial value in the finite volume and DG approaches.

5.1.1. Lake at rest

This test is shown to verify that FV5-D, FD5 and RKDG3 indeed maintain
the well-balanced property over a non-flat bottom. We choose two different

functions for the bottom topography given by (0 < x < 10):
(5.1) b(x) = 5e @57

which is smooth, and

4 if4<zx<
(5.2) b(z) = d<w<s,
0 otherwise,

which is discontinuous. The initial data is the stationary solution:

h+b=10, hu=0.

This steady state should be exactly preserved. We compute the solution
until ¢ = 0.5 using N = 200 uniform cells. In order to demonstrate that the
well-balanced property is indeed maintained up to round-off error, we use single
precision, double precision and quadruple precision to perform the computa-
tion, and show the L! and L° errors for the water height h (note: h in this
case is not a constant function!) and the discharge hu in Tables 1 and 2 for the
two bottom functions (5.1) and (5.2) and different precisions. For the RKDG
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Table 1 — L' and L™ errors for different precisions for the steady solution with a smooth
bottom (5.1).

L' error L error
precision h hu h hu
single 3.13E-07 1.05E-05 | 9.54E-07 4.85E-05
FD5 double 1.24E-15 2.34E-14 | 7.11E-15 8.65E-14

quadruple | 1.62E-33 2.11E-32 | 6.16E-33 8.74E-32

single 4.07E-06 3.75E-05 | 1.33E-05 1.33E-04
FV5-D double 2.50E-14 2.23E-13 | 7.64E-14 7.97E-13
quadruple | 3.49E-33 2.90E-32 | 1.39E-32 9.62E-32

single 6.44E-06 2.44E-05 | 2.57E-05 1.75E-04
RKDG3 double 6.82E-15 2.90E-14 | 2.84E-14 2.14E-13
quadruple | 9.06E-31 3.92E-33 | 8.05E-29 1.12E-31

method, the errors are computed based on the numerical solutions at cell cen-
ters. We can clearly see that the L' and L® errors are at the level of round-off
errors for different precisions, verifying the well-balanced property.

We have also computed stationary solutions using initial conditions which
are not the steady state solutions and letting time evolve into a steady state,

obtaining similar results with the well-balanced property.

5.1.2. Steady river flow

We pick different test problems for FV4-Q, to verify the well balanced property
towards the moving steady state solution. These steady state problems are
classical test cases for transcritical and subcritical flows, and they are widely
used to test numerical schemes for shallow water equations. For example, they
have been used as a test case in [32]. Here, our purpose is to maintain these
steady state solutions exactly.

The bottom function is given by:

0.2 - 0.05(z — 10)? if 8 <z <12
(5.3) b(:z:)—{ (z-10° f8<sz<12,

0 otherwise,
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Table 2 — L' and L errors for different precisions for the steady solution with a nonsmooth
bottom (5.2).

L' error L error
precision h hu h hu
single 2.28E-07 3.61E-06 | 1.91E-06 2.37E-05
FD5 double 9.05E-15 5.88E-14 | 3.55E-15 4.46E-14

quadruple | 1.30E-33 1.40E-32 | 4.62E-33 5.64E-32

single 6.50E-06 2.61E-05 | 1.91E-05 1.53E-04
FV5-D double 1.73E-14 5.88E-14 | 4.62E-14 2.43E-13
quadruple | 2.69E-32 9.30E-32 | 5.85E-32 3.04E-31

single 5.76E-07 3.54E-07 | 9.54E-07 1.18E-06
RKDG3 double 1.41E-15 8.90E-16 | 3.55E-15 2.83E-15
quadruple | 2.69E-31 1.62E-35 | 8.06E-29 8.18E-34

for a channel of length 25m. Three steady states, subcritical or transcritical
flow with or without a steady shock will be investigated.
a): Transcritical flow without a shock. The initial condition is given by:
1.532

4 E=—2 _19812x0. —1.
(5.4) T g TO812x0.66,  m=153,

together with the boundary condition
e upstream: The discharge hu=1.53 m?/s is imposed.

e downstream: The water height h=0.66 m is imposed when the flow is

subcritical.

This steady state should be exactly preserved. We compute the solution until
t = 20 using N = 200 uniform mesh points. The computed surface level h + b
and the bottom b are plotted in Figure 2. In order to demonstrate that the
steady state is indeed maintained up to round-off error, we use single precision
and double precision to perform the computation, and show the L! and L

errors for the water height h and the discharge hu (note: neither h nor hu
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in this case is a constant or polynomial function!) in Tables 3 for different
precisions. We can clearly see that the L' and L> errors are at the level of

round-off errors for different precisions, verifying the well-balanced property.
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Figure 2 The surface level h+b and the bottom b for the transcritical flow without a shock.

Table 3 — L1 and L°° errors for different precisions for the transcritical flow without a shock.

L1 error L error

precision h hu h hu
single 2.19E-08 4.74E-09 | 1.61E-06 1.19E-07
FV4-Q | double | 1.15E-16 3.21E-16 | 5.55E-16 1.33E-15

b): Transcritical flow with a shock. The initial condition is given by:
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3(9.812 x 0.18)3) + 9.812 x 0.2 if » < 11.665504281554291,
=y 018 gg10 %033 therwi m =018,
mg . . otnerwise,

together with the boundary condition
e upstream: The discharge hu—0.18 m?/s is imposed.
e downstream: The water height h=0.33 m is imposed.

This steady state should be exactly preserved. As we mentioned in Subsec-
tion 4.3, we only discuss the case when the shock is exactly located at the
cell boundary. Hence we shift the computational domain to put the shock at
the cell boundary. For this case when stationary shock exists, we need to use
the Roe’s flux to compute the approximate Riemann problem, and replace the
limiter procedure by a one-sided limiter for the two cells next to the shock.
Also, the left and right approximated values of bottom at the shock must be
exact, so that the Roe’s flux can capture this shock exactly. Here we compute
the solution until £ = 20 using N = 400 uniform mesh points. The computed
surface level h+b and the bottom b are plotted in Figure 3. In order to demon-
strate that the steady state is indeed maintained up to round-off error, we use
single precision and double precision to perform the computation, and show
the L' and L™ errors for the water height h and the discharge hu in Tables 4
for different precisions. We can clearly see that the L' and L> errors are at

the level of round-off errors for different precisions, verifying the well-balanced

property.

Table 4 — L' and L errors for different precisions for the transcritical flow with a shock.

L1 error L error

precision h hu h hu
single 2.78E-09 2.74E-09 | 3.87E-07 2.53E-07
FV4-Q | double | 1.06E-15 1.23E-15 | 8.37E-14 8.32E-14
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Figure 3 — The surface level h + b and the bottom b for the transcritical flow with a shock.

c): Subcritical flow. The initial condition is given by:
(5.6) E = 22.06605, m = 4.42,
together with the boundary condition

e upstream: The discharge hu=4.42 m?/s is imposed.

e downstream: The water height h—2 m is imposed.

This steady state should be exactly preserved. We compute the solution until
t = 20 using N = 200 uniform mesh points. The computed surface level h + b
and the bottom b are plotted in Figure 4. In order to demonstrate that the
steady state is indeed maintained up to round-off error, we use single precision
and double precision to perform the computation, and show the L! and L
errors for the water height h and the discharge hu in Tables 5 for different
precisions. We can clearly see that the L' and L® errors are at the level of

round-off errors for different precisions, verifying the well-balanced property.
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Figure 4 — The surface level h + b and the bottom b for the subcritical flow.

5.2. Testing the orders of accuracy

In this example we will test the high-order accuracy of our schemes for a
smooth solution. There are some known exact solutions to the shallow water
equation with non-flat bottom in the literature, such as some stationary so-
lutions, but they are not generic test cases for accuracy. We have therefore
chosen to use the following bottom function and initial conditions

b(z) = sin®(7x), h(z,0) = 5+ €™ (hu)(x,0) = sin(cos(2nx)), z € [0,1]

Table 5 L' and L errors for different precisions for the subcritical flow.

L' error L°° error
precision h hu h hu
single 4.62E-07 3.23E-07 6.81E-06 7.23E-06
double 1.44E-17 8.84E-17 6.66E-16 1.77E-15
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with periodic boundary conditions, see [34]. Since the exact solution is
not known explicitly for this case, we use the fifth order finite volume WENO
scheme with NV = 12,800 cells to compute a reference solution, and treat this
reference solution as the exact solution in computing the numerical errors.
We compute up to t = 0.1 when the solution is still smooth (shocks develop
later in time for this problem). Tables 6 and 7 contain the L' errors for the
cell averages for FV4-Q, FV5-D and RKDG3, and for the point values for
FD5, and numerical orders of accuracy. We can clearly see that the designed
order of accuracy is achieved. For the RKDG scheme, the TVB constant M is
taken as 32. Notice that the CFL number we have used for the finite volume
scheme decreases with the mesh size and is recorded in Tables 6 and 7. For
the RKDG method, the CFL number is fixed at 0.18. We note that fifth-order
accuracy is observed for FV4-Q. The fifth-order WENO reconstruction has been
used in space, but the source term is approximated by a fourth order accurate
extrapolation. Hence the approximation of the source term in the algorithm
contributes less to the overall error. This phenomena has been investigated in
[23].

5.3. A small perturbation of a steady-state water

The following test cases are chosen to demonstrate the capability of the pro-
posed schemes for computations on the perturbation of a steady state solution,
which cannot be captured well by a non well-balanced scheme. For the same

reason as in Section 5.1, two test cases are proposed for different algorithms.

5.3.1. Perturbation of a lake at rest

The following quasi-stationary test case was proposed by LeVeque [19]. It was
chosen to demonstrate the capability of the proposed scheme for computations
on a rapidly varying flow over a smooth bed, and the perturbation of a sta-
tionary state. We test it on FV5-D, FD5 and RKDG3 methods.

The bottom topography consists of one hump:

(5.7) b(x) =

0.25(cos(10m(z — 1.5)) + 1) if 1.4 <z < 1.6,
0 otherwise,
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Table 6 — L' errors and numerical orders of accuracy for the example in Section 5.2.

FV4-Q
No. of | CFL h hu
cells L' error order | L' error order
25 0.6 1.48E-02 9.78E-02

50 0.6 | 2.41E-03 2.68 | 1.97E-02 2.31
100 0.4 | 297E-04 3.02 | 2.58E-03 2.93
200 0.3 | 2.44E-05 3.61 | 2.13E-04 3.60
400 0.2 | 1.03E-06 4.56 | 8.97E-06 4.57
800 0.1 | 3.49E-08 4.89 | 2.95E-07 4.93

FV5-D
CFL h hu
L' error order | L' error order
25 0.6 | 1.48E-02 9.45E-02

50 0.6 | 2.40E-03 2.63 | 1.98E-02 2.26
100 04 | 297E-04 3.01 | 2.58E-03 2.93
200 0.3 | 2.43E-05 3.61 | 2.13E-04 3.60
400 0.2 | 1.02E-06 4.57 | 8.96E-06 4.57
800 0.1 | 3.26E-08 4.97 | 2.85E-07 4.97

The initial conditions are given with

1—blz)+e ifll1<z<12

1—b(x) otherwise,

(5.8)  (hu)(x,0) =0 and h(z,0) = {

where € is a non-zero perturbation constant. Two cases have been run: ¢ =
0.2 (big pulse) and ¢ — 0.001 (small pulse). Theoretically, for small e, this
disturbance should split into two waves, propagating left and right at the char-
acteristic speeds £+/gh. Many numerical methods have difficulty with the
calculations involving such small perturbations of the water surface. Both sets
of initial conditions are shown in Figure 5. The solution at time t=0.2s for the

big pulse ¢ = 0.2, obtained on a 200 cell uniform grid with simple transmissive
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Table 7 — L' errors and numerical orders of accuracy for the example in Section 5.2.

FD5
No. of | CFL h hu
L' error  order | L' error  order
25 0.6 1.70E-02 1.06E-01

50 0.6 | 2.17E-03 297 | 1.95E-02 2.45
100 0.6 | 3.33E-04 2.71 | 2.83E-03 2.78
200 0.6 | 2.36E-05 3.82 | 2.04E-04 3.80
400 0.6 | 9.67TE-07 4.61 | 8.38E-06 4.61
800 0.6 | 3.38E-08 4.84 | 2.94E-07 4.83

RKDG3
CFL h hu
L' error order | L! error order
25 0.6 | 2.35E-03 2.12E-02

50 0.6 | 1.15E-04 4.36 | 1.01E-03 4.39
100 0.4 | 1.24E-05 3.20 | 1.09E-04 3.21
200 0.3 | 1.02E-06 3.59 | 8.97E-06 3.60
400 0.2 | 1.11E-07 3.19 | 9.79E-07 3.19
800 0.1 | 1.30E-08 3.09 | 1.14E-07 3.08

boundary conditions, and compared with a 3000 cell solution, is shown in Fig-
ure 6 for the FD5, in Figure 7 for the FV5-D and in Figure 8 for the RKDGS3.
The results for the small pulse € = 0.001 are shown in Figures 9, 10 and 11. At
this time, the downstream-traveling water pulse has already passed the bump.

We can clearly see that there are no spurious numerical oscillations.

5.3.2. Perturbation of steady river flow

In subsection 5.1.2, we presented three steady state solutions and showed that
our numerical schemes did maintain them exactly. In this test case, we impose
to them a small perturbation 0.01 on the height in the interval [5.75,6.25], and
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Figure 5 'The initial surface level A 4+ b and the bottom b for a small perturbation of a
steady-state water. Left: a big pulse e=0.2; right: a small pulse e=0.001.

check whether the FV4-Q method captures it well. We remark that FV5-D,
FD5 and RKDG3 are not well balanced for these steady states and they all fail
to capture this perturbation on coarse meshes.

Theoretically, this disturbance should split into two waves, propagating
to the left and right respectively. Many numerical methods have difficulty
with the calculations involving such small perturbations of the water surface.
The solution obtained on a 200 cell uniform grid with simple transmissive
boundary conditions, compared with the results using 2000 uniform cells, is
shown in Figure 12 for the transcritical flow without a shock, in Figure 13 for
the transcritical flow with a shock and in Figure 14 for the subcritical flow.
The stopping time T is set as 1.5 for the first and third flow, 3 for the second
flow. At this time, the downstream-traveling water pulse has already passed
the bump. We can clearly see that there are no spurious numerical oscillations

and the resolution for the propagated small perturbation is very good.
5.4. The dam breaking problem over a rectangular bump

In this example we use the SW model to simulate the dam breaking prob-
lem over a rectangular bump, which involves a rapidly varying flow over a
discontinuous bottom topography. This example was used in [33].

It is not yet settled whether SW models give meaningful predictions for flows
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Figure 10 FV5-D: Small perturbation of a steady-state water with a small pulse. t=0.2s.

Left: surface level h + b; right: the discharge hu.
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Figure 11 — RKDG3: Small perturbation of a steady-state water with a small pulse. t=0.2s.

Left: surface level h + b; right: the discharge hu.
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Figure 12 — FV4-Q: Small perturbation of the transcritical flow without a shock.

over discontinuous bottoms, where key modelling assumptions are violated.
Should a user have to switch to the full Euler or Navier-Stokes equations, as
soon as there is a step in the bottom? The present example shows that the
SW model, and our algorithms, may provide stable and sharp computational
results for discontinuous topography.

The bottom topography takes the form:

(5.9)

8 if |x — 750 < 1500/8
by = { 1017 TS0NS 150078
0 otherwise,

for x € [0,1500]. The initial conditions are

20 — b(z) if z < 750,

(5.10) (hu)(w,0) =0 and  h(z,0) = { 15— b(z) otherwise.



35

05
i nx=2000
nx=200

0.4 bottom

|5 (D

Soa3

©

>

Q

So2

= e

= - )

7]

o
=

L I L L I L L
15 20 25

o
o

Figure 13 — FV4-Q: Small perturbation of the transcritical flow with a shock.

Figure 15 shows numerical results obtained by FD5 500 uniform cells (and a
comparison with the results using 5000 uniform cells) with ending time ¢—60s.
In this example, the water height h(z) is discontinuous at the points x—562.5
and x=937.5, while the surface level h(x) + b(x) is smooth there. All schemes
FV4-Q, FD5, FV5-D, RKDG3 work well for this example, giving well resolved,
non-oscillatory solutions using 400 cells which agree with the converged results

using 4000 cells.
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Figure 14 — FV4-Q: Small perturbation of the subcritical flow.

5.5. A two-dimensional example

The shallow water system in two space dimensions takes the form:

hi + (hu)y + (hv)y, =0

1
(5.11) (hu); + (hu2 + 59h2) + (huw)y = —ghb,

x
1
(hv): + (huv), + <h02 + gghQ) = —ghb,
Yy
where again h is the water height, (u,v) is the velocity of the fluid, b represents
the bottom topography and g is the gravitational constant. It is straightfor-
ward to generalize 1D schemes dimension by dimension to this 2D system, and

usually one will maintain the 2D well-balancing of the lake at rest. It is also
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Figure 15 FDb5: The surface level h 4 b for the dam breaking problem at time t=60s. Left:
the numerical solution using 500 grid cells, plotted with the initial condition and the bottom
topography; Right: the numerical solution using 500 and 5000 grid cells.

fairly straightforward to balance geostrophic jets, driven by the Coriolis force,
which are aligned with the grid, see e.g. [4, 22, 25]. In general, however, there
is an abundance of steady states, each being a solution of a mixed hyperbolic-
elliptic boundary value problem in (z,y)-space. In particluar, there is no way
we could well-balance general moving steady flows.

However, the 1D techniques presented in this paper are already useful for
some 2D flows. Note that river and channel flows have a pronounced direction
of propagation (usually close to the downhill direction). Also the topography
in rivers and channels (dams, barrages) is often essentially one-dimensional. In
the present example, we will apply the 1D techniques of Section 4 (i.e. well-
balancing non-stationary steady flows) only in the z-direction (the direction
of the underlying unperturbed flow). This will be of great advantage when
computing a fully 2D perturbation of this non-stationary steady flow.

We solve the system in the rectangular domain [0, 25] x [0, 25]. The bottom
topography is given by:

2-0. —10)? if8<z<
(5.12) b(x,y)_{m 0.05(x — 10)2 if8 <z <12,

0 otherwise.

Notice that the bottom is a function of x only. A steady state solution can be
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Figure 16 'The contours of the difference between the height h and the initial steady state
(5.12) for the problem in Section 5.5 at time ¢ = 0.5. 30 uniformly spaced contour lines from
-0.009 to 0.012. Left: results with a 100 x 100 uniform mesh. Right: results with a 200 x 200
uniform mesh.

computed from:
1
(5.13) §u2 + g(h + b) = 22.06605, hu(x,y,0) = 4.42, hv(z,y,0) = 0.

These data correspond precisely to the one-dimensional subcritical steady state
of (5.6), and the cross section of the unperturbed solution can be seen in Figure
4. Our initial condition is given by a two dimensional small perturbation of that
steady state, where h is perturbed upward by 0.05 in the box 6.5 < z < 7.5,
12 < y < 13. Figures 16 and 17 display the disturbance as it interacts with
the hump, on two different uniform meshes with 100 x 100 cells and 200 x 200
cells for comparison. The difference between the height h and the initial steady
state (5.12) is presented at different times ¢ = 0.5 and ¢t = 1. We also run the
same numerical test with FV5-D. Note that FV5-D is not well-balanced for
moving steady states. The comparison of the numerical results are presented
in Figures 18 and 19. The results indicate that FV4-Q can resolve the complex
small features of the flow very well, without spurious features which do appear
in the results obtained with FV5-D.
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Figure 17 'The contours of the difference between the height h and the initial steady state
(5.12) for the problem in Section 5.5 at time ¢ = 1. 30 uniformly spaced contour lines from
-0.005 to 0.008. Left: results with a 100 x 100 uniform mesh. Right: results with a 200 x 200
uniform mesh.

Figure 18 The 3D figure of the difference between the height h and the initial steady state
(5.12) for the problem in Section 5.5 at time ¢ = 0.5 with a 200 x 200 uniform mesh. Left:
results based on FV4-Q. Right: results based on FV5-D.
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Figure 19 The 3D figure of the difference between the height h and the initial steady state
(5.12) for the problem in Section 5.5 at time ¢ = 1 with a 200 x 200 uniform mesh. Left:
results based on FV4-Q. Right: results based on FV5-D.

6. Conclusion

In this paper we gave an overview of some recently developed high-order
well-balanced schemes, including fourth and fifth order schemes. The excellent
resolution of the schemes is demonstrated by a number of challenging exper-
iments for the shallow water equations. The presentation and discussion of
the construction principles should enable the reader to implement them and
develop them further for an application at hand. The constructions were either
based on well-balanced, high-order accurate, non-oscillatory finite difference
operators, or an well-balanced and accurate quadrature for the regular and
singular parts of the cell-averaged residuals. The finite difference construction
may be somewhat simpler and faster, which would play an even greater role
in several space dimensions. But the quadrature approach can already handle

moving water steady states and is in this sense more general.
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