3D Adaptive Central Schemes: part I
Algorithms for Assembling the Dual Mesh

S. Noellel W. Rosenbaum! and M. Rumpf*
supported by DFG-SPP, ANumE

Abstract. Central schemes are frequently used for incompressible and compressible
flow calculations. The present paper is the first in a forthcoming series where a new
approach to a 2nd order accurate Finite Volume scheme operating on cartesian grids
is discussed. Here we start with an adaptively refined cartesian primal grid in 3D
and present a construction technique for the staggered dual grid based on L°°-Voronoi
cells. The local refinement constellation on the primal grid leads to a finite number
of uniquely defined local patterns on a primal cell. Assembling adjacent local patterns
forms the dual grid. All local patterns can be analysed in advance. Later, running the
numerical scheme on staggered grids, all necessary geometric information can instantly
be retrieved from lookup-tables. The new scheme is compared to established ones in
terms of algorithmic complexity and computational effort.
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1 Introduction

CFD simulations, especially in 3D, produce large amounts of data. In order
to minimize memory requirements and computing time without sacrificing high
spatial resolution in regions of interest modern numerical schemes are usually
based on adaptive grids. Because of their simple structure and the ease of data
access, cartesian grids are particularly popular.

Staggered grids are a pair of meshes of the same computational domain whose
nodes (in 1D), edges (in 2D) and faces (in 3D) do not coincide. While the
shape of a staggered grid is canonical on an uniform mesh it becomes rather
complicated for an underlying adaptively refined grid, in particular in three
space dimensions. In the present paper we suggest a new construction technique
for a staggered grid which is dual to an adaptive cartesian grid.

Our focus of interest is the class of central schemes for hyperbolic conservation
laws, which became quite popular during the last decade. In this case, staggered
grids circumvent the possibly costly numerical solution of Riemann problems.
The prototype of all central schemes is the first-order Lax-Friedrichs scheme [9].
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Higher order upgrades were first introduced by Nessyahu and Tadmor [14], and
developed further by many authors (see [1, 2, 3, 6, 10, 11, 12] and the references
therein). In particular, Arminjon and St-Cyr ([1, 2]) extended the method both
onto unstructured tetrahedral and uniform cartesian grids in 3D.

Let us briefly summarize our new staggered grid construction. The cells of the
dual grid are defined as the L°-Voronoi regions around the vertices of the primal
grid. Even though it is in principle simple to construct these Voronoi regions, it
becomes a very complex task if the primal grid is adaptively refined, especially
in three spcae dimensions. Our approach, motivated by previous work on the 2D
case [15], is based on a local decomposition of each primal cell into dual subcells.
We call this decomposition of a primal cell the local pattern. The dual subcells
are later assembled at the vertices. Since we use a cartesian grid with graded
refinement, the number of different local decompositions is bounded. In [16],
we used Polya theory to show that there are 227 combinatorially different local
patterns in 3D. We summarize this counting in the appendix. All these patterns
are analysed and stored in advance. Later, running the numerical scheme on
staggered grids, all necessary geometric information can instantly be retrieved
from lookup-tables.

At this stage we have implemented a first order staggered finite volume scheme
on adaptive cartesian grids. For the first time in this paper, we are able to
present numerical results in 3D. Currently, we are developing the ingredients
necessary for a second order Nessyahu-Tadmor type extension of our 3D-scheme.

A popular alternative dual grid construction on adaptive cartesian grids is based
on “diamond cells”, developed for example in [2, 7]. Although this geometrical
description is very simple, we show in Section 2 that diamond grids increase the
numerical cost of the finite volume scheme considerably.

The paper is organized as follows: In Section 2 we investigate Voronoi decom-
positions with respect to several norms and compare them with diamond dual
grids. In Section 3 we construct local patterns. In order to explain the tech-
nique as clearly as possible, we perform the construction first for 2D grids, and
generalize it later to 3D grids. Section 4 presents first numerical applications
in 3D, discusses algorithmic complexity and poses some open questions to be
treated in forthcoming papers.

2 Problem setting and concept

In this section we introduce the necessary notation, formulate properties of the
primal and the corresponding dual grid and explain the basic idea of the dual
grid construction. We discuss both the popular “diamond cell construction” as
well as the Voronoi decomposition with respect to different norms in some detail
and argue for our favorite choice.

Notation. Throughout this paper we use the capital letters G, C, F, E and
N for a grid, cell, face, edge resp. node, capital calligraphic letters to denote
sets, like N/ = [J N, subscripts p and d to distinguish between primal and dual
objects, an asterisk * to denote objects from the corresponding staggered grid
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(the dual grid is staggered to the primal grid and vice versa), subscripts 4, j and
k for node indices, and the superscript T to label local objects on single cells.

Finite volume schemes. Our primary interest of constructing dual grids is
directed towards the numerical solution of systems of conservation laws

(1) ug(x,t) + div F(u(z,t)) =0

in three space dimensions. Here, x € R® denotes the space variable, ¢ the
evolution time, u(x,t) € R™ the solution vector in terms of m conservative

variables, and F = ( fi)le the vector of the three directional flux functions
fi: R —=R™ =1,23.

The final goal is to implement a 3D-extension of the second order accurate cen-
tral scheme proposed in [14]. A dimensionless formulation of the finite volume
scheme reads as follows:

Let v(z,t) be a cellwise smooth approximate solution of (1) with cell averages
2) o = [ vt
v = — [ v(z, x.
“ )

The standard finite volume update is

tn+1
1
(3) ot = o + Il // F(v(z,t)) -n dedt
in oC

Note that the flux integral should be replaced by a quadrature rule, and the
approximate solution v needs to be extrapolated in time (for a fully discrete
scheme). Since the solution v may be discontinuous at the cell boundary 9C,
one would have to replace the flux function F'(v) by a Riemann solver. This can
be avoided when using staggered grids: now mean values on the timelevel ¢" 1!
are computed on cells C* of the corresponding staggered grid via

tn+1
1
(4) ﬁgf1=|0*| Z /U(m,t”)dx—i—// F(v(z,t)) -n dadt
ene#b lonc- in Cnac
I Iz

As before, one needs quadrature rules for the integrals and time extrapolation
for v. For the flux integral I this is possible in such a way that F(v) needs to
be computed ounly at points (z,t) where v is continuous [14, 6, 11|. Therefore,
there is no need to solve Riemann problems for central schemes. Still, the
evaluation of the flux function may be the most expensive part of the finite
volume scheme. Therefore, the numerical scheme should minimize the number
of quadrature points in I5.

Grid adaptation. The cartesian primal grid G, is supposed to be an adaptively
refined 3D cartesian mesh. We restrict ourselves to the regular subdivision of
a hexahedron into eight child hexahedra. The grid adaptation is subject to
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a 1l-level transition constraint between cells which share a common face or a
common edge, see Figure 1. Any refinement technique which observes these
rules would be appropriate, as for instance AMR [4], the cartesian refinement
based on saturated error indicators [17], or multi-scale analysis [13].

//ji’,,,,, ,/,,if:/,,,,,:"/,

Figure 1: 1-level transition constraint for the primal 3D-grid

Aim. Given a primal grid G}, we are now looking for a corresponding staggered
dual grid G4. The numerical algorithms, and in particular those of finite volume
type, require at least:

e G, and G4 are meshes for the same computational domain €.
o Interior nodes, edges and faces of G, and G4 do not coincide.

Moreover, the dual grid G4 should locally reflect the resolution of the primal
grid G,. With respect to the limitation of the timestep size by the CFL-number
and the distance of discontinuities in the numerical solution one should also try
to maximize the distance between faces of primal and dual cells.

Diamond vs. Voronoi grids. Before we present our new approach for the
construction of the staggered grid, we first discuss the well known “diamond
grids” (cf. [2, 7]). For reasons of clarity only the 2-dimensional figures are
presented. All arguments are formulated also for 3-dimensional grids. The
steps to construct dual cells read as follows:

1. Construct edges of dual cells simply by connecting the midpoint of a primal
cell C' with all of C’s corners (see Figure 2(a)). In 2D these edges subdivide
C into four triangular dual cell parts, whereas in 3D the dual edges span
12 dual faces which bound six pyramidal dual cell parts.

2. Dual cells result by sticking together adjacent dual cell parts with a com-
mon primal face (see Figure 2(b)).

This construction technique is impressively simple, but suffers from excessive
numerical cost:

e Since every primal grid cell is subdivided into four (in 2D) resp. six (in
3D) dual cell parts, and a dual cell is normally composed by two cell parts
the dual grid contains approximately twice resp. thrice as much cells as
the corresponding primal grid.
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(a) constructing dual edges (b) resulting dual diamond cells

Figure 2: Diamond-type dual cell construction in 2D

e Following the algorithm of Nessyahu and Tadmor from [14] two kinds
of integration have to be performed in (4) to determine the numerical
solution on the next time level. The far more expensive part is I, the
integration of flux functions over the boundary of cells. Since the cellwise
representation of the numerical data is in general discontinuous at the cell
boundaries, the fluxes have to be evaluated in the interior of primal cells
(e.g. in the center of gravity of the dual faces in the case of piecewise
linear data. Its evaluation in the nodes of the dual cells is not possible
since they often coincide with the boundary of primal cells). Since there
are four (in 2D) resp. twelve (in 3D) dual faces per primal cell the number
of necessary flux evaluations for a timestep onto the dual grid sums up to:

# fluxes(2D) (Gp)]

i = 4|C(G,
(5) # fluxes(3D) = 12|C(G))|

e Due to the finer resolution of the dual grid the diameter of a dual cell is
by factor v/2 smaller than the diameter of its corresponding primal cell.
This leads to a restriction of the global timestep size in the explicit time
integration procedure.

Our alternative approach is described by the rule:

1. Construct dual cells always surrounding exactly one primal node NV, by
a Voronoi decomposition of the domain € respecting all nodes N (G,) of
the primal grid G,,.

This promises to be less expensive than the Diamond grids because:

e Nodes of dual cells now lie in the interior of primal cells. Therefore we
can apply the trapezoidal rule for integration in space with dual nodes
as quadrature points. The flux function has to be evaluated there with
respect to every spatial dimension. Since in a cartesian grid there are
approximately as many nodes as cells, the primal and dual grid are of
comparable size. Moreover, since the structure of the primal grid is trans-
fered onto the dual grid in most parts, the number of dual nodes is only
slightly larger than the number of primal cells. Thus the number of fluxes
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to be evaluated amounts to:

©) # fluxes(2D) = 2|N (Gq)| = 2|C(G)p)|
# fluxes(3D) = 3|N(Gq)| = 3|C(G))|

which is considerably less expensive than the diamond cell approach dis-
cussed above.

The cartesian structure of the primal grid and its adaptation constraints (regular
refinement, 1-level transition) lead to a rigidly prescribed location of the primal
nodes. This allows the Voronoi decomposition to be performed locally on every
cell C, of the primal grid (as it will be proved in the next chapter). Depending
on the set of primal nodes on the boundary of a primal cell Cp, N1 (C}) =
N(G,)NCp, we deduce C}’s decomposition into local Voronoi regions. All these
local regions together form a local pattern on C). Local patterns on adjacent cells
of the primal grid automatically match. All local Voronoi regions corresponding
to a fixed node N, of the primal grid finally form the dual cell C4(Np).

Due to the primal grid structure and the 1-level transition constraint the number
of essentially different local patterns is finite, and every possible decomposition
can be analysed in advance. Later, the numerical scheme gets instant access to
these predefined patterns and uses them in scaled and rotated copies. These
copies are retrieved at run time and do not have to be stored.

Voronoi regions: choice of the norm

Given a set Q C R? and a finite set of nodes N = {Ny, k= 1,...,m| Ny € Q},
we decompose (2 into m Voronoi regions Vi, by the following conditions:

(i) Uiy Vv, = Q
(il) Vo, NV, = 0,i # j
(iti) ||z — Ni| < ||z — Nj||, 2 € Vi, ,Vj # k.

Here Vy, denotes the interior of Viy,, and | - || an arbitrary norm on R

Let us now discuss the choice of an appropriate norm in 2D more in detail. The
same arguments hold also for 3D.

A Voronoi decomposition of 2 C R? refering to only two nodes N; resp. N; € Q
splits €2 into two Voronoi regions, Vi, () (around N;) and Vi, (x,) (around N;),
sharing a common separating polygon S;;. This separating polygon is the locus
of the intersection points of circles with same diameter centered at IV; resp. IV;.
The shape of the separating polygon depends both on the position of N; and
N; as well as on the norm on R?. In general, a Voronoi region Vy, around the
node N; takes the form

(7) Vvo= (] Vwwy)

N EN
Respecting the ordinary || - ||2-norm, any S;; is a straight line, hence Voronoi
regions Vy, are always convex. In contrast, for the || - || o-norm, S;; consists, in

general, of three straight lines, which are aligned with the cartesian axes (z-axis,
y-axis) or the diagonals (of the zy-plane), see Figure 3(a). For special positions
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of N; and N; the separating polygon simplifies to a straight line (see Figure
3(b)), or becomes non-unique in regions away from N, and N; (see Figure 3(c)).
For the latter case we choose the prolonged straight line from the unique part
as the separating polygon. Moreover, Voronoi regions Vy, might happen to be
non-convex.

(a) three parts (b) one part (¢) non-unique

Figure 3: Different configurations of two points, some || || oo-norm circles around
these points, and the resulting separating polygons in 2D

However, thanks to the cartesian structure of the primal grid the || - ||o-norm
even simplifies the construction of local Voronoi regions on cells of the primal
grid. Compared to the corresponding construction for the Euclidean norm,
boundary faces of Voronoi regions are now aligned only with the axes or the
plane diagonals of the primal grid (cf. Figure 4(b) vs. Figure 4(a)). We therefore
favour the || - || co-norm.

(a) resp. the || - ||2-norm (b) resp. the || - ||co-norm

Figure 4: Comparison of Voronoi regions and separating polygons on a primal
cell in 2D

Local Voronoi construction

Next, we show that the Voronoi regions Vi, can be constructed locally over each
cell. This will simplify the algorithmic implementation considerably. We call

C
(8) VN:) = Cp N ﬂ VNi(Nj)
N;EeN(Cp)

the bounding box of a local Voronoi region Vi, on a primal grid cell C,,. N(Cp)
denotes the set of corners of the cell C},. Figure 5 illustrates the bounding boxes
resulting by intersection (9) on a primal cell in 3D. Here, N; is a corner node
(Figure 5(a)), a hanging node in the midpoint of an edge (Figure 5(b)) resp. a
hanging node in the midpoint of a face (Figure 5(c)) of Cp.
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-~ = B

(a) corner node (b) edge node (c) face node

Figure 5: Bounding boxes Vﬁi ? for local Voronoi construction in 3D

With (7) we get the relation

(9) V" 2 Gy NV,

In order to get the final shape of a local Voronoi region Vi, on C, it suffices to
perform the intersection (7) for all nodes N; € Nt (C,), i.e. respecting only the
nodes on the boundary of C),. Shorter, we state

Lemma 1. Let

(10) V) =00 () Vi
N;eN*(Cyp)

be the restriction of the bounding box VA%’ due to the hanging nodes on cell C,,.
Then

(11) Cpy NV, = (Vy")

Proof. Assuming Lemma 1 were false. Then we have

(12) Cp NV, & (V1)

ie.

(13) CpN ﬂ VNL'(NJ) cCpn m VNi(Nj)
NjEN(Gp) NJEN+(CP)

hence IN;, € N(G,) \ N (C,) such that (Vﬁi”)Jr \ Vi) # 0.
Since (Vﬁi”)“‘ - VJ\%) by (10), we also have VJ\%) \ Vi, (ny) # 0, which implies

(14) dz e ng with |2 — Nglloo < [ — Niflo

i.e. x should not be assigned to Vy;,.
Let Hn,(Cp) := Uyevﬁp Bjjy—n,|..(y). Now, by (14) follows

(15) Ny € 95,(Cy)
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With Az = diam(Cy, || - ||«) we define Uy, (Cp) := Uyeviip Bas (y) and
. U, (Cp) \ CA’p(NZ-) if N; is corner node of C),
9N, (Cp) = '
‘ Un, (Cp) else
where C'p(Ni) denotes that neighbour of C}, which shares only the node N, i.e.
C, NCy(N;) = N;.

Suppose that we are in the case of Figure 5(a). Let z € C,(N;) be fixed. Then
we have ||y — Ni|l < [|[y — 2l for any y € V]%’. Hence there is no y € Vﬁf
such that z € B),_n,)(y), thus Cp(N:)) N HN, (Cp) = 0.

In general, since [ly — Niloo < 5% Vy € Vﬁi”, the relation 9, (Cp) C 5'3}1_(01,)
holds for every case of the Figures 5(a), 5(b) and 5(c). Due to the 1-level
grading condition over faces and edges of C), the only grid nodes in the interior
of ﬁj\}% (Cp) are the possibly occuring hanging nodes on C),’s boundary. Hence

(16) X, (Cp) NN ANT(C,) =0

i.e. there is no Ny, fulfilling condition (15). This proves Lemma 1. O

Remark 1. The special treatment of the case 5(a), where N; is a corner of Cp,
is mecessary since the 1-level grading condition over faces and edges still allows
a 2-level transition over nodes. In this case Hn,(Cp) and N\ N*(Cp) would
share a node of C,(N;), and (16) would not hold.

Remark 2. The arguments in the proof do not depend on the spatial dimension
of C,. However, for a better understanding the reader might prefer to draw
sketches of the proof in the 2-dimensional setting.

3 Local pattern construction

Due to Lemma 1 we can perform the L°°-Voronoi decomposition locally on every
primal cell C},. The construction process of local Voronoi regions is described
by the right-hand side of (11). A decomposition of C,, with respect to all nodes
Ni, € N1 (Cp) is called the local pattern on C).

In order to prepare the reader for the pattern construction in 3D, which is the
focus of this paper, we pause for a moment and study the 2D case for illustration.

Construction in 2D. Depending on the distribution of hanging nodes on the
primal cell (), every local Voronoi region takes one of the six shapes shown in
Figure 6.

@ o QG SoNe: o ¢ o)

S
&

) SIINC . I ° RONCE

Figure 6: Local Voronoi regions on a primal cell in 2D
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Obviously, all cuts of the cell C}, run parallel to the axes or coincide with the
plane diagonals. We could therefore describe the steps for the construction of
local Voronoi regions on C,, equivalently by the following algorithm:

1. Subdivide the cell C}, into 16 congruent squares.

2. Subdivide the four squares containing the midpoint of C), into two trian-
gles. The cuts follow the face diagonals through C)’s midpoint. On C), we
get 8 triangles.

Figure 7: Subdivision of a primal cell in 2D

These squares and triangles, depicted in Figure 7, will be called atoms of
Cp.

3. Finally, we assign these 20 atoms of C}, to the nodes of N'*(C}) simply by
calculating the || - ||so-distance between the nodes and the atom’s center
of gravity. All atoms which are assigned to the same node N, € N (C))
form the local Voronoi region Vi, (Cp) on Cp. The set of all local Voronoi
regions on C), forms the local pattern. Figure 8 shows all six essentially
different local patterns in 2D.

Figure 8: All essentially different local patterns in 2D

Assembling scaled and rotated copies of appropriate local patterns leads to the
dual grid. An example is depicted in Figure 9.

Figure 9: 2D cartesian primal grid (solid) and corresponding dual grid (dashed)
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Construction in 3D. Now we extend the steps to create local patterns de-
scribed above to 3-dimensional grids. Applying the concept of constructing
local Voronoi regions leads to an only slightly more complex description than
in 2D. The set N7 (C},) now contains the eight corner nodes of C,, and up to
18 possible hanging nodes on the midpoints of C),’s 6 faces and 12 edges. For
a general location of two nodes N; and Nj; in R3 the separating surface be-
tween the Voronoi regions Vi, (n;) and Vi, (n,) consists of up to seven planar
patches, whose normals are aligned with the axes (z-, y-, z-axis) or the plane
diagonals (xy-, yz-, zz-plane). Fortunately, the variety of positioning two nodes
Ni, N, € NT(Cp) relatively to each other is limited. Hence we get only six
essentially different separating surfaces in 3D, depicted in Figure 10. Note that
the cases in Figure 10 do not necessarily represent cells of the primal grid. Fi-
nally, on a primal cell only scaled, translated and rotated versions of these cuts
have to be executed to get the local Voronoi regions.

Figure 10: Separating surfaces in 3D

Hence the whole construction can again be described as a subdivision algorithm:
1. Subdivide the hexahedral cell C}, into 64 congruent cubes.

2. Subdivide all cubes containing a midpoint of C}’s faces into two prisms.
The cuts follow the face diagonals through the face midpoints. On C, we
get 8 X 6 = 48 prisms.

3. Subdivide all cubes containing the central point of C), into six tetrahedra.
The corresponding three cuts equal the diagonal cuts on their adjacent
cubes from step 2. This results in 6 x 8 = 48 tetrahedra.

These cubes, prisms and tetrahedra will again be called atoms of C,. Figure
11(a) shows a cell C), and some of its atoms. Next we assign these 64 4 48 —
24+ 48 — 8 = 128 atoms of C), to the nodes of N (C}) by calculating the || - [|oo-
distance between the nodes and the atom’s center of gravity. All atoms which
are assigned to the same node N, € N1 (C,) form the local Voronoi region
Vi, (Cp) on C,. Figure 11(b) shows a cell Cp, the set N (C,)\N(C,) (i.e.
the corners of C), left out) and a few corresponding local Voronoi regions. Let
us mention that local Voronoi regions might happen to be slightly non-convex
(region in the center of Figure 11(c)). But this should not effect the feasibility
of our approach, and we do not expect additional problems in constructing a
second order central finite volume scheme by the occurrence of these dual cells.
The set of all local Voronoi regions on C), form the local pattern. The shape
of these three-dimensional local patterns on the boundary faces of a primal cell
matches the two-dimensional patterns from Figure 8.
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(a) subdivision of a pri- (b) local Voronoi regions (c¢) non-convex Voronoi
mal cell region

Figure 11: Construction of local Voronoi regions in 3D

The set of local patterns in 3D

Since the number of different distributions of nodes on the boundary of a primal
cell, and hence the number of different local patterns, is finite, all local patterns
can be assembled and stored in advance. Later, running the numerical scheme,
these patterns are used in scaled and rotated copies.

For grids in 2D the set of essentially different local patterns (that do not arise
from each other by rotation or reflection) can still easily be determined (cf.
Figure 8). This task becomes far more complex on grids in 3D. We used tools
of Polya’s counting theory ([18], [8]) to determine the number of 227 essentially
different local patterns. Details of this counting are presented in the appendix.
A complete list of all patterns (some of them with figures) can be found on
http://www.igpm.rwth-aachen.de/wolfram/local_patterns.html

Every local refinement situation can be identified with exactly one of these 227
reference patterns and an appropriate mapping (i.e. permutation matrix) onto
the really occuring pattern.

4 Staggered Finite Volume schemes

The final goal of our work is a second order accurate finite volume scheme on
staggered grids. At the current stage, our code includes the primal and dual grid
generation, as well as the integration of piecewise linear functions over volumes
and boundary faces of cells. These ingredients already suffice for a first order
scheme which we have implemented and tested. Further components, like linear
data reconstruction and limiting for a second order accurate non-oscillatory
method, and the treatment of different boundaries are in progress.

After summarizing the algorithmic demands and presenting our integration
strategy, we address the data access, describe our test cases and finally compare
the expected numerical effort of our method with the diamond grid approach
and the established non-staggered HLL-scheme.
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Algorithmic demands

The finite volume update is given by equation (4). The cell C* € G* might
belong to the primal grid G, or to the dual grid G4 constructed in Section 3.
Cells C will belong to the staggered grid G.

The evaluation steps in (4) are twofold. Part I; calls for an integration of the
piecewise linear function v(-,t") over a bounded volume and can be evaluated
exactly. Part Iy is a bit more intricate. For an illustration we refer to Figure
12. The normal part of a non-linear flux-function, F' - n, has to be integrated in
time over the interval [t",¢" 1] and in space over a polygonally bounded planar
cell face p. In general, a face p of a cell C* € G* consists of several polygonal
parts p; in adjacent cells C; of the corresponding staggered grid G.

Any second order accurate quadrature formula for I3 should evaluate F' in space-
time quadrature points (z,¢) where v is uniquely defined. For the temporal
integration of I we use the midpoint rule. For that reason v has to be extra-
polated to approximate v(z,t"+1/2). As time evolves, characteristics spread out
from the boundaries of the cells C; € G into their interior. In order to avoid
the solution of local Riemann problems the quadrature points (z,t"+1/2) for the
spatial flux integration should not be reached by characteristics emanating from
0C; at time t™. Thus, the quadrature points should be far away from the set
U, 9C; to allow a large timestep.

Though admissible, the choice of quadrature points in the center of gravity of
every polygonal part p; would be disadvantageous:

e In a cartesian 3D-grid there are about three times more faces than cells.
The majority of polygonal faces consists of four polygonal parts. We would
have to evaluate one flux function on every polygonal part.

e The distance of the center of gravity of a polygonal part p; to the dis-
continuity set |J; 0C; is rather short. This limits the global timestep size
unnecessarily.

This leads us to choose the corners of the boundary face p, i.e. nodes of the grid
G*, as spatial quadrature points. Therefore we have implemented a generalized
trapezoidal rule on polygons. The flux function F' is evaluated at the nodes
of a polygonal face. Later, these values are scaled with barycentric weights
respecting the face geometry to achieve a second order accurate integration
rule. This approach promises to be more competitive:

e In a cartesian 3D-grid the number of nodes and the number of cells is
similar. We evaluate all three directional flux functions at every node v;.
The numerical effort is by factor ~ 4 smaller than using the midpoints of
the polygonal faces.

e Since the distance of nodes of a polygonal face p of a cell C* to the set
\J; 9C; is larger than the distance from the p;’s center of gravity to the
boundary. The global timestep size can be chosen by factor 2 larger than
in the method above.
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Figure 12: Compound boundary faces of dual cells

Data access

For fast access all geometric and numerical data, both for the primal and the
dual grid, are stored in hashmaps. On every cell C of the grid G the finite
volume scheme needs to know

1. the volume of C
2. its neighbouring cells on the grid G (for a higher order reconstruction)

3. the common faces of C and its neighbours, including their normals and
their area, as well as the nodes on the grid G that form these faces (to
determine fluxes over faces by an appropriate quadrature rule)

On the cells of the cartesian primal grid G}, such information is quite easily ac-
cessible by index shift operations. In contrast, for a cell Cy of the dual grid G4
this knowledge is scattered over all local patterns contributing to the construc-
tion of Cy and has to be “collected” during a complete traversal of the primal
grid G. Hence finding the appropriate local pattern on a primal cell is an often
used operation and has to be fast.

The local pattern on a primal grid cell G, is determined by the occurrence of
hanging nodes in the midpoints of G,’s 12 edges and six faces (cf. Section 3).
These information form an 18-bit key which allows instant access to the corre-
sponding reference pattern (one of 227) as well as the appropriate permutation
matrix from a predefined hashmap. This hashmap can easily be initialized in a
pre-roll step by applying each of the 48 self-mappings of the cube to all of the
227 essentially different local refinement constellations. Finally, one gets 6210
hashmap entries.

A local pattern consists of a certain number of local Voronoi regions Vi, , each
of them composed of several atoms (cubes, prisms and tetrahedra, see Figure
11(a)). We get all information listed above locally:

1. the volume of Vi, equals the sum of the volumes of its atoms
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2. neighbouring Voronoi regions on a pattern refer to neighbouring cells on
the dual grid G4

3. common faces of neighbouring Voronoi regions are the union of common
faces of their atoms. Thus, the normals, areas and the face-forming nodes
are known by construction of the local pattern.

Whereas on the primal grid G, all cells C}, are cubes and common faces to
neighbouring cells are always square-shaped, there is a wider range of different
cell- and face-types on the dual grid G4, see Figure 13(a) for a rough impression.

5 Numerical Experiments

In order to verify the feasibility of our staggered grid approach and to get a
deeper insight in the expected complexity of our grids, we run two basic test
cases. The first one is a volume integration, and the second a linear advection
problem computed with a first order finite volume scheme.

Example I: Volume integration

As discussed in Section 4 the integration over faces and volumes is the essential
part of a finite volume scheme. In our first test we performed a volume integra-
tion over the dual grid G4. The primal grid has been constructed by adaptively
resolving the isosurface of a tilted elliptical paraboloid inside the unit cube, see
Figure 13(b).

|
I
|
I
I
I

(a) Close-up view on the dual grid. Lines (b) primal test-grid with resolved isosur-
represent the primal grid. face on level 7, 112470 cells

Figure 13: Primal and dual grid

We verified our integration algorithm by means of the Gauss integral theorem

/divnda}:—/ v-ndzr
Q o
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by choosing v(Z) = %:E’, VZ € R3, a subdomain  C , and integrating over all
cells C; C Q of the dual grid G4

1. by summing up the volumes of the involved Voronoi regions

2. by integrating %(f, ny) over all common faces f of neighbouring Voronoi
regions (in view of flux integration over cell boundaries). Here ny denotes
the oriented normal of f.

We performed the volume integration described above for several resolutions of
the primal grid G, and examined

e the number of different occuring local patterns:
it leveled off at about 40

e the frequency of occurrence of these patterns:
approximately 80% of the cells C, on the primal grid refer to the most sim-
ple pattern (no additional node on the boundary of C}), whose numerical
cost are low

e the expected number of flux evaluations for the staggered grid solver by
counting the number of nodes in the dual grid

To estimate the profit of our approach, the numerical effort was compared with a
cheap non-staggered finite volume scheme where flux integrals are approximated
by the Harten-Lax-van Leer (HLL) Riemann solver (cf. [19]). Results are listed
in Table 1 below. The numerical cost of both schemes is similar.

level | primal cells | dual cells | fluxes non-staggered | fluxes staggered
4 568 1019 3810 4779
5 4502 6969 30126 33717
6 24781 34710 163899 161001
7 112470 149011 737283 690420
8 493368 630364 3210945 2906742
9 2156547 | 2684250 13944345 12220641

Table 1: Comparison staggered /non-staggered approach for Exapmle I

Example 1I: Rotating Cone

Next, we run a standard linear advection problem, the “Rotating cone”, with a
first order finite volume scheme (note that we have not yet incorporated linear
data reconstruction and limiting into our method, which would be essential for
a second order scheme). Finally we compare our scheme to the diamond-grid
approach as well as to the non-staggered HLL-scheme in terms of numerical
effort.

Initial data & numerical solution

As initial data for the rotating cone advection problem we resolve a smooth
function f with compact support over an octant of the surface B of a ball
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B = B(c,R) (cf. Figure 14(a)) The ball B is centered at ¢ = (cz,¢y,c;) =
(0.6,0.3,0.2) and has a radius R = 1/4. The function f is defined as follows:

P = @l ) ()

¢ = 41—’

1-2¢> forqg<1/2,2,y,2>0
2(q—1)? for1/2<q<1,2,9,2>0

0 else

f(q)

This cone is now rotated around c¢ in the plane spanned by v = (1,0,0)* and
w = (0,1,0.5)". The advection performs up to time ¢ = 7/4 at constant angle
velocity 1. The exact solution is depicted in Figure 14(b). Since our scheme is
still only first order accurate the numerical solution suffers from considerable
smearing (cf. Figure 14(c)). This would certainly be reduced by a second order
scheme, which we plan to develop in the near future.

Grid specifications & numerical effort

Having demonstrated, that a first order finit volume scheme works on our stag-
gered grids, we would now like to extract more information from this experi-
ment. Thus, we compare the number of flux evaluations on the diamond grid,
the unstaggered grid and the L°°-Voronoi grid. These numbers are computed
according to Table 2. Results obtained on the grid from Figure 14(c) are listed
in Table 3.

timestep Diamond HLL Voronoi
primal — dual | 12 #primal cells | 2 #primal faces | 3 #dual nodes
dual — primal | 1+#primal faces | 2 #primal faces | 3 #primal nodes

Table 2: Counting flux evaluations in two successive timesteps

| Grid specifications | | # Flux evaluations |
primal cells | 112106 Gp = Ga | Ga— Gy | Y #f
primal faces | 345564 Diamond 1.35 M 0.35 M | 1.69 M
primal nodes | 121561 HLL 0.69 M 0.69M | 1.38 M
dual nodes 152630 Voronoi 0.46 M 0.36 M | 0.82 M

Table 3: Grid specifications and numerical effort for Example 11

In terms of necessary flux evaluations our L°°-Voronoi approach proves to be
significantly less expensive than the compared schemes. This is founded in the
high ratio of 94% of primal cells without hanging nodes. On these cells the
local pattern is the easiest possible, containing simply one dual node. This
leads to only half as much local costs than incurred by the compared HLL-
solver, and only one fourth in comparison to the diamond cell approach. This
result confirms our topological statements from Section 2 and encourages further
developement of our approach.
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(c) Numerical solution at time 7 /4

Figure 14: Rotating cone with first order scheme

The high ratio of such cells can be roughly explained by the following argu-
ment: in an adaptively octtree-refined cartesian 3D-grid the number of cells on
the (locally) deepest refinement level, i.e. those without hanging nodes (we call
it property U), outranges the number of coarser cells by far. In general, discon-
tinuities in the numerical solution are resolved by (possibly thin) 2-dimensional
manifolds. For a rough argument, let Ny be the number of grid cells and Aj,
the number of cells with property U on a grid with at most L refinement levels.
Resolving a discontinuity by refining & cells on refinement level L effects the
numbers A and N as follows: each of the k cells generates 8 child cells, the orig-
inal cell itself disappears, thus N1 =~ Np +7k. The refinement of a cell inserts
hanging nodes on its coarser neighbour cells. Since all k cells are supposed to
form a thin surface, each of them “destroys” the property U only in the two face-
neighbours in the surface’s normal direction. The refined cell itself contributed
most likely to Ap. Every child cell on level L + 1 obviously has property U.
Thus Ap41 ~ A + 5k. For k > 1 one gets the ratio r = A/N ~ 5/7. If the k
cells on the fine grid level rather form a volume than a thin surface, the ratio r
gets even closer to 1.
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6 Conclusions

In this paper we have developed a new adaptive staggered grid construction
in 3D, which is an alternative to those presented in [1]. The construction of
dual grid cells as Voronoi regions respecting the maximum-norm simplifies their
geometrical description and, in the end, the implementation. Substantial com-
binatorial investigation in advance allows our scheme in return to exploit local
geometrical structure of the grid at run-time to save a lot of numerical effort.
Based on these adaptive grids, we have implemented a first order Lax-Friedrichs
type finite volume scheme in 3D. The extension of this approach to a second
order Nessyahu-Tadmor type scheme is in progress. It concerns the piecewise
linear reconstruction and limitation of cell- and flux-values to end up with a
second order scheme, and the data handling for large 3D simulations. A future
step will be the incorporation of obstacles in the computational domain and the
treatment of divers boundary conditions, especially when more complex geome-
tries (and not only cartesian grid cells) need to be incorporated. Here it should
be possible to apply techniques developed by Helzel et al [5].

A Combinatorial investigation

To determine the number of essentially different local patterns (that do not arise
from each other by rotation or reflection) we use Pdlya’s counting theory. All
information for the counting problem is provided by the group of symmetries
D(20) of the cube 20. Analysing how the elements of D(20) act on the set of 20’s
edges and faces leads to the number of 227 essentially different local patterns.

The distribution of the nodes N (C,) on the boundary of a primal cell C,
determines the shape of the local pattern. Instead of speaking of occuring nodes
on the midpoint of an edge or a face of C}, we shortly call this edge resp. face
colored. If a face f of C} is colored, i.e. f is refined, consequently all four edges
of f are also refined, i.e. automatically colored. The converse is in general not
true.

First, we list all 48 elements of D(20), the self-mappings of the cube by specifying
the 10 representatives g including the cardinality of the classes of conjugated
elements ¢(gg):

+1 0 0 +1 0 0
g1 = 0 +1 0 ;C(gl) = 17 g2 = 0 -1 0 ,C(gg) = 3,
+1 0 0 +1
+1 -1 0
gs = 0 +1 0 ],clgs) =6, ga= 0 +1 0 ],c(ga) =3,
-1 0 0 -
+1 -1 0
g5 = 0 0 -1 |,clgs)=6, go= 0 -1 0 |,clgs) =1,
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-1 0 0 0 0 -1
g7 = 0 0 +1 |,clgr)=6, gs=| -1 0 0 |,clgs) =8,
+1 0 0 +1 0
0 —1 0 0 +1
go = 0 —1 0 |,clge)=6, gio=| +1 0 0 |,c(go)=8.
+1 0 0 0 -1 0
7I 8
5 . 6
3/| ———————— -4
1£ 2

Figure 15: Node numbering on a cube

In order to count the edge-colored cubes (where edges may be colored indepen-
dently from each other, and faces are not colored), we label the edges respecting
Figure 15 by indicating their nodes as

e1 = (1,2), es = (1,3), eg = (1,5),
es = (3,4), e¢ = (5,7), e = (2,6),
= (5,6), er = (2,4), e = (3,7),
eqs = (7,8), es = (6,8), e12 = (4,8).
The cycles of permutations on the set £(20) = {e;,j = 1,...,12} induced by

the mappings gi read as

)(5 10)(6 12)(7 9)(8 11),
4611)(10 1 7)(5 12 3)(2 8 9),
1123 11)(2104 9)(5 7 8 6),

‘e) 16104 711)(25938 12).

910 =

g¥ = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12),
g5 = (1 2)(3 4)(5)(6)(7)(8)(9 11)(10 12),
g =(19310)(211412)(5687),
g5 = (1 3)(2 4)(5 8)(6 7)(9 10)(11 12),
g = (1 9)(2)(3)(5 11)(6 9)(7 12)(8 10),
g% = (1 4)(2 3)(5 8)(6 7)(9 12)(10 11),
g§e> = (1)(2 3)(4)(
=
=
(

)

Basing on the cycle representation of the g(e we get the cycle index on the set

E(W) as

1
3(D,E(W)) = E(ax}Q + 3alxy + 120305 + 425 + 83 + 1223 + 8x2).
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Here d - 2] denotes r cycles of length ¢ in d different mappings g € D, e.g. g§e)

leads to the term z12, gée) and gée) both supply x3 with coefficients c(g3) =
¢(g9) = 6. The denominator 48 is just the cardinality of D.

In the case of only two different states per edge (colored or not) we substitute
each z; by 1+ 2% and get

1
3o (D1 +2) =2 ((L4+2)2 +3(L+2)' (1 +2)* +12(1+2)°(1 +22)°
+4(1+ 2?5 +8(1 + )+ 12(1 + 2*)® +8(1 + m6)2)
=1+ + 42 + 923 + 182" + 242° 4 302° + 2427 + 1828
+9$9 +4$10 +$11 +$12.

The number of essentially different edge-colored cubes with r colored edges
equals the coefficient of the monomial z". For example, there are 9 cubes with 3
colored edges, as shown in Figure 16. The whole number of essentialy different
edge-colored cubes sums up to 3¢y (D, 2) = 144.

-t - e - - - et et Lt b et R
. (] 4 4 (] (] (] (] 4

Figure 16: Essentially different cubes with 3 colored edges

Applying this counting on the permutations of faces instead of edges leads to
10 essentially different face-colored cubes 207 (where faces may be colored in-
dependently from each other, and there is no additional colored edge). For all
these 207 we consider the appropriate self-mappings g', i.e. only those elements
g € D which map the colored faces of 207 onto each other. Obviously, these
self-mappings {g'} form a subgroup D of D. The influence of all g/ on the
edges & (20") which are not automatically colored by the colored faces of 277
is summarized in the (reduced) cycle index B(Df,c‘:’ (207)). Again, it supplies
the number of essentially different edge-colored cubes now basing on the face-
colored cube 20

As an example we examine a cube 20" with exactly one colored face. Every
self-mapping of 20’ has to map 207’s only colored face onto itself. The set of
self-mappings, again characterized by representatives g,fC and the cardinality of

their classes of conjugated permutations c(g,i), reads as

+1 0 0 +1 0 0

gd={ 0 +1 0 ].edh=1 = 0 +1 0 ].clgh)=2
0 0 +1 0 0 -1
+1 0 0 +1 0 0

d={ 0 0 41 |.cdh)=2 di=[ 0 0 +1],clgh)=2
0 +1 0 0 -1 0
+1 0 0

0 -1 0
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The (reduced) cycles of the induced permutations on &(207) are

)
a9 = M)ER)B)@DG)6)(9)(11), g =(1342)(51169),
“e = (1 3)(2 4)(5 6)(9)(11), gl = (14)(2 3)(5 6)(9 11),
f‘e> = (1)(2 3)(4)(5 9)(6 11),

and we get
3gun) (DN 14 2) =14 22 + 627 + 102° + 132" + 102° + 62° + 227 + 2%,

e.g. 10 (the coefficient of 2) essentially different colorings with one colored face
and 3 (additional) colored edges, as shown in Figure 17.

Figure 17: Essentially different cubes with 1 colored face and 3 colored edges

The numbers of essentially different edge-face-colorings of the cube, sorted by
the numbers of colored faces, are listed in Table 4. All together we get 144 +
514+ 20+ 7+ 3+ 1+ 1 = 227 essentially different edge-face-colored cubes, and
hence 227 essentially different local reference-patterns.

colored faces 0 1 21314
ess. diff. col. || 144 |51 |20 | 7|3 |1 |1

Table 4: Numbers of essentially different edge-face-colored cubes
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