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1 Introduction

In medium-scale geophysical fluid flow, with length scales of hundreds
of kilometres, the geometry of the earth, its rotation and curvature are
of great importance. The modelling of flow phenomena at these scales
involves complex nonlinear equations with extra terms accounting for
the geometry and the rotating frame of reference.

Many geophysical flow problems are shallow in the sense that the waves
length of horizontal motion greatly exceeds the scale of changes in the
vertical direction. In many cases, this justifies a simplification of the
governing equations for the vertical motion. The shallow-water equations
is one such system where the dependent variables are depth-averaged and
only first-order differential terms are retained. In this paper we consider
numerical solutions of the shallow-water system, written as a system of
first-order hyperbolic conservation laws with source terms modelling the
effects of variable bottom and a rotating frame of reference,

η

U

V


t

+



U

U2

H + 1
2gH2

UV
H


x

+



V

UV
H

V 2

H + 1
2gH2


y

=



0

−gHzx + fV

−gHzy − fU


. (1)

2



Here subscripts denote differentiation, η is the surface elevation, z is the
bottom topography and H = η− z is the total water depth. The compo-
nents of the volume-flux per unit length in the x- and y-direction are U
and V , respectively. The source terms in (1) model two different physical
effects: the rotation and the variable bottom topography. The rotating
frame of reference introduces a Coriolis force [0, fV,−fU ]T acting trans-
versely and proportionally to the volume-flux. The other source term
[0,−gHzx,−gHzy]

T accounts for the variations in the bottom topogra-
phy z. In applications, this barotropic model is used to study weather
systems, mean currents and transport and wave phenomena in coastal
zones, rivers and lakes, in cases where the density stratification has neg-
ligible influence on the flow.

Classically, i.e. at least since the 1940s, such initial value problems have
been solved by finite-difference methods [17,20]. To this day, such meth-
ods are the working horse of many models. They are easy to implement,
fast, and for smooth flows they give accurate results. On the other hand,
for non-smooth solutions they suffer from dispersive oscillations which
need to be damped by adding artificial viscosity.

These stability problems led (roughly from 1950s into the 1990s) to the
development of more robust finite-difference, finite-volume, ENO and
WENO schemes [13,10,14,11,15,24]. For geophysical flows it was impor-
tant to develop schemes which maintain fundamental equilibrium solu-
tions on the discrete level, the so-called well-balanced schemes (see e.g.
[1,18,27] and the references therein). Recently, Bouchut et al.[2] have
described a technique to obtain a well-balanced discretisation of the
Coriolis terms in the one-dimensional case. The well-balanced discreti-
sation preserves geostrophically balanced states exactly at the discrete
level. This technique may be generalised to two-dimensional jets which
are aligned with a Cartesian grid. With these extensions, well-balanced
finite-volume schemes are a very stable and – if equipped with high-
order reconstructions – highly accurate alternative for the computation
of depth-averaged geophysical flows, which may contain shock-, or bore-
waves. An advantage of these schemes is that the solution is damped
only in region where damping is needed.

The present paper reports on the joint work of a researcher, who has
over many years developed and used a finite-difference ocean models
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[9], an engineer and two numerical analysts who have developed a high
order well-balanced finite-volume scheme [18]. Our goal is to study and,
if possible, quantify the advantages of either code. We hope that other
researchers will draw some useful conclusions from our results, when they
decide which type of code they should use.

As test-case we study a class of jets along the Norwegian shelf. Such shelf
slope jets have been studied extensively (see [9,26] and the references
therein). A series of numerical examples indicates that these currents
can become unstable, in the sense that an initially almost laminar flow
generates strong eddies and oscillations. Linear stability analysis [9,26]
confirms the existence of unstable modes. This provides us with a chal-
lenging test problem within a relatively simple topography. Other test
problems are used to study numerical convergence and accuracy.

It will come as no surprise that the setup of analytical and numerical in-
and outflow boundary conditions was one of the main difficulties in this
study.

The outline of the paper is as follows: In Section 2.1 we give an overview
of the finite-difference method used in [9]. We rearrange the temporal
update to assure second-order accuracy. In Sections 2.2 we review the
high-order well-balanced finite-volume scheme derived recently in [18].
In particular, the source term treatment is described in Section 2.3. The
entire Section 3 is devoted to boundary conditions, particularly inflow
and absorbing outflow boundary conditions for the finite-volume scheme.
These have a strong impact upon the accuracy and the flow features com-
puted by our schemes. In Section 4, we evaluate the accuracy, order of
convergence and resolution for various test problems. Then we focus on
the formation of eddies in shelf slope jets. Here we study and thereby
rule out several possible numerical sources of the instability. We con-
clude the paper in Section 5 by discussing in detail the advantages of
the finite-difference and finite-volume solvers, the boundary conditions
and the eddy formation in the along shelf current.
Acknowledgement: This work was started while the first and the last
author were visiting CMA, “Center of Mathematics for Application” at
Oslo University, and they would like to thank CMA and its members
for their generous hospitality. We would like to thank Roland Schäfer
for lively and stimulating discussions. Also we would like to thank Frank
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Knoben and Markus Jürgens for there unresting support for the paral-
lelisation of the scheme.

2 Discretisation

In this section we give an overview of the two numerical schemes. The
philosophies underlying these schemes are quite different. In the finite-
difference scheme, the solution is approximated by point values on a grid.
To advance the solution, the derivative of the flux terms are computed us-
ing central differencing and averaging operators. A special staggering of
variables, called a B-grid, is used, where the volume-flux is approximated
on the mesh (ih, jh, n∆t), and the surface elevation is approximated on
a mesh shifted by h/2 in each spatial direction and ∆t/2 in time. The
original scheme of [9] is second-order accurate in space, but only first-
order accurate in time. A simple extension yields a fully second-order
finite-difference scheme. In actual computations, this scheme performs
very well for smooth solutions. However, we do observe spurious oscil-
lations when shocks appear in the solution. In Section 2.1 we give a
complete description of this scheme.

In the finite-volume scheme, the solution is approximated in terms of
cell-averages. These cell averages are advanced in time by computing
fluxes across cell interfaces. To evaluate the fluxes, accurate point-values
of each variable must be reconstructed from cell averages. We use a
fifth-order WENO procedure [23,24] for the reconstruction combined and
Roe’s approximate Riemann solver [21] for the interface flux. A standard
fourth-order Runge-Kutta scheme is used as temporal discretisation. In
addition, the scheme is equipped with a high-order well-balanced dis-
cretisation of the geometrical source term [18]. This scheme has proven
to be highly accurate both for smooth and non-smooth solutions. In Sec-
tion 2.2 we give an overview of this scheme, and refer to [18] for a full
description.

2.1 The Finite-Difference Scheme and a fully second-order accurate extension

The original B-grid scheme of [9] is based on a staggering of unknowns,
where the volume-fluxes U and V are approximated in the grid points
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Fig. 1. The layout of a B-grid. The surface elevation η is approximated in the black circles,
and the volume-fluxes U and V in the grey squares.

(ih, jh, n∆t) and the surface elevation η is approximated in shifted grid
points ((i + 1

2)h, (j + 1
2)h, (n + 1

2)∆t) as shown in Figure 1. To ease
the presentation we introduce the following standard differencing and
averaging operators:
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.

Note that it is implied that the result of these operations is shifted by
h
2 relative to the argument. For simplicity in notation, we omit i and j
indices in the following scheme. The meaning should be clear from the
aforementioned shift and the position of the point-wise approximations.
For instance, the approximation of ∂x(U

2/H) in the point (ih, jh) is
given byδx
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With this notation, we can write the finite-difference scheme for (1) as

ηn+ 1
2 = ηn− 1

2 −∆t[δxµyU
n + δyµxV

n] (2)

Un+1 = Un −∆t

δx

(
µxU

n
)2

µyHn+ 1
2

+ δy

(
µyU

n
) (

µyV
n
)

µxHn+ 1
2

+
(
gµxµyH

n+ 1
2

)
δxµyη

n+ 1
2 − fV n

 ,

(3)

V n+1 = V n −∆t

δx

(
µxU

n
) (

µxV
n
)

µyHn+ 1
2

+ δy

(
µyV

n
)2

µxHn+ 1
2

+
(
gµxµyH

n+ 1
2

)
δyµxη

n+ 1
2 + fUn

 ,

(4)
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where ∆t is the time step and Hn+ 1
2 = ηn+ 1

2 − z. The use of a B-grid
yields a quite compact second-order discretisation of the flux and source
terms. We would like to point out that, due to the central differencing,
the scheme (2)–(4) is second order accurate in space, but not in time.
This can be seen most easily from left part of Figure 2, which shows that
the stencil of the volume-flux update is not symmetric with respect to
time.

In order to correct the asymmetry, we introduce the following short-
hands:

Φx(η) :=
(
gµxµyH

)
δxµyη,

Φy(η) :=
(
gµxµyH

)
δyµxη,

Ω(U, V, η) := δx

(
µxU

)2
µyH

+ δy

(
µyU

) (
µyV

)
µxH

− fV,

Ψ(U, V, η) := δx

(
µxU

) (
µxV

)
µyH

+ δy

(
µyV

)2
µxH

+ fU.

where H = H(η, z). With this notation (3) – (4) read

Un+1 = Un −∆t
[
Ω(Un, V n, ηn+ 1

2 ) + Φx(η
n+ 1

2 )
]
, (5)

V n+1 = V n −∆t
[
Ψ(Un, V n, ηn+ 1

2 ) + Φy(η
n+ 1

2 )
]
. (6)

Let us now introduce the correction which assures second order accu-
racy in time. For this we denote the volume-flux update in (5) – (6) by
(U, V )n+1

∗ and centre the terms Ω and Ψ, i.e the flux differences and the
coriolis term, with respect to time. This gives

Un+1 = Un+1
∗ +

∆t

2

[
Ω(Un, V n, ηn+ 1

2 )− Ω(Un+1
∗ , V n+1

∗ , ηn+ 1
2 )
]
, (7)

V n+1 = V n+1
∗ +

∆t

2

[
Ψ(Un, V n, ηn+ 1

2 )−Ψ(Un+1
∗ , V n+1

∗ , ηn+ 1
2 )
]
, (8)

which is the symmetric stencil shown in right part of Figure 2. In Tables
1 and 2 one can clearly observe the gain in accuracy.

An elementary calculation shows that both the first-order version and
the second-order version of this scheme are well-balanced for the station-
ary state of water at rest U = V = 0 and η − z = Const. For smooth
solutions driven by inflow boundary conditions, both scheme yields quite
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Fig. 2. Stencils of volume-flux update for finite-difference schemes. Left: first order scheme,
not symmetric with respect to time. Right: time symmetry recovered.
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Fig. 3. A finite-volume, with corresponding fluxes and integration points on cell interfaces
and in the interior. The integration points in the interior are needed for the well-balanced
integration rule for the source term.

sharp results with moderate numerical diffusion. For non-smooth solu-
tions, both versions of the scheme experience instabilities in the form of
oscillations.

2.2 The High-Order Finite-Volume Scheme

To simplify the presentation of the finite-volume scheme somewhat, we
rewrite (1) as

Qt + F (Q)x + G(Q)y = B(Q, Qx, Qy) + C(Q), (9)

where subscript denotes differentiation, Q = [η, U, V ]T is the vector of
unknown functions and F and G are vector-valued functions. The source
terms B = −gH[0, zx, zy]

T and C = f [0, V,−U ]T are the geometrical
source accounting for variable bottom and the Coriolis force term, re-
spectively.

The discretisation of the homogeneous part of (9) is straightforward.
As opposed to the scheme in the previous section, the high order finite-
volume scheme is based on computing cell averages over grid cells Iij =
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[(
i− 1

2

)
h,
(
i + 1

2

)
h
]
×
[(

j − 1
2

)
h,
(
j + 1

2

)
h
]
of a uniform Cartesian mesh.

In each grid cell we approximate

Q̄n
ij =

∫∫
Iij

Q(x, y, tn)dxdy.

To compute the evolution of the cell averages ηij, Uij and Vij, we must
approximate the flux over the cell interfaces. This is accomplished by
reconstructing the solution within each grid cell using (nonlinear) inter-
polation. To obtain a stable and accurate solution, the reconstruction
procedure must ensure that no spurious oscillations are introduced, even
when the solution is non-smooth. This may be done, for example, by the
WENO technique (see [24] and the references therein). The reconstruc-
tion yields one-sided approximations of point values at cell interfaces as
well as in the interior of the cell, see Figure 3. Thus, at each cell interface
we obtain two one-sided approximations. To compute consistent inter-
face fluxes we integrate Roe’s approximate flux function F̂ (Q+, Q−, n)
[21] over each cell interface. In computations, these integrals are approx-
imated using Gaussian quadrature. For the x-direction, Fi+ 1

2 ,j is com-
puted as,

Fi+ 1
2 ,j =

∫ (j+ 1
2 )h

(j− 1
2 )h

F̂
(
Q
(
(i +

1

2
)h, y

)−
, Q

(
(i +

1

2
)h, y

)+
, nx

)
dy,

≈ h
∑
α

ωαF̂
(
Q
(
(i +

1

2
)h, yα

)−
, Q

(
(i +

1

2
)h, yα

)+
, nx

)
,

where yα and ωα are the quadrature points and weights. The fluxes in
the y-direction Gi,j+ 1

2
are computed in the same manner. To complete

the spatial discretisation we must compute the averaged source terms
Bij and Cij over each grid cell. The final evolution of the cell averages is
computed by solving the semi-discrete equation

d

dt
Q̄ij = −(Fi+ 1

2 ,j − Fi− 1
2
, j)/h− (Gi,j+ 1

2
−Gi,j− 1

2
)/h + Bij + Cij, (10)

using a standard fourth-order Runge-Kutta scheme. The details of the
source term discretisation are given in Section 2.3, and the boundary
conditions are discussed in Section 3.2.
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2.3 Well-balanced Finite-Volume Treatment of the Source Terms

The shallow water system has stationary solutions where source terms
and flux terms are in equilibrium. If we discretise the fluxes and source
terms naively, this may lead to spurious oscillations near equilibria. To
accurately resolve small perturbations of such equilibria, we must en-
sure that the discrete fluxes and sources exactly balance at equilibrium.
Ideally, the truncation error of the scheme should vanish at equilibrium
states. This is often called a well-balanced treatment of source terms.

Flat, stationary water of variable depth is an equilibrium where it is pos-
sible to construct such a discretisation. In [18], an arbitrary-order well-
balanced discretisation of the geometrical source term was constructed.
A well-balanced second-order discretisation of the geometrical source
term is extended to arbitrary order of accuracy using an asymptotic ex-
pansion. In a single grid cell in one spatial dimension, the integral of the
source term can be approximated by the fourth-order rule

S =
g

6
[4(ηl + ηc)(zl − zc) + 4(ηc + ηr)(zc − zr)− (ηl + ηr)(zl − zr)]

(11)

where ηl, ηc and ηr are reconstructed point-values in the left-, centre-
and right endpoints of the cell. The reconstruction of the central point is
an additional cost associated with this source term. This integration rule
can be extended to two spatial dimensions using Gaussian quadrature.
In the equation for x-volume-flux, (11) is applied in the x-direction and
the Gaussian rule in the y-direction. For the y-volume-flux, the order is
reversed. The integration points used for the source terms are shown in
Figure 3.

The Coriolis term is approximated by Cij = f [0, Vij,−Uij]
T . As in [2],

this is well-balanced for grid-aligned geostrophic jets.

3 Treatment of boundary conditions

For the experiments presented in this paper we need three types of
boundary conditions, reflective, outflow and inflow. These are presented
below. While reflective boundaries are rather straightforward, out- and
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inflow conditions have to be translated carefully from the B-grid finite-
difference setting to the finite-volume setting. Moreover, for the finite-
volume scheme we discovered a subtle perturbation introduced by a no-
slip inflow boundary condition. In Sections 3.2.3 and 3.2.4, we introduce
free-slip, Neumann-type boundary conditions which give smoother in-
flow.

3.1 Finite-Difference Boundary Conditions

Reflective boundary condition are treated with one-sided differences and
normal volume-flux equal zero. At outflow boundaries the normal volume-
flux V is defined by η

√
gH and the transverse volume-flux U is set to

zero. This boundary condition is called Flather condition in mechanics,
and it coincides e.g. with the first order absorbing boundary condition
given by Engquist and Majda [6]. The normal velocity v on the in-
flow boundary is given by a time dependent velocity profile function
vjet(x, y, t) (see (34) and (37)) and the tangential velocity u is set to
zero (no-slip). To compute the volume-flux on the inflow boundary the
height is extrapolated from the interior. These boundary conditions are
straightforward to implement in the finite-difference scheme.

3.2 Finite-Volume Boundary Conditions

3.2.1 Reflective boundary conditions

To treat reflective boundary conditions we are using ghost-cells and solve
the Riemann problem on the reflective boundary, where the ghost cell
contains the same data as the interior cell, but with reflected volume-
fluxes.

3.2.2 Absorbing Outflow Boundary Condition

Here we adopt a technique developed by Engquist and Majda [6] to de-
rive a so-called first order absorbing boundary conditions for the outflow
boundary. In particular, we follow Kröner’s adaptation [12] of the Eng-
quist-Majda absorbing boundary condition, who has computed the rele-
vant decomposition into normal and tangential waves for the linearised
Euler equations.
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For the shelf flows which we would like to compute, there are two relevant
cases. Due to the very large speed of long gravity waves in the ocean
c0 =

√
gH � v we are always in a subcritical flow and either one or

two characteristics are leaving the domain. Carrying over the results of
[6,12] to the linearised shallow water equations, we obtain the following
analytical boundary conditions:

If two characteristics are leaving the domain, the first order absorbing
boundary conditions specifies the normal volume-flux V = η

√
gH at the

open boundary.

In the case of one outgoing characteristic we obtain as before V = η
√

gH
for the normal volume-flux. In addition, we obtain a no-slip condition
for the tangential volume-flux, namely U = 0.

Now we translate these analytical boundary conditions to obtain data
for the Riemann solver at the absorbing boundary. Let ξ be the outward
pointing coordinate normal to the boundary and let QL be the approxi-
mation at the interior point ξ = 0−. We want to determine QR at ξ = 0+
such that an appropriate discretisation of the absorbing boundary con-
dition is fulfilled at the boundary. We linearise the system around the
interior state QL. In the subcritical case, there are two possibilities (see
Figure 4):

(a) v ≥ 0 at ξ = 0 and only λ1 < 0 or,
(b) v < 0 at ξ = 0 and both λ1 < 0 and λ2 < 0.

In case (a) we need to specify QA, since only one characteristic enters
the domain, and we can only specify one condition on the absorbing
boundary. For this we choose

VA = Vη := ηL

√
gHL, (12)

corresponding to the absorbing condition. This condition is equivalent
to the radiation condition of Flather [7] which is used by Gjevik et. al.
[9].

In case (b), we want to prescribe the state QB, since two characteristics
enter the domain and we have to specify two conditions at the boundary.

12



In this case the first order absorbing boundary conditions are

VB = Vη (13)

UB = 0. (14)

In both cases, this yields a well-posed problem. In case (a), the states
QL and QA are separated by a simple wave,

QA := QL + α1r1.

These are three equations for the unknowns α1, HA and UA. An elemen-
tary calculations gives

HA = HL(1 + βL) (15)

UA = UL(1 + βL) (16)

where

βL :=
Vη − VL

VL −HL

√
gHL

. (17)

Dividing (16) by (15) one obtains that

uA = uL, (18)

so there is no jump in tangential velocity!

In case (b), the states QL and QB are connected by two waves separated
by the intermediate state QA,

QB := QL + α1r1 + α2r2

From (13)–(14), we have VB = Vη := ηL

√
gHL and UB = 0. A straight-

forward computation yields

HB = HL(1 + βL). (19)

The numerical flux at the northern boundary is simply

Gi,jmax+ 1
2

:=


G(QA) for case (a)

G(QB) for case (b)
, (20)

where (i, jmax) is the index of the northern cells adjacent to the boundary.
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3.2.3 Free-slip inflow boundary conditions

For the finite-volume scheme, we have implemented two types of inflow
boundary conditions. The first is the no-slip inflow boundary condition
which we have already described for the finite-difference scheme. As is
documented in Table 5 for our finite-volume scheme, this leads to a loss
of accuracy even for smooth incoming jets. Since the water depth is
computed from values downstream, small inaccuracies in the specifica-
tion of the boundary condition can lead to large numerical errors or even
instabilities.

This may be explained as follows: fixing the tangential velocity at the
boundary to be zero leads to a jump in tangential velocity when the
internal flow develops vortices near the boundary. This admittedly small
discontinuity can cause loss of accuracy, and must be removed to get the
expected rate of convergence.

Therefore we would like to propose a second type of boundary condition,
which we call free-slip. We will show that this leads to smoother solutions.

To analyse the possible inflow boundary conditions, we linearise the
system at the inflow boundary around a state Q̂ := (Ĥ, Û , V̂ )T , with
U = Hu, V = Hv and H = η − z. Assuming zξ = 0, we obtain

Qt + ÂQξ = 0,

where ξ is the coordinate normal to the inflow boundary, Â is the Jaco-
bian of the flux function in the ξ-direction, V is the volume-flux in the
ξ-direction and U is the volume-flux parallel to the boundary.

The general Riemann solution consists of four states QL, QA, QB and
QR as shown in Figure 4. They are connected by three waves travelling
with speeds

λ1 = v̂ −
√

gĤ, λ2 = v̂, λ3 = v̂ +

√
gĤ,

where v̂ is the component of the velocity in the ξ-direction. The corre-
sponding eigenvectors are denoted by r1, r2, r3.

For our boundary value problem, we have v̂ > 0, since we assume that
we are at an inflow boundary. Typical velocities v̂ will not exceed one
meter per second. But the typical speed of long gravity waves

√
gH will
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Fig. 4. Solution of linear Riemann problem at inflow boundary, QL exterior, QR interior
domain.

be of the order of 30 meters per second to 140 meters per second for
water depths of 100 to 2000 meters. Thus, the inflow velocity v̂ is much
smaller that the speed of long gravity waves, and we have subcritical
flow. Therefore, the eigenvalues satisfy

λ1 � 0 ≤ λ2 � λ3.

As a result, the numerical boundary data we are looking for are given
by QA. This state QA will be connected by waves of the second and the
third families to the state QR,


HA

UA

VA

−

HR

UR

VR

 = α2


0

1

0

 + α3


1

Û
Ĥ

V̂
Ĥ

+
√

gĤ

 . (21)

These are three equation for the five unknowns HA, UA, VA, α1 and α2.
To obtain a uniquely solvable system we need to specify two of the
unknowns. This corresponds to the fact that exactly two characteristic
are entering the domain. Oliger and Sundstrøm [19] showed that the
initial boundary value problem (9) is well posed under the boundary
condition

∂u

∂ξ
= 0 and v = vjet, when ξ = 0. (22)

We translate condition (22) to our inflow Riemann problem by requiring
that

uA = uR and vA = vjet. (23)

Now we have only three unknowns left. Plugging uA and vA into (21)
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gives 
HA

HA uA

HA vjet

−

HR

UR

VR

 = α2


0

1

0

 + α3


1

Û
Ĥ

V̂
Ĥ

+
√

gĤ

 , (24)

which yields

α2 = HA uA −HR uR − α3
Û

Ĥ
, α3 =

VA − VR

V̂
Ĥ

+
√

gĤ
.

Choosing Q̂ = QR, this leads to the following formula for the state QA

at the boundary,

HA =
HR

√
gHR

vR +
√

gHR − vjet
, UA = HAuR, VA = HAvjet. (25)

The numerical flux at the boundary is simply

Gi,12
:= G(QA). (26)

3.2.4 Balanced Inflow Boundary Condition

In Section 4.4 we will apply another variant of the jet inflow boundary
condition. In order to motivate it, let us consider once more the free-
slip boundary condition derived in the previous section. As can be seen
from Figure 4 and equation (21), the jet inflow data were assigned to the
intermediate state QA via vA = vjet. Then the state QA was connected to
the inner state by two waves. This defined uA = uR and HA implicitly.
We would like to point out that the third wave, a long gravity wave
leaving the domain, is effectively suppressed, and no wave can leave the
domain. Indeed in Section 4.4.2 we show that this may lead to an increase
of the overall water height.

Now we modify the boundary condition to include the outgoing wave.
For this, we apply the jet inflow condition to the outer state QL instead
of QA. Since we now have three waves to connect the inner state QR

with the jet, there is one more degree of freedom. We determine this by
the following reasoning: at the jet, we already know the normal veloc-
ity v(x, 0−, t) = vL(x, t) = vjet(x, t). By the free/slip condition, we also
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know the tangential velocity u(x, 0−, t) = uL(x, t) = uR(x, t). It remains
to determine H(x, 0−, t) = HL(x, t). Now we request that these val-
ues (H, u, v)(x, 0−, t) are compatible with the shallow water equations.
To determine HL(x, t) it is sufficient to use the balance of tangential
volume-flux. Taking into account that uy(x, 0, t) = 0 by the the free-slip
condition, we obtain

ut + uux = −g(H + z)x + fv, (27)

or

H(x) + z(x) = H(x0) + z(x0)−
1

2g
(u(x)2 − u(x0)

2)− 1

g

∫ x

x0

(ut − fv).

(28)

Note that the geostrophic balance

η(x)− η(x0) =
f

g

∫ x

x0

v (29)

is a special case of the volume-flux balance Equation (28) when u ≡ 0
(remember that η = H + z).

For the cells (i, 1) at the southern boundary, the in-flowing flux is given
by the Riemann solver F̂ via

Gi,12
:= F̂ (QL, QR, ny), (30)

where ny = (0, 1) is the inward unit vector normal to the southern bound-
ary. Note that y 1

2
is the position of the boundary edge.

In Section 4.4 we will see that this boundary condition is transparent,
i.e. it admits both in- and outflow.

4 Comparison of the Schemes

In this section we present comparisons of the staggered scheme and the
high-order finite-volume scheme on different challenging test problems.
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N H U V

L1-error rate L1-error rate L1-error rate

25 4.56E-02 1.70E-01 4.37E-01

50 1.69E-02 1.43 7.44E-02 1.19 1.76E-01 1.31

100 7.19E-03 1.23 3.33E-02 1.16 7.58E-02 1.22

200 3.35E-03 1.10 1.58E-02 1.08 3.48E-02 1.12

400 1.63E-03 1.04 7.68E-03 1.04 1.66E-02 1.07

800 8.02E-04 1.02 3.80E-03 1.02 8.12E-03 1.03

Table 1
The L1-errors and convergence rates for each of the components in the convergence test

of Section 4.1, computed with the first-order finite-difference scheme of Section 2.1. The
reference solution is computed with the high-order finite-volume scheme on a 1600 × 1600
grid.

4.1 Order of Accuracy

To compute the numerical order of accuracy of the finite-volume scheme
we use a slight modification of an experiment of Xing and Shu ([27],
see also [16]. On the unit square [0, 1] × [0, 1] the bottom topography,
initial surface elevation, and initial volume-flux are given by the smooth
functions

z(x, y) = sin(2πx) + cos(2πy),

η(x, y, 0) = 10 + esin(2πx) cos(2πy),

U(x, y, 0) = sin(cos(2πx)) sin(2πy),

V (x, y, 0) = cos(2πx) cos(sin(2πy)).

We compute the solution up to time T = 0.05, where the timestep is
given by

∆t = CFL ∆x max
[0,1]×[0,1]

{|λ(Q)|} = CFL ∆x max
[0,1]×[0,1]

{
|u|+

√
gH, |v|+

√
gH

}
,

with CFL := 0.5. The physical parameters are g = 9.812 and f = 10.0.
The reference solution is computed with the finite-volume scheme on a
grid with 1600× 1600 cells.

According to the discussion in Section 2.1, we expect the original finite-
difference scheme (2)–(4) to be first order accurate. This is confirmed by
the results in Table 1. The improved enlag scheme (7) and (8) is indeed
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N H U V

L1-error rate L1-error rate L1-error rate

25 3.27E-02 1.19E-01 2.41E-01

50 8.45E-03 1.96 3.30E-02 1.85 6.27E-02 1.94

100 2.10E-03 2.01 8.45E-03 1.96 1.60E-02 1.97

200 5.26E-04 2.00 2.12E-03 2.00 4.01E-03 2.00

400 1.32E-04 2.00 5.31E-04 2.00 1.01E-03 2.00

800 3.29E-05 2.00 1.33E-04 2.00 2.52E-04 2.00

Table 2
The L1-errors and convergence rates for each of the components in the convergence test of

Section 4.1, computed with the improved second-order finite-difference scheme of Section 2.1.
The reference solution is computed with the high-order finite-volume scheme on a 1600×1600
grid.

N H U V

L1-error rate L1-error rate L1-error rate

25 6.70E-03 2.06E-02 5.34E-02

50 8.46E-04 2.99 1.60E-03 3.69 7.30E-03 2.87

100 6.84E-05 3.63 9.19E-05 4.13 5.57E-04 3.71

200 3.06E-06 4.48 3.70E-06 4.64 2.48E-05 4.49

400 1.10E-07 4.79 1.32E-07 4.81 9.03E-07 4.78

800 3.66E-09 4.91 4.38E-09 4.91 3.04E-08 4.90

Table 3
The L1-errors and convergence rate for each component in the convergence test of Section 4.1,
computed with the high-order finite-volume scheme of Section 2.2. Each grid is N ×N and
the reference solution is computed on a 1600× 1600 grid.

second-order accurate, see Table 2.

For the finite-volume scheme we expect fourth-order accuracy (indeed
the Runge-Kutta scheme for time integration, the Gaussian rules for
integrating the numerical fluxes and the cell centred source term are all
formally fourth-order accurate, and the spatial WENO reconstruction
procedure is even fifth-order accurate).

Table 3 reports the L1-errors together with convergence rates for the
finite-volume scheme. For this test case, we get the expected fourth-order
accuracy (in fact almost fifth-order) in all components.
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Fig. 5. The figure shows a cross-section of the initial data of Example 2: (top) surface elevation,
(middle) x-component of the velocity field, and (bottom) potential vorticity.

4.2 Large Eddies in a Doubly Periodic Domain.

To illustrate visually the difference in performance of the finite-difference
and the finite-volume schemes, we compute the evolution of potential
vorticity (PV) in a very hard test-case taken from [4]. The PV is a
conserved quantity that is advected with the flow and is a good test of
the effect of the numerical diffusion on complex smooth solutions of the
rotating shallow water equations. Since this test-case is doubly periodic,
which can easily be implemented in both schemes, the comparison does
not involve the complications of boundary conditions.

Consider a doubly periodic domain (−π, π)2 with flat bottom topogra-
phy. Let u := (u, v) be the velocity field. The potential vorticity is given
by

q :=
∇× u + f

H
. (31)

Assume that the flow is geostrophically balanced initially, i.e., that the
gravitational forces exactly balance the Coriolis force. Using (1), this
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balance can be written as

g∇H + fu⊥ = 0. (32)

If the potential vorticity is known throughout the domain, the balance
condition (32) specifies the state of the shallow water system completely.
At this state, the surface elevation solves the following equation,

Hxx + Hyy +
fq

g
H =

f 2

g
, (33)

with evanescent boundary conditions.

In this example, we use the initial potential vorticity of [4],

q(x, y, 0) =

q̄ + Q sign(ŷ)(a−
∣∣∣|ŷ| − a

∣∣∣), |ŷ| < 2a,

q̄, otherwise,
,

ŷ = y + cm sin mx + cn sin nx,

where q̄ is the mean potential vorticity, q̄±Qa is the maximum/minimum
of the potential vorticity, and 2a is the width of the jet. As in [4], we
use the scalings h̄ = 1, L2

R = gH/f 2 = 0.25, a = 0.5, h̄Q/f = 2 and
f = 4π, with one unit time corresponding to one day. The parameters
of the perturbation are m = 2, n = 3, c2 = −0.1 and c3 = 0.1.

By solving the balance condition (32), the potential vorticity field yields
a balanced double jet flow. Cross-sections of the initial surface elevation,
velocity field and potential vorticity are shown in Figure 5. The actual
solution of the balance condition is computed using a simple central
finite-difference scheme on a 512× 512 grid.

The time evolution of these seemingly simple initial data quickly pro-
duces large complex vortical structures with many smaller vortex fil-
aments tearing off. In Figure 6 we have plotted the potential vortic-
ity at two times for the finite-volume scheme and the finite-difference
scheme, respectively. Both schemes seem to produce the same coarse
scale vortices, but in addition the high order finite-volume scheme also
resolves several small scale vortices. See [4] for a comparison with a
Semi-Lagrangian contour advection algorithm.
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Finite-difference scheme, day 4 Finite-volume scheme, day 4
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Fig. 6. Contour lines of the potential vorticity at day 4 (up) and day 8 (down) computed with
the finite-volume scheme and finite-difference scheme, both on a 512× 512 grid. The vortical
pattern closely resembles the results reported in [4], although clearly with more numerical
diffusion.

4.3 Convergence Test for a Barotropic Jet Problem

In this and the following two examples we study barotropic jets. Here
we show that the no-slip boundary condition described in Section 3.2.3
yields the expected loss of convergence rates. We also show that the
free-slip boundary condition gives high-order convergence rates.
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As in [9,26] the water is initially at rest. Then the jet is started smoothly
across the southern boundary (see Figure 7) with velocity

vjet(x, t) = Vmax exp

−
2(x− LB)

B

2
 γ

(
t

2000

)
, (34)

where the growth function γ is given by

γ(τ) :=


70 τ 9 − 315 τ 8 + 540 τ 7 − 420 τ 6 + 126 τ 5, if τ ≤ 1,

1, else.
. (35)

The centre of the jet LB = 100km and the width is B = 50km. The
maximum velocity is Vmax = 0.04m

s . The full strength of the jet is reached
after 2000s. We compute on the domain Ω = [0, 300km]×[0, 300km] with
smooth bottom topography given by

Q1 = 0.5 (DO −DS),

Q2 = 0.5 (DO + DS),

z(x, y) = −Q1 tanh

(
x−XO

XS

)
−Q2,

where DS = 400m, DO = 1000m, XS = 40km, and XO = 120km. Ini-
tially, the water in Ω is at rest, so η(x, y) ≡ 0. The boundary conditions
in the x-direction are reflective (east-west), while the boundary condition
at y = 0 (south) is an inflow condition.

The northern boundary condition (at y = 300km) is transparent. We use
the radiation condition [7] for the finite-differences and the absorbing
boundary condition [6] for the finite-volume scheme. For this particular
example, the two conditions are equivalent. The acceleration of gravity
g = 9.81m

s2 and the Coriolis parameter f = 1.2× 10−4s−1.

In Tables 4 and 5 we have computed the rates of convergence of the two
schemes at the final time T = 3000s. At this time the jet has flooded a
large part of the domain and the west-going wave is partially reflected
at the boundary. The reference solution was computed using the finite-
volume scheme on a 1600×1600 grid. As predicted in Section 3.2.3 both
schemes do not converge with the high rates obtained in Example 4.1.
This is in accordance with the discussion in [19,3,5], which predicts that
a no-slip inflow boundary condition will result in a loss of smoothness in
the whole domain, for computations on very fine grids.
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N η U V

L1-error rate L1-error rate L1-error rate

50 6.10E07 7.89E09 4.84E09

100 2.90E07 1.07 4.26E09 0.89 2.42E09 1.00

200 1.38E07 1.07 2.30E09 0.95 1.20E09 1.02

400 6.31E06 1.13 1.11E09 0.99 5.85E08 1.04

800 2.76E06 1.20 5.51E08 1.01 2.83E08 1.05

Table 4
The L1-errors and convergence rates for each of the components in the convergence test of

Section 4.3. The solutions were computed with the second-order finite-difference scheme with
no-slip inflow conditions. The reference solution was computed with the high-order finite-
volume scheme on a 1600× 1600 grid.

N η U V

L1-error rate L1-error rate L1-error rate

50 3.19E06 4.57E08 4.47E08

100 2.11E05 3.92 8.21E07 2.48 5.70E07 2.97

200 1.51E04 3.80 6.97E06 3.56 4.36E06 3.71

400 5.10E03 1.57 4.19E06 0.73 1.88E06 1.21

800 2.67E03 0.93 3.72E06 0.17 1.02E06 0.89

Table 5
The L1-errors and convergence rates for each of the components in the convergence test

of Section 4.3. The solutions were computed with the finite-volume scheme with no-slip
boundary conditions.

To obtain a smoother solution we apply the free-slip boundary condition
developed in Section 3.2.3 to the finite-volume scheme. Our boundary
condition for the finite-difference scheme is that the tangential volume-
flux should be continuous, which is realised by

Ui,inflow = Ui,inflow+1. (36)

As shown in Tables 6 and 7 these boundary conditions recover the
expected higher orders of convergence, especially for the finite-volume
scheme. Once more the reference solution was computed using the finite-
volume scheme on a 1600× 1600 grid.
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N η U V

L1-error rate L1-error rate L1-error rate

50 2.14E07 2.34E09 2.91E09

100 1.07E07 0.99 1.10E09 1.09 1.38E09 1.07

200 5.20E06 1.05 4.91E08 1.16 6.35E08 1.13

400 2.25E06 1.21 2.02E08 1.28 2.67E08 1.25

800 7.25E05 1.64 6.42E07 1.65 8.53E07 1.65

Table 6
The L1-errors and convergence rates for each of the components in the convergence test

of Section 4.3. The solutions were computed with the finite-difference scheme with free-slip
inflow conditions. The reference solution was computed with the high-order finite-volume
scheme on a 1600× 1600 grid.

N η U V

L1-error rate L1-error rate L1-error rate

50 3.20E06 4.64E08 4.57E08

100 2.20E05 3.86 9.08E07 2.35 6.43E07 2.83

200 1.66E04 3.72 1.37E07 2.73 7.85E06 3.04

400 1.32E03 3.65 1.59E06 3.11 8.23E05 3.25

800 1.02E02 3.69 1.45E05 3.45 7.16E04 3.52

Table 7
The L1-errors and convergence rates for each of the components in the convergence test of

Section 4.3. The solutions were computed with the finite-volume scheme with free-slip inflow
boundary conditions.

4.4 Development of Eddies in Shelf Slope Area due to a Barotropic Jet

4.4.1 Ormen Lange Shelf Experiment I

In [26], Thiem et al. used a numerical model based on the first-order
finite-difference scheme of Section 2.1 to study the impact of the shelf
geometry upon along-shelf currents. The setup is taken from the Ormen
Lange gas field off the western Norwegian coast. The shelf width in this
model is constant with a depth profile given by

z(x, y) =


−DO, x ≤ Lx − (XL + XS),

−DO + (DO −DS)
(

Lx−(XL+XS)−x
XS

)2
, Lx − (XL + XS) ≤ x ≤ Lx −XL,

−DS, otherwise,

25



Ly

0

y

Lx − (XL + XS)

Lx −XLLB

0

z

x

DO

DS

0

Lx

S

N

W

E

Fig. 7. The computational domain of the example in Section 4.4. The types of boundary
conditions used are indicated.

where shelf depth DS = 250m, ocean depth DO = 1600m, shelf width XL =
100km, and shelf slope width XS = 90km. The domain is [0, Lx]×[0, Ly],
where Lx = 300km and Ly = 600km. Initially, the surface elevation
η = 0m and the water is initially at rest. The boundary conditions
in the x-direction (west x = 0 km (norwegian sea), east x = 300 km
(coast)) are reflective. On part of the southern boundary (y = 0 km,
|x−LB| ≤ B with B = 10 km, LB = 185 km) we prescribe an in-flowing
jet with velocity

vjet(x, t) = Vmax exp

−
2(x− LB)

B

2
 (1− exp(−σt)) (37)

where Vmax = 0.4m/s, the jet growth factor σ = 2.3148× 10−5, accelera-
tion of gravity g = 9.81m/s2 and Coriolis parameter f = 1.2× 10−4s−1.
For the rest of the southern as well as for the northern boundary we
prescribe an absorbing radiation condition, see Figure 7.

In Subsection 4.3 we have compared the no-slip inflow boundary con-
dition with the more accurate free-slip inflow boundary condition for a
smooth jet. Now we will study these boundary conditions for the more
realistic Ormen Lange setup described above.

The first computation uses the finite-difference scheme with no-slip in-
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flow boundary condition as described in Section 3.1. The second compu-
tation is done by the finite-volume scheme. The no-slip inflow boundary
condition is the same as the free-slip boundary condition (25), except
that we set the tangential velocity uA to zero. At the outflow boundary,
we use conditions (13) and (14).

The final computation, again by the finite-volume scheme, uses the free-
slip inflow boundary condition (25).

The results of the three computations after 60, 120, and 240 hours are
shown in Figures 8 and 9. The plots of the finite-difference and finite-
volume solutions with no-slip inflow boundary condition look quite sim-
ilar. After a short time, the narrow current starts to oscillate and large
eddies are generated. However, we would like to point out that in ad-
dition to these physical oscillations the finite-difference develops large
numerical oscillations, which we damp by adding artificial diffusion as
in [9] Equation (4) by adding eddy viscosity ν, given by

ν = ql2
(∂ū

∂x

)2

+

(
∂ū

∂x
+

∂v̄

∂y

)2

+

(
∂v̄

∂y

)2
1
2

, (38)

according to Smagorinsky [25]. Where l denotes the grid size and the
depth mean current velocity defined to first order by,

ū =
U

H
, v̄ =

V

H
. (39)

The diffusion parameter q is set to q = 0.1 in all finite-difference com-
putation. The finite-volume solution with the free-slip inflow boundary
condition looks different, eddies are close to the inflow.

4.4.2 Setup for Ormen Lange Shelf Experiment II

In the setup of Section 4.4.1, the in-flowing jet was cut off at x =
LB ±B/2. After some time, these points become transition points with
a noticeable discontinuous shear layer. For the next experiment we avoid
such a discontinuous shear layer and change the boundary condition by
assigning the in-flowing jet profile vjet defined in equation (37) on the
whole southern boundary.

The results are displayed in Figures 10. Eddies are still created and are
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Fig. 8. Ormen Lange Experiment I. Velocity plots at 60 (top), 120, and 240 (bottom) hours,
computed with the Finite-Difference scheme no-slip boundary condition (left), Finite-Volume
no-slip boundary condition and Finite-Volume free-slip boundary condition (right).
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Fig. 9. Ormen Lange Experiment I. Contour plots of surface elevation at 60 (top), 120, and
240 (bottom) hours, computed with the Finite-Difference scheme no-slip boundary condi-
tion (left), Finite-Volume no-slip boundary condition and Finite-Volume free-slip boundary
condition (right).
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Fig. 10. Ormen Lange Experiment II.. Contour plots of surface elevation (top) and velocity
plots (bottom) at 240 hours, computed with the Finite-Difference scheme free-slip bound-
ary condition (left), Finite-Volume no-slip boundary condition and Finite-Volume free-slip
boundary condition (right).

of similar strength as in the previous section Figures 8. Note, however,
that the maximal water level is now about 15cm, which is 3.3cm higher
than before (11.7cm). This was to be expected because our new southern
boundary condition does not allow any outflow.

From this experiment we can conclude that the non-smooth patching of
the boundary condition at the southern boundary is not the mechanism
which creates the instability. In the next experiment we will investigate
if the instability is effected by the start-up procedure.
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4.4.3 Setup for Ormen Lange Shelf Experiment III

We use the same setup as in Subsection 4.4.2 but here we use the smooth
(four times continuously differentiable) growth function γ(τ) of (35) with
τ = t/24h, see Figure 11. Eddies are still being created and are quali-
tatively about the same as before. This is also suggested by the linear
stability analysis in [9].

4.4.4 Setup for Ormen Lange Shelf Experiment IV

Here we present another variant of the southern boundary condition.
In Section 4.4.1 we used a discontinuous patch of an in-flowing jet in
the centre and open outflow at the periphery. In Section 4.4.2 we pre-
scribed inflow everywhere. Now we joined the inflow- and the open out-
flow boundary conditions smoothly: Let F infl

i+ 1
2 ,j

be the flux determined by

the free-slip inflow boundary condition and F absorb
i+ 1

2 ,j the one given by the

absorbing outflow boundary condition. Now we use the following convex
combination to obtain the effective boundary flux

Fi+ 1
2 ,j := χ(x)F infl

i+ 1
2 ,j

+ (1− χ(x))F absorb
i+ 1

2 ,j . (40)
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Fig. 12. Ormen Lange Experiment III. Contour plots of surface elevation (top) and velocity
plots (bottom) at 60 (left), 120, and 240 (right) hours, computed with the Finite-Volume
scheme free-slip boundary condition and smooth growth function Equation (35).

The function χ(x), which prescribes the transition from the open outer
region towards the jet in the centre of the domain, is given by

χ(x) =



0 , x < TW −R,

Θ
(

x−TW +R)
2R

)
, TW −R ≤ x ≤ TW + R,

1 , TW + R < x < TE −R,

Θ
(

2R−(x−TE+R)
2R

)
, TE −R ≤ x ≤ TE + R,

0 , x > TE + R.
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Fig. 13. The function χ(x) prescribes the convex combination of the absorbing condition and
the jet

Here Θ(x) := x5 [126 + x(−420 + x(540 + x(−315 + 70x)))] and the smooth-
ing radius is R = 5000. The transition points are TW := LB − 1

2B and
TE := LB+ 1

2B. The numerical results are shown in Figure 14. They agree
in considerable detail with the previous computations and hence confirm
the development of eddies, without introducing any discontinuity via the
numerical boundary treatment.

4.4.5 Balanced inflow boundary conditions: Ormen Lange Shelf Experiment V

There remains one technical issue concerning the previous boundary con-
dition: the transition points TE and TW have to be chosen by hand. This
is not necessary for the volume-flux balanced boundary condition de-
rived in Section 3.2.4 . There the decision of outflow/inflow is taken
automatically by the Riemann solver.

The results for the balanced boundary condition are shown in Figure 15.
They are in excellent agreement with the results in Figure 14. This shows
that the volume-flux boundary condition is an interesting alternative to
the previous treatments, if we know the far-field values η(x0, y0) and
U(x0, y0). The results for the geostrophically balanced boundary condi-
tion are almost identical, and hence we do not display them here.

4.4.6 Comparison with linear stability analysis

Linear stability analysis described in [8] and [26] shows that the along
shelf jet as defined for the Ormen Lange case, section 4.4.1, is unstable
with respect to along shelf wave perturbations. The maximum predicted
exponential growth rate of 0.44 day−1 occurs for a wave length of 44 km.
The corresponding wave period is 34.2 hours. A second unstable mode
has a maximum growth rate of 0.28 day−1, a wave length of 54 km and a
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Fig. 14. Ormen Lange Experiment IV. Contour plots of surface elevation (top) and velocity
plots (bottom) at 60 (left), 120, and 240 (right) hours, computed with the Finite-Volume
scheme free-slip boundary condition and exponential growth function Equation (35) and
transition smoothing.

period of 41.1 hours. There are also steady, neutrally stable, shelf wave
oscillations in the band of wave lengths around 1000 − 1200 km with
corresponding period 35.6− 40.5 hours.

To compare the results of the linear stability analysis with the solution
of the finite volume scheme in more detail we did the same computation
as in section 4.4.1 on an enlarged domain of 300× 9600km2, grid-width
2 km and final time 480 hours (see Figure 16). Since several periods of
the long waves (wavelength 1000 − 1200 km) fit into this domain, it is
possible to measure the wavelength very accurately. Figure 17 shows the
surface elevation for the section x = 200 km, 0 km ≤ y ≤ 400 km, which
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Fig. 15. Ormen Lange Experiment VI. Contour plots of surface elevation (top) and velocity
plots (bottom) at 60 (left), 120, and 240 (right) hours, computed with the Finite-Volume
scheme free-slip boundary condition, exponential growth function and balanced Equation (28)
at inflow.

is the upper shelf-edge. It is here that we observe the strongest wave
amplitudes. The peaks indicate a wave length of 49 km, which is the
separation distance of the eddies. Figure 18 shows the surface elevation
for the section along the coast (x = 300 km, 0 km ≤ y ≤ 8400 km). Here
we observe the second strongest wave amplitudes. The peaks indicate
a wave length of 1152 km. Both wave, the one in Figure 17 with wave
length 49 km, and the one in Figure 18 with 1152 km, have the same
wave period of 39.5 hours. For the second wave, time-plots of surface
displacement, and velocity v are shown in Figure 19. Time plots for the
first wave are similar, and not shown here.
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Fig. 17.
Section of surface displacement at x = 200 km, computed on a domain of

300× 9600 km2. The maximum exponential growth rate is observed for a wave length
of 49 km.

The computational results of Figure 17, showing the development of
eddies with period 35 − 40 hours and an along shelf separation of 40 −
60 km, are in close, but not complete, agreement with the predictions of
the linear stability analysis.

The oscillation with wave length of about 1200 km and period about
40 hours (see Figure 18) is most pronounced in the sea level η and its
amplitude grows considerably over a time span of 10 days. Clearly, this
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Fig. 19. The frequency of the maximum unstable waves is approximately 39.5 hours. The
upper plot shows the frequency in the surface displacement and the lower plot shows the the
frequency in long shelf velocity component v̄

oscillation corresponds to the steady long shelf wave oscillations found by
the stability analysis. In the numerical simulations the oscillation seems
to be excited by the periodic eddy formation near the inflow bound-
ary and propagates subsequently downstream with a speed of about
30 km/hours.

A perfect correspondence between the linear stability analysis and the
numerical simulations of the inflow jet cannot be expected due to nonlin-
ear effects and the downstream development of the eddies in the model.

Note that for the situations computed above, the finite difference scheme
yields almost equal results as the finite volume scheme.
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5 Conclusion

In this paper we have presented a comparison of a finite-difference and a
high-order finite-volume scheme for geophysical flow problems. To con-
clude our report we discuss

1. the efficiency and stability of the FD and FV solvers,
2. the numerical inflow boundary conditions,
3. the geophysical implication of the computational results.

5.1 Efficiency and stability of the FD and FV solvers

The results indicate that the two schemes compute qualitatively and
quantitatively similar solutions. The rates of convergence are as ex-
pected, i.e., first order for the original finite-difference scheme used by
Gjevik et al. in [9], second order for the modified finite-difference scheme,
and fourth order (almost fifth) for the finite-volume scheme.

An exact quantitative comparison of run-times is not possible, since the
two codes are research codes written in different languages and by differ-
ent programmers. However, it is fair to say that for the very smooth test
problems 4.1 (see Table 2 and Table 3) and 4.2 the higher order finite
volume scheme is asymptotically more efficient. For the more realistic,
and less smooth, test problems Section 4.4, both the FD and the FV
code give qualitatively the same results on the same grid, but the FD
scheme is much faster than the FV scheme. It would be desirable to run
the FV scheme on a coarser grid to reduce the runtime, because then
the inflow data for the jet would be resolved by less then 10 cells, and
the flow is not sufficiently resolved any more. This might be different for
broader currents. Note that the FV scheme could resolve small gravity
waves which were completely smeared by the FD scheme. However, these
waves quickly leave the computational domain and do not seem to have
a noticeable impact on the major currents.

The FV scheme has an important advantage over the FD scheme: it is
much more stable in cases with strong gradient. We can run it with CFL
numbers of 0.5 (in all our computations) and sometimes up to 1, without
adding any artificial viscosity. This includes solutions with shock-like
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discontinuities, e.g. hydraulic jumps. If we run the FD scheme without
artificial viscosity, and for smooth solutions, it may already produce
instabilities for CFL numbers of 0.5. This happened for example when we
implemented the free-slip boundary condition into the FD scheme. For
hydraulic jumps, a lot of artificial viscosity has to be added to stabilise
the FD scheme, and this reduces the accuracy of the scheme.

5.2 Numerical inflow boundary conditions

Using Riemann decompositions, we could successfully translate the FD
boundary conditions to the FV solver. We could also improve the no-
slip inflow boundary conditions by the free-slip condition, which yields
smoother solutions (Tables 4-7). Moreover, we developed a transparent
inflow condition, which allows waves to leave the domain through the
inflow boundary.

5.3 Geophysical implication of the computational results

Various numerical experiments for the Ormen Lange cases presented in
Section 4.4, with the FD and the FV schemes and different implementa-
tions of the boundary conditions led to almost identical results for two
different startup profile configurations. These results are also in close
agreement with linear stability analysis (see Section 4.4.6). Therefore
the computations presented here fully confirm the results of [26] about
instabilities of the shelf slope jet and the formation of eddies.

5.4 Further perspectives

The finite-volume scheme is much more expensive with respect with com-
puter time than the traditional finite-difference scheme, but one benefits
from a lot higher accuracy. To obtain a similar accuracy with the finite-
difference scheme one would have to refine the grid several times.

This may make the finite-volume scheme attractive for studies of high
frequency oscillations associated with strong current shears or small scale
bathymetric features on the shelf edge.

39



References

[1] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, B. Perthame. A fast and stable well-
balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci.
Comp. 25, (2004), 2050–2065.

[2] F. Bouchut, J. Le Sommer and V. Zeitlin. Frontal geostrophic adjustment and nonlinear-
wave phenomena in one dimensional rotating shallow water. Part 2: high-resolution
numerical simulations. J. Fluid Mech. 514 (2004), 35–63.

[3] A.F. Benette, P.E. Kloeden. The Ill-Posedness of open Ocean Models. J. Phys. Oceanogr.
(1981), 1027–1029.

[4] D. G. Dritschel, L. M. Polvani and A. R. Mohebalhojeh. The contour-advective semi-
Lagrangian algorithm for the shallow water equations. Monthly Weather Review, 127
(1999), 1551–1565.

[5] N.A. Edwards, C.P.Please and R.W. Preston. Some Observations on Boundary Conditions
for the Shallow-water Equations in Two Space Dimensions. IMA Journal of Applied
Mathematics Vol. 30, (1983), 161–172.

[6] B. Engquist and A. Majda. Absorbing Boundary Conditions for the Numerical Simulation
of Waves. Mathematics of Computation Vol. 31, Number 139 (1977), 629–651.

[7] R.A. Flather. A tidal model of the northwest European continantal shelf. Memoires de la
Societe Royale des Sciences de Liege 6 (1976), 141–164.

[8] B. Gjevik. Unstable and neutrally stable modes in barotropic and baroclinic shelf slope
currents. Preprint Series, Dept. of Math., Univ. of Oslo, No 1.

[9] B. Gjevik, H. Moe and A. Ommundsen. Idealized model simulations of barotropic flow on
the Catalan shelf. Continental Shelf Research Vol. 22 (2002), 173–198.

[10] S.K. Godunov. A difference method for numerical calculation of discontinuous solutions
of the equations of hydrodynamics. (Russian) Mat. Sb. (N.S.) Vol. 47 (1959), 271–306.

[11] A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys.
49 (1983), no. 3, 357–393.
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