Preconditioning GMRES for steady compressible
inviscid flows

Philipp Birken*
May 2, 2002

Abstract

Most of the computing time in an implicit finite volume method is spent solving
the linear equation systems. The performance of the Newton-Krylov solver depends
on the preconditioner. Choosing the appropriate preconditioner is crucial for the
overall performance of the flow solver. It is demonstrated through numerical ex-
periments, that an incomplete LU decomposition with higher level of fill gives good
efficiency for the considered aerodynamic problems.

1 Introduction

The simulation of flows around airfoils, as well as their aeroelastic interaction, has become
an important topic in aircraft design and security control. The aircraft designers are not
only required to provide extensive experiments with real aircrafts, but also to present
numerical results, before a new plane is accepted by the office of aviation. Unfortunately,
it is not possible to calculate realistic threedimensional turbulent flows fast enough. A
thorough numerical testing of an aircraft requires several hundred if not thousands of
runs of the flow solver. Tracking the turbulent wake of a starting plane for 80 wingspans
to determine its impact on following planes is a goal of modern aerodynamics, but its
industrial realization requires better algorithms as well as better computers.

The first task in developing a flow solver for threedimensional compressible turbulent
flows is a code for twodimensional compressible inviscid flows. Including turbulence is
comparatively easy and making a sequential threedimensional code is more hard work
than actually introducing new concepts to the 2D-solver. This is why for this report, only
two dimensional stationary problems were considered. We are not interested in issues of
discretization, but only in the solution of nonlinear equation systems.

The famous CFL stability condition imposes a restriction on the time step of a solver.
The speed of the fastest wave determines the time step for explicit methods. Thus it is
guaranteed, that a shock does not move more than one cell in one time step. Implicit

*The author was supported by the DFG as a member of the SFB401

methods are not bound to this condition. The Navier Stokes and Euler equations, which
model compressible flows, are very stiff and the shock does most often not travel at the
speed of the fastest wave, but much slower. The CFL condition is therefore not necessary
to resolve the flow adequately in time. This means that implicit methods are the method
of choice even for unsteady flows.

In our context, there are essentially two different types of solver: Multigrid and
Newton-Krylov. Multigrid may also be used as a preconditioner in a Newton-Krylov
algorithm. In the multigrid field, there are two approaches: the FAS approach by Brandt
[4], which applies a nonlinear multigrid algorithm to the steady state equations and the
multigrid algorithm by Jameson [6], which is also applied to steady state problems, using
an explicit Runge Kutta method as smoother. This is done using the so called dual time.

In an implicit method, a nonlinear equation system is obtained in every time step.
This can be interpreted as a steady state equation, allowing us to apply the multigrid
techniques.

In contrast, the Newton-Kylov approach uses a Newton method to solve the nonlinear
equation system. The resulting linear system is treated with a preconditioned Krylov
subspace method.

The multigrid approaches seem to be faster than the Newton Krylov solvers [7, 9, 12],
promising even to obtain optimal convergence [8]. But Newton-Krylov solvers are much
much easier to implement AND more robust, making them competitive [15, 23, 10]. Their
success depends on the preconditioner used and we will show that an incomplete LU
decomposition with higher level of fill [19] is a very good choice for the class of problems
we are interested in.

2 The governing equations

We are considering the two dimensional time dependent Euler equations, which model
the motion of a compressible gas. They form a system of conservation laws, namely the
conservation of energy, mass and momentum. For a control volume 2 with boundary 02
and outward normal n, they can be written as:

0
v+]{ F(u)ndsS = 0. (1)
o Ot 1)
This means that the change in the conserved variables in the control volume is equal
to the flux over the boundary. The state vector of conserved flow variables u and the

physically conservative flux F'¢ are defined by

p pv
u= pv yFé(u)= | pvov+pZ |, (2)
PEtot phiorv

where p denotes the density, p the pressure, v the velocity vector, e, the total energy
and hy; the total enthalpy. The system is closed by the equation of state for a perfect
gas p = p(7 — 1)(ewr — 1/2|v|?), where 7 is the ratio of specific heats, taken as 1.4.

2

While we want to solve the time independent Euler equations, the task of solving
this nonlinear equation directly is difficult. This is because they are - dependent on
the Mach number - of elliptic, hyperbolic or mixed elliptic/hyperbolic type, while the
time dependent equations are always hyperbolic. Therefore, we solve the time dependent
equations forward in time, until we obtain steady state. For one timestep, the equations
read as follows:

tn+1 a tnt1
/ / 9 a(x, AV + / 7{ F*(u(x,))ndSdt = 0.
t o Ot tn a0

3 The Finite Volume Solver Quadflow

All the computations herein have been produced using the Quadflow solver [3], which
is being developed at the IGPM and the Lehrstuhl fiir Mechanik. The core of the flow
solver is a finite volume scheme which is valid for arbitrary meshes. Cells are considered
as polygons, allowing for any form of cells and also for hanging nodes. The mesh is based
on a multiblock decomposition of the computational domain. On each block, the grid is
generated through a B-Spline technique (see [2]) , which is suitable for local adaptation
and makes it possible to represent the grid with low memory costs. It should be noted that
a proper multiblock decomposition is important for the overall performance of the Flow
Solver. Without a good multiblock structure, no satisfactory solutions can be produced
and the nonlinear solver may have severe performance degradations.

The adaptation criteria is based on a multiscale analysis [17]. By means of a sequence
of nested grids, the cell averages u; are decomposed into the averages on the coarsest level
and details. Coarsening or refining is based on the size of the details.

In QUADFLOW, a variety of Riemann solvers and limiter functions for the discretiza-
tion in space, as well as several timestepping schemes are incorporated. For the compu-
tations in this paper we used the HLLC scheme proposed by Batten and Leschziner [1]
for the discretization of the convective fluxes. To obtain second order in space, a linear
reconstruction of the variables is used. This was combined with the Venkatakrishnan-
Limiter [22] to avoid oscillations near discontinuities. The time integration was done with
the implicit Euler scheme, because for our purpose, no high order method is needed in
time, as time efficiency is not important for steady state computations, but stability is the
important criterion. This was combined with so called local timesteps for a fast conver-
gence to steady state. The application of this technique can be interpreted as a nonlinear
preconditioner for the time dependent PDE.

Local timesteps mean that in every timestep, a CFL-number is prescribed and the
timesteps At are then computed locally in every cell via

Ati =)\i,mam - CFL . A.Q’,‘Z',

where A; 40 is the largest Euler eigenvalue in the cell ¢. The CFL-number is computed
by a simple heuristic: initially and after every adaptation step, it is set to a user defined

low (between 0.8 and 2) value. In every timestep, it is then multiplied by a factor of 1.2
until a given maximal CFL number is reached.

4 The Newton iteration

To solve the nonlinear equation arising in the implicit time integration, we use Newton’s
method. For our solution method of the stationary Euler equations, one Newton step per
time step is fully sufficient to obtain convergence to steady state. The algorithm thus
reads:

G'(UMAU = -G(U™),
Untl = Um + AU,
where in cell ¢, the function G is defined by:

V; .
Glug) = (i —uf) + D e FHHC(U)n,,

edges e;

The linear system is solved using a preconditioned GMRES agorithm and the Jacobian
matrix is obtained from the definition of G:

G'U") =V(AanT+ > |e|w

edges e

n,, (3)

where here V and At are diagonal matrices, originating from the computation of the
local timesteps.

The derivatives of the numerical Flux can be computed numerically via finite dif-
ferences. Some discretizations schemes (e.g. HLLC or van Leer Flux Vector Splitting),
can be differentiated analytically and the formulas are known. For this report, finite
differences were used. It should be noted that the Jacobian corresponds to a first order
discretization in space. The reconstructed values are used for the actual computation
of the entries, but for simplicity and to save storage, in formula (3) the reconstruction
procedure is not incorporated. Using a first order discretization for the Jacobian gives
additional robustness. It can be observed that the corresponding domain of convergence
of the Newton iteration is larger for a first order than for a second order discretization.

Thus we obtain a sparse unsymmetric linear system, which consists of a weighted
identity matrix plus a second term whith derivatives of the flux function. For small time
steps, the identity part is dominant, whereas for large timesteps, the other part dominates.
This means that the matrix is the more ill conditioned the bigger the time step is and very
well conditioned for small timesteps. Therefore we expect to need more computational
effort to match a given tolerance in the linear equation system for higher CFL numbers.
On the other hand, a high CFL number means less overall steps to reach steady state.

Over the whole integration procedure, we encounter a whole range of matrices, varying
in condition number, structure, entries and eigenvalues. Therefore, a robust procedure

4

to solve the upcoming linear equation systems is needed. In the following chapter, the
GMRES algorithm using ILU(p) preconditioning will be explained. Numerical results will
show that this a very good and robust solver.

5 The linear solver

We cannot say much about the structure of the linear systems obtained during the solution
procedure. They are indefinit, unsymmetric (although most often block symmetric) and
rather ill conditioned. The eigenvalues of the matrices are not known. They are not M-
matrices and already for low CFL numbers, they lose diagonal dominance. Currently, the
most efficient and robust methods to solve sparse large linear systems are preconditioned
Krylov subspace methods. For unsymmetric matrices, a variety of such methods exists,
the most prominent of these being GMRES by Saad and Schultz [20] and Bi-CGSTAB
by van der Vorst [21]. The speed of convergence depends on the condition number of
the matrix. For ill conditioned linear systems, as those arising from the discretization
of partial differential equations, a preconditioner is needed. In [14], different Krylov
subspace methods for 2D compressible Euler and Navier-Stokes problems are compared.
Bi-CGSTAB combined with ILU preconditioning is found to be the most robust and
efficient method. However, this was only for an implementation where the matrix is
stored explicitely. In view of future 3D-applications, we have chosen GMRES, as this
allows for a matrix free implementation without loss of performance [5, 22, 13].

However, the choice of a specific Krylov subspace method is not as important as the
choice of the preconditioner [16]. The preconditioner has to satisfy a compromise between
savings in the number of iterations and the additional cost of one iteration through the
preconditioning procedure. These are namely the time to setup or construct the pre-
conditioner and the additional CPU time needed for every iteration. Furthermore, the
computed iterates do depend on the preconditioner and thus the preconditioner influences
the whole solution procedure. This means that for an evaluation, if a specific precondi-
tioner is good in the context of a flow solver, it is not sufficient to count the savings in
iterations, but the overall consumed CPU time for the whole flow solver from the ini-
tialization phase to convergence to steady state. For QUADFLOW, we have found that
ILU(2) [19] preconditioning gives the best results in overall CPU time for a huge range
of aerodynamic testcases. Furthermore, the number of GMRES iterations to satisfy the
given tolerance is between 20 and 30. The linear systems are solved up to a user defined
tolerance. If the 2-Norm of the linear residuum drops below this value, GMRES is termi-
nated. As will be seen later, solving the linear systems very good is not beneficial for the
performance of the flow solver.

We will now shortly explain the preconditioner. The incomplete LU Decomposition
[19] is based on the Gaussian elimination procedure. The latter one is well known to
produce a lot of fill in in the L. and U matrices, resulting in a lot of storage needed to
store the decomposition as well as arithmetic costs. Instead of storing and computing
the exact decomposition, the ILU algorithm computes only the elements for a prescribed

sparsity pattern and sets all elements not contained in the pattern to zero.

Intuitively, the bigger the allowed sparsity pattern for the ILU decomposition, the
smaller the approximation error. Although there do exist counterexamples, the introduc-
tion of ”levels of fill” has proved to be a reasonable heuristic to control this error in some
way, especially for matrices arising from the discretization of PDEs.

The levels of fill are defined recursively: The ILU(0) incomplete factorization is defined
through the sparsity pattern of A, thus allowing no additional fill-in in L and U. Let the
ILU(0) decomposition consist of the matrices Ly and Up. The matrix LoUp has in general
a bigger sparsity pattern than A. This is called first level fill and the incomplete de-
composition corresponding to the augmented sparsity pattern is called ILU(1). Applying
this recursively, we obtain ILU(p). Note that it is not necessary to compute lower level
decompositions first. Instead, it is sufficient to first run a cheap algorithm to determine
the sparsity pattern for the ILU(p) decomposition and then compute the decomposition
corresponding to the pattern.

5.1 The PETSc Interface

The implementation of the linear algebra routines in QUADFLOW uses the PETSc library
of the Argonne National Laboratory [18]. The PETSc sparse matrix format is used and
the GMRES and ILU routines of the library. PETSc vectors are needed in the subroutines,
but the QUADFLOW vectors can be easily transferred to PETSc vectors using pointers.

6 Numerical Results

Numerical experiments were carried out on 2 different airfoils. First, on the well known
NACAO0012-profile and then on the so called SFB-401 cruise configuration. This is de-
signed to resemble an AIRBUS A380 airfoil. During every run of Quadflow, a total
number of six adaptations was carried out. An adaption step occurs after the weighted
density residual measured in the 2-Norm has dropped four orders of magnitude. After
the last adaptation the solver continues, until the residuum drops another seven orders of
magnitude.

It should be noted, that an adaption step changes the discrete solution space and
therefore the norm. The old solution is interpolated to the new space and the norm of
the residual increases.

The computations were carried on on a Linux Intel PIII-600 MHz. All CPU times
represent only the time spent by the flow solver and do not include the time needed for
the adaptation or the grid generation.

A variety of test cases was computed over a broad range of Mach numbers (going
from Mach 0.16 up to Mach 0.85), maximal CFL numbers and tolerances for the linear
residuum as a stopping criterium for GMRES. We were interested in the performance
of the preconditioner. There are a lot of algorithmic parameters to choose and a set of
parameters is considered best, if it gives a good solution to the given problem (in the

engeneering sense) for the lowest cost in CPU time.

Besides the CPU time and the solution, the number of GMRES iterations needed to
match the given tolerance was recorded in every timestep. While the overall CPU time
is the prime measure for the performance of a preconditioner, the numbers of GMRES
iterations give insight on whether a preconditioner can be significantly improved.

6.1 The transonic regime

This is the numerically most challenging of the considered problems. One of the Euler
eigenvalues approaches zero, as the Mach number nears one and the problem becomes
stiff. On top of the airfoil, a strong shock appears.

F Tolerance 10E-6
55 = Tolerance 10E-3

20

15

Number of iterations
Number of iterations
w
o

10

N IR N ERRTI R PR A LTS NRNTL A RATERRATIR NRI
400 600 800 200 400 600 800
Timestep Timestep

TR 1
200

Figure 1: GMRES-iterations for a tran- Figure 2: Effect of linear tolerance on the
sonic NACA0012 flow (M, = 0.8) number of GMRES iterations

The first example is a flow over the NACAO0012 airfoil at a freestream Mach number of
0.8 with an angle of attack of 0.1 degrees. In Figure 1, the number of iterations needed
in GMRES to match the tolerance of the residuum in the linear system is plotted over
the time steps. For this example, the tolerance was set to 10E-3. The minima correspond
to an adaption step, as after every multiscale analysis, the CFL number ist reset to the
low starting value (e.g. 0.8). This corresponds to a very good conditioned linear system,
therefore, GMRES has no problems to solve these very quickly. After this, the CFL
number is increased (and thus the condition worsens) and correspondingly, GMRES takes
longer to fulfil the tolerance. After a while, the CFL number reaches a user defined
maximum (here: CFL = 500). From there on, the iteration numbers go down, as the
flow field becomes more stationary. On average, GMRES takes about 15 iterations and
never more than 25 to terminate.

60—

[
a
T

Tolerance 10E-6
- Tolerance 10E-3
50 -

w
o
T

N
ol
T
N
o
L

[N
o
T

Number of iterations
[
(9]
T

Number of iterations
w
o

[N
o
T
[N]
=]
T T T

10

LS S N S P R
200 300 400
Timestep

i L1 P L L
200 300 400 100
Timestep

Figure 3: GMRES iterations for transonic
flow (M = 0.8) over the SFB401 cruise
configuration.

Figure 4: Comparison of different toler-
ances in GMRES for the SFB401 cruise
configuration.

These results were compared with the same run of quadflow, only changing the toler-
ance in GMRES to 10FE — 6. Not surprisingly, the iteration numbers increase (see Figure
2). But the adaptations, which are steered through the nonlinear residual, happen at
exactly the same time. Furthermore, the total number of timesteps is the same, as is the
convergence history. Thus, solving the linear systems more efficiently, brings no gain for
the nonlinear solution algorithm. This is quantified in the following tabular:

GMRES-Tolerance | Timesteps | Max. Cells | CPU-Time
10E-3 931 13138 4700 s
10E-6 930 13138 7000 s

The same comparison was done, only using the SFB-cruise configuration instead of
the NACAOQ012 airfoil. The result is qualitatively the same, as can be seen in figure 3 and
4 as well as in the next table.

GMRES-Tolerance | Timesteps | Max. Cells | CPU-Time
10E-3 478 13930 2900 s
10E-6 481 13930 2000 s

In figures 5 and 6, the norm of the volume weighted relative Ly-residual of the Density
is plotted over the timestep for both cases (high and low tolerance in the linear solver).
The curves match nearly exactly, a difference appears first for very low residuals. This is
probably due to rounding errors, which become more significant if the residual becomes
very small.

i
(=]
°

i
]

i
S

oy
=]

Residual
Residual

=
S
S
T

10°F

—<}— Tolerance 10E-3 —<—— Tolerance 10E-3

10° ;_ —>—— Tolerance 10E-6 10,5;_ > Tolerance 10E-6
-7 T R T T | -7 T RIS N R ST NN SR SR N RN
10 200 400 600 800 10 100 200 300 400
Timestep Timestep

Figure 5: Convergence histories for tran- Figure 6: Convergence histories for tran-
sonic flow (M = 0.8) over the NACA0012 sonic flow over the SFB401 cruise configu-
airfoil. ration.

6.2 The subsonic case

The subsonic regime is much easier to handle numerically. There are no strong shocks and
the Euler eigenvalues stay away from zero. As an example, figures 7 shows the number
of GMRES iterations per time step for a calculation with Mach number 0.5 and angle of
attack 1, whereas figure 8 corresponds to Mach 0.16 with an angle of attack of 3 degrees.

GMRES-Tolerance | Timesteps | Max. Cells | CPU-Time
10E-2 330 6478 600 s
10E-2 404 2488 350 s

A tolerance of 10 F —2 ist sufficient for these much simpler cases to obtain convergence.
The small CPU times show clearly, how much the faster convergence of GMRES due
to the better condition number of the linear systems in the subsonic case, impacts the
overall time to reach steady state. The number of time steps is roughly halfed, while the
computing time is decreased by a factor of ten.

6.3 Different levels of fill

The next example is again a Naca0012 computation at Mach 0.8 with an angle of attack of
0.1. Exactly the same algorithmic parameters as in example one are used, except that the
level of fill in the ILU decomposition is varied. Figure 9 shows the different plots of the
number of iterations needed for GMRES to satisfy the tolerance. It can be clearly seen,
that a higher level of fill results in a higher convergence speed of GMRES. Especially the

9

4
35?—
30f—
25?—

10F

Number of iterations
Number of iterations

ST

[B P E R RN
100] 200 300 200 300 400
Timestep Timestep

Figure 7. GMRES iterations per timestep Figure 8: GMRES iterations per timestep
for a subsonic flow (M, = 0.5) over the for a subsonic flow (M, = 0.16) over the
NACAOQ0012 airfoil. NACAO0012 airfoil.

first two levels of fill bring a substantial gain. It should be kept in mind, although, that
a decomposition corresponding to a higher level of fill takes more time to compute than
a low level fill decomposition. This is seen in the tabular. Althoug GMRES converges
much faster with ILU(2) preconditioning than with ILU(1) preconditioning, the increase
in overall speed is less substantial.

ILU-Level | Timesteps | Max. Cells | CPU-Time
0 922 13126 5900 s
1 925 13138 5000 s
2 931 13138 4800 s
3 929 13138 4700 s

Otherwise, the algorithmic behaviour is nearly identical. This was to be expected,
as the tolerance in GMRES is the same for all preconditioners. It should be noted that,
although ILU(3) performs best in this example, this was normally not the case in the
numerical experiments, but ILU(2) was the better preconditioner.

6.3.1 Other Preconditioners

The only other notable preconditioner is the symmetric Gauss Seidel method using an
appropriate renumbering of variables. Computations were made using Jacobi precondi-
tioning, but convergence is at least 20 times slower than with ILU(2). SGS is also much
slower than ILU, but it can be used to obtain a wholly matrix free method, were the
matrix is not even stored for preconditioning purposes [10, 11].

10

60 -
r i BT
ILU(L)

55;

i ILU(2)
ot)

50F Y
sE 4“
a0F o
sE ‘

F |
30 F |

sk |

Number of iterations

20; L

F {
15+ a | “J

10 :—1\ "l

(4]

L N S N
200 400 600 800
Timestep

Figure 9: Comparison of GMRES performance for different ILU preconditioners (transonic
NACA0012 flow).

6.4 The PETSc Interface

The PETSc routines are very efficient and self developed code seems to be less fast.
Unfortunately, using PETSc is not easy and it takes some time to get used to the structure
of the library. On the other hand, support is very good. The development team has several
people working only on support and they answer every question you might have in one
day.

7 Summary

An implicit finite volume solver using a Newton-Krylov method was outlined. The impact
of preconditioning and the tolerance in the Krylov subspace method GMRES was exam-
ined with numerical experiments. It can be seen, that a high tolerance in GMRES is not
beneficial for the implicit Euler method, but consumes just more computer power. This is
probably due to the fact, that the Jacobian matrix is based on a first order discretization
and therefore, no true Newton method is employed.

Furthermore, it was demonstrated, that ILU(2) is a very good preconditioner for the
considered problem. Even for the numerically difficult transonic case, the tolerance is
satisfied with about 20-30 GMRES iterations. Other authors obtain similar conclusions
using ILU(0) [16, 23], but without considering ILU(2).

A higher level of fill in the incomplete decomposition results in faster convergence of
GMRES. This is somewhat negated by the higher amount of time needed to construct the
preconditioner. At the moment, the Jacobian and the ILU-decomposition is recomputed
in every timestep. Freezing the Matrix or the preconditioner will probably save a lot of
time, as was demonstrated by Meister [16], als well as by Venkatakrishnan [23]. It might

11

be that ILU(3) will then perform better than ILU(2).

On the other hand, 3D computations might make it necessary to use ILU(0) due to
excessive storage requirements of higher level of fill decompositions. For parallel compu-
tations, ILU is not a good method. It has an inherent sequential natuer and does not
scale well. Regarding the experiences with ILU, standard parallel preconditioners like
SPAT will probably perform well.

Fortunately, this part of the parallelization process will be quite easy. PETSc is
originally designed for parallel codes and for use with MPI. There do exist routines for
parallel preconditioners like SPAI or additive or multiplicative Schwarz.

As a last topic, we want to consider the Navier Stokes equations. There, the large
number of cells in the boundary layer increases storage problems. Otherwise, ILU is still
a very good preconditioner [16].

12

References

[1] P. Batten, M. A. Leschziner and U.C. Goldberg: Average-State Jacobians and Im-
plicit Methods for Compressible Viscours and Turbulent Flows, J. Comp. Phys. 137,
1997, pp 38-78

[2] K.H. Brakhage and S. Mueller: Algebraic-hyperbolic grid generation with precise
control of intersection of angles, Int. J. Numer. Meth. Fluids. 33, 2000, pp 89-123

[3] F. Bramkamp, B. Gottschlich-Miiller, M. Hesse, Ph. Lamby, S. Miiller, J. Ballmann,
K.-H. Brakhage, W. Dahmen: H-adaptive multiscale schemes for the compressible
Navier-Stokes equations: polyhedral discretization, data compression and mesh gen-
eration, IGPM report 207, 2001

[4] A. Brandt: Multigrid techniques: 1984 Guide with Applications to Fluid Dynamics,
Proceedings of the VKI Lectures Series 1984-04, 1984

[6] P.N. Brown, Y. Saad: Hybrid Krylov methods for nonlinear systems of equations,
SIAM J. Sci. Stat. Comput., Vol. 11, 1990, pp. 450-481

[6] Jameson, A.: Solution of the Euler equations for two-dimensional transonic flow by
a multigrid method, Appl. Math. Comp., Vol. 13, 1983, pp. 327-356

[7] A.Jameson, D.A. Caughey: How many steps are required to solve the Euler equations
of steady, compressible flow: in search of a fast solution algorithm, ATAA paper 2001
2673

[8] B. van Leer and D. Darmofal: Steady Euler Solutions in O(N) Operations, Multigrid
Methods VI, E. Dick, K. Riemslagh and J. Vierendeels, editors, 1999, pp 24-33

[9] L. Lepot, P. Geuzaine, F. Meers, J.-A. Essers and J.-M. Vaassen: Analysis of Several
Multigrid Implicit Algorithms for the Solution of the Euler Equations on Unstruc-
tured Meshes, Multigrid Methods VI, E. Dick, K. Riemslagh and J. Vierendeels,
editors, 1999, pp 157-163

[10] H. Luo, J. Baum and R. Loehner: A Fast, Matrix-free Implicit Method for Com-
pressible Flows on Unstructured Grids, J. of Comp. Physics 146, 1998, pp 664-690

[11] R. Massjung: Numerical Schemes and well posedness in numerical aeroaelasticity,
Dissertation, to appear

[12] D.J. Mavripilis and V. Venkatakrishnan: Implicit method for the computation of
unsteady flows on unstructured grids, J. Comp. Phys. 127, 1996, pp 380-397

[13] P.R. McHugh and D.A. Knoll: Comparison of standard and matrix-free implemen-
tations of several Newton-Krylov solvers, ATAA J. 32, 1994, pp 394-2400

13

[14] Meister, A.: Comparison of different Krylov subspace methods embedded in an im-
plicit finite volume scheme for the computation of viscous and inviscid flow fields on
unstructured grids, J. of Comp. Phys., Vol. 140, 1998, pp. 311-345

[15] Meister, A., Sonar, Th.: Finite-volume schemes for compressible fluid flow. Surv.
Math. Ind., Vol. 8., 1998, pp. 1-36

[16] Meister, A., C. Vomel: Efficient preconditioning of linear systems arising from the
discretization of hyperbolic conservation laws, Advances in Computational Mathe-
matics 14, 2001, pp. 49-73

[17] S. Miiller: Adaptive Multiscale Schemes for Conversation Laws, accepted for publi-
cation in Lecture Notes on computational Science and Engineering, Springer Verlag

(18] http://www-fp.mcs.anl.gov/petsc/

[19] Saad, Y.: Iterative methods for sparse linear systems, PWS Publishing Company,
Boston (1996)

[20] Y. Saad and M.H. Schultz: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., Vol. 7, 1986,
pp- 856-869

[21] H. van der Vorst: Bi-cgstab: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 13, 1992, pp
631

[22] Venkatakrishnan, V.: Convergence to Steady State Solutions of the Euler Equations
on unstructured Grids with Limiters, J. Comp. Phys. 118, 1995

[23] Venkatakrishnan, V.: Implicit schemes and parallel computing in unstructured grid
CFD, ICASE-report 95-28, 1995

14

