CONVERGENCE ANALYSIS OF THE GAUSS-SEIDEL METHOD
FOR DISCRETIZED ONE DIMENSIONAL EULER EQUATIONS

ARNOLD REUSKEN*

Abstract. We consider the nonlinear system of equations that results from the Van-Leer flux
vector splitting discretization of the one dimensional Euler equations. This nonlinear system is
linearized at the discrete solution. The main topic of this paper is a convergence analysis of block-
Gauss-Seidel methods applied to this linear system of equations. Both the lexicographic and the
symmetric block-Gauss-Seidel method are considered. We derive results which quantify the quality
of these methods as preconditioners. These results show, for example, that for the subsonic case
the symmetric Gauss-Seidel method can be expected to be a much better preconditioner than the
lexicographic variant. Sharp bounds for the condition number of the preconditioned matrix are
derived.
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1. Introduction. In this paper we consider iterative methods for discrete sta-
tionary Fuler equations. Two important solution approaches known from the litera-
ture are the following. Firstly, one can use some “simple” explicit iterative method,
like for example a block nonlinear Gauss-Seidel method or a Runge-Kutta method
(obtained by introducing an artificial time variable), which then is accelerated by
multigrid techniques (e.g., [12, 13, 16, 20, 25, 27]). The second approach is based on
linearization combined with fast iterative solvers for large sparse linear systems, such
as multigrid solvers or (preconditioned) Krylov-subspace methods. A typical example
of this is the Newton-Krylov technique from [5, 14, 15, 18, 19, 24]. In the literature
one can find many studies in which different iterative solution techniques for solving
stationary (or instationary) discrete Euler equations are compared (e.g., [17, 26]).
There are, however, as far as we know no rigorous theoretical results available which
yield some insight in convergence properties of certain iterative methods applied to
(linearized) discrete Euler equations. In this paper a first step towards such theoreti-
cal results is made.

We present an analysis for a simple method, namely the block Gauss-Seidel method,
applied to linearized one dimensional Euler equations. We consider the stationary
Euler equations which model one dimensional subsonic and transonic flows through a
nozzle ([11, 21]) and use the Van Leer flux vector-splitting method for discretization.
The discrete nonlinear problem is linearized at the discrete solution. We apply a GM-
RES method with block-Gauss-Seidel preconditioning to this jacobian linear problem.
Both a lexicographic (LGS) and a symmetric (SGS) Gauss-Seidel method are used.
Numerical experiments show some interesting dependencies of the rate of convergence
on the Mach number and the mesh size. We emphasize that we do not recommend
to use such an iterative method for these one dimensional linearized Euler equations,
because the jacobian matrix has a block-tridiagonal structure with 3 x 3 blocks and
thus a direct solver is efficient for this problem. Our main interest, however, is not the
efficient solution of these one dimensional Euler equations, but a better understanding
of convergence properties of the block-Gauss-Seidel method applied to discrete Euler
equations.
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The main topic of the paper is a theoretical analysis in which we try to explain some
of the convergence phenomena that are observed in the numerical experiments. In
this analysis we use the technique of “frozen coefficients”, i.e., we linearize the discrete
Euler equations at a function triple (p,u,p) (density, velocity, pressure) which is con-
stant as a function of the space variable and is such that the solution is subsonic. We
consider the LGS and SGS method applied to this problem and derive results which
quantify the quality of these methods as a preconditioner. These results show, for
example, that the SGS method can be expected to be a (much) better preconditioner
than the LGS method. Sharp bounds for the condition number of the preconditioned
matrix are derived, which show that in case of the SGS preconditioner for a large
range of Mach numbers M € (Mg, 1) this condition number increases only (very)
slowly if the grid size decreases.

We realize that although some first theoretical results are given in this paper, we
are still far from a complete theoretical convergence analysis of Gauss-Seidel meth-
ods applied to linearized discrete one dimensional Euler equations. The theoretical
analysis presented supports the numerical observation that for many subsonic and
transonic one dimensional linearized Euler equations the SGS method is a (very) ef-
fective preconditioner. However, as already noted above, in the one dimensional case
a direct solver is the best choice. In two and three dimensional problems, however,
block-Gauss-Seidel techniques or other basic iterative methods (ILU) combined with
Krylov subspace methods can result in very efficient solvers ([3, 4, 6, 19]). As a first
step towards a better theoretical understanding of these basic iterative methods ap-
plied to two or three dimensional linearized Euler equations we consider the simpler
one dimensional problem. One possible interesting topic for further research is an
analysis of the effectiveness of the symmetric block-Gauss-Seidel preconditioner for
the two dimensional case.

2. The one dimensional nozzle flow and its discretization. We consider
the stationary quasi one-dimensional Euler flow in a channel of varying cross-section
S(z) (z € R). This problem can be modeled by the equations (cf. [11, 21])

d(puS) _
d:c2 =0
d(pu®S+pS) _ _dS
dz =Pz

d(puHS) __
psz =0

with density p, velocity u, pressure p, stagnation enthalpy H = E + %. Further
relations are

1.
E:e+§uz, p=(y—1)pe.

Here e denotes the internal energy and < is a gas parameter (ratio of specific heats;
v = 1.4 for air). As unknowns one can take the primitive variables V := (p,u,p)T.
We introduce the conservative variables U the source term Qg and the flux function
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In compact form the problem can be represented as
f(U). =Qs(U) . (2.1)

Note that for S(z) = 1 we obtain the homogeneous one dimensional Euler equations.
Formulas for the transformation between the primitive variables V' and the conser-
vative variables U are known (cf. [11]). Important quantities are the speed of sound
c = ('ypp_l)% and the Mach number M = uc™!. In our experiments we take the
following nozzle with throat at = = 1:
(@) 1+1(1 =L@ +4)” for 0<z<1, 22)
z) = .
1+%(1—%(x+4))2 for 1<z<4.

Nozzle flows are well-known test cases for steady-state computations (cf. [11, 13]).
By specifying certain problem parameters (inflow Mach number and critical throat
section) the problem (2.1) can have several types of solutions: a smooth subsonic flow,
a smooth hypersonic flow, a transonic flow without shocks or a transonic flow with
shocks. Moreover, these solutions depend on only one parameter (for example, the
Mach number M = M (z)) and a simple procedure for computing the exact solution
of the continuous problem is available (cf. [11], section 16.6.4). For two cases the
function z — M (x) corresponding to the exact solution of the problem (2.1), (2.2)
is shown in Figure 2.1 and 2.2. In Figure 2.1 we have a smooth subsonic flow with
critical throat section S* = 0.5. The solution in Figure 2.2 corresponds to a transonic
flow with a critical throat value S* = 1, which equals the throat value S(1), and a
shock at ¢ = 3.

We now outline the numerical solution method for this test problem (for which the
exact solution is available). We only consider problems with subsonic inflow and
outflow conditions (0 < M(0) < 1 and 0 < M(4) < 1). For the boundary conditions
we prescribe values for p and u at the inflow boundary z = 0 and for p at the outflow
boundary z = 4. We use a uniform grid z; = ih, 0 < ¢ < n + 1, with a mesh size
h=4/(n+1). We introduce the discrete unknowns

u (;)
Ui:=|u2(z;) |, U:= (Ui)o§i§n+1 :
U3(a}'i)

For the discretization at the boundaries we use compatibility relations as discussed

in [11], section 19.1.2, i.e. at the inflow boundary we discretize with one-sided differ-
ences the equation (u — c)(j—g - %g—;’) = ucd(li';s that corresponds to the left going

characteristic. Similarly, the two right going characteristic equations at © = 4 are
3
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discretized using one sided differences. Together with the prescribed boundary values
this yields equations

Fo: RS =R, Fy(Uo,Uy) =0, (2.3)
Fn+1 : RG — R3, Fn-i—l(UnaUn-l—l) =0. (24)

For the discretization in the interior grid points we use an upwind method based on
the Van Leer flux vector-splitting ([11, 28]):

FV)y =)+ (),

1
(y=1)ut2c
PR = Loy | —1<m<n, 2.5)
¢ ((’yfl)u+2c)
SR C =

fre=0 if M<-1, fte=f if M>1.

We use backward differences for the approximation of f+(U), and forward differences
for the approxiation of f~(U),. This yields the equations

Fi(Ui—1,Us,Uir) := = fH(Uisa)+ f(Us) =~ Us)+ f~ (Uiy1) —hQs(U;) = 0, (2.6)

for s = 1,...,n. The equations (2.3), (2.4) and (2.6) yield a nonlinear system of
equations

F: R+ L, RO p(U)=0. (2.7)

For the iterative solution of this problem we apply the Newton method. The jacobian
matrices DF (U) € R3(n+2)x3(n+2) have a block-tridiagonal structure. Hence, the lin-
ear systems in the Newton iteration can be solved efficiently using a direct method.
The main topic of this paper is the analysis of block-Gauss-Seidel iterative methods
applied to these linear systems. We emphasize that we do not suggest to use such
a Gauss-Seidel method as an efficient solver in this one dimensional setting. The
analysis for the one dimensional case is a first step towards a better theoretical un-
derstanding of basic iterative methods applied to two or three dimensional linearized
Euler equations.



3. Numerical experiments. In this section we show results of a few numer-
ical experiments which illustrate some interesting phenomena related to the rate of
convergence of block-Gauss-Seidel methods. Let U} be the solution of the discrete
problem (2.7). We consider the linear system

DF(Ui)v=b. (3.1)

In the experiments we take b = (1,...,1)7 and for the starting vector in the iterative

method we use v0 = 0. It turns out that in many cases (often due to the treat-

ment of the boundary conditions) the block-Gauss-Seidel method does not converge.

It turns out, however, that the method is a (very) good preconditioner. Hence, we

use the block-Gauss-Seidel method in combination with a Krylov subspace method.

We choose the GMRES(m) iterative method. Experiments with BiICGSTAB yielded

similar results.

We use the lexicographic block-Gauss-Seidel method, denoted by LGS, and the sym-

metric block-Gauss-Seidel method, denoted by SGS. In the GMRES method we make

a restart after m = 20 iterations. We use the GMRES(m) implementation in MAT-

LAB. In a first experiment, as a comparison for other results, we consider a stan-

dard very simple model problem. We take the one dimensional diffusion equation

—ugzy = g discretized by second order differences. This results in an n x n tridiag-

onal matrix tridiag(—1,2,—1). For different n-values the convergence history of the

SGS-GMRES(20) iterative solver applied to this problem is shown in Figure 3.1. For

the linearized compressible Euler equations (3.1) we show results for the following

problems:

Problem 1. We consider a problem with a smooth subsonic solution as shown in
Figure 2.1. The convergence history of the SGS-GMRES(20) method is shown
in Figure 3.2.

Problem 2. We take a smooth subsonic flow with larger Mach numbers as in Problem
1. The solution is shown in Figure 3.3 (critical throat value S* = 0.85). The
corresponding convergence history is presented in Figure 3.4.

Problem 3. We consider a transonic flow with a shock as shown in Figure 2.2. The
convergence behaviour of the SGS-GMRES(20) solver is shown in Figure 3.5.
If instead of SGS we use the LGS preconditioner we obtain the results in

Figure 3.6.
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From these experiments we observe, that in all three problems the rate of conver-

gence of the SGS-GMRES(20) method is (much) higher as for the one dimenensional
discrete Poisson equation. We also see that in problem 2 (subsonic flow with rela-
tively high Mach numbers) the rate of convergence is much higher as in problem 1.
In the case of the transonic flow in problem 3 the rate of convergence of the SGS-
GMRES(20) method is even higher. We also note that the results presented in the
figures 3.4 and 3.5 show a weak dependence of the rate of convergence on the mesh
size h. Finally note that in problem 3 the LGS-GMRES(20) method is much slower
than the SGS-GMRES(20) method.
In the next section we present an analysis which yields some theoretical results on the
quality of the block Gauss-Seidel preconditioner. These theoretical results yield a bet-
ter understanding of the convergence phenomena that are observed in the numerical
experiments above.

4. Convergence analysis of the block Gauss-Seidel method. For the (block)
Gauss-Seidel method many convergence results are known in the literature (e.g. in
[1, 2, 7, 8, 23]). These results apply to certain classes of matrices, like, for example,
symmetric positive definite matrices or M-matrices. We did not find a convergence
analysis which yields a satisfactory result when applied to the linearized discrete one
dimensional Euler equations. In this section we present an analysis that partly fills
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this gap.

For the theoretical analysis we consider the homogeneous Euler equations f(U), =0
with a constant solution (p(z),u(z), p(z)) = (p,u,p) =: V for all z. We only consider
data with

p>0,p>0, Me(0,1), y:=14. (4.1)

The corresponding solution vector in conservative variables is denoted by U*. The
Van Leer discretization method as described in section 2 results in a nonlinear system
asin (2.3), (2.4), (2.6) with Qs = 0. The treatment of the boundary conditions (first
order accurate) is such that

FO(U(T:DT) = 07 FTL+1(U;:’[7;:+1) =0

holds. Hence, the discrete problem has the constant solution U} (z;) := U*(z;), i =
0,...,n+ 1. To avoid technical complications related to the specific treatment of the
boundary conditions we consider the nonlinear system in the interior points only, i.e,
as unknowns we take U = (Uy,...U,)T € R®" and the system of nonlinear equations
is given by

Fi(Uy,Up) := fH(Uh) — f~(U) + =~ (U2) = FH(T5)
Fi(Ui—1,Us,Uiy1) := —f T (Usca) + fHU) = f~(U) + = Uita) =0, 2<i<n-—1,
Fn(Un—laUn) = _f+(Un—1) +f+(Un) - fi(Un) = _f7(7;+1) .

(4.2)
The vector U} (z;) = U*(z;), @ = 1,...,n, is a solution of this nonlinear system of
equations. The jacobian system
Av=b, A:=DF(U}) e Rm™3" (4.3)
has a block-tridiagonal matrix
A = blocktridiag(— A1, AT — A7, A7 )1<i<n (4.4)

At = DfHU;) e R®*3, A~ := Df (U}) e R®®*3 .

The eigenvalues of A* are denoted by )\f, it = 1,2,3. The Van Leer splitting has
been constructed in such a way that both AT and A~ have one zero eigenvalue:
A = A{ = 0. The other eigenvalues A, A\ of A* and \;, A; of A~are strictly
positive and strictly negative, respectively. For these eigenvalues explicit formulas in
terms of ¢ and M are known [11, 28].

Using MAPLE one obtains

3

det(At — A7) = ﬂ(M6 —15M* +3M?% +11) .

The polynomial in M on the right-hand side has no zeros for M € (—1,1). Hence (cf.
(4.1)) the matrix At — A~ is nonsingular. The matrix
B=BU}):=—(At —A7)t4~ (4.5)

plays an important role in the analysis. From ker(B) = ker(A™) and ker(I — B) =
ker(A™T) it follows that

o(B) = {1,0, ul(p,c; M) } . (4.6)
7



Using MAPLE an explicit representation for B can be obtained. The resulting for-
mulas are rather long and not relevant here. We only note that from these formulas
it immediately follows that B can be factorized as

B=EB(M)E™', E=diag(l,c,c%), (4.7)

with a matrix B(M) which depends only on M. Hence, the eigenvalue p of B in (4.6)
depends only on M. A further MAPLE computation yields a representation of an
eigenvector basis of the matrix B:

BX = Xdiag(1,0, p(M)) ,

1 1 1
M24+4M—5 M2 —_4M—5 6M
X = M+9 M—9 11 , (4.8)
TM3—TM245M+275  TME+TM245M—275 16 M3
14(M+9) 14(M—9) 7

_ 1M —14M* +24M - 11
T2 M4Y—-14M2—11

p(M) (4.9)
The function M — u(M) is shown in Figure 4.1. An important observation is that
for a large range of Mach numbers M € [My, 1] the eigenvalue p(M) is small (e.g.,
w(M) € [0,0.1] for M € [0.5,1]). The condition number of the matrix X is bounded
uniformly in M € [0,1]. The function M — || X||2||X ~!||2 is given in Figure 4.2.

L L T
0.6 0.7 08 0.9 1 42

L L L L
0 0.1 02 03 0.4 05 L L L L L L L L L
Mach number [ 0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1

Fi1G. 4.1. Function M — u(M) FiG. 4.2. Function M — || X||2|| X~ Y|2

In the remainder of this section we analyze block-Gauss-Seidel methods applied to
the system (4.3). For any block-tridiagonal matrix C = blocktridiag(Ci, Cy, Cy) we
introduce the decomposition C = D — L — U with D := blockdiag(C,) and strictly
lower and upper triangular matrices L and U, respectively. We assume that the
matrix D is nonsingular and define the lexicographic and symmetric Gauss-Seidel
preconditioners:

Wi =D -L, W2 .= (D-L)D}(D-U).

Below, the symbol W¢ is used to denote both WL¢S and W25 ie., statements
involving W¢ hold both for the lexicographic and the symmetric block Gauss-Seidel
preconditioner. We apply these preconditioners to the matrix A in (4.4). The block
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Gauss-Seidel methods are invariant under block-diagonal scaling, and thus the follow-
ing holds:
LEMMA 4.1. Define

A := blocktridiag( — (I — B),I,—B) with B as in (4.5).

1<i<n’
Then for the block Gauss-Seidel preconditioner we have
W,'A=W_ 'A.

We apply a further transformation with the well-conditioned eigenvector basis X of
the matrix B. For this we introduce

1 0 0
X := blockdiag(X)i<i<n, E :=blockdiag|0 ¢ 0 . ci=(ypp )3 .
0 0 & \<i<n
LEMMA 4.2. Define
X 0 0 1 0 1 0
A := blocktridiag | — 1 , 1 , — 0 € R¥nx3n
) 1—p 0 1 ] 1

with p = (M) as in (4.9). Then
W, 'A = EXW 'AX'E!

holds.
Proof. This follows from

A =EXAX'E™!, W;=EXW X'E™!,

and the result in Lemma 4.1. O

From Lemma 4.2 it follows that (W ,'A) = J(W;ilA). However, it is well-known
that in a setting with strongly nonnormal matrices the eigenvalues (spectral radius)
are in general not a good measure for the rate of convergence of an iterative method
(cf. [8, 23]). Due to the fact that the blocks in the block tridiagonal matrix A are
diagonal, this matrix represents three decoupled systems of dimension n and a block
Gauss-Seidel method applied to A is the same as a point Gauss-Seidel method. To
make this more precise we introduce for H =: D — L — U with D := diag(H), L
and U strictly lower and strictly upper triangular matrices, respectively, the point
Gauss-Seidel splittings

GLS.=D-1L, G :=D-L)D YD-1).

The symbol Gy is used to denote both GLE%S and G7¢5. Let P € R3"*3" be the
permutation matrix given by

(Px)k+3(i—1) = w(k—l)n—i—ia k= 1,2,3, = 1, sy M.

We introduce the tridiagonal n x n-matrices



From the result in Lemma 4.2 one obtains:
LEMMA 4.3. The following holds:
E"'W,'AE = XPQP'X™!
Q 0 G :L” 0
with Q = Q. = G;'L
0 Qs 0 G;'T

We now consider a Krylov subspace method applied to the matrix WZIA. Let Py, be
the space of polynomials of degree less than or equal to k and P} := {p € Py | p(0) =
1}. A Krylov subspace method can described by a corresponding polynomial p;, € Pj.
Based on the result in Lemma 4.3 we use the problem dependent scaled euclidean norm

Iyllz = E"yll2, ¥y €R™.

Let k2(C) := ||C~!||2]|C||> be the spectral condition number. From Lemma 4.3 it
follows that

k2 (X) Pk (Q)ll2 < [lpe (W3 A) |z < k2 (X)|pe(Q)]2 -

Since k2(X) is independent of n and uniformly (w.r.t. M) bounded, the quantity
[lpe(Q)|]2 is a reasonable measure for the rate of convergence of the Krylov subspace
method applied to W;‘lA. We therefore consider

llpe(Q)[l2 = max ||px(Qi)l|2 - (4.11)

1<i<3

In order to derive bounds for ||pg(C)|l2, C € R"™, one usually makes the natural
assumption that the symmetric part of the matrix C is positive definite. This as-
sumption is satisfied in our case:

LEMMA 4.4. The following holds:

1 . .
éx\min(Qz' + Q;‘F) := min{ v Qiy ly e R, |lyll2=1}>0 for i=1,2,3.

Proof. Note that for the LGS and the SGS method we have
-G 'T|lo <1, I-G;'T|i<1.
From this it follows that
1, _ 1 _ 1 _
P(I - §(GT1T + (GTIT)T)) < 5”1 - GTlT”oo + 5“1 - GT1T||1 <1,
and thus

)\min(%(Q3 + Qg)) >0.

Similar arguments can be used to prove the results for i =1 and ¢ = 2. 00

In the literature one can find analyses in which for several classes of Krylov subspace
methods, under the assumption that the symmetric part of C is positive definite,
bounds for ||px(C)||2 in terms of the quantity

€2

I Amin(C + CT)
10
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are derived (cf. [9, 10, 22]). These bounds are in general very pessimistic but indicate
that if £(C) is “small” (i.e. close to one) one can expect fast convergence of the Krylov
subspace method applied to C. Another interesting quantity related to the rate of
convergence is the spectral condition number k3(C). Note that

1 < k2(C) <¢(C)
holds. Based on this and on the result in (4.11) we take

Emax 1= Dax, &(Qi), Kmax = Jfoax k2 (Qs)

as measures for the quality of the block Gauss-Seidel preconditioner.
We now distinguish between the lexicographic and the symmetric Gauss-Seidel method:
THEOREM 4.5. For the lexicographic block Gauss-Seidel method we have:

G = GLGS; fmax = max{f(QlLf(QB)}; Kmax = max{ "‘72(Q1)7’€2(Q3)} . (413)

For the symmetric block Gauss-Seidel method we have:

G =G%, fnax =£6(Qs), Fmax = K2(Qs) - (4.14)

Proof. For the lexicographic Gauss-Seidel method we have
Gr=1I, G,=L,
and for the symmetric Gauss-Seidel method
Gr=LT, Gp=L.

Hence Q3 = I for the LGS and for the SGS method, and Q; = I for the SGS method.
0

In the Figures 4.3 and 4.4 for the symmetric Gauss-Seidel method the dependence of
k2(Qsz) = k2(GZ'T) on p and n is shown.

FiG. 4.3. k2(GL'T) for Gy = GSGS FiG. 4.4. k3(GL'T) for Gy = GSGS

From these figures and the result in (4.14) it follows that for u € (0, o) with
po K % the function n — Kmax(n) increases only slowly. Hence, for “small” p-values
the SGS-preconditioned matrix has a corresponding Kpax-value which is small, even
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FiG. 4.5. £(G;!T) for Gr = G5GS F1G. 4.6. k2(G1'T) for Gr = GLGS

for “large” n-values. Now note that the dependence of p on the Mach number M
is as in (4.9) (Figure 4.1) and thus for a large range of Mach numbers M € [Mo, 1]
the corresponding u(M)-values are (very) small and thus the condition number Kmax
is small, too. In Figure 4.5 for the SGS method we show, for small p-values, the
dependence of &4, = £(G7'T) on p and n. Note that for small p-values the func-
tion n — &nax(n) increases slowly, too. These observations yield some theoretical
explanation of the fast convergence of the SGS-GMRES(20) method in the problems
1 and 2 as compared to the diffusion problem (cf. Figures 3.1, 3.2, 3.4) and of the
fact that in problem 2 (Figure 3.4) the rate of convergence is much higher than in
problem 1 (Figure 3.2).

For the lexicographic Gauss-Seidel method the term £(Q;) in (4.13) has to be taken
into account. For this term we have

(L Y
£(Qu) = Do (L + L)~ 4(;) ;

which is, independently of u, large if n is large. This gives a theoretical justification
of the intuitive conjecture that for a subsonic or transonic one dimensional flow prob-
lem with characteristics going in both directions the symmetric Gauss-Seidel method
should perform (much) better than the lexicographic Gauss-Seidel method (cf. also
the large difference in the rate of convergence in the Figures 3.5, 3.6).

The result in (4.14) relates the quality measure Kmax 0f the SGS-method to the con-
dition number k5(G7'T). The behaviour of the function (u,n) — Ka(GZ'T) is
shown in Figures 4.3 and 4.4. An important observation is that for “small” y-values
these condition numbers are small. The same holds for the lexicographic Gauss-Seidel
method (cf. Figure 4.6). One can derive (fairly sharp) bounds for ks(G;'T) which
show the dependence of this condition number on n and u. Here we present such a
result for the simplest case, namely for the lexicographic Gauss-Seidel method. For
completeness a proof is given in the Appendix. A similar result can be shown to hold
for the symmetric Gauss-Seidel method.

THEOREM 4.6. Let G = GIT’GS be the lexicographic Gauss-Seidel preconditioner
for the matrix T = T, € R*"™*". For the condition number of the preconditioned
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matriz the following holds for p € [0, %]

_ _ . 26 I 1o 1
1 G, < ad b (K Mo 1
G TGl < (1 min{f D)2 (1 )
. 1 . 1-2up1
’U)Zth h = n—H, 6“ = mln{l, 8” E

REMARK 1. In our model problem we are interested in the case p < % (e.g.,
€ (0,0.1)) and h <« 1. For this case we have §, = 1 and we obtain the following
bound for the condition number:
21+ #)* if
41+ 45 if

<1
>1.

IGT'TILIT G2 S {

RIS

This bound clearly shows that for small p there is (at worst) only a slow growth in
the condition number as a function of n = A= — 1.

REMARK 2. We briefly comment on the very high rate of convergence of the
SGS-GMRES(20) method for the transonic flow problem in section 3 (Figures 2.2
and 3.5). In part of the domain the flow is supersonic (M > 1) and in another part
of the domain the flow is subsonic with Mach numbers M € (0.6,1). The upwind
discretization in the supersonic part of the domain results in a block lower triangular
matrix. Hence in this part of the domain the information is propagated exactly by
the symmetric block-Gauss-Seidel method. In the subsonic part of the domain the
Mach numbers are > 0.6 and thus the corresponding u(M)-values ly in the interval
[0,0.05]. The analysis in this section shows that in such a case, if we freeze the
coefficients, the SGS method can be expected to be a very effective preconditioner.
At the “critical” points £ = 1 and z = 3 we do not have a smooth behaviour and
this results in a low dimensional subspace in which the Gauss-Seidel preconditioner
may perform relatively poor. Due to its very low dimension the error components in
this subspace can be reduced effectively by the GMRES method. These arguments
give some heuristic explanation of the convergence behaviour shown in Figure 3.5. A
rigorous analysis for the transonic case is still lacking.

Appendix A. Proof of Theorem 4.6. In this appendix we give a proof of the
result in Theorem 4.6. We consider the tridiagonal matrix T = T, as (4.10) with
p € (0,%) and for the preconditioner we take the lexicographic Gauss-Seidel method:

G = tridiag(—(1 — ), 1,0) € R™*™ .

In Figure 4.6 we show the numerically computed values of the function (u,n) —
ko(G~IT). In this section we derive a rigorous (sharp) bound for this condition
number which shows its dependence on p and h =1/(n + 1).

We use the notation

S = h eR"  W=I-8T.
L
0

LEMMA A.1. The following holds:
G T, <1+ min{%, 1} .
13



Proof. Using T = G — uS we obtain
IG™'Tls = IT— uG7'S|l2 <1+ p([|G™'S]|ee|IGT*S[1)

n—1
<1+p) (1-w* <1+min{un,1},
k=0

and thus the result of this lemma holds. O

We now derive a bound for || T !G||s. First we note that T = G — uS is a weakly
regular splitting, i.e., G™1 > 0 and 4G 'S > 0 holds. Moreover, T~! > 0 holds, and
thus up(G~1S) < 1. From this we obtain that T~1G is a positive matrix:

T'G=1-pG'S) ' => (uG'S)">0.
k=0

In our analysis we use the numerical radius
r(A) := max{ |x7Ax||x € C",||x|. =1} .
We use the following properties:
1Al < 2r(A)
r(A) = %p(A—i— ATy if A>0.

Using G =1— (1—p)ST =W + uST we get

IT7'Gll; <2r(T7'G) = p(TT'G+ G"T™T)
=p((T7'W + WIT™T) + p(T7'ST + ST 7))
<p(T "W+ WITT) 4 pup(T 'S8T +8ST 7). (A.1)

In the following two lemmas we derive bounds for the two terms in (A.1).
LEMMA A.2. The following holds:

26, p
T—l T T—T < r”
pp(T™°8" +ST™7) < T—2uh
1-2p1
wzth 6[»‘ = min{]., T’J/E
Proof. Note that
p(T ST+ ST ) <IT'ST + ST oo < T Hloo + 1Tl - (A.2)

We derive a bound on || T !||s using T~! > 0 and an appropriate barrier function.
The difference operator corresponding to T is given by

(Tlay = pl1 2 Uik (=201 1 Oz, = (120 (5 [-1 2 ~Ta 3 [-1 1 0),),
14



with ; = ih, 0 <i<n+1,and € = % € (0,00). To obtain a suitable barrier
function we consider the boundary value problem

—eu"(z)+u'(z) =1, z€(0,1), u(0)=u(l)=0,
with solution given by

_exp() -1
ﬁp(g) — € [0,1].

For z € (0,1) and m > 2, @™ (x) < 0 holds. Using this it follows from Taylor
expansion that

(o8

i(z) ==z

[Tz > (1 —2p)h( —ea” (z;) + u'(z)) = (1 — 2u)h .
From this and the fact that T is inverse positive we obtain

(12| 00,[0,1]

T < 2 1ol0H
IT e < 7 25

We introduce the notation z. := s(exp(i) —1). A simple computation yields that on
[0, 1] the function @ attains its maximum at z = £ln z. and this maximum is given by
|| o0,0,1) = €(In 2. + 27t —1) = m(e).

On (0, 00) the function € — m(e) has the following properties:

. _ 12 . _
lgligm(s) =1, m'(e) <0, sllg)lom(e) =0.

1
. _ ' : - -
lglg]lem(r:) =0, (em(e))' >0, Eh%m em(e) = g

It follows that

T Yo < ———
IT e < g ™

-1
1T oo < (g7 5m(E) <

and thus

1
T ! < — 9, .

The same bound can be derived for ||T 7|/ if one uses the (adjoint) equation
—eu' —u' = 1. These bounds in combination with (A.2) prove the result. O

LEMMA A.3. The following holds, with d,, as in Lemma A.2:

=

26 o
(T "W+ WIT-Ty < £ _(14 E h~
1—2u( 1—2p+ pd,

) -
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Proof. We use the notation
¢ = ﬁ 1=(1,....,0)T€R, e;=(1,0,...,00T € R" ,
I-¢8)7"1, y=(1-¢8")"er = (1,6,6%,...," )T,

n—1
€
— — k —
B=lvh=3 € 7= g

X

Note that
T 'W=(W—puS—-8") " '"W=(I-uW(S—87))"

= (I—u(I—}—S — ,ulelT))_1 = ﬁ(l — &S —}—flef)_l

= T exe]) (1= 68)™! = T (T - rxe])(I—¢5) "
= iu((l —&8)™ —rxy") .
Using
1T = £8)7 ]2 < (T = €8) ™ [loolI(T = €8) )% = 2,
Ix[l> < ([T = €S) " [l2l|1]]2 < Bv/n < BA~%
Iyl < (T —€8) " lallerll> < 8 ,
we obtain

p(T'W +WITT) = p(I—£8) "t +(I-¢8") ! —r(xy" +yx"))

L—p
2 _
< E(H(I—fs) "o + 7lixll2llyll2)
26 8,1
1 h™2) . A3
We use
. 1 1—p . 1-2p, 4
< o —— <
ﬂ_mm{l_g,n}_ 1_2um1n{1, 1—,uh 1
1—p . 1—-2p, 4 1—p
< 1 = .
_1_2Mm1n{7 SM h } 1_2”/”
Hence
ﬂ < 26" (A4)
1—p = 1-2p
holds. Finally, note that
3 =55 0u oy, (A5)

< = .
1+€8 ~ 1+ 5.6, 1—2p+ pd,
16



Combination of (A.3), (A.4) and (A.5) yields the result. O
Substitution of the results of Lemma A.2 and Lemma A.3 in (A.1) yields

_ 26, p 7y 1
TGl < — 2 (F4+1+ —F——) .
I I < 1—2u(h 1—2p+ ud, \/ﬁ)

Combination of this result with the result of Lemma A.1 shows that the inequality in
Theorem 4.6 holds.
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